
Soe et al. BMC Bioinformatics          (2018) 19:472 
https://doi.org/10.1186/s12859-018-2498-2

SOFTWARE Open Access

BiSpark: a Spark-based highly scalable
aligner for bisulfite sequencing data
Seokjun Soe1, Yoonjae Park2 and Heejoon Chae3*

Abstract

Background: Bisulfite sequencing is one of the major high-resolution DNA methylation measurement method. Due
to the selective nucleotide conversion on unmethylated cytosines after treatment with sodium bisulfite, processing
bisulfite-treated sequencing reads requires additional steps which need high computational demands. However, a
dearth of efficient aligner that is designed for bisulfite-treated sequencing becomes a bottleneck of large-scale DNA
methylome analyses.

Results: In this study, we present a highly scalable, efficient, and load-balanced bisulfite aligner, BiSpark, which is
designed for processing large volumes of bisulfite sequencing data. We implemented the BiSpark algorithm over the
Apache Spark, a memory optimized distributed data processing framework, to achieve the maximum data parallel
efficiency. The BiSpark algorithm is designed to support redistribution of imbalanced data to minimize delays on
large-scale distributed environment.

Conclusions: Experimental results on methylome datasets show that BiSpark significantly outperforms other
state-of-the-art bisulfite sequencing aligners in terms of alignment speed and scalability with respect to dataset size
and a number of computing nodes while providing highly consistent and comparable mapping results.

Availability: The implementation of BiSpark software package and source code is available at https://github.com/
bhi-kimlab/BiSpark/.
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Background
DNA methylation plays a critical role in gene regula-
tion process. It is well-known that promoter methyla-
tion causes suppression of down stream gene transcrip-
tion, and abnormal DNA methylation status of diseases-
associated genes such as tumor suppressor genes or onco-
genes are often considered as biomarkers of the diseases.
In addition, promoter methylation especially at the tran-
scription factor binding sites (TFBS) changes the affinity
of TF binding result in abnormal expression of down-
stream genes. Thus, measuring DNA methylation level
now becomes one of the most desirable follow-up studies
for transcriptome analysis. Various measurement meth-
ods for DNA methylation were previously introduced.
Illuminaś Infinium HumanMethylation 27K, 450K, and
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MethylationEPIC (850K) BeadChip array cost-efficiently
interrogate the methylation status of certain number
of CpG sites and non-CpG sites across the genome at
single-nucleotide resolution depending on their cover-
ages. Methylated DNA immunoprecipitation-sequencing
(MeDIP-seq) [1] isolates methylated DNA fragments via
antibodies followed by massively parallelized sequencing.
Methyl-Binding Domain sequencing (MBD-seq) utilizes
an affinity between MBD protein and methyl-CpG. These
enriched DNA methylation measurement methods have
been used to estimate genome-wide methylation level
estimation.
Bisulfite sequencing is one of the most well-known

methylation measurement techniques to determine
methylation pattern in single base-pair resolution.
Bisulfite sequencing utilizes the characteristic of differ-
ential nucleotide conversion between methylated and
unmethylated nucleotides under the bisulfite treatment.
By utilizing bisulfite treatment technique, whole genome
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bisulfite sequencing (WGBS) can measure DNA methyla-
tion statuses of the entire genome. Due to the nucleotide
conversion caused by bisulfite treatment, reads from the
bisulfite sequencing have higher mismatch ratio than
whole genome sequencing. As a result, bisulfite-treated
reads requires a specialized alignment algorithm to
correctly estimate the methylation levels. Compared to
the WGBS measuring genome-wide DNA methylation
status, Reduced representation bisulfite sequencing
(RRBS) [2] selects 1% of the genomic regions that are
considered as key regions related to gene transcriptional
process such as promoters. RRBS uses restriction enzyme
to reduce genome complexity followed by subsequent
bisulfite treatment. Due to the high cost of measuring the
whole genome DNA methylation status, the cost-efficient
RRBS technique becomes a popular alternative method
measuring the DNA methylation in single-nucleotide
resolution.
In order to handle bisulfite-treated reads, vari-

ous approaches have been proposed. Because of the
nucleotide conversion of un-methylated cytosine (umC)
to thymine by the bisulfite treatment, sequenced reads
from bisulfite sequencing require to discriminating
whether the Ts in the reads come from original DNA
nucleotide or from converted nucleotide (umC). Bismark
[3] and BSSeeker [4] use the ‘three-letter’ approach [5] to
determine the origin of bisulfite-treated nucleotides. In
‘three-letter’ approach, all cytosines in reference genome
and bisulfite-treated reads are converted to thymines in
order to reduce the ambiguity of thymines. General DNA
read alignment algorithm is used to find the best mapping
position of the read, and then methylation levels are
measured from the unconverted reference genome and
reads. BRAT-BW [6] adopts this ‘three-letter’ approach
with the multi-seed and uses FM-index to achieve higher
efficiency and lower memory footprint respectively.
On the other hand, BSMAP [7] and RMAP [8] utilize
wildcard concept to map the ambiguous bisulfite-treated
reads. In wildcard approach, both cytosines and thymines
are allowed to map on cytosines in the reference genome.
A heuristic approach was also introduced to improve the
mapping sensitivity of bisulfite-treated reads. Pash[9]
employs collating k-mer matches with neighboring k
diagonals and applies a heuristic alignment.
Among these several approaches of mapping bisulfite-

treated reads, the ‘three-letter’ algorithm is the most
widely used because it has showed better alignment per-
formance in various perspectives [5]. However, even the
aligners using the ‘three-letter’ algorithm shows rela-
tively better performance in terms of mapping accuracy,
they are still suffer from high computational demands
because in the ’three-letter’ algorithm, the aligning step
requires to process at most four times more volumes of
data (two times more for each directional library reads)

to correctly estimate the DNA methylation level (dis-
crimination between original thymine and thymine con-
verted from umC). Thus, measuring DNA methylation
level by widely-used ‘three-letter’ approach is still con-
sidered as one of the significant bottlenecks of entire
methylome data analysis. Even though some aligners,
such as Bismark and BS-Seeker2, offer multi-core parallel
processing to alleviate this shortcoming of the ’three-
letter’ approach, they are still not well scaled-up enough
and limited within a single node capacity of computa-
tional resources. Besides, since increasing the computing
resources, such as CPU/cores and memory within a sin-
gle large computing server, called scale-up, rapidly drops
the cost-effectiveness, it has been widely researched to
achieve higher performance by using a cluster of comput-
ers instead, called scale-out. Considering financial factors,
the scale-out approach can be more affordable to users
and well-designed scale-out approach usually shows bet-
ter scalability than scale-up approach [10]. As a result, in
order to overcome the limitation of a single node scale-up
approach, distributed system, such as cloud environment,
has been considered as an alternative solution to the
multi-core model.
The distributed system approach was first adopted to

map DNA sequences and related data-intensive process-
ing tasks. Cloudburst [11] and CloudAligner [12] were
introduced to improve the mapping performance by using
MapReduce framework [13]. They are executed parallelly
on multiple nodes based on Hadoop framework [14] and
achieve efficient large-scale alignment on the distributed
system. Crossbow [15] is an another application that uti-
lizes the multi-node approach to resolve the performance
problem of alignment and SNP calling. Crossbow is an
analysis software pipeline designed to run in the cloud
environment (especially on the Amazon Elastic MapRe-
duce [16]) and thus allows dynamic allocation of comput-
ing resources. SparkBWA [17] adopts recently introduced
Apache Spark framework [18], a memory-optimized soft-
ware framework designed for large-scale data processing
on distributed cluster of computers, accelerating BWA
aligner [19] on the multiple computing nodes.
There exist aligners that adopt the multi-node concept

for processing the bisulfite-treated sequencing datasets.
The CloudAligner provides an option for handling the
bisulfite-treated reads within their algorithm. Bison [20]
utilizes MPI (Message Passing Interface ) library [21] to
process bisulfite sequencing data over the cluster. How-
ever, these algorithms are still suffering from either lack
of functionalities and poor performance due to originally
being designed for a general purpose aligner, or not scaled
enough especially in the large volumes of methylome
analysis.
In order to overcome such drawbacks, we developed

the BiSpark algorithm, a highly scalable, efficient, and
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load-balanced bisulfite aligner that utilizes distributed
environment to significantly improve aligning speed and
scalability while keeping reasonable mappability, preci-
sion, sensitivity, and accuracy. The BiSpark algorithm is
designed to fully utilize the benefits of recently introduced
Apache Spark distributed framework. In the BiSpark algo-
rithm, we designed a well-parallelized ‘three-letter’ map-
ping algorithm fitting on Spark framework, resulting in
scaling out almost linearly. In addition, implemented a
highly-optimized load-balancing algorithm in the BiSpark
provides re-distributing data almost evenly across the
cluster nodes, achieving better scalability on a large-scale
cluster.

Implementation
We completely redesigned and implemented ‘three-letter’
algorithm suitable for the distributed Apache Spark envi-
ronment. The basic concept of ‘three-letter’ algorithmwas
adopted from BSSeeker2 [22], while we designed the par-
allelized version of ‘three-letter’ algorithm to fit into RDD
(Resilient Distributed Datasets) and key-value concepts
[23] of the Spark framework.
We also integrated HDFS (Hadoop Distributed File Sys-

tem) [24] to provide centralized data management, which
makes BiSpark to efficiently handle shared data among
cluster while user need not bother with distributing
data. Following is implementation details of the BiSpark
algorithm.

Genome preparation
The ‘three-letter’ algorithm essentially requires trans-
forming reference genomes into customized reference
genomes that consist of only three nucleotides, and this
needs four types of genome transformations (all cytosine
to thymine (CT) conversion and guanine to adenine (GA)
conversion for each Watson (W) and Crick (C) strand,
resulting in W-GA, W-CT, C-GA, C-CT conversion). In
BiSpark, all four reference genome conversion and index-
ing are performed in the master node first and moved to
HDFS for multi-node sharing.

Analysis workflow
The workflow of BiSpark consists of four major parts
(Fig. 1): (1) converting data into key-value RDD struc-
ture, (2) transforming reads into ‘three-letter’ reads and
mapping to customized reference genome, (3) finding
best alignment and filtering, and (4) profiling methylation
information for each read. Following is the details of each
BiSpark analysis phases.

Phase 1: converting to key-value RDD structure
At initial stage, the BiSpark accepts raw sequencing data
files, FASTQ/A format, as inputs and converts them into
list of key-value structured tuples; the first column is a
read identifier (key) and the second column is a read
sequence (value). At the same time, the BiSpark stores
these tuples into the RDD blocks, named as readRDD,

Fig. 1 Analysis workflow within BiSpark consists of 4 processing phases: (1) Distributing the reads into key-value pairs, (2) Transforming reads into
‘three-letter’ reads and mapping to transformed reference genome, (3) Aggregating mapping results and filtering ambiguous reads, and (4) Profiling
the methylation information for each read. The figure depicts the case when library of input data is a non-directional
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which is the basic data structure used in Spark framework.
Since the RDDs are partitioned and placed over memo-
ries of cluster nodes, the BiSpark could distribute input
data across the cluster as well as keep them in main mem-
ory, which can reduce I/O latency if the data is re-used.
As a result, the BiSpark algorithm could minimize physi-
cal disk access, resulting in a significant speed up during
follow-up data manipulation phases.

Phase 2: ‘three-letter’ transforming andmapping
Mapping the bisulfite-treated sequencing data, which has
innate uncertainty, requires additional data manipulation
steps. In order to handle this on the distributed envi-
ronment, the BiSpark transforms readRDDs to transRDD
which consists of <read id, transformed read sequence>
tuples. These transRDDs are subcategorized into CTtran-
sRDD (cytosine to thymine conversion) and GAtransRDD
(guanine to adenine conversion), which reduces uncer-
tainties of bisulfite-treated reads from each Watson and
Crick strand respectively.
Once the transRDDs are created, the BiSpark aligns

each of the transRDDs to ‘three-letter’ customized refer-
ence genomes. We adopted Bowtie2 for mapping reads
to reference genome, known as one of the best DNA
sequence aligner [22]. During the mapping process, the
BiSpark aligns each transRDD loaded on the memory of
each distributed node, and generates another list of tuples,
called mapRDD. By utilizing quality information, poor
reads are discarded. These mapRDDs contains informa-
tion of read-id with alignment results including general
alignment information, such as number of mismatches
and genomic coordinates, as well as specialized infor-
mation, such as conversion type of transRDD. These
mapRDDs have read id as the key while having align-
ment result including the number of mismatches and
genomic coordinates and additional information, such
as a conversion type of transRDD. The mapRDDs are
subcategorized into W-CTmapRDD, W-GAmapRDD, C-
CTmapRDD and C-GAmapRDD depending on the align-
ment pairs between the transRDDs and the customized
reference genomes. At the end of aliment process, the BiS-
park keeps all the mapRDDs within the main memory so
as to be accessed rapidly in following steps.

Phase 3: finding the best alignment
Data transfer between nodes is one of the biggest obstacles
in distributed data processing. In the ‘three-letter’ algo-
rithm, two converted reads (CT, GA) are generated from
a single read, and mapping these reads creates four differ-
ent alignment results (W-CT, W-GA, C-CT, and C-GA).
In order to handle the ambiguity caused by bisulfite-
treatment, the next step of the analysis is figuring out the
best alignment among these results. In a distributed sys-
tem, these four different alignment results are dispersed

across multiple nodes, and to find the best sort, the align-
ment results with the same key need to be rearranged to be
located on the same node. This transfer and redistribution
of the data between nodes, called ‘shuffling’, need to be
performed per every single read, and thus it is one of the
most time-consuming part of the distributed algorithm. In
general, how to minimize the number of shuffling phases
is a major issue for designing a distributed algorithm and
has significant impact on the performance.
To alleviate the issue of ‘three-letter’ algorithm imple-

mented in distributed system, we designed each mapRDD
to use the same partition algorithm and to be divided
into the same number of partitions. Then, if we applied
context-level union function, offered by Spark, the shuf-
fling does not occur while all mapRDDs are merged into
a single RDD due to the design of Spark framework.
As a result, the distributed version of ‘three-letter’ algo-
rithm implemented within the BiSpark could significantly
reduce the processing time. Finally, the aggregated align-
ment results are combined by read id, resulting in a single
RDD, called combRDD, whose value is a list of mapping
results.
The ‘three-letter’ transformation reduces mismatches

of alignment, but increases the probability of the false-
positive alignments. To solve this known issue, most
‘three-letter’ mapping algorithms have strong restrictions
to determine if the mapping result is valid [3, 4, 22]. In the
BiSpark algorithm, the best alignment among the results
is the alignment that has the uniquely least number ofmis-
matches. If multiple alignments have the same smallest
number of mismatches, the read and corresponding align-
ments are considered ambiguous, thus discarded. More-
over, the BiSpark also supports a user-defined mismatch
cutoff to adjust the intensity of the restriction depending
on the situation. All results not satisfying these conditions
are discarded, resulting in the filteredRDD. Through these
steps, the BiSpark could keep high mappability (details in
“Mapping quality evaluation” section).

Phase 4: methylation profiling
In ‘three-letter’ algorithm, read sequence, mapping infor-
mation, and original reference genome sequence are
required to estimate methylation status at each site. In
distributed environment, gathering all these information
together from the multiple nodes requires multiple shuf-
fling operations, which is time-consuming. To minimize
multi-node data transfer during the methylation calling
phase, we combined the read sequence and mapping
information from the readRDD and mapRDD respec-
tively, and designed new RDD, called mergedRDD. In this
way, although the size of each tuple is slightly increased,
the information of read sequence could be delivered to
filteredRDD with mapping information which means the
BiSpark could avoid additional shuffling operations. In
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addition, since the original reference genome sequence
also required to be staged to the multi-nodes, the BiS-
park minimize the reference staging time via broad-
casting it by utilizing shared variable functionality of
the Spark framework allowing direct access to the ref-
erence genome sequence from the multi-nodes. Based
on these optimized implementation, the BiSpark could
achieve significant performance gain compared to other
algorithms (see details in “Scalability evaluation to data
size” and “Scalability evaluation to cluster size” sections).
Finally, methylRDD has the methylation information,
estimated by comparing filteredRDD with the original
reference genome sequence, as the value. The methyl-
RDD is finally converted to SAM [25] format and stored
in HDFS.

Load balancing
Single node delay due to unbalanced data distribution in
distributed data processing makes the entire cluster wait.
As a result, load balancing over the nodes of the cluster is
one of themost important issues when designing a parallel
algorithm.
While designing the ‘three-letter’ algorithm in dis-

tributed environment, we investigated the data imbalance
at each phase and found that there exist two possi-
ble bottleneck points. The first point is where HDFS
reads sequence data. When Spark reads data from HDFS,
it creates partitions based on the number of chunks
in HDFS, not the number of executers, so each Spark
executor is assigned different size of input data. Another
imbalance can be found after the phrase of finding the
best alignment followed by filtering. This is because
the ratio of valid alignment would be different for each
partition.
In order to prevent the delays caused by imbalances, the

BiSpark applied hash partitioning algorithm. Even though
hash partitioning does not ensure perfectly balanced par-
titions, the data would be approximately well distributed
because of the hash function. At each of the data imbal-
ance points, the BiSpark utilizes portable_hash function,
supported by Spark framework, to determine which par-
tition the data should be placed. By re-partitioning data
with the applied hash function, implementation of the
‘three-letter’ algorithm in the BiSpark could expect the
well-distributed data across the multiple nodes. Although
introducing extra partitioning improves parallel effi-
ciency, it requires additional shuffling operation, which
takes additional processing time. Considering the trade-
off, the BiSpark offers the load balancing functionality as
an option, enabling users to select proper mode depend-
ing on the cluster size. Formore details of the performance
gain from the implemented load balancing within the BiS-
park algorithm, see “Scalability evaluation to data size”
and “Scalability evaluation to cluster size” sections.

Experiment
Bisulfite-treated methylome data
For our experimental studies, we evaluated the algorithms
on both simulation data sets and real-life data sets. Sim-
ulation data was generated by Sherman [26] (bisulfite-
treated Read FastQ Simulator), already used by previous
studies [20], setting up with human chromosome 1, read
length to 95bp, and the number of reads to 1,000,000. We
prepared three datasets with error ratio in 0%, 1%, and 2%
for accuracy evaluation.
Real data set is a whole genome bisulfite sequenc-

ing (WGBS) dataset obtained from Gene Expression
Omnibus (GEO) repository whose series accession num-
ber is GSE80911 [27]. The sequencing data was measured
by Illumina HiSeq 2500 in 95bp length. For the perfor-
mance evaluation, we cut the entire data out to create the
various size of testing data sets. During aligning process
for performance evaluation, we used human reference
genome (ver. Build 37, hg19). The statistics of the data sets
used in our experiments are summarized in Table 1.

Experimental design
We empirically evaluated performance of the BiSpark
with existing state-of-art bisulfite aligning methods. We
first compared the BiSpark to aligners, CloudAligner
and Bison, implemented based on distributed environ-
ment. CloudAligner is a general short-read DNA aligner
running on the Hadoop MapReduce framework that
includes bisulfite-treated read alignment function while
Bison a recently introduced distributed aligner specifically
designed for processing bisulfite-treated short reads via

Table 1 Experimental data for performance evaluation

Data set Tailored
data size

# of reads Description

Simulation data 122MB 1,000,000 Simulation set with
0% error

122MB 1,000,000 Simulation set with
1% error

122MB 1,000,000 Simulation set with
2% error

GEO WGBS data
(GSE80911)

1.6GB 10,000,000 10 million reads real
data set

7.9GB 50,000,000 50 million reads real
data set

16GB 100,000,000 100 million reads real
data set

32GB 200,000,000 200 million reads real
data set

Reference
genome

Build 37,
hg19

Simulation data sets are generated by Sherman [26] with various error rates (0%, 1%
and 2% respectively) where the error rate is a mean error rate per bp whereby the
error curve follows an exponential decay model. Each test data sets are tailored
from original WGBS data based on number of reads
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utilizing MPI library. The performance of algorithms is
tested in terms of scaling out with respect to data size
and cluster size over the cluster of multiple nodes. We
also compared the BiSpark to a single-node butmulti-core
parallel bisulfite aligner. We selected Bismark for single
server aligner since Bismark has been evaluated as the best
performance bisulfite aligner without losing the sensitivity
[5, 28] within the single-node parallelization category.
We first evaluated four metrics including mappability,

precision, sensitivity and accuracy from simulation data.
Unlike real data, simulation data reports the original posi-
tion of generated read, which enables us to measure the
metrics. The details of how we calculated metrics are
described below.

TP = number of correctly mapped reads
FP = number of incorrectly mapped reads
FN = number of unmapped reads
mappability = number of mapped reads

number of all reads
precision = TP

TP+FP
sensitivity = TP

TP+FN
accuracy = TP

TP+FP+FN

The more the error in reads, the harder the reads are
correctly mapped. Therefore, we measured metrics while
increasing error ratio.
We also evaluated the scalabilities of the aligners to data

size and number of nodes of the cluster with real data. To
compare BiSpark with existing aligners, we built 3 clus-
ters which consist of 10, 20, and 40 computing nodes
respectively while each of cluster has one additional mas-
ter node. We also prepared a single server with 24 cores
to measure the performance and indirectly compare with
non-distributed aligner, Bismark. Our constructed testing
environment is summarized in Table 2.
We denoted BiSpark without additional load balancing

implementation as BiSpark-plain while BiSpark with load

Table 2 Testbed for performance evaluation

System/framework description version

Master 1 master node of cluster CPU: 2.2GHz

(Intel Xeon E5-2407) Memory: 8GB

Slaves {10,20,40} slave nodes of cluster CPU: 3.3GHz

(Intel i3-3220) Memory: 8GB

Single server 24 core single server CPU: 2.6GHz

(Intel Xeon X5650) Memory: 94GB

Apache Hadoop Distributed file system v2.6.0

Apache Spark Data processing framework v1.6.0

Bowtie2 General short read aligner v2.2.9

CloudAligner Bisulfite aligner on cluster v1.8

Bison Bisulfite aligner on cluster v0.3.3

Bismark Bisulfite aligner on single machine v0.18.1

balancing is denoted as BiSpark-balance. For all align-
ers, there are some pre-processes including transforming
and indexing reference genome, distributing input file
and changing the format of the input file. Because pre-
processing is alinger-specific and can be reused continu-
ously after running once, we exclude pre-processing time
when measuring elapsed time. For the reference genome,
we used chromosome 1 of human genome because the
CloudAligner can only process single chromosome at a
time. We tested all aligners in non-directional library
mode. When executing Bison, we used 9, 21 and 41 nodes
for the 10-cluster, 20-cluster, and 40-cluster experiments
respectively. This is because, in the Bison aligner, there
exist a restriction on the setting of a number of nodes that
allows only 4((N − 1)/4) + 1 nodes if there are N nodes.

Results
Mapping quality evaluation
Table 3 shows mappability, precision, sensitivity and accu-
racy of aligners for each simulation data set. The results
of CloudAligner are excluded from the table since it fails
to create correct methylation profiles over the simulation
datasets. From the evaluation results, the BiSpark shows
the best performance on all four metrics with the 0%
error dataset. In addition, as the error rate increases, the
BiSpark still shows the best performance on mappability
and sensitivity, and reasonably high precision. From these
evaluations, we could confirm that the BiSpark algorithm
is accurate and robust enough to the errors.

Scalability evaluation to data size
We compared the scalability to data size by increasing
input data size while cluster size remains unchanged.
All real dataset in Table 1 were used and 20-cluster

Table 3 Mappability, precision, sensitivity and accuracy of
aligners

Data set Aligner Mappability Precision Sensitivity Accuracy

With 0%
error

BiSpark† 0.9569 1.0 0.9569 0.9569

Bismark 0.9454 1.0 0.9454 0.9454

Bison 0.8030 0.6090 0.7129 0.4891

With 1%
error

BiSpark† 0.9494 0.9892 0.9489 0.9392

Bismark 0.9440 0.9961 0.9438 0.9403

Bison 0.8297 0.5812 0.7391 0.4823

With 2%
error

BiSpark† 0.9422 0.9800 0.9411 0.9234

Bismark 0.9182 0.9862 0.9171 0.9055

Bison 0.8315 0.5729 0.7387 0.4763

†The results from both BiSpark-plain and balance are denoted as BiSpark because
the difference is only in the part where data is distributed, which means the results
of two versions are always same
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was used to execute CloudAligner, Bison, and the BiS-
park while a single server was used to execute Bismark.
Bismark supports parallel computing with a multicore
option. However, there is no specific formulation of how
many cores Bismark uses while execute Bismark with the
multicore option. Instead, the user documentation of Bis-
mark described that 4 multicore option would probably
use 20 cores without any specific formulation. There-
fore, we used 5 multicore option for safe comparison,
even though 5 multicore option would use more than
21 cores.
The performance evaluation result of each aligner in

terms of scalability to data size is depicted in Fig. 2a. From
the result, we could compare two evaluation points; one
is a performance of speed itself inferred from y-axis value
of each aligner measured in seconds. The other one is
scalability to the number of reads inferred from the gradi-
ent of lines of each aligner. The scalability to the number
of reads is getting more important in alignment process
as the recent trend of sequencing depth becomes deeper
resulting in large volumes of data.
The result showed that both versions of BiSpark out-

perform other aligners for both evaluation points. The
estimated aligning time over the 10M reads data showed
that BiSpark-plain only took 617 s and this is aroundmore
than 20 times faster than CloudAligner that took 14,783 s.
This performance difference got higher when the larger
volume of data set used. During the further evaluation
though the data size increasing from 10M reads to 200M
reads, the aligning time of Bismark was steeply increased
from 1551 s to 32,972 s which means BiSpark-plain is
around 2.5 times faster than Bismark on 10M reads and
3.5 times faster on 200M reads. That is, the more reads to
be processed, the faster BiSpark is. From the comparison
result with recently introduced Bison, the BiSpark-plain
achieved around 22% performance improvement on 200M
reads.

Scalability evaluation to cluster size
We also compared the scalability to cluster size by increas-
ing the number of slave nodes while data size remains
unchanged. The dataset which consists of 100 million
reads (16GB) was used as input and Bismark was excluded
for this experiment since the experiment was done on the
cluster.
The evaluation result of aligners which are able to be

executed on the cluster is depicted in Fig. 2b. Unlike
Fig. 2a, the y-axis of Fig. 2b is the number of processed
reads per second, interpreted as throughput. We used this
measurement since it is easier to visualize scalability by
direct proportion curve than inverse proportion curve.
The throughput which is inverse proportional to the per-
formance of speed is inferred from y value of the plot while
how well the aligner can scale up (out) is measured by the
gradient of the plot where steeper gradient signifies better
scalability.
We observed consistent result with the previous exper-

iment for throughput analysis as the BiSpark showed the
best throughput for all 10, 20 and 40 number of slave
nodes, followed by Bison and CloudAligner. Also, the
BiSpark scales up better than other aligners, which rep-
resents that the aligning module implemented within the
BiSpark algorithm is highly parallelized and optimized.
The BiSpark-balance showed relatively less through-
put than BiSpark-plain for the cluster of 10 and 20
nodes but showed better throughput for the cluster of
40 nodes.

Conclusions
We developed BiSpark, a highly parallelized Spark-based
bisulfite-treated sequence aligner. The BiSpark not only
shows the fastest speed for any size of the dataset with
any size of the cluster but also shows the best scalabil-
ity to both data size and cluster size. In addition, BiSpark
improves practical usabilities that existing tools do not

a b
Fig. 2 Comparison between the BiSpark and other bisulfite-treated aligners. In the performance test, the BiSpark outperforms all other aligners in
terms of (a) scalability to data size and (b) cluster size
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support. CloudAligner can only align sequencing reads
to the single chromosome of reference genome per sin-
gle execution. Bison has a restriction on cluster size and
requires data to be manually distributed to all comput-
ing nodes before executing. The BiSpark alleviates these
inconveniences by utilizing combination of the Spark
framework over the HDFS.
We also developed BiSpark-balance which re-partitions

RDDs in balance with additional shuffling. Since load
balancing and shuffling are a trade-off in terms of the
speed, it is hard to conclude theoretically whether the per-
formance would be improved or not. Empirical results
from our experiment showed that BiSpark-balance scaled
well to data size but was generally slower than BiSpark-
plain. However, BiSpark-balance showed better through-
put when cluster size increased. The reason BiSpark-
balance works faster for big cluster might be that the
more nodes should wait for the slowest node as cluster
size increases. In this case, re-partition can accelerate the
aligning process even with the time-consuming shuffling
operation since the throughput of the slowest node would
be much more improved.
In this study, we newly implemented a bisulfite-treated

sequence aligner over the distributed Apache Spark
framework. We believe that by using the BiSpark, the
burden of sequencing data analysis on bisulfite-treated
methylome data could be significantly decreased and thus
it allows large-scale epigenetic studies especially related
with DNA methylation.
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