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Abstract

플래시 라이다를 사용한 템플릿 매칭

기반의 지형참조항법

Indo Yoon

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

This thesis compares and analyzes a performance of template matching based

terrain referenced navigation (TMTRN) using correlation functions according

to different error types and correlation functions. Conventional batch process-

ing TRN generally utilizes the radar altimeter and adopts mean square differ-

ence (MSD), mean absolute difference (MAD), and normalized cross correlation

(NCC) for matching a batch profile with terrain database. If a flash LiDAR is

utilized instead of the radar, it is possible to build a profile in one-shot. A point

cloud of the flash LiDAR can be transformed into 2D profile, unlike a vector

profile obtained from batch processing. Therefore, by using the flash LiDAR we

can apply new correlation functions such as image Euclidean distance (IMED)

and image normalized cross correlation (IMNCC) which have been used in com-

puter vision field. The simulation result shows that IMED is the most robust

for different types of errors.
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Chapter 1

Introduction

1.1 Motivation and background

Terrain referenced navigation (TRN) is an popular alternative of an integrated

system of inertial navigation system (INS)/Global Navigation Satellite System

(GNSS) because GNSS is vulnerable to jamming and spoofing [3]. TRN system

has pre-manufactured database in on-board computer and remote sensor. The

system acquire the estimate position of the aircraft by utilize database and the

measurement. Therefore, the navigation solution which is independent of GNSS

status.

TRN can be categorized as a batch processing TRN (BPTRN) and a se-

quential processing TRN according to their positioning method [4]. The BP-

TRN periodically updates the position by correlating stacked measurements

with DEM. The sequential processing TRN recursively updates the estimates

of INS error using estimators such as extended Kalman filter [5] and point mass

filter [6].

The BPTRN system measures a clearance between the aircraft and the ter-

rain using radar altimeter. Terrain contour matching (TERCOM) [7] introduced

in 1958 is an example of BPTRN. The BPTRN is also called correlation based

method because correlation functions (CF) are used to calculate the correlation.

The BPTRN measures clearances of last N epochs to create a batch profile.
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The BPTRN correlates a batch profile to candidate profiles from database,

which is digital elevation map (DEM) [8]. Among candidates, the one with the

highest correlation is chosen as the solution. The CFs used in the BPTRN are

mean square difference (MSD), mean absolute difference (MAD) [9–11], and

normalized cross correlation (NCC) [12].

Many TRN applications have utilized radar altimeter (RADALT) as a re-

mote sensor, but recent studies are adopting LiDAR. The flash LiDAR is one

type of the LiDAR and is being spotlighted in various applications such as au-

tomotive navigation [13, 14]. The flash LiDAR has advantages over scanning

LiDAR. It is accurate, compact, and power efficient [15]. However, in TRN, the

most of papers focus on application of scanning LiDAR.

The update speed of the BPTRN is slow due to stacking previous measure-

ments. To assure the navigation solution is within the candidate, searching area

should be enlarged. To get the accurate solution, it is required that searching

interval should be reduced, generating more number of candidates, and stacking

more measurement. However, computational load is increasing when searching

area for candidates is big and searching interval is small and update speed is

slowed if more measurements are stacked. Even though the BPTRN has some

drawbacks, a correlation method still can provide accurate and bounded error.

Furthermore, the correlation method extra information when the navigation

solution of BPTRN is used as measurement for sequential processing TRN.

Image-based TRN (IBN) is an alternative navigation method to TRN, which

exploits aerial terrain image as a reference. IBN generally extracts the feature

points from the image from the camera and the pair from the database, and

then the matching is performed. The proposed method of this thesis is different

from the IBN, because the proposed method does not have a scale issue, and the

number of pixels are very fewer than aerial camera. Furthermore, the LiDAR can
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operate for day and night, but the camera needs ambient light such as sunlight.

Even though infrared camera is utilized, the temperature of the terrain would

be changed by the time of the day and the seasonal changes, so it is almost

impossible to collect the data and create the database.

1.2 Objectives and contributions

In this thesis, we propose TMTRN using flash LiDAR. The performance of

TRN according to CFs are compared and analyzed. The main contributions of

this thesis are as follows.

• We implemented the flash LiDAR in TRN by extending the idea of batch

processing to template matching. The flash LiDAR measures multiple

ranges simultaneously, and this measurement can be transformed into

measurement profile, which is a synthesized terrain elevation. TMTRN

has two benefits against BPTRN thanks to this 2D measurement profile.

This enables application of novel CFs of IMED and IMNCC. IMED and

IMNCC requires an adopting a Gaussian spatial function, which is incal-

culable in a vector profile of BPTRN. Secondly, the TMTRN can fix the

position every time the ranges are measured. The BPTRN needs to stack

previous measurement for correlation, and BPTRN has a trade-off in ac-

curacy and update speed. Therefore, TMTRN achieves higher accuracy

with faster update speed.

• Each correlation functions has different characteristics, so there is no cor-

relation functions working for all kind of templates [16]. There has been no

studies that comparing or analyzing the suitableness of CFs according to

the types of templates. Previous study [17] regarding the performance of

TRN according to CFs only covers BPTRN, and another study only deals
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with computer vision problems [18]. Therefore, analysis and comparison

of performance of TMTRN according to CFs needs to be studied. First,

CFs are categorized as distance-based, correlation-based, and Image-class,

and their respective characteristics are organized. Secondly, the suitable-

ness of CFs is examined for the matching terrain PC. Moreover, it needs

to be verified that a certain CF works the best for matching PC and also

for TMTRN. The performance is compared with matching test of various

terrain templates and the Monte-Carlo simulation of TRN.

Chapter 2 provides literature survey of TRN methods with various re-

mote sensors and template matching. Chapter 3 introduces the concepts of

correlation-based TRN methods, which are conventional batch processing TRN

and matching-based TRN method. In addition, we will address the character-

istics of correlation functions. In chapter 4, to analyze the robustness against

different types of errors, Monte Carlo flight simulation is conducted. The re-

sult clearly shows that specific correlation functions have advantage over other

functions. Lastly, the thesis is summarized and concluded in chapter 5.
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Chapter 2

Related Works

In this chapter, we provide the literature survey of related studies. In section

2.1, the concept of terrain referenced navigation (TRN) is introduced. Vari-

ous methods of TRN according to their sensors and processing method are

explained. Lastly, template matching and correlation functions are discussed in

section 2.2.

2.1 Terrain Referenced Navigation

A characteristic of Inertial navigation system (INS) is diverging, and Global

Navigation Satellite System (GNSS) has bounded error. When two systems are

integrated, that system has bounded error with fast update rate. For this reason,

INS/GNSS integrated system has been widely used in navigation. However,

because GNSS is vulnerable to jamming and spoofing [3], the integrated system

has a limitation for safe mission. To overcome the limitation, new algorithm

which is independent with GNSS was needed to be invented.

Terrain referenced navigation (TRN) is one of the alternatives to GNSS.

TRN is a system with remote. sensing sensors referencing database of terrain

features to find current position, and usually digital elevation map (DEM) is

used as reference (Fig. 2.1). TRN system has INS to continuously update posi-

tion, velocity, and attitude and has sensors to measure terrain altitude.
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Figure 2.1: Scheme of TRN

A lot of research have been covered TRN using radar altimeter (RADALT)

2.1. The first automated TRN system is ATRAN (automatic terrain recogni-

tion and navigation), and the system was studied from 50s to 60s. After 70s,

radar altimeter and barometric altimeter was applied to TRN which are TER-

COM and SITAN (Sandia inertial terrain-aided navigation). TERCOM is the

most representative batch processing and correlation-based TRN method using

RADALT [7]. A block diagram of TERCOM is shown in Fig. 2.2. TERCOM

synthesizes batch profile, which is a series of clearance measurements and corre-

lates the profile with DEM to fix a position of the vehicle. In correlation process,

MSD and MAD are frequently used as CFs.

SITAN integrated INS, barometric altimeter, and RADALT by implement-
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Figure 2.2: Block diagram of a BPTRN

ing extended Kalman filter (EKF). The innovation is difference between calcu-

lated terrain slope from INS and RADALT, and actual terrain slope from DEM.

In 80s, Bayesian estimation is applied to SPARTAN (Stockpot algorithm robust

terrain aided navigation) and TERPROM (Terrain profile matching), which is

currently loaded on F-16 is developed.

TRN systems can estimate the position based on batch processing and se-

quential processing. In batch-TRN, the system stacks the measurements from

previous N epochs, while sequential-TRN processes only the measurement from

current epoch and estimates the state estimations by nonlinear filters. TRN

systems also can be subdivided according to the remote sensors [19] and the

processing method [20]. The sensors such as radar altimeter (RADALT), Li-

DAR or laser range finder, and camera or vision sensors have been applied.

There are advantages and disadvantages of each sensors.

• RADALT using C-band, X-band or interferometric radar is all-weather
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sensor. Depend on the composition, the accuracy differs, but generally

the accuracy and precision is inferior to LiDAR.

• LiDAR can achieve several range measurement with very fast speed, with

broad FOV. Because the laser is emitted from the emitter, regardless of

the lighting condition the sensor can be used. LiDAR is very sensitive to

water and vapor. It has a very higher accuracy, higher resolution and faster

update rate than RADALT. The accuracy and resolution are possibly

reduced in daylight.

• Camera/Vision sensor lacks depth information if used only single cam-

era. It is very sensitive to illumination condition, and therefore unable to

operate in night time.

In the following subsections, TRN applications utilizing LiDAR and vision

sensor are introduced.
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Table 2.1: Development of TRN

System RADALT Period Application
Horizontal

CEP (m)
Database Remarks

ATRAN X-band ’50 ∼ ’60 Mace missile 305 35mm film Analogue

TERCOM C-band ’70∼ Tomahawk 30.5 Res. 122m Batch

SITAN C-band ’70∼’80 Aircraft 75 Unknown Sequential

SPARTAN C-band ’80 Aircraft Unknown Unknown Bayesian statistics

TERPROM C-band ’80∼ Aircraft/missile 30 Unknown

APALS X-band ’90∼ Aircraft 3 Spotlight SAR

PTAN
Interferometric

C-band
’90∼ Tomahawk 3∼30 DTED level 4

Susceptible to

vehicle velocity
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(a) Hokuyo scanning LiDAR (b) LeddarTech Flash LiDAR

Figure 2.3: An example of the two types of LiDAR

2.1.1 LiDAR-based TRN

LiDAR is an optical sensor that measures time of flight (ToF) of laser. ToF

times the speed of the light gives the traveled distance of the laser. There are

two types of conventional LiDAR, one is scanning LiDAR and the other is flash

LiDAR (Fig. 2.3).

Scanning LiDAR consists of rotor part and sensor part. The rotor rapidly

rotates the sensor part to collect point cloud (PC) as a shape of line with some

field of view (FOV). Scanning LiDAR has good resolution but it is expensive

and less robust. Flash LiDAR is often called as solid-state LiDAR due to the

LiDAR is fixed to the platform without any moving parts. The geometry of

the flash LiDAR is depicted in Fig. 2.4. Unlike the scanning LiDAR, the flash

LiDAR has a lens that refracts the laser. The emitter shoots broad laser pulse to

the target. The laser pulse is then reflected from the target and returned lasers

are recognized by the receiver. The number of range measurement is defined by

10



Figure 2.4: Geometry of flash LiDAR

the number of the cells in the receiver.

Advantages and disadvantages of the flash LiDAR over scanning LiDAR are

listed below:

• Advantages :

– Wider FOV of cross- and along-track direction

– Immediate mapping of terrain

– No moving parts

– Robust to noise due to longer exposure of laser pulse

– Smaller form factor

• Disadvantages :

– Less achievable numbers of PC (Low resolution)

– FOV limitation in cross-track direction

– Limited range detection due to reduced return signal
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(a) Forward/Backward dual ALS [21]

(b) SIFT features [22]

Figure 2.5: Applications of scanning LiDAR
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Next, scanning and flash LiDAR applications in TRN are introduced.

Airborne laser range scanner (ALS) is an application of scanning LiDAR

to the aircraft. ALS measures slant ranges instantaneously. ALS has a filed-

of-view in cross-track direction, and the movement of the aircraft enables ALS

to collect PC along-track direction. In [19], they suggested a TRN mechanism

using airborne laser scanner (ALS). PC is correlated by MSD with DEM to find

the estimate position. Haag et al. [21] proposed feedforward of elevation map

of PC and feedback of the position and velocity by correlation with database

using dual ALS (Fig. 2.5a). Leines et al. [22] proposed feature points from PC

by using SIFT descriptor (Fig. 2.5b).

For flash LiDAR applications, Johnson et al. [23] firstly suggested flash Li-

DAR based hazard avoidance of Mars lander. Hwang et al. [24] also utilized

flash LiDAR for TRN and they compared the performances of batch process-

ing and sequential processing techniques. Jeon et al. [25] proposed sequential

TRN scheme based on flash LiDAR. Their algorithm shows improvement in

robustness by applying Gaussian process to elevation and the covariance.

2.1.2 Image-based TRN

About image-based TRN, various research has been conducted. In [1], they

proposed TRN method using terrain information from hazard detection and

avoidance (HDA) (Fig. 2.6). The information from HDA is transferred to stereo

vision measurement when Mars lander takes low-altitude flight for localization.

Lee et al. [26] suggested replacement of INS with monocular camera. Homogra-

phy of camera can estimate ground relative motion of the aircraft, the motion is

integrated with range measurement of radar by point mass filter (PMF). Sim-

ilar approach was proposed by [27], and they expanded this scheme to update

not only position but also velocity and attitude.
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Figure 2.6: Matched features over two consecutive images. [1]

If template matching method is applied in the image-based TRN, the prob-

lem arises. In order to perform template matching without scale information, it

is necessary to generate image pyramids for various scales and perform match-

ing for each. If the scale information is inaccurate, it is necessary to generate

several pyramid layers, the amount of computation also increases dramatically.

Therefore, the most common method is to extract the features of the image

and obtain the affine transform matrix. At this time, the landmarks are used

to extract the feature points of the edges, but the corners are rare in the ter-

rain, and the number of pixels of the flash LiDAR Since it is very small, it is

generally difficult to directly apply the method used in IBN. On the contrary,

in the case of Template matching, since the depth information of the LiDAR

is given very precisely, accurate and robust matching is possible by using the

average elimination technique regardless of the altitude of the aircraft.
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Figure 2.7: Simple template matching example [2]
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2.2 Template Matching

2.2.1 General idea of template matching

Template matching is finding the best matching result by calculating the cor-

relation between the template and the candidates [2] (Fig. 2.7). Conventional

template matching algorithms exploit feature point of the image, such as corner,

edge, and etc. Templates are often transformed and projected to other space.

For example, to calculate a cross-correlation faster, templates are transformed

using fast Fourier transform (FFT). FFT is also used to interpret the image in

frequency domain. Another example of transformation is Radon/Hough trans-

form, which are transforming a line to a point, and a point to a line. Using these

techniques the similarity measures can find the correlation more accurately and

robustly.

A major issues of template matching is robustness of similarity measures.

The image is possibly corrupted by additive noise, constant illumination change,

translation or perturbation, camera lens distortion, and other unknown distor-

tions.

An aerial gray scale image and a measurement profile which is a terrain PC

have different characteristics. The pixel value of the image has the maximum.

For example, the maximum value of 8-bit image is 256. The PC has no limitation

in the maximum value of a pixel, because basically the values of pixels are range

measurements. The camera has higher resolution than the flash LiDAR, and this

causes the vicinal pixels of the image have higher correlation than that of the

PC. Furthermore, major error source of the measurement profile is atmospheric

condition, while that of the aerial image is illumination condition. Because the

aerial image and the terrain PC have different characteristics, different approach

is needed for the matching task of terrain PC.
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2.2.2 Correlation function

Correlation method is one of the template matching method. Measuring the

distance or similarity between images is a fundamental and open problem in

both psychology and computer vision. Correlation function (CF) is a function

that gives correlation between two sets. The function is defined as below.

CX,Y = Corr(X,Y ) (2.1)

The inputs X, Y of the function are sets which have the same length or size. Be-

cause each CFs has different characteristic, there is no CFs working for all kind

of templates [16]. Templates often include additive noise, constant illumination

change, and unknown distortion.

Many researches have been done on developing a CF which is robust to the

noise and returning steady result. MSD is the most fundamental and simple

CF, which returns the squared value of Euclidean distance. However, MSD has

many shortcomings, and to overcome this shortcomings, various distances have

been proposed. Histogram cosine distance [28], fractional distance [29], tangent

distance [30], Hausdorff distance [31], fuzzy feature contrast [32], part-based

methods [33], Isomap [34], and local linear embedding (LLE) [35]. Isomap and

LLE calculates the distance in the manifold, and others are non-metric. The

metric axioms are not satisfied by those CFs. In other word, self-similarity,

symmetry, and the triangle inequality are not satisfied.

Low-level distance CFs, such as MSD and MAD, have little computational

burden, but they are vulnerable to constant illumination change [36]. MSD and

MAD are represented as follow, respectively.

MSD =
1

N

∑
i,j

(
hprof (i, j)− hDEM(i, j)

)2
(2.2)
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Table 2.2: Characteristics of correlation functions

Functions
Correlation

Computational burden
High Low

MSD 0 ∞ Low

MAD 0 ∞ Low

NCC 1 0 Mid

IMED 0 ∞ High

IMNCC 1 0 Very High

MAD =
1

N

∑
i,j

∣∣∣hprof (i, j)− hDEM(i, j)
∣∣∣ (2.3)

where hprof (i, j) and hDEM (i, j) are (i, j)th element of measurement and can-

didate profiles.

Cross correlation methods, such as NCC and IMNCC are known they have

the best result for real image applications [12,16]. Though they have high com-

putational load and bit vulnerable to white noise, they are highly robust to

illumination change [37]. NCC and IMNCC are represented as follow, respec-

tively.

NCC =
1

N

∑
i,j

hprof (i, j)hDEM(i, j)∑
i,j

hprof (i, j)2
∑
i,j

hDEM(i, j)2
(2.4)

IMNCC =

∑
i,j

∑
i′,j′

gi,j,i′,j′hprof (i, j)hDEM(i′, j′)

√
s1s2

(2.5)
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where

s1 =
∑
i,j

∑
i′,j′

gi,j,i′,j′hprof (i, j)hprof (i′, j′) (2.6)

s2 =
∑
i,j

∑
i′,j′

gi,j,i′,j′hDEM(i, j)hDEM(i′, j′) (2.7)

where gi,j,i′,j′ is a Gaussian function of spatial distance between pixels, originally

proposed and adopted in IMED. The vicinal pixels may have similar intensities,

and therefore this function reflects the relationships of vicinal pixels and gets

larger weight for near pixels than distant pixels.

gi,j,i′,j′ =
1

2πσ2
exp

(
−
dist

(
(i, j), (i′, j′)

)2
σ2

)
(2.8)

Lastly, IMED is robust to small translation. The function is represented as

follow.

IMED =

√∑
i′,j′

∑
i,j

gi,j,i′,j′ab (2.9)

a = hprof (i, j)− hDEM(i, j) (2.10)

b = hprof (i′, j′)− hDEM(i′, j′) (2.11)

IMED shares spatial function with IMNCC, but the functions was applied

in IMED firstly. According to the authors [38], it explores spatial connection,

and achieves improved robustness.

All the above CFs ignored the spatial relationship between the pixels. On

the other hand, IMED proposed by Wang et. al [38] explores spatial connection,

and achieves improved robustness. IMED is defined as

d(x, y) =
[
(x− y)TG(x− y)

]1/2
(2.12)
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Figure 2.8: Relationship of CFs

However, still IMED and IMNCC has some limitations. First, the width pa-

rameter σ of the spatial Gaussian function has some ambiguity on its value. The

authors and followed researchers [39, 40] did not mentioned the setting of the

parameter. The ambiguity of the parameter causes naturally the second prob-

lem. Secondly, the IMED only considers the relationship of pixels of vicinity.

The terrain PC surely has correlation between pixels, but it is hard to find the

appropriate function that represents the relationship, even though we changed

the spatial functions as the exponential.

In summary, the characteristics of CFs are in Table. 2.2 and the relationship

of CFs can be displayed as Fig. 2.8.

Mean removal technique [41, 42] is used to eliminate the effects of bias in

range measurements, the barometer, or DEM. Means of measurement profile

and candidate profiles are subtracted from each.

h̃
m

= hm − 1

MN

MN∑
a,b

hma,b (2.13)

h̃
d

= hd − 1

MN

MN∑
a,b

hda,b (2.14)
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hm is measurement profile, and hd is candidate profile. In this thesis, mean

removal technique is applied for conventional CFs, and they are referred with

a prefix Z:ZMSD, ZMAD, ZNCC, ZIMED, and IMZNCC.
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Chapter 3

Template matching based TRN

3.1 Relationship with BPTRN

Terrain referenced navigation (TRN) is an absolute navigation method which

is GNSS-independent. Once a database is manufactured and uploaded in the

computer of a vehicle, the vehicle is able to navigate autonomously, and there

is no need to connect the vehicle with the ground station.

Batch processing TRN (BPTRN) is the most fundamental TRN method.

Often BPTRN is integrated with Kalman filter or with batch Kalman filter

(BKF). In this section, measurement update process is omitted, and acquisition

mode of BPTRN will be discussed. BPTRN synthesizes a profile by stacking

previous N range measurements form radar, according positions from INS, and

altitudes from barometric altimeter. The radar is assumed to be looking down-

ward to measure clearance. After a clearance obtained from the radar and an

altitude from barometer are subtracted, a synthesized terrain elevation, which

is a batch profile, is obtained as follows.

hbatch(i) = hbaro(i) + δhbaro(i)− (ρ(i) + δρ(i)) (3.1)

where hbatch(i) is ith element of batch profile, hbaro(i) is an altitude from barom-

eter, and ρ(i) is a clearance obtained from the radar. δhbaro(i) and δρ(i) are

error components of the barometer and the clearance. This concatenated profile
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Figure 3.1: Generating candidate profiles

hbatchis now defined as a batch or measurement profile. The candidate profiles

are created via the following process (Fig. 3.1).

1. Estimate positions of each elements of the batch profile are concatenated

in a vector form.

2. In region of interest (RoI), virtual flight paths are created using the con-

catenated positions, according to pre-set intervals (Latitude and longitude

direction).

3. Terrain elevations for each virtual flight paths are computed by linear

interpolation of DEM.

Using MSD, MAD, and NCC, correlations between the batch profile and candi-
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date profiles are calculated. The candidate profile having the highest correlation

is chosen and the according position is updated.

There are three drawbacks of batch TRN. The first is poor performance due

to low accuracy of the radar compared to the LiDAR [8]. Secondly, building a

batch profile takes a time because the system needs to collect measurement of

last N epochs. Big size of the batch profile can improve the accuracy but the

update rate will be slowed. Lastly, it is possible to achieve better performance by

increasing the size of the batch profile and the size of the searching window/RoI.

In this case, computational load is precipitously increased as well.

Classic BPTRN uses correlation method to fix the position of the vehicle.

Correlation method is one of the template matching algorithm. However, rather

matching vector-shaped profile, matching task of matrix-shaped profile which is

generally an image is more commonly referred as template matching. This thesis

adopts the basic idea of correlating measurement profile with DEM and expands

that from 1D vector profile to 2D matrix profile. In other words, TMTRN is an

extended version of correlation-based TRN.

3.2 TMTRN algorithm

TMTRN is an expanded version of batch processing TRN. The idea of correlat-

ing the measurement with the DEM is adopted, and the measurement dimension

is extended from 1D to 2D.

Recent studies of TRN have covered sequential processing TRN, which is

filtering based. More specifically, literatures focus on dealing with nonlinearity

of the terrain, and their solution is utilizing nonlinear filters such as extended

Kalman filter, unscented Kalman filter, particle filter, and point mass filter.

In conventional TRN applications, measurement from RADALT was vul-
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Figure 3.2: Block diagram of a template matching-based TRN

nerable to disturbance and the precision and accuracy of the radar was low.

Moreover, reliability of DEM was low as well. Due to those reasons, adopting

of new nonlinear filters could improve the performance of TRN. However, now

very accurate range measurement is achievable from LiDAR and newly man-

ufactured DEM is accurate. Therefore, the performance changes according to

the filters have almost no differences.

The proposed method is able to be integrated with conventional TRN

scheme easily. This method gives the position of the vehicle by correlation

process, this position can be used as pseudo-measurement of filter.

A block diagram of the TMTRN is shown in Fig. 3.2. The TMTRN system

consists of an IMU, a barometric altimeter, and a flash LiDAR. When the

aircraft fly over the terrain, the flash LiDAR obtains PC composed of slant

ranges and angles of incident. In this study, we assume a virtual flash LiDAR
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Figure 3.3: Generating measurement profile of TMTRN

that has angles of incident φ and θ increasing with the same offset for azimuth

and elevation directions from the center.

The TMTRN for implementing the flash LiDAR is inspired by conventional

batch-TRN, which is a correlation-based method. Compared with batch-TRN,

TMTRN has two major differences. The first is that it can adopt new CFs

thanks to 2D measurement profile of TMTRN. New CFs such as IMED and

IMNCC have not been studied in conventional batch-TRN. Secondly, the flash

LiDAR measures multiple clearance at once while batch-TRN method collects

single radar range measurements along the time track to build a measured

profile. Therefore, the update rate of TMTRN is much faster. In other words,

available information per one update is much more in TMTRN. For example,
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if the update rate of the radar is 1Hz and the batch length is 10, it takes 10

seconds for fixing one position. TMTRN can fix the position every 1 second

when the flash LiDAR has the same update rate.

In batch-TRN, a position of an element of batch profile is equal to that of the

aircraft. However, TMTRN measures slant ranges and therefore 3D positions

of elements should be calculated. 3D positions of target terrain relative to the

aircraft profile can be calculated as below (Fig. 3.3).


Lm
a,b

lma,b

hm
a,b

 =


Lest
a,b

lesta,b

hest
a,b

+ Cn
b (ρa,b + δρa,b)Da,b (3.2)

where Da,b is

Da,b =


sin (φa,b + δφa,b) cos (θa,b + δθa,b)

sin (φa,b + δφa,b) sin (θa,b + δθa,b)

− cos(θa,b + δθa,b)

 (3.3)

Here, Lm
a,b, l

m
a,b, and hm

a,b denote 3D positions of the measurement profile. Lest
a,b ,

lesta,b , and hest
a,b denote estimate position from INS. hbaro, δhbaro are the barometer

altitude and the error component. (a, b) is indices of the element. ρa,b, φa,b, and

θa,b represent a measured range, azimuth, and elevation angles of incident. Their

respective error components are δρa,b, δφa,b, and δθa,b. C
b
n is body-to-navigation

direction cosine matrix calculated using attitude obtained from INS. This 3D

position will be referred as a measurement profile in the rest of the thesis.

Candidate profiles are generated analogously with BPTRN as following

steps (Fig. 3.3).

• Latitudes and longitudes from pm are concatenated. Two matrices Lest
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Figure 3.4: Generating candidate profiles of TMTRN

and lest of latitude and longitude are then created.

• An gradual offset is added in Lest and lest. The resultant matrices are

Lcand,k and lcand,k, where k = {1, 2, . . . , N}. For example, if the center

position is (3,3) and searching window size and searching interval are 2

and 1, the offset is {(−2,−2), (−1,−1), . . . , (2, 2)}. The resultant matrices

are Lcand,1, . . . , Lcand,25 and lcand,1, . . . , lcand,25.

• kth candidate profile hd,k is created by linearly interpolating the DEM at

the position of Lcand,k and lcand,k. Repeat the step from k = 1 to N .

The TMTRN can adopt IMED and IMNCC in addition to MSD, MAD, and

NCC, thanks to flash LiDAR. Similar to the BPTRN, the correlation between
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the measurement profile and candidate profiles are calculated and the candidate

with the highest correlation is selected.

The TMTRN has some drawbacks sharing with the BPTRN. The first is

a curse of dimensionality, which means high computational load. To assure

the navigation solution is among the candidate, searching area should be set

wide enough. To get the accurate result, it is required that searching interval

should be small and as a result generating more number of candidates. How-

ever, when searching area for candidates is big and searching interval is small,

computational load is increasing. Second, finding measurement covariance ma-

trix is challenging problem. The TMTRN can be integrated with INS by EKF

or other nonlinear filters like loosely coupled INS/GNSS system, but without

proper measurement noise model, there is always a possibility that the system

diverges.
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Chapter 4

Simulation Results

In this chapter, matching performances of CFs are compared by two simula-

tions. In section 4.1, terrain PCs are cross-matched with each other, and their

respective mean square error (MSE) is calculated and compared. In section

4.2, TMTRN is simulated with 5 types of CFs with various error conditions.

Mean removal technique is applied to each CFs. The DEM for the simulations

is SRTM level 1 [43], with a resolution of 3 arc-second. For generating a flash

LiDAR measurements, the points were made by a map of 3/20 arc-second res-

olution. The map is generated by linear interpolation of SRTM level 1. The

terrain is assumed as the Lambertian surface in the simulations, so emitted

laser rays reflected at the target terrain, and come back directly to the receiver

cell.

4.1 Template matching of terrain PC

In this section, matching performances of CFs are compared with each other.

White noises with different levels are applied to the candidates and the mean

squared error is calculated.

441 templates of each candidates with 30×30 PC are created by interpo-

lating DEM in the region of interest (RoI) according to the procedure in 3.2.

The process is repeated for 100 candidate profiles. The candidates are shown
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Figure 4.1: Terrain profile candidates

in Fig. 4.1. Each candidates has the same size and they are created with the

same interval. In a terrain PC, each candidates has the same size and they

are created with the same offset. The center candidate (0,0) is selected as a

template, and this template is corrupted by additive Gaussian white noise with

various levels. To compare the performance of CFs, mean squared error (MSE)

is measured as follows. The template is correlated with other candidates from

(-2,-2) to (2,2). If a CF returns that (2,1) has the highest correlation, an error

becomes 22 + 12 = 5. The process is then repeated for other 100 PCs, and and

all errors are averaged. This error metric is chosen because TMTRN deals with

intra-class comparison. In other words, the candidates in one terrain PC are

actually slightly deformed from each other, so it is desirable to find a candidate

the most similar with the template.

In this simulation, white noises of different levels of 5, and 10m are added

to the candidates. For a reference, the candidates without noise (σ = 0m)

are also used. ZMSD, ZMAD, ZNCC, ZIMED, and ZIMNCC are applied to
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Table 4.1: Matching result of terrain PCs

σ(m) ZMSD ZMAD ZNCC ZIMED IMZNCC

0 0 0 0 0 0

5 2.52 10.95 2.05 0.98 1.81

10 7.52 34.77 5.93 4.3 5.89

calculate the correlation. NCC and IMNCC are modified as they return 0 if

two templates are identical, as the values are bounded as [0, 1]. The result is

depicted in Table. 4.1. IMED shows the best performance among conventional

CFs for σ = {0, 5, 10}, followed by IMZNCC.

This simulation is organized to identify the performance of intra-class match-

ing of terrains. In a candidate, 441 templates were created with small interval.

Therefore, they can be regarded as slightly deformed version of each other. In

other words, this task is to find the closest brother to each other. The result

shows ZIMED is suitable to apply when levels of additive Gaussian noise.

From the result, it is also shown that IMED is robust to severe additive

noise. Expected noise in range measurement of flash LiDAR is from 1 to 10cm,

and uncertainty of the DEM is also about 1 to 3m, when the DEM is as-

sumed to created by concatenating PCs from airborne scanning LiDAR and

post-processing. Therefore, it is concluded that IMED has possibilities of being

applied in real applications of terrain PC matching.
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Figure 4.2: Trajectory for simulation

4.2 TMTRN simulation

In this section the performances of CFs in TMTRN are compared and analyzed.

The conditions of the simulation are listed in Table 4.2. Flight trajectory (Fig.

4.2) starts from (35.15◦, 127.70◦), and ends at (35.18◦, 127.70◦). The aircraft

flies with a constant velocity of 500km/h and a constant height of 2km. To

measure the motion of the aircraft, the navigation grade IMU is used. Initial

position error is 30 m. Monte Carlo simulations are performed for 30 times. The
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flash LiDAR used in simulation has a receiver of which size is 9× 9 with FOV

of 30◦, same for azimuth and elevation directions.

The second simulation differs from the first simulation in compared pairs. In

the second, the template is synthesized terrain profile, and the candidates are

interpolated from the DEM, same as the simulation 1. If the estimate position

of the vehicle is far away from the true position, the resultant measurement

profile may a lot differ from the candidates, so the exact matching could be

difficult.

Performance comparison of CFs is done by changing errors of range and

angle of the flash LiDAR. Range white noise δρ is changed as 1, 3, 5, and

10m, and angle bias error δθ is changed as 0.05, 0.15, 0.3◦. To see the effect of

barometer bias, not only MSD, MAD, NCC, IMED, and IMNCC but also their

zero-mean versions are compared. Hence, overall 12 cases for each 10 CF are

considered for the simulation. 30 times of Monte Carlo simulations are applied

for all cases, and the RMSE results are shown in Table 4.3. The best results for

each case are marked as bold.
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Table 4.2: Simulation condition

Conditions Values

DEM SRTM level 1

Initial position error 30m

Monte Carlo 30

Gyroscope
Bias

Random walk

Accelerometer
Bias

Random walk

Flash LiDAR

Resolution

FOV (φ, θ)

Range white noise (1σ)

Angle bias

1◦/hr

0.1◦/
√
hr

1mg

0.1mg/
√
Hz

9× 9 px

30◦, 30◦

1, 3, 5, 10m

0.05, 0.15, 0.3, 0.5◦

Barometer bias 5m
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Table 4.3: RMSE result

RMSE

δθ MSD MAD NCC IMED IMNCC ZMSD ZMAD ZNCC ZIMED IMZNCC

0.05 34.23 34.96 13.96 36.29 14.24 9.09 9.87 10.93 7.83 8.60

0.15 45.77 48.01 17.55 48.42 18.41 9.68 10.79 12.19 8.58 9.34

0.3 90.52 91.03 39.85 93.30 44.81 26.58 27.11 38.79 26.21 26.91

(a) δρ = 1m

RMSE

δθ MSD MAD NCC IMED IMNCC ZMSD ZMAD ZNCC ZIMED IMZNCC

0.05 34.28 35.21 14.22 36.19 14.40 9.78 10.76 11.67 8.51 9.79

0.15 45.89 48.27 18.26 48.66 18.51 10.42 11.52 13.44 9.15 10.73

0.3 90.69 90.76 42.84 93.23 45.98 27.07 27.68 43.36 26.42 32.23

(b) δρ = 3m
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RMSE

δθ MSD MAD NCC IMED IMNCC ZMSD ZMAD ZNCC ZIMED IMZNCC

0.05 34.18 35.25 15.33 36.29 14.75 10.63 12.07 12.68 9.42 10.75

0.15 45.83 47.95 18.82 48.83 18.99 11.54 12.93 14.95 10.26 12.20

0.3 90.70 91.18 44.14 93.23 45.31 27.55 28.17 46.41 26.77 36.46

(c) δρ = 5m

RMSE

δθ MSD MAD NCC IMED IMNCC ZMSD ZMAD ZNCC ZIMED IMZNCC

0.05 34.27 34.69 17.15 36.70 16.18 13.85 14.91 15.45 12.40 13.45

0.15 45.46 47.27 21.26 49.47 19.69 14.88 15.79 18.51 13.93 15.12

0.3 90.60 90.98 51.11 94.23 47.60 31.72 36.39 53.17 36.66 44.02

(d) δρ = 10m

3
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The performances of zero-mean CFs are better than normal functions, re-

gardless of the error condition due to barometer bias. The trend of the table

shows the effect of δθ is dominant to that of δρ. For normal functions, for δρ

from 1 to 5m, NCC is superior performance followed by IMNCC. In δρ = 10,

IMNCC shows better performances than NCC because the effect of white noise

is weaker than consideration of neighbor pixels by gi,j,i′,j′ . Overall, NCC and

IMNCC has similar result when compared with other functions.

Comparison of RMSE error of zero-mean CFs is depicted in Fig. 4.3. Here

we only display the result of zero-mean CFs, because they outperform normal

functions as addressed. Among zero-mean CFs, ZIMED has the best perfor-

mance for every conditions except for δρ = 10 and δθ = 0.3. From the result

we can see that ZMSD is more robust to extreme errors than ZIMED. This is

because Image-class CFs occasionally overrate the relationships between pixels

even if the pixels are contaminated by severe noise. However, it is known that

for moderate noise, Image-class functions show better result [16]. As conclusion,

ZIMED is the best for overall, and ZMSD is good for high error levels.

Under conditions of flight time 300 seconds, 30 times of Monte Carlo result

is shown in Fig. 4.4 with the position RMSE and their standard deviation (1σ).

Their respective conditions are (δρ, δθ) = {(1m, 0.05◦), (3m, 0.3◦), (10m, 0.3◦)}.

ZIMED is used because it shows the best performance for overall. Initial error

converges and the result is stable with a precision of 20, 30, 50m, even though

the system only estimates and updates the position. Moreover, template match-

ing in image-based navigation suffers from scale of template and illumination

change, however in TMTRN, the effect of bias in profile comes from barometric

altimeter, and it can be perfectly eliminated by zero-meaning. The result is

not included here, but the performance of TMTRN is not affected by error in

barometric altimeter.

38



(a) Angle bias : 0.05◦
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(b) Angle bias : 0.15◦

40



(c) Angle bias : 0.3◦

Figure 4.3: Matching results, RMSE of zero-mean correlation functions
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(a) Range white noise : 1m, Angle bias : 0.05◦

42



(b) Range white noise : 3m, Angle bias : 0.3◦
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(c) Range white noise : 10m, Angle bias : 0.3◦

Figure 4.4: TRN RMSE results for ZIMED
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ZIMED outperforms the other CFs for all conditions. IMED explores the

spatial relationship between pixels by adopting the spatial Gaussian function.

The terrain is continuous and composed of low-frequency wave shapes. If a shot

is taken by flash LiDAR, that vicinal points will have similar vertical values.

The spatial function gives the larger weight to the vicinal pixels when Euclidean

distance is calculated, so the same principle is possible to applied in terrain PC

matching, therefore, the matching performance can be enhanced.

However, it is controversial about the performance of IMNCC. IMNCC also

adopts the spatial Gaussian function on its metric, but the performance is

inferior to IMED. Many recent literatures have studied and commented on

IMED about the metric itself and the applications, while IMNCC has almost

no following researches.

45



Chapter 5

Conclusions and Future Works

5.1 Summary of the contribution

A LiDAR is able to measure multiple ranges with high accuracy and speed,

but not many studies covered its application to TRN, especially for the flash

LiDAR. In this thesis, a point cloud of the flash LiDAR is converted to 2D

terrain profile by slant ranges, angles of incident, and a barometer altitude.

The synthesized terrain profile is compared with candidates from DEM to find

the aircraft’s position.

This thesis presents three important remarks. Firstly, the flash LiDAR is

integrated with TRN. Secondly, the integration of the flash LiDAR enables

using of IMED and IMNCC, which have not been used for TRN. Conventional

batch-TRN only builds 1D vector profile but the proposed algorithm’s measured

profile is a transformed point cloud, which is a 2D matrix profile. Thirdly, MSD,

MAD, NCC, IMED, IMNCC, and their zero-mean versions are compared. By

simulation, the robustness of CFs to range white noise and angle bias is studied

by comparing TRN performances. The matching performance is improved as

13.86% for 1m of range noise and 0.05◦ of angle bias. For real application, we

can assume range noise as centimeter level and small angle bias as less than

0.1◦. As a conclusion, IMNCC could possibly show the best performance in real

world.
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Furthermore, the proposed TMTRN can be considered as sub-system of the

larger TRN system, and TMTRN is able to provide the position estimation as

a pseudo-measurement of the filter.

A drawback of this study is and Lambertian surface assumption of the

terrain might be unrealistic. However, conventional LiDARs have millimeter or

centimeter level of precision, and even when 10m white noise is applied IMED

still shows improved result with the robustness. Therefore, IMED is possibly

the best correlation functions for real PC matching task.

5.2 Future works

Future works of the thesis possibly will include two issues. First, more realis-

tic simulation with the flash LiDAR is needed. Possible considerations are as

following.

• Without Lambertian surface assumption, it needs to consider reflecting

emitter and receiver geometry.

• The forest or vegetation would have different albedo from the ground.

• The effect of atmospheric condition needs to be considered for sensors

using lasers.

BPTRN and other TRN applications have adopted filtering framework to

estimate the state of the vehicle. Especially with Kalman filter, deriving the

measurement covariance should be discussed.
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국문초록

본 논문은 다양한 오류 유형 및 상관 함수에 따른 플래시 라이다를 사용한 템플

릿 매칭 기반의 지형 참조 항법(TMTRN)의 성능을 비교하고 분석한다. 일반적인

일괄처리방식지형참조항법은일반적으로레이더고도계를사용하고,배치프로파

일을지형데이터베이스와매칭시키기위해평균제곱차이(MSD),평균절대차이

(MAD)및 정규교차상관(NCC)를 사용한다. 레이더 대신 플래시 라이다를 사용하

면,시간에따라측정치를모으는과정이필요하지않아한번에프로파일을생성할

수 있다. 일괄처리방식에서 사용하는 벡터 프로파일과 달리 플래시 라이다의 포인

트 클라우드는 2D프로파일로 변환할 수 있다. 따라서 플래시 라이다를 사용하면

컴퓨터 비전 필드에서 사용되는 이미지 유클리디안 거리(IMED)및 이미지 정규교

차상관(IMNCC)과같은새로운상관함수의적용이가능하다.시뮬레이션결과에

따르면, 이미지 유클리디안 거리가 오류에 가장 강건하다.

주요어: 서울대학교, 석사학위논문

학번: 2016-28891
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