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Abstract

Verified Credible Compilation Framework
For Early CSE in LLVM

Mark Dongyeon Shin
School of Computer Science and Engineering

College of Engineering
The Graduate School

Seoul National University

Compiler verification is important when obtaining a high level of reliability

through software verification. Compiler bugs are crucial for software verification

because code that running programs are not source code but execution code.

However, many C/C++ mainstream compilers, including GCC and LLVM focus

on efficiency rather than reliability. Although testing is an effective method to

identify bugs, it does not guarantee a high level of reliability. Various approaches

have been proposed to examine compiler internal logics, but as yet none have

been very successful.

CRELLVM is a compiler framework that validates optimization passes in

LLVM to ensure high reliability of LLVM optimizations. It is able to validate

major optimizations of LLVM such as Register Promotion and Global Value

Numbering.

This thesis shows validation of Early CSE optimization in LLVM, using

CRELLVM. For the validation, proof generation code which corresponds to

Early CSE in LLVM is implemented and the proof checker has been extended.

Early CSE is one of the basic optimizations in LLVM that removes the repeated

computations by erasing duplicated instructions.
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Based on 5.40 million lines of C code benchmarks, the experiment result

shows there is no mis-compilation for Early CSE, which guarantees a high level

of reliability of Early CSE in the benchmarks.

Keywords: Credible Compilation, Compiler Verification, LLVM, CRELLVM,

Early CSE

Student ID.: 2016-21215
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Chapter 1

Introduction

Compiler verification is critical, however, there has been considerably less inter-

ests in compiler verification compared with source code verification. The actual

running software is execution code, hence source code verification is pointless if

the source code is not correctly translated to its execution code.

Most mainstream C/C++ compilers concentrate on improved efficiency

rather than focusing on reliability, including GCC and LLVM. Therefore, many

optimizations are performed during compilation and new optimizations are

aggressively added. Because of unverified optimizations, bug reports are contin-

uously updated in the LLVM compiler community[6], and modifying code in

one part can affect the other parts, causing unexpected errors. These compiler

bugs are difficult to find and can significantly reduce software reliability.

Many approaches were proposed for high reliability in compilers. The verified

compiler CompCert[8], developed by INRIA guarantees high reliability, but has

lower performance than mainstream compilers. Therefore, it is not widely used

for real world applications.

Our approach is not to lower performance and to provide a high level of

reliability for optimizations in LLVM, which generates their correctness proofs
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and checks them with a proof checker. We developed CRELLVM: a verified

credible compilation framework for LLVM [10] that provides a high level of

reliability in optimizations such as Global Value Numbering(GVN), Register

Promotion, Loop Invariant Code Motion(LICM) and InstCombine.

This paper describes the validation of Early CSE optimization in LLVM

3.7.1 with CRELLVM.

1.1 CRELLVM Framework

The framework of CRELLVM is shown in Figure 1.1. Compilation and validation

phases are separated. For compilation, the original optimizer optimizes the

source Intermediate Representation(IR) code src.ll into the target tgt.ll.

For validation, the optimizer is instrumented with proof generation code. Proof

generation code in the LLVM optimizer only creates its proof and does not

affect LLVM optimization. The instrumented optimizer will return tgt’.ll and

the proof. Then, the proof is given to the proof checker which validates src.ll

is correctly translated into tgt’.ll. If tgt.ll and tgt’.ll are identical and

the proof checker succeeds validation, then the optimization is correct. Equality

checker llvm-diff checks identicalness of tgt.ll and tgt’.ll according to alpha-

equivalence.

Equality checker is Trust Computing Base(TCB) in this framework. Also,

the proof checker is TCB, which is verified in Coq. Therefore, if validation fails,

there must be a bug in LLVM optimization or something wrong with the proof

generation.

This framework can be independent of the original compiler. Therefore,

programmers can use the original compiler and compiler developers can use

the framework to validates their newly added optimization and increases the

reliability.
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Figure 1.1: The Crellvm Framework

1.2 Proof Checker

The proof checker reasons about LLVM optimizations by a variant of relational

Hoare logic [5], called Extensible Relational Hoare Logic(ERHL) [10]. This proof

checker’s logic and inference rules are verified in the style of CompCert using

the Coq [2] formalization of LLVM IR from the VELLVM project [32][10].

One of advantages of the CRELLVM is that one proof checker is able to

validates various optimization passes. The proof checker’s logic can be extended

by adding custom inference rules. Therefore, it can be used for general purpose,

with no need to make a new proof checker to validate a new pass. The new proof

generation code need only be inserted in the instrumented LLVM optimizer to

validate a new optimization, without changing the proof checker.

1.3 Early CSE

Common Subexpression Elimination(CSE) optimization erases an instruction

which has duplicated rhs expression within the code, and replaces its usage with

the corresponding register. Early CSE is one of the basic optimizations in the

first Clang optimization level, i.e., Clang optimization option O1. The world
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"Early" means that it deals with simple cases and shifts more complicated ones

on the later GVN pass.

x := add a b;

foo(x);

y := add a b;

goo(y);

 

x := add a b;

foo(x);

(lnop;)

goo(x);

In the above example, lnop instruction is just a logical instruction that

aligns the source and the target code(more details in Section 3.1). Early CSE op-

timization examines instructions one by one to check for duplicated instructions.

In this example, after going through the instruction x and foo(x), it found

out that the y instruction’s rhs is same as the instruction x’s rhs. Therefore, it

erases the instruction y and replaces every uses of the y with the x, so goo(y)

becomes goo(x).

1.4 Result

Early CSE optimization in LLVM 3.7.1 was validated using benchmarks com-

prising 5.40 million lines of C code and found 97.13% to be successful, 2.87% not

supported, and no validation failure. This indicates there is no mis-compilation

bug of Early CSE optimization in the benchmarks.

1.5 Outline

This paper is about validating Early CSE optimization in LLVM 3.7.1 using

CRELLVM. The rest of the paper is as follows. Section 2 gives overview of the

Early CSE optimization, which shows how Early CSE it works optimization.

Section 3 explains about proof validation and proof generation. Validation

process and instrumented proof generation code are shown with optimization

examples. Section 4 shows results of the experiment. Section 5 is the related

work and Section 6 concludes.
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Chapter 2

Early CSE

Early CSE optimization deletes an instruction which has duplicated rhs ex-

pression and replaces uses of the deleted instruction with the corresponding

register. Early CSE is one of optimizations in the Clang optimization level O1.

It indicates that Early CSE optimization is the one of the basic optimizations

in LLVM.

2.1 Early CSE translation example

Early CSE optimization is about deleting duplicated instructions. The following

translation is a simple example that shows Early CSE.

x := add a, b;

y := add a, b;

z := add x, y;

 

x := add a, b;

(lnop;)

z := add x, x;

The instruction x := add a, b consists of register x and righthand side(rhs)

expression add a, b. Sometimes we call this instruction as instruction x because

LLVM instructions are of Static Single Assignment(SSA) forms, thus register x

can be the name of the instruction.
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Instructions x and y have the same rhs. Both instruction has the same

rhs, which means the instruction y is duplicated. Then, Early CSE deletes the

instruction y and replaces uses of the y with the register x. The instruction z

becomes add x, x after optimization.

2.2 Early CSE optimization

In LLVM, Early CSE can handle the instructions of CastInst, BinaryOperator,

GetElementPtrInst, CmpInst, SelectInst, ExtractElementInst, Insert-

ElementInst, ShuffleVectorInst, ExtractValueInst, InsertValueInst,

LoadInst and CallInst.

This section discusses the optimization processes for them. Here let us

call the instructions except for LoadInst and CallInst, simple instructions.

Early CSE handles LoadInst and CallInst slightly in different ways from the

simple instructions because these two instructions are affected by memory write

operations. Also, Early CSE includes the optimization for branch instruction

and extra optimizations not related to CSE. Discussions about them are added

later.

Simple instructions Early CSE deals with every simple instruction in a similar

way. It maintains AvailableValues hash table to check if an instruction has

been duplicated or not. If the current instruction is a new one, the register and

its rhs are inserted in AvailableValues. If it is duplicated, thus rhs exists in

the hash table, the optimizer erases the instruction and replace all uses of it in

the code with the corresponding register from AvailableValues.

LoadInst There are a few conditions needed for Early CSE optimization on

LoadInst. First, the allocated memory location of LoadInstmust not be volatile.

Second, LoadInst should load from a same memory location. Values loaded

from the same memory location can be duplicated. Values loaded from the same

memory location are equal when there is no memory write operation to the

6



Instruction types Syntax

CastInst %x := bitcast i64 %a to i32

BinaryOperator %x := add i32 %a, %b

GetElementPtrInst %x := getelementptr %struct.ST, %struct.ST* %s, i32 1

CmpInst %x := icmp eq i32 a, b

SelectInst %x := select i1 true i32 %a, i32 %b

ExtractElementInst %x := extractelement <4 x i32> %vec, i32 0

InsertElementInst %x := insertelement <4 x i32> %vec, i32 1, i32 0

ShuffleVectorInst %x := shufflevector <4 x i32> %v1, <4 x i32> %v2,

<4 x i32> <i32 0, i32 4, i32 1, i32 5>

ExtractValueInst %x := extractvalue i32, float %agg, 0

InsertValueInst %x := insertvalue i32, float %agg, float %val, 1

LoadInst %x := load i32, i32* %ptr

CallInst(non-void) %x := call i32 %foo(i32 %argc)

CallInst(void) call void %foo(i32 %argc)

Table 2.1: LLVM Instructions

location between successive LoadInsts. Therefore, if first, second conditions are

met and the currentgeneration variable, which increments when there is any

memory write operation, is same as the previous LoadInst, then it is possible

to optimize.

Rather than checking if a memory write operation has occurred at the

indicated memory location, it assumes a LoadInst value can be different from

any memory write operation, which seems overly strict. However, this is not too

much because Early CSE does not use alias analysis result. It does not know the

memory write operation has alias with the location, thus Early CSE checks every

memory write operation. Therefore, if currentgeneration is unchanged, there

must be no memory write operation between LoadInsts, thus LoadInst has the

same value; whereas if there was a memory write operation between successive

LoadInsts, currentgeneration is changed and Early CSE optimization is

disallowed.
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When there is no memory write operation in between and two LoadInsts

are loading from the same memory location, then Early CSE considers the

instruction as duplicated, and deletes the instruction and replace all usages with

existing register. Optimization process proceeds as for the simple instructions.

For different memory location, it is obvious that these are different instruc-

tions. Furthermore, for different values of the currentgeneration, Early CSE

considers this to be a different instruction, even if it is loaded from the same

memory location. Therefore, it inserts the register, rhs and currentgeneration

into the hash table AvailableLoads, which is similar to AvailableValues hash

table but specified for LoadInst.

CallInst For CallInst, it is available to optimize when it is non-void type and

read only call instruction. Early CSE optimizes CallInst similar to LoadInst.

Optimization is available when two call instructions are calling same function

and the currentgeneration values are equal. If it is not, it considers as a

different instruction and inserts into AvailableCalls hash table.

Branch Instruction LLVM includes the branch instruction(BranchInst), which

has syntax br %c %B1, %B2. If the condition c is true, the next block will be

block B1, otherwise block B2. If c is true and control flow flows to block B1 then

all values of c in blocks dominated by B1 will be true. If c is false, control flow

flows to B2 then all values of c in blocks dominated by B2 will be false. Early

CSE optimizes this case as follows. In the blocks where block B1 dominates, it

substitutes every use of c as true, conversely as false when use of c is dominated

by block B2.

Extra Optimizations There are several optimizations unrelated to CSE that

Early CSE optimization also performs. These are SimplifyInstruction, Dead

Code Elimination(DCE) and Dead Store Elimination(DSE).

SimplifyInstruction, as the name suggests, simplifies instruction that can be

simply computed or converted. This optimization frequently exists in front of

8



or back of many others optimization passes. Since this is not related to CSE,

this paper does not validate this optimization. It is only a simple calculation, so

omitting this validation does not critically affects overall Early CSE reliability.

The DCE operation erases a dead code. It is a simple work and there exists

the validation function available, created when validating other passes. Therefore,

It is simply added without further modification.

The DSE erases a dead store instruction, i.e., when two instructions store

into the same memory location but there was no intervening LoadInst, the

first store instruction becomes the dead store instruction and is removed. This

optimization is also not relevant to CSE, would require extending the proof

checker to validate. However, this optimization only occurs 0.1% of the employed

benchmarks. Therefore, DSE is not validated in this paper but marked as not

supported validation for the future work.

2.3 Block Traversal

Early CSE performs optimization by traversing all blocks in each function. This

section discusses how Early CSE traverses blocks in a function.

Dominator In control flow graphs, if every path from the entry node to node n

must pass through node d, then we say node d dominates n. Also, if d dominates

n but d and n are the not same node, then d is a strict dominator of n. There can

be more than one strict dominator of node n, however if one strict dominator

does not strictly dominates other strict dominator of n, then it is called the

immediate dominator of n.

To erase a duplicate instruction it should be satisfied that this instruction is

dominated by the existing instruction. Thus, the dominance is the key for Early

CSE.

Early CSE traverses blocks using data structure DomTreeNode from LLVM

which is a dominator tree of blocks in the function. Early CSE visits blocks

9



using depth first walk over the dominator tree, which is similar to, but slightly

different from a depth first search.

To perform the depth first walk over the dominator tree, Early CSE uses

the nodeToProcess stack, which includes AvailableValues, AvailableLoads,

AvailableCalls hash tables, currentgeneration and dominator tree data.

B1

B2 B3

B4

B5

B1

B2

B1 B1

B4

B1

B1

B4

B5

B4

B1 B1

B3

B1

B1

Figure 2.1: Block Traversal Example

Consider the example in Figure 2.1. Initially, the optimizer pushes empty

hash tables and other data into the stack. Then it performs optimization at

block B1, fills the hash tables and updates the currentgeneration value. After

finishing block B1, it checks which block is dominated by B1. In this example,

block B2, B3, B4 and B5 are all dominated by B1. However, LLVM DomTreeNode

only considers the immediate dominance. Therefore, DomTreeNode considers

only blocks B2, B4 and B3. Since block B2 is the first block dominated by B1, it

pushes block B2 data and updated hash tables into the stack and optimizes B2.

After optimization at block B2, it then checks if B2 is dominating any blocks.

Since B2 does not dominate anything, it pops the top of the stack that was

about B2. Next, it checks the next dominated block of B1 because B1 is still in

the stack. Block B4 becomes the next target and is pushed into the stack. After

completing block B4, it checks if B4 has any dominate block and it pushes B5

10



data and hash tables to the stack. When optimization of B5 is done, it pops

B5 since there is no successor. It also pops block B4 since all the dominate

successors are gone. The stack still has B1, with the final dominated block being

B3. It pushes B3 and performs optimization. When optimization of B3 is done,

it pops B3, and finally pops B1 then finishes optimization of Early CSE.
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Chapter 3

Proof Generation and
Validation for
Early CSE

This chapter discusses how CRELLVM validates Early CSE. Proof generation

code associated with Early CSE optimizer generates a proof which consists of a

set of assertions and a list of inference rules. Then, proof checker validates the

proof’s correctness by Extensible Relational Hoare Logic(ERHL) [10].

Section 3.1 introduces ERHL, Section 3.2 explains the validation of Early

CSE optimization, and Section 3.3 details the proof generation.

3.1 ERHL Proof

This section explains some interesting features of the ERHL proof.

Hoare Logic Since ERHL is an extension of Hoare logic, we explain about

Hoare logic briefly.

Hoare logic is a formal method to assess the correctness of a program. It

uses a Hoare triple {P} C {Q} to express a correctness property where P and

Q are assertions and C is a command. P is called the pre-assertion, and Q the

12



post-assertion of C. When pre-assertion P is met, then post-assertion Q should

be established after executing C.

ERHL Assertions In ERHL, one Hoare logic assertion divides into source,

target, and the maydiff assertions. Source and target assertions are as the same

as Hoare logic that holds for the source state and the target state. Maydiff is a

relational assertion that relates the source and the target state. Maydiff is a set

of registers that contains registers that does not have same value in the source

and the target. A register not in the maydiff set has same value in the source

and the target. To satisfy the ERHL, all assertions of source, target, and the

maydiff should be correct.

Lessdef The Undef value included in LLVM IR is a superset of all the values

and arithmetic of Undef is also Undef. Correctness of a translation does not

require its value to be equal to the source value. As long as target’s behavior is

smaller than source, correctness is satisfied. Hence, it is possible that compiler can

change Undef value in the source to any value in the target. The LLVM compiler

actually uses this property for optimization, which can break equivalence between

the source and target. Therefore, we use lessdef rather than equivalence to

validate Undef, a concept taken from CompCert [14]. a wb is a lessdef b where

a might be Undef or if a is not Undef then a = b.

The examples in this thesis do not include Undef value hence = is used

rather than lessdef here for simplicity.

lnop lnop is a logical instruction because it does not exist in real IR code and

is interpreted as nothing during validation. Its only purpose is alignment. During

optimization, the optimizer can erase or add instructions, which causes source

and target instructions to misalign. Therefore, lnop instruction can be inserted

in the source or the target either. lnop is inserted into the target code instead of

the instruction that the optimizer erases. Also, there are optimizations that add

an instruction and one of them is trunc_onebit optimization in InstCombine.

13



It optimizes z = trunc x to i1 into y = and x, 1; z = icmp ne y, 0. It

adds one more instruction therefore, it needs lnop instruction in the source

code for alignment.

3.2 Proof Validation

As mentioned above, the proof checker follows ERHL and a proof is consists of

a set of assertions and a list of inference rules. Inserted proof generation code

returns the proof and the proof checker checks the correctness of the proof. This

section discusses how the proof checker validates Early CSE with assertions and

inference rules.

Checking each line of ERHL consists of 5 steps. It will be shown with the

example in Figure 3.1 . The boxed assertions and inference rules are what the

proof generation code produced for the validation.

1. Strong Post-Assertion Computation The proof checker computes

strong post-assertion of the source and the target using the standard

post-assertion computation algorithm of the Hoare logic.

In line 10, since there is no pre-assertion, the proof checker simply returns

xsrc = add asrc bsrc as the strong post-assertion for the source only by

using the instruction x := add a b. It returns the similar assertion for the

target also. However, line 15 has the pre-assertion xsrc = add asrc bsrc

in the source. The proof checker returns strong post-assertions xsrc =

add asrc bsrc and ysrc = add asrc bsrc by using the pre-assertion and

the instruction y := add a b together. No target strong post-assertion is

returned here.

In addition to return strong post-assertions using pre-assertion and an

instruction, the proof checker checks if some registers have different values

in the source and the target. In line 15, the register y has a value in

the source but nothing in the target because it is erased in the target.

14



Therefore, the register y is included in the maydiff. Strong post-assertions

at line 20 also includes the register z in the maydiff, because the source

has zsrc = add xsrc ysrc but the target has ztgt = add xtgt xtgt. First

operand xsrc and xtgt is equal because the register x is not in the maydiff

which indicates that it has a same value in the source and the target.

However, second operand ysrc and xtgt are different registers. Therefore,

the proof checker considers the source and the target has different value

of the z and add register z in the maydiff set.

2. Apply Inference Rules Proof generation code decides which inference

rule should be inserted into a given location. The selected inference rule

can make a new strong post-assertion under a certain condition. The rule

transitivity(xsrc, add asrc bsrc, ysrc) in line 15 derives xsrc = ysrc from

xsrc = add asrc bsrc and ysrc = add asrc bsrc.

transitivity(xsrc, add asrc bsrc, ysrc)

xsrc = add asrc bsrc ysrc = add asrc bsrc

add {xsrc = ysrc }

Also, substitute rule is applied to the source strong post-assertions zsrc =

add xsrc ysrc and xsrc = ysrc of line 20. Using the strong post-assertions

in the source, the proof checker can apply substitute rule that derives

zsrc = add xsrc xsrc.

substitute(zsrc, xsrc, ysrc)

zsrc = add xsrc ysrc xsrc = ysrc

add { zsrc = add xsrc xsrc }

Transitivity rule, substitute rule and other rules can be applied only

under appropriate conditions. Otherwise, it fails to make a new strong

post-assertion.
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{ MD({y}) }
10 : x := add a b ; x := add a b

{xsrc = add asrc bsrc xtgt = add atgt btgt MD({y}) }
{ xsrc = add asrc bsrc MD({y}) }

...
...

{ xsrc = add asrc bsrc MD({y}) }
15 : y := add a b ; lnop{

xsrc = add asrc bsrc
ysrc = add asrc bsrc

MD({y})
}

⇓ transitivity(xsrc, add asrc bsrc, ysrc){
xsrc = add asrc bsrc
ysrc = add xsrc bsrc
xsrc = ysrc

MD({y})

}
{ xsrc = ysrc MD({y}) }

...
...

{ xsrc = ysrc MD({y}) }
20 : z := add x y ; z := add x x{

xsrc = ysrc
zsrc = add xsrc ysrc

ztgt = add xtgt xtgt MD({y, z})
}

⇓ substitute(zsrc, xsrc, ysrc){ xsrc = ysrc
zsrc = add xsrc ysrc
zsrc = add xsrc xsrc

ztgt = add xtgt xtgt MD({y, z})
}

⇓ reduce_maydiff(z){ xsrc = ysrc
zsrc = add xsrc ysrc
zsrc = add xsrc xsrc

ztgt = add xtgt xtgt MD({y})
}

{ MD({y}) }

Figure 3.1: Validation of Early CSE

3. Automation for Applying Inference Rules The proof checker can

automatically apply simple inference rules, such as transitivity and

substitute. Therefore, the code for applying these rules can be omitted

from LLVM proof generation code. The proof checker makes a new assertion

if some appropriate conditions holds for these rules.
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4. Reduce Maydiff After adding strong post-assertions in the inference

rule and automation step, the proof checker reduces the maydiff set by

removing some registers. It compares the source and the target strong

post-assertions and choose some registers to be removed. After substitute

rule is applied at line 20, zsrc = add xsrc xsrc appears in the source. Since

the target has condition ztgt = add xtgt xtgt, and the register x is not in

the maydiff set, the register z can be remove from the maydiff set.

5. Hoare Triple Check After all the steps have completed, the proof checker

uses a simple inclusion test to validate the boxed assertions from the strong

post-assertions. The boxed assertion after line 10 is valid because the strong

post-assertion of line 10 has xsrc = add asrc bsrc. In line 15, the boxed

assertion xsrc = ysrc implies the strong post-assertion by the inclusion.

Finally, the boxed assertion in the last line has an empty assertion in

the source and the target respectively, these are valid since they can be

included in any set. All the maydiff sets of boxed assertions are also valid

by the inclusion relation with the previous strong post-assertions.

3.3 Proof Generation

This section discusses proof generation code in the EarlyCSE.cpp file.

Algorithm 1 shows the pseudocode of Early CSE algorithm. SimplifyInstruc-

tion optimization is omitted for brevity’s sake. The box contains the inserted

proof generation code. Importantly, the proof generation code does not affect

the original Early CSE optimization.

As in Figure 1.1, the proof checker requires a source IR file, a target IR

file, and a proof. To validate optimization, the source file should be the file

before optimization and the target should be after optimization. Thus, the

source file has changed to the target file by optimization. We can select points

during whole optimization process where should be source and target. Therefore,
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one validation which can hold only one optimization or several optimizations

together like Register Promotion. For simple instructions optimization in the

Algorithm 1, the source is pointed before line 13 and after line 17 for the target.

From the experience of validating Register Promotion, validation of serval

optimizations together is more difficult to validate [22]. A lot of validation units

may cause performance problems(see Section 4.3 for details), but validation is

simpler because only small amount of code changes occur. Therefore, in the

Early CSE a validation is limited to a single optimization at a time, e.g., deleting

a redundant instruction and replacing it with the corresponding register is one

validation unit.

In the following, we consider the simple instructions optimization, but the

other optimizations proceed similarly.

Early CSE uses AvailableValues hash table to find an instruction has

redundant rhs. It looks hash table by AvailableValues.lookup in line 13. If a

matched rhs is found, then it returns the corresponding register V . All uses of

the redundant instruction are replaced by the matching register in line 16 and

the redundant instruction is deleted in line 17. At line 18, it inserts the register

and its rhs into AvailableValues hash table when the rhs is new.

For validation, we need to know that replacing the uses of duplicated in-

struction is valid. In order to do so, the duplicated instruction and the existing

instruction should have the same rhs.

First, if from the position of the duplicated instruction to all uses of the

instruction, the assertion that the corresponding register and the duplicated

instruction are identical is satisfied, we can replace the usages into the corre-

sponding register. This assertion is inserted in line 15, Assn(i = V , l2, UseSet) ,

where UseSet is the set of all usage of the instruction i and l2 is line num-

ber of i. Using this assertion and automation for applying inference rules, the

proof checker can apply the substitute inference rule and make the strong

post-assertion zsrc = add xsrc xsrc in line 20 of Figure 3.1 .
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Second, to check duplicated instruction and existing instruction has the

same rhs which to satisfy the assertion after the deleted instruction, we needs

information of the existing instruction. By looking at the hash table, we can get

the existing instruction and propagate the assertion. The existing instruction

and its rhs are propagated to the deleted instruction: Assn(V = rhs, l1, l2) ,

where l1 is line number of V . Because of automation, the proof checker can

make the strong post-assertion using the transitivity rule that a = b in line

15 of Figure 3.1.

The assertion of the maydiff Assn({MD(i)}, global) is also inserted because

of the instruction deletion at line 17.
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Algorithm 1 Early CSE(Node:DomTreeNode)
1: BB := current BasicBlock

2: if BB’s pred has BranchInst then

3: ConditionV alue := true or false

4: l1 = line of BranchInst, UseSet := Dominate Usage Set of BranchInst

5: Assn(BranchInst = true or false, l1, UseSet)

6: ReplaceDominateUse(BranchInst, ConditionV alue)

7: end if

8: for (li : i) in Instr(BB) do

9: match i type with

10: | i is DCE ⇒

11: eraseInst(i) generateProofForDCE(i)

12: | i is simple instruction ⇒

13: if V := AvailableValues.lookup(i) then

14: rhs = rhs of V , l1 = line of V , l2 = line of i, UseSet := Usage Set of i

15: Assn(V = rhs, l1, l2); Assn(i = V , l2, UseSet); Assn({MD(i)}, global)

16: replaceInst(i,V )

17: eraseInst(i)

18: else AvailableValues.push(i)

19: end if

20: | i is load & non-volatile ⇒

21: if V := AvailableLoads.lookup(i) & currentgeneration is same then

22: rhs = rhs of V , l1 = line of V , l2 = line of i, UseSet := Usage Set of i

23: Assn(V = rhs, l1, l2); Assn(i = V , l2, UseSet), Assn({MD(i)}, global)

24: replaceInst(i,V )

25: eraseInst(i)

26: else AvailableLoads.push(i)

27: end if

28: | i is call & non-void type & readOnly ⇒

29: if V := AvailableCalls.lookup(i) & currentgeneration is same then

30: replaceInst(i,V ) NotSupported

31: eraseInst(i)

32: else AvailableCalls.push(i)

33: end if

34: end match

35: if i may write to memory then currentgeneration++

36: end if

37: if i is DSE then

38: eraseInst(i) NotSupported

39: end if

40: end for
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Chapter 4

Results

This section shows the result of validation of Early CSE in LLVM 3.7.1. Proof

generation code was inserted at EarlyCSE.cpp and validated with 5.40 million

lines of C code benchmarks.

4.1 Implementation

To validate Early CSE, the proof checker and proof generation code in LLVM is

necessary.

The proof checker is extended for automation to find inference rules for Early

CSE and to support some instruction types that were not supported previously.

Table 4.1 shows the lines of the proof generation code. The entire EarlyCSE.cpp

file is 522 lines long, and everything is covered except SimplifyInstruction opti-

mization. The inserted code was 159 lines which is 30.46% of the original code

length. The CRELLVM version which submitted in PLDI 2018 had infrastructure

for proof generation consists of 1,708 lines for common library. Moreover, 72.2%

of 15,980 lines for JSON serialization library can be automatically generated

from 2,079 SLOC in a simple DSL [10]. For Early CSE proof generation, code
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LOC of Original Compiler Inserted Proof Generation Codes

Early CSE 522 159

* 1,833 common library codes for proof generation infrastructure

Table 4.1: Lines of Original Compiler and Proof Generation Code

was inserted additional 125 lines for common library and 101 lines for JSON

serialization library.

4.2 Validation Result

Benchmarks such as Spec2006 [4], LLVM Nightly Test(LNT) [27], and 7 other

open source projects (a2ps-4.14, emacs-25.1, ghostscript-9.14.0, gimp-2.8.18,

screen-4.4.0, sendmail-8.15.0 and python-3.4.1) [21] have been used. Table 4.2

shows the results of validations. Among total 2,091,997 validation, 97.13% were

successful and 2.87% were not supported, and there was no failed validation.

These outcomes were consistent with LLVM Bugzila, which showed there was

no reported Early CSE mis-compilation bugs in LLVM 3.7.1 [6].

Of the 60,064 not supported validations, 82.29% were about instruction

types not supported by VELLVM, 0.65% for Early CSE CallInst optimization

and 3.59% for DSE. Moreover, there were 13.46% of not supported validations

during Early CSE for LoadInst. However, this not supported validations occur

not because of LoadInst but VELLVM.

VELLVM can not distinguish whether a call instruction is read only or not.

For soundness, there is no guarantee that a pre-assertion holds in a strong

post-assertion after a call instruction. There may have been a change due

to the call instruction. Therefore, the proof checker does not maintain pre-

assertion in the strong post-assertion after a call instruction. During Early CSE

LoadInst optimization, CallInst occurring between two LoadInsts does not

affect optimization when the CallInst is read only. However, since the proof
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checker cannot distinguish a read only call, the assertion cannot be hold, and

validation fails. Thus, the proof checker cannot validate the case when CallInst

is located between LoadInsts and left as not supported validation.

LOC
Validation Result

#Success #Failure #Not Supp.

400.perlbench 168.16K 90,349 0 534

401.bzip2 8.29K 6,068 0 21

403.gcc 517.52K 241,594 0 1214

429.mcf 2.69K 689 0 0

433.milc 15.04K 7,653 0 7

445.gobmk 196.24K 48,999 0 248

456.hmmer 35.99K 23,180 0 283

458.sjeng 13.85K 8,653 0 169

462.libquantum 4.36K 548 0 1209

464.h264ref 51.58K 41,096 0 290

470.lbm 1.16K 1,685 0 0

482.sphinx3 25.09K 9,203 0 32

999.specrand 0.07K 15 0 0

LLVM nightly test 1,358.76K 513,590 0 4,360

a2ps-4.14 61.60K 14,690 0 236

emacs-25.1 463.54K 141,414 0 1,430

ghostscript-9.14.0 797.65K 316,737 0 34,760

gimp-2.8.18 1,004.20K 283,051 0 13,486

screen-4.4.0 47.74K 29,772 0 425

sendmail-8.15.2 138.68K 32,612 0 554

python-3.4.1 486.38K 220,335 0 806

Total 5,398.59K 2,031,933 0 60,064

Table 4.2: Validation Results

Similarly, Early CSE CallInst optimization cannot be validated, cannot

distinguish read only call. Both cases can be validated if VELLVM updates

to recognized read only calls, but for now these remain with not supported

validation.

Another not supported optimization was DSE. The proof checker cannot

validate the case when an memory location is still remained but one of the
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store instruction for the location is removed. The proof checker is possible to

validate like Register Promotion optimization case, which erases the allocation

instruction and all store instructions [22]. Therefore, changes in the proof checker

would be required to validate this case, but since this occurred for only 0.1% of

the total validations, and since it is extra optimization of Early CSE, this was

left as not supported validation.

4.3 Performance Result

The experiment used an Intel Xeon E5-2630 CPU (2.6GHz, 12 cores with hyper-

threading, 128GB RAM, and 1TB SSD Samsung 850 PRO). Table 4.3 shows

the performance results. Orig is the time spent of Early CSE in the original

compiler, i.e., without proof generation. PCal is the time for Early CSE in the

instrumented compiler including proof generation. I/O is for reading and writing

the source, target and proof files. Lastly, PCheck is the time spent for the proof

checker to validate the correctness of the proof.

The instrumented compiler is relatively slower than the original compiler.

The result shows that PCal time is 16.45-fold comparing to Orig time. There can

be possible reasons for this slowdown. One of them is using smart pointers which

uses reference counting to free allocated memories automatically in C++. We use

the smart pointers for convenience while writing proof generation code. When

we tried to use normal pointers without automatic deallocation for validating

Register Promotion [22], it turned that the PCal time had reduced to a half.

We can know that he observed slowdown is partially due to the overhead of

reference counting in smart pointers.

Another possibility might be because of too many validation units in Early

CSE. While validating Register Promotion we found out that the initiation of

each validation unit takes approximately 230 ns long which is much slower than

other lines. The overhead can be mitigated when the initiation can be executed

only once for many optimizations.
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LOC
Time (sec.)

Orig PCal I/O PCheck

400.perlbench 168.16K 0.50 10.74 5.86K 12.02K

401.bzip2 8.29K 0.02 0.78 0.22K 0.53K

403.gcc 517.52K 1.57 40.11 20.82K 16.18K

429.mcf 2.69K < 0.01 0.04 <0.01K < 0.01K

433.milc 15.04K 0.04 0.49 0.08K 0.11K

445.gobmk 196.24K 0.30 3.90 4.62K 3.53K

456.hmmer 35.99K 0.12 1.69 0.81K 0.39K

458.sjeng 13.85K 0.04 0.65 0.30K 0.25K

462.libquantum 4.36K 0.02 0.12 0.02K < 0.01K

464.h264ref 51.58K 0.20 5.22 2.91K 2.01K

470.lbm 1.16K < 0.01 0.10 0.01K 0.02K

482.sphinx3 25.09K 0.06 0.69 0.10K 0.14K

999.specrand 0.07K < 0.01 < 0.01 < 0.01K < 0.01K

LLVM nightly test 1,358.76.K 3.40 70.44 34.26K 48.81K

a2ps-4.14 61.60K 0.14 1.75 0.43K 0.89K

emacs-25.1 463.54K 1.20 19.23 12.04K 8.76K

ghostscript-9.14.0 797.65K 2.17 30.77 20.83K 9.70K

gimp-2.8.18 1004.20K 2.62 23.34 12.27K 6.79K

screen-4.4.0 47.74K 0.17 3.32 1.91K 6.79K

sendmail-8.15.2 138.68K 0.22 2.76 1.91K 1.82K

python-3.4.1 486.38K 1.43 17.86 26.20K 9.22K

Total 5,398.59K 14.22 234.00 145.58K 124.74K

Table 4.3: Performance Results
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Chapter 5

Related Works

A verified compiler provides a high quality of reliability. CompCert [12, 13] is a

verified C complier of which correctness has been proved in Coq. The verified

compiler provides high reliability but has high verification costs. In addition,

performance is relatively low compared to production compilers. CompCert is

10% slower than GCC -O1, 15% slower than GCC -O2, and 20% slower than

GCC -O3 [8].

CSmith [31, 7, 24] and EMI [11] are good random testing tools. They have

found many GCC and LLVM bugs. However, no appearance of bug founded by

CSmith and EMI does not guarantees reliability. Also, it considers a compiler

as a black box without examining internal logic. Thus, it is not easy to find the

source for any identified bugs.

Rinard et al. [26] proposed a framework of credible compilation and relational

Hoare logic. It was able to prove the correctness of register allocation and

instruction scheduling even in the presence of aliased pointers. However, it is

only designed for a simple language, rather than any practical programming

language.

Namjoshi et al. proposed a witnessing compiler [18, 19] which is an imple-
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mentation of credible compilation. It targets LLVM compiler such as CRELLVM

but is not yet mature because it only supports limited types of instructions,

such as binary operation over integers, return, branch, compare and phi nodes.

Also, the work only ensures the correctness for simple constant propagation,

dead code elimination, and loop invariant code motion which are all possible in

CRELLVM.

Verified translation validation is similar to verified credible compilation. Both

need the input code and the generated code to a validator and the validator is

independent from the compiler. Various verified validators have been developed

for two instruction schedulings(list scheduling and trace scheduling) [28], lazy

code motion [29], software pipelining [30], register allocation [25], SSA-based

middle-end which converts CompCert intermediate form to SSA [3], GVN and

sparse conditional constant propagation [9]. However, the verified translation

validator is for one particular optimization, but CRELLVM can validate many

other optimizations.

Proof-carrying code(PCC) [20, 1] is also proposed for validating untrusted

code. Although PCC seems similar to credible compilation, it does not validate

the translation. It also generates proofs for safety policy, but not for translation.

Alive [15, 17, 16] developed by Lopes et al. is also focusing on compiler

correctness. To prevent mis-compilation, Alive was developed for correct LLVM

optimizations, particularly to ensure correct peephole optimization in LLVM.

Thus, Alive helps compiler writers to specify peephole optimizations, proves

their correctness with satisfiability module theory(SMT) solvers [23] or provides

counter examples, and automatically generates C++ code. Alive successfully

translated more than 300 optimizations and identified 8 bugs in InstCombine.

However, Alive can only support relatively uncomplicated algorithms, such as

peephole optimization, and cannot address cyclic control flows.
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Chapter 6

Conclusion

In this thesis, by using CRELLVM, Early CSE optimization which is one of basic

optimizations in LLVM has been validated. The result of testing benchmarks

shows 0 validation fail in Early CSE, implying there is no mis-compilation bugs

in the benchmarks for Early CSE in LLVM 3.7.1. CRELLVM is an effective tool

that can guarantee high reliability of compiler optimization.

Limitation The optimization passes that CRELLVM can validate for now

are GVN, Register Promotion, LICM, InstCombine and Early CSE. All of

these optimizations do not modify the original control flow graphs. The current

proof checker does not support modification of control flow graphs during

optimizations, because source and target programs should be aligned to validate.

However, people who participated in CRELLVM research are optimistic that

the proof checker can be extended to support the change of control flow graphs.

The current proof checker depends greatly on VELLVM [32]. Therefore, the

proof checker cannot support cases when VELLVM does not support it. As discussed

previously, CallInst is not fully supported by VELLVM. Also, VELLVM does not

fully supports LLVM instruction types. Since VELLVM does not fully supports
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LLVM, VELLVM update should be a prerequisite to extend the proof checker.

After completing development in VELLVM, the more optimization passes can be

validated by CRELLVM.
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요약

소프트웨어 검증을 통해 높은 신뢰성을 얻고자 할 때, 컴파일러 검증은 매우 중

요하다. 실행되는 프로그램은 소스코드가 아닌 실행코드이므로 컴파일러 버그는

소프트웨어 검증에 치명적이다. 그러나 GCC 와 LLVM 같은 많은 C/C++ 주류

컴파일러들은 성능향상에 집중하며 높은 신뢰성에는 상대적으로 소홀한 편이다.

테스팅은 버그를 찾는데 도움이 되지만 이 것만으로는 높은 신뢰성을 보장할 수

없다. 컴파일러 내부 로직을 확인하는 많은 방법이 제안되었지만 아직 성공적으로

적용된 것은 없다.

CRELLVM은 LLVM최적화패스를검산하여최적화의높은신뢰성을제공하

는 컴파일러 프레임워크이다. CRELLVM 은 LLVM 내의 주요 최적화인 Register

Promotion, Global Value Numbering 등을 검산할 수 있다.

이 논문은 CRELLVM 을 이용하여 LLVM 최적화인 Early CSE 를 검산하는

과정을 보여준다. 검산을 위해 LLVM 의 Early CSE 최적화 코드에 대응하는 증명

생성 코드를 구현하고 증명 확인기를 확장하였다. Early CSE 는 중복된 명령어를

지워서 반복 계산을 제거하는 최적화로 LLVM 내의 기본적인 최적화 중 하나이다.

540 만 C 코드 벤치마크를 이용한 실험 결과에서 Early CSE 내의 잘못된 컴

파일 결과가 없다는 것을 확인하였고, 이 결과는 벤치마크 내에서 Early CSE 의

신뢰성을 보증한다.

주요어: 검증되고 신뢰할 수 있는 컴파일러, 컴파일러 검증, LLVM 컴파일러,

CRELLVM, Early CSE

학번: 2016-21215
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