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RESUMO

Este trabalho é composto por três ensaios na área de inferência não-paramétrica, bas-

tante inter-relacionados. O primeiro ensaio visa estabelecer ordens de convergência uni-

forme sob condições mixing para o estimador linear local quando a estrutura de pontos

é �xa e da forma t/T, t ∈ {1, . . . , T}, T ∈ N. A ordem encontrada para as convergências

uniforme, em probabilidade e quase certa, é a mesma daquela estabelecida por Hansen

(2008) e Kristensen (2009) para o caso de estrutura de pontos aleatórios. O segundo en-

saio estuda as propriedades assintóticas de estimadores obtidos ao se inverter o esquema

de estimação em três etapas de Vogt e Linton (2014). Foram fornecidas as ordens de

convergência uniforme em probabilidade para os estimadores da função de tendência e da

sequência periódica. Além disso, a consistência do estimador do período fundamental e a

normalidade assintótica do estimador de tendência também foram estabelecidas. O último

estudo investiga o comportamento em amostras �nitas dos estimadores considerados no

segundo ensaio. Foram propostas janelas para o estimador de tendência do tipo plug-in.

Para as simulações realizadas, a janela plug-in mostrou bom desempenho e o estimador

do período revelou-se bastante robusto em resposta à diferentes escolhas de janelas. O

estudo foi complementado com duas aplicações, uma em climatologia e outra em economia.

Palavras chave: Econometria Não-paramétrica. Regressão Local. Teoria Assintótica.

Séries Temporais. Convergência Uniforme.



ABSTRACT

This work is composed of three essays in the �eld of nonparametric inference, all closely

inter-related. The �rst essay aims to stablish uniform convergence rates under mix-

ing conditions for the local linear estimator under a �xed-design setting of the form

t/T, t ∈ {1, . . . , T}, T ∈ N. It was found that the order of the weak and the strong

uniform convergence is the same as that of stablished by Hansen (2008) and Kristensen

(2009) for the random design setting. The second essay studies the asymptotic proper-

ties of the estimators derived from reversing the three-step procedure of Vogt and Linton

(2014). Weak uniform convergence rates was given to the trend and the periodic sequence

estimators. Furthermore, the consistency of the fundamental period estimator and the

asymptotic normality of the trend estimator was also stablished. The last study inves-

tigates the �nite sample behavior of the estimators considered in the second essay. A

plug-in type bandwith was proposed for the trend estimator. From our simulation re-

sults, the plug-in bandwidth performed well and the period estimator showed to be quite

robust with respect to di�erent bandwidth choices. The study was complemented with

two applications, one in climatology and the other in economics.

Keywords: Nonparametric Econometrics. Local Regression. Asymptotic Theory. Time

Series. Uniform Convergence.



LIST OF NOTATIONS

(Ω,F , P ) Probability space: Ω nonempty set, F σ-algebra of subsets of

Ω, P probability measure on F .
σ(Xi, i ∈ A) σ-algebra generated by the random variables Xi, i ∈ A.
BRd σ-algebra of Borel sets on Rd.

i.i.d. Independent and identically distributed

N(m,σ2) Normal distribution with mean m and variance σ2.

[T ]d The dth Cartesian power of {1, . . . , T}.
b·c, d·e Floor and ceiling functions.

an
a
≈ bn an/bn

n→∞−→ 1.

an = o(bn) For any δ > 0, |an/bn| ≤ δ for n su�ciently large.

an = O(bn) For some C > 0, |an/bn| ≤ C for n su�ciently large.

Xn = op(an) For any δ, ε > 0, P (|Xn/an| ≥ δ) ≤ ε for n su�ciently large.

Xn = Op(an) For any ε > 0, there is C > 0 such that P (|Xn/an| ≥ C) ≤ ε

for n su�ciently large.

Xn = o(an)a.s. For any δ > 0, P (lim supn→∞|Xn/an| > δ) = 0.

Xn = O(an)a.s. For some C > 0, P (lim supn→∞|Xn/an| ≤ C) = 1.
d→ Convergence in distribution.
p→ Convergence in probability.

#A Cardinal of A.

Lr(Ω,F , P ) Space of classes of real F − BR measurable functions f such

that ‖f‖r = (
∫

Ω
|f |rdP )1/r < +∞, 1 ≤ r < +∞, and ‖f‖∞ =

inf{a : P (f > a) = 0} < +∞, r = +∞.
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1 INTRODUCTION

The �rst essay of this thesis develops uniform consistency results for the local linear

estimator under mixing conditions in order to be directly applied in the next essays. The

weak and strong uniform convergence rates were provided for general kernel averages from

which we obtained the uniform rates for the local linear estimator. We restricted our atten-

tion to equally-spaced design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈ N. This
setting is quite common in the literature of nonparametric time series regression (ROBIN-

SON, 1989; EL MACHKOURI, 2007; VOGT;LINTON, 2014; among others). Further-

more, it also appears in the literature of nonparametric time-varying models (DALHAUS

et al., 1999; CAI, 2007) and in situations where a continuous-time process is sampled at

discrete time points (BANDI; PHILLIPS, 2003; KRISTENSEN, 2010). The convergences

were stablished uniformly over [0, 1] under arithmetically strong mixing conditions. The

kernel function was restricted to be compactly supported and Lipschitz continuous, and

inlcudes the popular Epanechnikov kernel. The uniform convergence in probability was

provided without imposing stationarity while the almost sure uniform convergence was

proved only for the stationary case.

Hansen (2008) provided a set of results on uniform convergence rates for kernel based

estimators under stationary and strongly mixing conditions. Kristensen (2009) extended

the results of Hansen (2008) by allowing the data to be heterogeneously dependent as well

as parameter dependent. A simple situation where the results of Kristensen (2009) could

be applied relates to local linear regression models where the error process is strongly

mixing without the stationarity restriction. In the literature, one can �nd the direct

application of the results of Kristensen (2009), originally for random design, done for �xed

design settings (see KRISTENSEN, 2009; VOGT; LINTON, 2014). While it is unclear,

we believe that providing explicit results would not only justi�es such application but also

creates a background for further theoretical developments.

The second essay is the main study of this thesis. We investigated the asymptotic

properties of the estimators obtained by reversing the three-step procedure of Vogt and

Linton (2014), for time series modelled as the sum of a periodic and a trend deterministic

components plus a stochastic error process. In the �rst step, the trend function is esti-

mated; given the trend estimate, an estimate of the period is provided in the second step;

the last step consists in estimating the periodic sequence. The weak uniform convergence

rates of the estimators of the trend function and the periodic sequence were provided.
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The asymptotic normality for the trend estimator was also stablished. Furthermore, it

was shown that the period estimator is consistent.

When the data has only the slowly varying component (plus an error term), its

nonparametric estimation is popularly done by using a local polynomial �tting (WAT-

SON, 1964; NADARAYA, 1964; CLEVELAND, 1979; FAN, 1992) or a spline smoothing

(WAHBA, 1990; GREEN; SILVERMAN, 1993; EUBANK, 1999). On the other hand,

for models where the data is written as a periodic component plus an error term, the

nonparametric estimation of the period and values of the periodic component was investi-

gated by Sun et al. (2012) for evenly spaced �xed design points and by Hall et al. (2000)

for a random design setting. A few nonparametric methods are available to address the

problem of estimating models where both periodic and trend components are taken into

account. As an example, there is the Singular Spectrum Analysis (BROOMHEAD; KING,

1986; BROOMHEAD et al., 1987) that have been applied in natural sciences as well as

in social sciences such as economics. A more recent nonparametric method is the three-

step estimation procedure proposed by Vogt and Linton (2014). In their supplementary

material, they suggested that reversing the order of the estimation scheme was possible

in principle. In other words, one could estimate the trend function �rst and subsequently

estimate the period and the periodic sequence. We aimed to investigate this reversed

estimation version more deeply.

The third essay exploits the bandwidth selection problem and the �nite sample per-

formance of the period estimator studied in the second essay. A plug-in type bandwidth

is proposed in order to estimate the trend function and a simulation exercise showed

good performance for the proposed bandwidth. Although we do not provide an optimal

bandwidth selection for the period estimator, we employ another simulation exercise to

evaluate the sensitivity of the estimator for di�erent bandwidth choices having the plug-

in bandwidth, as a baseline. The motivation is simple, if the performance of the period

estimator along di�erent bandwidths is roughly the same as that obtained using the �rst-

step's bandwidth, then we would not be far worse o� by choosing the plug-in bandwidth

again in the second step of the reversed estimation procedure. In our simulation, the

period estimator had a robust behaviour along di�erent bandwidths. To evaluate how the

estimators behave for real data, we made two applications: one for climatological data

and the other for economic data. In the former, we used global temperture anomalies

data which is exactly the same as that in Vogt and Linton (2014). The latter application

consists in providing central estimates for the australian non-accelerating in�ation rate of

unemployment by means of the reversed estimation procedure.
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2 UNIFORM CONVERGENCE OF LOCAL LINEAR REGRESSION FOR

STRONGLY MIXING ERRORS UNDER A FIXED DESIGN SETTING

Abstract. We provide the uniform convergence rates for the local linear estimator on

[0, 1], under equally-spaced �xed design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈
N. The rates of weak uniform consistency are given without imposing stationarity, while

the rates of strong uniform consistency are given only for stationary data. Both rates are

stablished assuming the data is strongly mixing. These results explicitly show that the

result of Kristensen (2009) also hold for the mentioned �xed design setting.

Keywords: Uniform convergence. Convergence in probability. Almost sure convergence.

Local linear regression. Mixing process

JEL Codes. C1,C10, C14
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2.1 Introduction

The uniform consistency of kernel-based estimators in discrete-time has been widely

investigated under various mixing conditions (BIERENS, 1983; PELIGRAD, 1992; AN-

DREWS, 1995; MASRY, 1996; NZE; DOUKHAN, 2004; FAN; YAO, 2008; HANSEN,

2008; KRISTENSEN, 2009; BOSQ, 2012; KONG et al., 2010; LI et al., 2016; HIRUKAWA

et al., 2019). In particular, Hansen (2008) provided a set of results on uniform conver-

gence rates for stationary and strongly mixing data. More recently, Kristensen (2009)

extended the results of Hansen (2008) by allowing the data to be heterogeneously depen-

dent as well as parameter dependent. While the latter extension has an special relevance

for some semiparametric problems (see LI; WOOLDRIDGE, 2002; XIA; HÄRDLE, 2006),

the former is useful in situations where data are allowed to be nonstationary but strongly

mixing, for example, in Markov-Chains that have not been initialized at their stationary

distribution (YU, 1993; KIM; LEE, 2005). A simple situation where the results of Kris-

tensen (2009) could be applied relates to local linear regression models where the error

process is strongly mixing without the stationarity restriction.

In the literature, one can �nd the direct application of the results of Kristensen (2009),

originally for random design, done for �xed design settings (see KRISTENSEN, 2009;

VOGT; LINTON, 2014). While it is unclear, we believe that providing explicit results

would not only justify such application but also creates a background for further theoret-

ical developments.

In this study, we provide the weak and strong uniform convergence rates for kernel

averages under �xed design and its application to the local linear estimator. We restrict

our attention to equally-spaced design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈
N. This setting is quite common in the literature of nonparametric time series regression

(ROBINSON, 1989; HALL; HART, 2012; EL MACHKOURI, 2007; VOGT; LINTON,

2014; among others). Furthermore, it also appears in the literature of nonparametric time-

varying models (DALHAUS et al., 1999; CAI, 2007) and in situations where a continuous-

time process is sampled at discrete time points (BANDI; PHILLIPS, 2003; KRISTENSEN,

2010).

The convergence is stablished uniformly over [0, 1] under arithmetically strong mixing

conditions. The kernel function is restricted to be compactly supported and Lipschitz

continuous, and inlcudes the popular Epanechnikov kernel. The uniform convergence

in probability is provided without imposing stationarity while the almost sure uniform

convergence is proved only for the stationary case.
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2.2 General results for kernel averages

Let {εt,T : 1 ≤ t ≤ T, 1 ≤ T} be a triangular array of random variables on (Ω,F , P ).

In this section, we aim to provide uniform bounds for kernel averages of the form

Ψ̂(x) = T−1

T∑
i=1

εi,TKh(i/T − x)

(
i/T − x

h

)j
, j ∈ {0, 1, . . . , jmax}, x ∈ [0, 1], (2.1)

where jmax ∈ N is �xed, Kh(u) := K(u/h)/h with K : R→ R being a kernel-like function

and h := hT is a positive sequence satisfying h → 0 and Th → ∞ as T → ∞. Since the

local polynomial regression estimators can be computed from simpler terms of the form

(2.1), we �rstly focus on providing bounds for the latter.

For each T > 1, the α-mixing coe�cients of ε1,T , . . . , εT,T is de�ned by

αT (t) = sup
1≤k≤T−t

sup{|P (A ∩B)− P (A)P (B)| : B ∈ FkT,1, A ∈ FTT,k+t}, 0 ≤ t < T,

where FkT,i = σ(εT,l : i ≤ l ≤ k). By convention, set αT (t) = 1/4 for t ≤ 0 and αT (t) = 0

for t ≥ T . This de�nition is in line with Francq and Zakoïan (2005) and Withers (1981).

We say that {εi,T : 1 ≤ i ≤ T, 1 < T} is α-mixing (or strong mixing) if the sequence

α(t) = sup
T :0≤t<T

αT (t), 0 ≤ t <∞,

satis�es α(t)→ 0 as t→∞.

Assumptions Throughout the text, we make the following assumptions:

A.1 [Strong Mixing Conditions] The triangular array {εi,T : 1 ≤ i ≤ T, T ≥ 1} is
strongly mixing with mixing coe�cients satisfying

αT (i) ≤ Ai−β (2.2)

for some �nite constants β,A > 0. In addition, there exist universal constants s > 2

and C > 0 such that, uniformly over T and i,

E[|εi,T |s] ≤ C <∞ (2.3)

and

β >
2s− 2

s− 2
. (2.4)

A.2 [Kernel Function Conditions] The real function K is Lipschitz continuous and
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has compact support, i.e., for every u ∈ R, there are L,Λ1 > 0 such that

K(u) = 0 for |u| > L, and |K(u)−K(u′)| ≤ Λ1|u− u′|,∀u′ ∈ R.

Note that A.2 implies that K is bounded and integrable1:

|K(u)| ≤ K̄ <∞,
∫

suppK

|K(u)|du ≤ µ̄ <∞, (2.5)

for some constants K̄, µ̄ > 0. Furthermore, there is C̄ > 0 such that2∫
suppK

|K(u)uj|du ≤ C̄ <∞, j ∈ N. (2.6)

Assumption A.1 speci�es that the triangular array is arithmetically strong mixing.

The mixing rate in (2.2) is related to the uniform moment bound in (2.3) by the condition

(2.4). Clearly the parameter β, which controls the decay rate of mixing coe�cients, must

be greater than 2.

The boundedness and �niteness in (2.5) and (2.6) show that assumption A.2 is strong

enough so that we do not need to make extra assumptions on the integrability of the

Kernel function.

In what follows, we assume L = 1 and
∫
K(w)dw = 1 for the sake of simplicity. In

addition, we will denote by C > 0 a generic constant which may assume di�erent values

at each appearance and does not depend on any limit variables.

2.2.1 Uniform convergence in probability

As the data is assumed to be dependent, the following variance bound involves nonzero

covariances. The proof strategy of Hansen (2008) and Kristensen (2009) consists of bound-

ing the covariances of short, medium and long lag lengths, separately. Due to our �xed

design setting, this splitting procedure is unnecessary and we are able to prove the result

more straightforwardly.

Theorem 2.1. Under A.1−A.2, for all su�ciently large T , we have

Var(Ψ̂(x)) ≤ C

Th
, ∀x ∈ [0, 1].

1Since |K| has compact support and is continuous, its image is compact, and thus bounded. Since |K|
is continuous, it is Lebesgue-measurable. Then

∫
suppK

|K|dµ ≤ C
∫
suppK

dµ ≤ C as suppK has �nite

(Lebesgue) measure.
2Denote f(u) := K(u)uj . Note that f is a compactly supported continuous real function. Then

f(R) = {0} ∪ f(supp f) which is compact, and thus bounded. Since the functions uj , I(|u| ≤ L) and K
are (Lebesgue) measurable, f(u) = K(u)ujI(|u| ≤ L) is also a measurable function, as well as its absolute

value. Then
∫
R|f |dµ =

∫ L

−L
|f(u)|du ≤ 2CL <∞, for some C > 0.
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Observe that, given δ > 0, Theorem 2.1 and Chebyshev's inequality imply

P

(∣∣∣∣Ψ̂(x)− EΨ̂(x)

1/
√
Th

∣∣∣∣ > δ

)
≤ ThVar(Ψ̂(x))

δ2
≤ C

δ2
,

which is su�cient to conclude that |Ψ̂(x)−EΨ̂(x)| = Op(1/
√
Th), pointwise, in x ∈ [0, 1].

Besides establishing a variance bound, we will also need an exponential type inequality.

We state a triangular version of Theorem 2.1 of Liebscher (1996), which is derived from

Theorem 5 of Rio et al. (1995).

Lemma 2.1 (Liebscher-Rio). Let {Zi,T} be a zero-mean triangular array such that |Zi,T | ≤
bT , with strongly mixing sequence αT . Then for any ε > 0 and mT ≤ T such that

4bTmT < ε, it holds that

P

(∣∣∣∣∣
T∑
i=1

Zi,T

∣∣∣∣∣ > ε

)
≤ 4 exp

[
− ε2

64σ2
T,mT

T/mT + εbTmT8/3

]
+ 4αT (mT )

T

mT

,

where σ2
T,mT

= sup0≤j≤T−1E[(
∑min(j+mT ,T )

i=j+1 Zi,T )2].

Now we give the uniform convergence in probability over the interval [0, 1]. This is an

adaptation of Theorem 2 of Hansen (2008).

Theorem 2.2. Assume that A.1−A.2 hold and that, for

β >
2 + 2s

s− 2
(2.7)

and

θ =
β(1− 2/s)− 2− 2/s

β + 2
, (2.8)

the bandwidth satis�es
φT lnT

T θh
= o(1), (2.9)

where φT is a positive slowly divergent sequence. Then, for

aT =

(
lnT

Th

)1/2

, (2.10)

we have supx∈[0,1]|Ψ̂(x)− EΨ̂(x)| = Op(aT ).

Theorem 2.2 establishes the rate for uniform convergence in probability. Note that

(2.7) is a strengthening of (2.4). Furthermore, (2.7) together with (2.8) implies θ ∈ (0, 1).

In particular, when β = +∞, we have θ = 1− 2/s. Therefore condition (2.9) strengthens

of the conventional assumption that Th→∞.
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2.2.2 Almost sure uniform convergence

In this section we establish the almost sure convergence under strict stationarity.

Theorem 2.3. Assume that for any T , {εt,T}Tt=1 have the same joint distribution as

{ut}Tt=1 with {ut : t ∈ Z} being a strictly stationary stochastic process. Furthermore,

assume that A.1−A.2 are satis�ed with

β >
4s+ 2

s− 2
(2.11)

and that, for

θ =
β(1− 2/s)− 4− 2/s

β + 2
, (2.12)

the bandwidth satis�es
φ2
T

T θh
= O(1), (2.13)

with φT = lnT (ln lnT )2. Then, for

aT =

(
lnT

Th

)1/2

, (2.14)

we have supx∈[0,1]|Ψ̂(x)− EΨ̂(x)| = O(aT ) almost surely.

2.3 Application to local linear regression

Assume that the univariate data Y1,T , Y2,T , . . . , YT,T are observed and that

Yt,T = g(t/T ) + εt,T , t ∈ {1, . . . , T} (2.15)

where g is a smooth continuous function on [0, 1] and {εt,T} is a strongly mixing triangular

array of zero mean random variables.

The local linear estimator for g can be de�ned3 as ĝ(x) = e′1S
−1
T DT , where

ST,x =
1

T

[ ∑T
t=1Kh(xt − x)

∑T
t=1Kh(xt − x)(xt − x)/h∑T

t=1Kh(xt − x)(xt − x)/h
∑T

t=1Kh(xt − x)((xt − x)/h)2

]
, (2.16)

DT,x =
1

T

[ ∑T
t=1 Yt,TKh(xt − x)∑T

t=1 Yt,TKh(xt − x)(xt − x)/h

]
and e1 = (1, 0)′. (2.17)

For simplicity, the dependence of the design points, xt = t/T , on T was omitted. It follows

3See Chapter 5 of Wand and Jones (1994) or Section 1.6 of Tsybakov (2008).
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from this representation that

(ST,x)i,j = sT,i+j−2(x) : sT,k(x) =
1

T

T∑
t=1

(
xt − x
h

)k
Kh(xt − x), k ∈ {0, 1, 2}, (2.18)

Simple calculations show that we can also write the local linear estimator as

ĝ(x) =
T∑
t=1

Wt,T (x)Yt,T , (2.19)

where Wt,T (x) = T−1e′1S
−1
T,xX

(
t/T−x
h

)
Kh(t/T − x) for X(u) = (1, u)′. The weights Wt,T

have an useful reproducing property (see Lemma 2.6). We now give the uniform conver-

gence rates of the local linear estimator for the model (2.15).

Theorem 2.4. Assume the conditions of Theorem 2.2 hold. In addition, let the function

g be twice continuously di�erentiable on [0, 1] and let K be nonnegative and symmetric.

Then

sup
x∈[0,1]

|ĝ(x)− g(x)| = Op(aT + h2). (2.20)

If the conditions were strengthen to that of Theorem 2.3, then we have

sup
x∈[0,1]

|ĝ(x)− g(x)| = O(aT + h2) a.s. (2.21)

2.4 Proofs

Appendix A contains several lemmas (from 2.2 to 2.11) which are used in the proofs

of this section.

Proof of Theorem 2.1 Let x ∈ [0, 1] and let T be large enough so that Jx, de�ned by

(2.33) and (2.34), is well-de�ned. By assumptions A.1-A.2, Lemma 2.2 and Dadvydov's

inequality, it follows that

Var(Ψ̂(x)) ≤ 1

T 2

∑
i,t∈Jx

∣∣∣∣Kh(i/T − x)Kh(t/T − x)

(
i/T − x

h

)j(
t/T − x

h

)j
Cov(εi,T εt,T )

∣∣∣∣
≤ C

(Th)2

∑
i,t∈Jx

|Cov(εi,T εt,T )|

≤ C

(Th)2

∑
i,t∈Jx

6αT (|i− t|)((s−2)/s)(E|εsi,T |)1/s(E|εst,T |)1/s

≤ C

(Th)2

∑
i∈Jx

T∑
t=1

|i− t|−β((s−2)/s) ≤ C

(Th)2

∑
i∈Jx

T∑
t=1

|i− t|2/s−2
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≤ C

(Th)2

∑
i∈Jx

2
∞∑
l=0

l2/s−2 ≤
∑
i∈Jx

C

(Th)2
= O

(
1

Th

)
.

Proof of Theorem 2.2 For the sake of brevity, denote ki,T (x) = K((i/T − x)/h)

and ξi,T (x) = ((i/T − x)/h)j, for any x ∈ [0, 1], T ∈ N and i ∈ [T ]. Further, let T be

su�ciently large so that the set Jx, given by (2.33) and (2.34), is well-de�ned. Write

Ψ̂(x) =
1

Th

T∑
i=1

εi,Tki,T (x)ξi,T (x)I(|εi,T | > τT ) +
1

Th

T∑
i=1

εi,Tki,T (x)ξi,T (x)I(|εi,T | ≤ τT )

:= R1,T (x) +R2,T (x), (2.22)

where I is the indicator function and τT = ρT (Th)1/s with ρT = (lnT )1/(1+β)φ
(1+β/2)/(1+β)
T .

Using Holder's and Markov's inequalities, we have that

E(|εi,T |I(|εi,T | > τT )) ≤ [E(|εi,T |s)]1/s[E(I(|εi,T | > τT ))]1−1/s

= [E(|εi,T |s)]1/s[P (|εi,T | > τT )]1−1/s

≤ [E(|εi,T |s)]1/s
[
E(|εi,T |s)

τ sT

]1−1/s

= E(|εi,T |s)τ 1−s
T . (2.23)

It follows by (2.23), Assumption A.2 and Lemma 2.2 that

|ER1,T (x)| ≤ E|R1,T (x)| ≤ 1

Th

∑
i∈Jx

|ki,T (x)ξi,T (x)|E(|εi,T |s)τ 1−s
T

≤
∑
i∈Jx

Cτ 1−s
T

Th
= O(τ 1−s

T ) = o(aT ), (2.24)

since, for s > 2,
τ 1−s
T

aT
= ρ1−s

T T 1/s−1/2

(
h

lnT

)1/2

= o(1).

Hence supx∈[0,1]|ER1,T (x)| = o(aT ). From this, we cannot say much about the order

of supx∈[0,1]|R1,T (x)|. Note that

w ∈
{
w : sup

x

∣∣∣∑
i∈Jx

ki,T (x)ξi,T (x)εi,T (w)I(|εi,T |(w) > τT )
∣∣∣ > CaT

}
=⇒ ∃i ∈ Jx : w ∈ {|εi,T |(w) > τT}

=⇒ w ∈
⋃
i∈Jx

{|εi,T |(w) > τT}.

By the monotonicity and subadditivity of the measure, and using Markov's inequality, we
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have

P
(

sup
x
|R1,T | > CaT

)
≤
∑
i∈Jx

P (|εi,T | > τT ) ≤
∑
i∈Jx

E(|εi,T |s)
τ sT

≤ C
Th

τ sT
≤ C

φT
= o(1). (2.25)

From expressions (2.24), (2.25), Lemma 2.9(v) and the triangle inequality,

sup
x∈[0,1]

|R1,T (x)− ER1,T (x)| ≤ sup
x∈[0,1]

|R1,T (x)|+ sup
x∈[0,1]

|ER1,T (x)|

= Op(aT ) + o(aT ) = Op(aT ).

Lemma 2.9(iv) implies that supx|R1,T (x)− ER1,T (x)| = Op(aT ). The replacement of εi,T
by the bounded variable εi,T I(|εi,T | ≤ τT ) produce an error of order Op(aT ), uniformly in

x.

Now, we focus on the term R2,T (x). We shall construct a grid of N points on A = [0, 1].

Let Aj = {x ∈ R : |x − xj| ≤ aTh}, j ∈ N. For N = d1/(aTh)e, it is easy to see that

there is at least one set E such that E = ∪Nj=1Aj and A ⊆ E. The grid is obtained by

selecting each xj ∈ E as grid points.

Make the following de�nitions

Ψ̃(x) = (Th)−1

T∑
i=1

|k∗i,T (x)ε∗i,T |;

Ψ̄(x) = (Th)−1

T∑
i=1

|ki,T (x)ε∗i,T |;

where ε∗i,T = εi,T I{|εi,T | ≤ τT} and k∗i,T (x) = K∗((i/T − x)/h) with K∗(x) = Λ1I(|x| ≤
2L). By our convention (and without loss of generality), L = 1. From assumption A.1, it

follows that

E|Ψ̃(x)| ≤ C

Th

∑
i∈Gx

E|ε∗i,T | ≤
C

Th

∑
i∈Gx

E|εi,T | ≤ C, (2.26)

for some C > 0 and all T large enough, where Gx = {i ∈ [T ] : i/T ∈ Cx} with Cx given
by (2.36). Analogously, we can show that E|Ψ̄(x)| = O(1).

If x ∈ Al, then |x− xl|/h ≤ aT by de�nition. Also, as aT = o(1), we eventually have

aT ≤ 1. Thus, for each Al, l ∈ {1, . . . , N}, for x ∈ Al and T su�ciently large, Lemma

2.3 with δ = aT gives

|R2,T (x)−R2,T (xl)| ≤
1

Th

T∑
i=1

|ε∗i,T ||ξi,T (x)ki,T (x)− ξi,T (xl)ki,T (xl)|I(i ∈ Dx ∪Dxl)
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≤ 1

Th

∑
i∈Dx∪Dxl

|ε∗i,T |{|ki,T (x)||ξi,T (x)− ξi,T (xl)|

+ |ξi,T (xl)||ki,T (x)− ki,T (xl)|}

≤ 1

Th

∑
i∈Dx∪Dxl

|ε∗i,T |
{
|ki,T (x)|

∣∣∣∣xl − xh

∣∣∣∣ j−1∑
l=0

∣∣∣∣i/T − xh

∣∣∣∣l∣∣∣∣i/T − xlh

∣∣∣∣j−1−l

+

∣∣∣∣i/T − xlh

∣∣∣∣jaTk∗i,T (xl)

}
≤ 1

Th

∑
i∈Dx∪Dxl

|ε∗i,T |
{
|ki,T (x)|aT j + aTk

∗
i,T (xl)

}

≤ aT j

Th

T∑
i=1

|ki,T (x)ε∗i,T |+
aT
Th

T∑
i=1

|k∗i,T (xl)ε
∗
i,T |

= aT jΨ̄(x) + aT Ψ̃(xl), (2.27)

where Dx = {i ∈ [T ] : |(i/T −x)/h| ≤ 1} for any x ∈ R. By applying the same arguments

used in expression (2.27), for j = 0, we obtain that |Ψ̄(x) − Ψ̄(xl)| ≤ aT Ψ̃(xl). Using

expressions (2.26)-(2.27), for each l = 1, . . . , N , and for all su�ciently large T , we have

sup
x∈Al
|R2,T (x)− ER2,T (x)| ≤ sup

x∈Aj
{|R2,T (xl)− ER2,T (xl)|

+ |R2,T (x)−R2,T (xl)|+ E|R2,T (xl)−R2,T (x)|}

≤ sup
x∈Al
{|R2,T (xl)− ER2,T (xl)|+ aT jΨ̄(x) + aT Ψ̃(xl) + E(aT jΨ̄(x) + aT Ψ̃(xl))}

= |R2,T (xl)− ER2,T (xl)|+ aT [Ψ̃(xl) + EΨ̃(xl)] + aT j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)]

≤ |R2,T (xl)− ER2,T (xl)|+ aT (|Ψ̃(xl)− EΨ̃(xl)|+ 2|EΨ̃(xl)|) + aT j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)]

≤ |R2,T (xl)− ER2,T (xl)|+ |Ψ̃(xl)− EΨ̃(xl)|+ CaT + j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)]

:= B1,l +B2,l + CaT + j sup
x∈Al

[Ψ̄(x) + EΨ̄(x)].

Along the above lines,

sup
x∈Al
|Ψ̄(x) + EΨ̄(x)| ≤ sup

x∈Al
{|Ψ̄(x)− EΨ̄(x)|+ 2|EΨ̄(x)|}

≤ sup
x∈Aj
{|Ψ̄(xl)− EΨ̄(xl)|+ |Ψ̄(x)− Ψ̄(xl)|+ E|Ψ̄(xl)− Ψ̄(x)|}+ C

≤ |Ψ̄(xl)− EΨ̄(xl)|+ aT (Ψ̃(xj) + EΨ̃(xj)) + C

≤ |Ψ̄(xl)− EΨ̄(xl)|+ |Ψ̃(xj)− EΨ̃(xj)|+ C

:= B3,l +B2,l + C



26

for T su�ciently large. Therefore, when T is large enough, we have

sup
x∈Al
|R2,T (x)− ER2,T (x)| ≤ γ(B1,l +B2,l +B3,l + CaT ), l ∈ {1, . . . , N} (2.28)

where γ = 1 + jmax.

De�ne e(x) = |R2,T (x) − ER2,T (x)|. Since A = [0, 1] ⊆
⋃N
l=1 Al, it follows that

supx∈A e(x) ≤ supx∈∪Al e(x) which implies{
sup
x∈A

e(x) > 4γCaT

}
⊆
{

sup
x∈∪Al

e(x) > 4γCaT

}
.

In addition,

w ∈
{

sup
x∈∪Ai

e(x) > 4γCaT

}
=⇒ ∃i : 1 ≤ i ≤ N : w ∈

{
sup
x∈Ai

e(x) > 4γCaT

}
=⇒ w ∈

⋃
i

{
sup
x∈Ai

e(x) > 4γCaT

}
.

Thus, from inequality (2.28), Lemma 2.11, the monotonicity and subadditivity of the

measure,

P
(

sup
x∈A
|R2,T (x)− ER2,T (x)| > 4γCaT

)
≤ P

(
sup
x∈∪Al

|R2,T (x)− ER2,T (x)| > 4γCaT

)
≤

N∑
l=1

P
(

sup
x∈Al

e(x) > 4γCaT

)
≤ N max

1≤l≤N
P
(

sup
x∈Al

e(x) > 4γCaT

)
≤ N max

1≤l≤N
P
(
γB1,l + γB2,l + γB3,l > 4γCaT

)
≤ N max

1≤l≤N
P
(
B1,l > aTC

)
+N max

1≤l≤N
P
(
B2,l > aTC

)
+N max

1≤l≤N
P
(
B3,l > aTC

)
:= T1 + T2 + T3, (2.29)

for su�ciently large T .

We start bounding the term T1. Let Zi,T (x) = ε∗i,Tki,T (x)ξi,T (x)−E(ε∗i,Tki,T (x)ξi,T (x)).

It is clear that |Zi,T (x)| ≤ 2K̄τT ≤ C1τT := bT for some C1 > 0, since |ε∗i,T | ≤ τT and

|ki,T (x)| ≤ K̄. Set mt = (aT τT )−1 and ε = MaTTh. Following the proof of Theorem 2.1,

we can obtain that the sequence σ2
T,mT

de�ned in Lemma 2.1 is O(mTh). Also, note that

mT ≤
1

aT
≤ T 1/2

(
h

lnT

)1/2

≤ T 1/2 ≤ T

for all su�ciently large T , and

mT bT
aTTh

=
C1

a2
TTh

=
C1

lnT
→ 0.
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These facts show that the conditions of Liebscher-Rio's Lemma are satis�ed whenever T

is large enough. Therefore, for any x, and T su�ciently large, we apply Liebscher-Rio's

Lemma to obtain

P (|R2,T (x)− ER2,T (x)| > CaT ) = P

(∣∣∣∣ T∑
i=1

Zi,T (x)

∣∣∣∣ > CaTTh

)
≤ 4 exp

[
− (CaTTh)2

64σ2
T,mT

T/mT + (CaTTh)bTmT8/3

]
+ 4αT (mT )

T

mT

≤ 4 exp

[
− (CaTTh)2

64CTh+ 6C1CTh

]
+ 4(Am−βT )

T

mT

≤ 4 exp

[
− (CaT )2Th

64C + 6C1C

]
+ 4Am−1−β

T T

= 4 exp

[
− Ca2

TTh

64 + 6C1

]
+ 4Am−1−β

T T

= 4 exp

[
− C

64 + 6C1

lnT

]
+ 4Am−1−β

T T

= 4T−C/(64+6C1) + 4AT (aT τT )1+β. (2.30)

The bound (2.30) holds for T2 and T3, which can be checked by the same arguments used

for T1. Recalling that N is asymptotically equivalent to 1/(aTh), it follows from (2.29)

that

T1 + T2 + T3 = O(T−C/(64+6C1)/(aTh)) +O(T (aT τT )1+β/(aTh))

:= O(S1) +O(S2). (2.31)

Now we show that S1 and S2 are o(1). Since C > 0 can be arbitrarily large, ∀η > 0 :

∃C∗ : ∀C > C∗ : S1 ≤ T−η. Therefore S1 = o(1) for any C > 0 large enough. On the

other hand, we have

S2 =
h(1+β)/s

hβ/2
h

h
(lnTφT )1+β/2T 1−β/2+(1+β)/s = o

[(
lnTφT
h

)1+β
2
]
T 1−β/2+(1+β)/s

= o(T θ(2+β)/2+1−β/2+(1+β)/s) = o(1),

since φT lnT/h = o(T θ) and

θ

(
2 + β

2

)
= −1 +

β

2
− β + 1

s
,

by hypothesis. This shows that supx∈[0,1]|R2,T (x)−ER2,T (x)| = OP (aT ). It completes the

proof.
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Proof of Theorem 2.3 We will use the same notation as for the proof of Theorem

2.2. Also, use the shorthand, supx := supx∈[0,1]. Let τT = (TφT )1/s. As in (2.24), it follows

that |ER1,T (x)| = O(aT ), or equivalently, for some M1 > 0 and T ∗ ∈ N, T ≥ T ∗ implies

|ER1,T (x)| ≤M1aT . Therefore, for any T > T ∗,

P (sup
x
|R1,T (x)− ER1,T (x)| > M1aT ) ≤ P (sup

x
|R1,T (x)|+M1aT > M1aT )

= P (sup
x
|R1,T (x)| > 0) ≤ P (|εi,T | > τT for some i ∈ {1, . . . , T})

= P (|uT | > τT ),

using the triangle inequality, the monotonicity of the measure and the strict stationarity

assumption. Further, Markov's inequality gives4

∞∑
T=1

P (|uT | > τT ) ≤ 2 +
∞∑
T=3

C

τ sT
≤ 2 +

∞∑
T=3

1

T lnT (ln lnT )2
<∞. (2.32)

Hence

∞∑
T=1

P (sup
x
|R1,T (x)− ER1,T (x)| > M1aT ) ≤ T ∗ +

∞∑
T=T ∗+1

P (|uT | > τT )

≤ T ∗ +
∞∑
T=1

P (|uT | > τT ) <∞.

The application of Borel-Cantelli's Lemma yields,

P (lim sup
T
{sup

x
|R1,T (x)− ER1,T (x)| > M1aT}) = 0

⇐⇒ P (lim inf
T
{sup

x
|R1,T (x)− ER1,T (x)| ≤M1aT}) = 1

=⇒ P (lim sup
T
{sup

x
|R1,T (x)− ER1,T (x)| ≤M1aT}) = 1,

that is, supx|R1,T (x)− ER1,T (x)| = O(aT ) almost surely (a.s.).

Next, one can check that (2.30) and (2.31) hold for τT = (TφT )1/s. Setting Aj = {x ∈
R : |x− xj| ≤ aTh ln lnT}, then N

a

≈ (aTh ln lnT )−1. By hypothesis, it follows that

S1 =
T−C/(64+6C1)+1/2

(φTh)1/2
= T−C/(64+6C1)+1/2O

(
T θ

φ
3/2
T

)
= T−C/(64+6C1)+(1+β)/2O

(
1

φ
3/2
T

)
= o(T−1)o(φ−1

T ) = o((TφT )−1),

4See page 63 of Rudin (1976).
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for M su�ciently large, and that

S2 = T

(
lnT

Th

)β/2
(TφT )(1+β)/s

h ln lnT
=
T 1−β/2+(1+β)/s

h1+β/2
o(φ

β/2+(1+β)/s
T )

= O(T 1−β/2+(1+β)/s+θ(1+β/2))o(φ
β/2+(1+β)/s−2−β
T )

= o(T 1−β/2+(1+β)/s+θ(1+β/2)φ
−1+[(1+β)/s−1−β/2]
T )

= o((TφT )−1).

To see the last inequality, note that conditions (2.11) and (2.12) imply

θ

(
2 + β

2

)
= −2 +

β

2
− β + 1

s

and

4s+ 2

s− 2
< β ⇐⇒ 4s+ 2 < β(s− 2) ⇐⇒ 4− β

2
< −β + 1

s
⇐⇒ β

2
− 2 >

β + 1

s

=⇒ β

2
+ 1 >

β + 1

s
,

respectively. Since the series
∑

T (TφT )−1 converges, Borel-Cantelli's Lemma implies

P
(

lim sup
T→∞

{ sup
x∈[0,1]

|R2,T (x)− ER2,T (x)| > 4γCaT}
)

= 1

as desired.

Proof of Theorem 2.4 Write

|ĝ(x)− g(x)| ≤ |ĝ(x)− Eĝ(x)|+ |Eĝ(x)− g(x)| := A1 + A2, ∀x ∈ [0, 1].

We start with the bias term A2. Using Lemmas 2.5 and 2.8, and Taylor expansion

with Lagrange reminder, we have that for any x ∈ [0, 1] and any T su�ciently large

A2 =

∣∣∣∣ T∑
t=1

Wt,T (x)
{
g(t/T )− g(x)

}∣∣∣∣
=

∣∣∣∣ T∑
t=1

Wt,T (x)
{
g(x) + g′[x+ τt(t/T − x)](t/T − x)− g(x)

}∣∣∣∣
=

∣∣∣∣ T∑
t=1

Wt,T (x)
{
g′[x+ τt(t/T − x)](t/T − x)

}
−

T∑
t=1

Wt,T (x)(t/T − x)g′(x)

∣∣∣∣
≤

T∑
t=1

|Wt,T (x)||t/T − x|
∣∣g′(x+ τt(t/T − x))− g′(x)

∣∣
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≤ C
T∑
t=1

|Wt,T (x)||t/T − x|2 = C
T∑
t=1

|Wt,T (x)||t/T − x|2I
(∣∣∣∣t/T − xh

∣∣∣∣ ≤ 1

)

≤ C

T∑
t=1

sup
x
|Wt,T (x)|h2 ≤ Ch2,

with τt ∈ (0, 1). The second inequality above holds since g ∈ C2[0, 1] implies g′ is Lipschitz

continuous on [0, 1]. Thus supx∈[0,1]A2 = O(h2).

Turning to the next term, we have

A1 = |e′1S−1
T,xD

ε
T,x|

where Dε
T,x = T−1

[ ∑T
i=1 εi,TKh(t/T − x)∑T

i=1 εi,TKh(t/T − x)((t/T − x)/h)

]
:=

[
dT,0(x)

dT,1(x)

]
.

Therefore, we can write

A1 =

∣∣∣∣∣∣e′1
[
s0 s1

s1 s2

]−1 [
d0

d1

]∣∣∣∣∣∣ =

∣∣∣∣d0 − s2
1s
−1
2 d1

s0 − s2
1s
−1
2

∣∣∣∣ :=
Vn
Vd
,

omitting the dependence of the entries on x and T , for brevity's sake. Note that the fact

||sj| − |µj|| ≤ |sj − µj| guarantees that |sj| = |µj| + O(1/(Th)) holds in Lemma 2.6. In

addition, for any x ∈ [0, 1], we have 0 < µj ≤ C for j ∈ {0, 2} and |µ1| ≤ C by hypothesis.

It implies µ2
1/µ2 = O(1). Thus, from Lemma 2.6, Lemma 2.9, and Theorem 2.2, we have

sup
x∈[0,1]

Vn ≤ sup
x∈[0,1]

|d0|+ sup
x∈[0,1]

|s2
1s
−1
2 | sup

x∈[0,1]

|d1| = Op(aT )

{
1 + sup

x∈[0,1]

|µ2
1|+O(1/(Th))

|µ2|+O(1/(Th))

}
= Op(aT )

{
1 + sup

x∈[0,1]

∣∣∣∣µ2
1

µ2

∣∣∣∣+O

(
1

Th

)}
= Op(aT )

{
O(1) +O

(
1

Th

)}
= Op(aT )O(1) = Op(aT ),

and

Vd =

∣∣∣∣µ0 +O

(
1

Th

)
− µ2

1 +O(1/(Th))

µ2 +O(1/(Th))

∣∣∣∣ =

∣∣∣∣µ0 −
µ2

1

µ2

+O

(
1

Th

)∣∣∣∣.
Lemma 2.7 states that ST,x has a positive de�nite limiting matrix, implying that µ0µ2 −
µ2

1 6= 0. Then

sup
x∈[0,1]

A1 ≤ Op(aT ) sup
x∈[0,1]

∣∣∣∣ 1

µ0 − µ2
1/µ2 +O(1/(Th))

∣∣∣∣ = Op(aT ) sup
x∈[0,1]

∣∣∣∣ µ2

µ0µ2 − µ2
1

+O

(
1

Th

)∣∣∣∣
= Op(aT )O(1) = Op(aT ).
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Lemma 2.9(v) implies

sup
x∈[0,1]

|ĝ(x)− g(x)| = O(h2) +Op(aT ) = Op(h
2 + aT ),

as desired.

The almost sure uniform convergence rate can be shown using the same arguments

and Lemma 2.10
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Appendix A - Auxiliary results

The quantity Ψ̂(x) involves a sum over the set of indices {i}Ti=1. Since the kernel func-

tion is assumed to be compactly supported, we only need to consider a subset of indices

Jx ⊆ {1, . . . , T}, which depends on the point x ∈ [0, 1]. It is important to distinghish be-

tween x as an interior point and x as a boundary point of [0, 1] once the respective kernel

averages may be related to di�erent asymptotic equivalences. Analytically, we can exam-

ine the behaviour of the kernel average "near" the boundaries instead of its behaviour at

the boundaries. Indeed, this approach is convenient when evaluating the boundary bias

of kernel estimators (see MüLLER, 1991; WAND; JONES, 1994; among others). Inspired

by these ideas, we will give a de�nition for the mentioned set of indices Jx and exploit

various right Riemann sum approximations.

Let T0 ∈ N be such that h < 1/2 for any T ≥ T0. For every T ≥ T0, de�ne the set

Jx = {i ∈ [T ] : i/T ∈ Cx} (2.33)

with

Cx =


[0, x+ h] , if x ∈ [0, h]

[x− h, x+ h] , if x ∈ (h, 1− h)

[x− h, 1] , if x ∈ [1− h, 1]

. (2.34)

In this study, whenever we require T to be su�ciently large such that Jx is well de�ned,

we will be implicity assuming that T is large enough to achieve h < 1/2.

Lemma 2.2. Let T ≥ T0 and let kT be the cardinality of Jx. Then kT = O(Th). In addi-

tion, suppose that the Kernel function K is Lipschitz continuous on its compact support.

Then, for any x ∈ [0, 1] and any su�ciently large T , it holds that ,

∣∣∣∣ 1

T

T∑
i=1

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∫ 1

0

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣ ≤ C

T
.

Proof. Suppose x ∈ (h, 1− h). Then Jx = {i ∈ [T ] : i/T ∈ [x− h, x+ h]}. Note that the
length of (x− h, x + h) shrinks to zero slower than 1/T , that is, 2h/(1/T ) = 2Th→∞.

It implies that ∃T1 ≥ T0 : ∀T ≥ T1 : Jx 6= Ø. Then, for T ≥ T1, de�ne i∗ = min Jx

and i∗ = max Jx. Since the design points are evenly spaced, we can write the elements of

{i/T}i∈[T ] ∩ (x− h, x+ h) as

i∗/T + (k − 1)/T, k ∈ {1, . . . ,MT}, T ≥ T1,

where MT is a sequence of natural numbers. In order to provide an upper bound for kT ,
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it is su�cient to �nd an upper bound for MT . But we clearly need

i∗
T

+
(MT − 1)

T
<
i∗

T
+ 2h

which implies thatMT < CTh. Hence kT = O(Th). Analogous arguments show the same

results for x ∈ [0, h] and x ∈ [1− h, 1]

Next, note that∫
[0,1]

I(|(u− x)/h| ≤ 1)du =

∫
[0,1]

I(x− h ≤ u ≤ x+ h)du =

∫
[0,1]∩[x−h,x+h]

du.

For x ∈ [0, 1] and T ≥ T0, we evaluate the following cases. If h < x and x < 1− h, then
0 < x − h and x + h < 1, and so [x − h, x + h] ∩ [0, 1] = [x − h, x + h]. If x ≤ h, then

x−h ≤ 0 and 0 < x+h ≤ 2h < 1, which gives [x−h, x+h]∩[0, 1] = [0, x+h]. If 1−h ≤ x,

then 1 ≤ x+ h and 0 < 1− 2h ≤ x− h < 1, which gives [x− h, x+ h]∩ [0, 1] = [x− h, 1].

Therefore ∫
[0,1]

I(|(u− x)/h| ≤ 1)du =

∫
Cx

du, x ∈ [0, 1], T ≥ T0.

Furthermore, given any x ∈ [0, 1], we must have i∗/T ≤ C
	 x

+ 1/T and C̄x − 1/T ≤ i∗/T,

where C
	 x

= inf Cx and C̄x = supCx. Otherwise, if i∗/T − 1/T > C
	 x

or C̄x > i∗/T + 1/T,

then we would �nd a contradiction with the fact that both i∗ and i∗ are the minimum

and the maximum of Jx. These imply that

0 ≤ i∗/T − C
	 x
≤ 1/T and 0 ≤ C̄x − i∗/T ≤ 1/T,

which will be used in the following.

De�ne J∗x = Jx \ {i∗} and let x ∈ [0, 1] be arbitrary. Using the above observations,

the triangle inequality and the Mean Value Theorem for integrals, we have

∣∣∣∣ 1

T

T∑
i=1

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∫ 1

0

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣
=

∣∣∣∣ 1

T

∑
i∈Jx

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∫
Cx

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣
≤
∣∣∣∣ 1

T

∑
i∈J∗x

∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j −∑
i∈J∗x

∫ i/T

(i−1)/T

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣jdu∣∣∣∣
+

1

T

∣∣∣∣K(i∗/T − xh

)∣∣∣∣∣∣∣∣i∗/T − xh

∣∣∣∣j +

∫ i∗/T

C
	
x

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣du
+

∫ C̄x

i∗/T

∣∣∣∣K(u− xh
)∣∣∣∣∣∣∣∣u− xh

∣∣∣∣du
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≤ 1

T

∑
i∈J∗x

∣∣∣∣∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣i/T − xh

∣∣∣∣j − ∣∣∣∣K(ξi − xh

)∣∣∣∣∣∣∣∣ξi − xh

∣∣∣∣j∣∣∣∣
+
C

T
+ C

(i∗
T
− C

	 x
)

+ C
(
C̄x −

i∗

T

)
≤ 1

T

∑
i∈J∗x

∣∣∣∣K(i/T − xh

)(
i/T − x

h

)j
−K

(
ξi − x
h

)(
ξi − x
h

)j∣∣∣∣+
C

T

≤ 1

T

∑
i∈J∗x

{∣∣∣∣K(i/T − xh

)∣∣∣∣∣∣∣∣(i/T − xh

)j
−
(
ξi − x
h

)j∣∣∣∣
+

∣∣∣∣ξi − xh

∣∣∣∣j∣∣∣∣K(i/T − xh

)
−K

(
ξi − x
h

)∣∣∣∣}+
C

T

≤ C

T

∑
i∈J∗x

{∣∣∣∣i/T − ξih

∣∣∣∣ j−1∑
l=0

∣∣∣∣i/T − xh

∣∣∣∣l∣∣∣∣ξi − xh

∣∣∣∣j−1−l

+

∣∣∣∣i/T − ξih

∣∣∣∣}+
C

T

≤ C

T
kT

{
j

Th
+

1

Th

}
+
C

T
≤ C

T
,

with ξi ∈ ((i− 1)/T, i/T ) for each i ∈ J∗x .

One can easily check that Lemma 2.2 holds for the function K(u)uj, i.e., the function

without taking the absolute value. Also, note that the assumptions of the lemma are

weaker than A.2 once K is allowed to not be continuous everywhere.

Lemma 2.3. Let K be a kernel function satisfying Assumption A.2 and let δ > 0. Then

there is a function K∗ and constants K̄∗ and µ∗ such that |K∗| ≤ K̄∗ <∞,
∫
R|K

∗(u)|du ≤
µ∗ <∞ and

|x1 − x2| ≤ δ ≤ L =⇒ |K(x1)−K(x2)| ≤ δK∗(x1), ∀x1, x2 ∈ R. (2.35)

Particularly, if K∗(x) = Λ1I(|x| ≤ 2L), then

∣∣∣∣ 1

T

T∑
i=1

K∗
(
i/T − x

h

)(
i/T − x

h

)j
−
∫ 1

0

K∗
(
u− x
h

)(
u− x
h

)j
du

∣∣∣∣ ≤ C

T
,

for any x ∈ [0, 1] and T large enough.

Proof. Fix δ > 0 and let x1, x2 : |x1 − x2| ≤ δ ≤ L. Indeed, if K is Lipschitz, then

|K(x1)−K(x2)| ≤ Λ1|x1−x2| = Λ1|x1−x2|{I(|x1| ≤ 2L) + I(|x1| > 2L)}. But |x1| > 2L

implies 2L− |x2| < |x1| − |x2| ≤ |x1− x2| ≤ L. So |x2| > L, and then K(x1)−K(x2) = 0

sinceK has compact support. Therefore the term I(|x1| > 2L) is super�uous for the upper

bound. Hence, we can take K∗(x) = Λ1I(|x| ≤ 2L) which satis�es |K(x1) − K(x2)| ≤
δK∗(x1), |K∗| ≤ Λ1 and

∫
R|K

∗(u)|du ≤ Λ1(4L).
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Next, let T be large enough so that the set Jx = {i : i/T ∈ Cx} with

Cx =


[0, x+ h∗] , if x ∈ [0, h∗]

[x− h∗, x+ h∗] , if x ∈ (h∗, 1− h∗)

[x− h∗, 1] , if x ∈ [1− h∗, 1]

, (2.36)

where h∗ = 2Lh, is well-de�ned and nonempty. Note that the arguments of Lemma 2.2's

proof can be applied to K∗ even though it is not continuous everywhere. Then, along the

same lines of the proof of Lemma 2.2, for any T large enough and any x ∈ [0, 1], we have

∣∣∣∣ 1

T

T∑
i=1

K∗
(
i/T − x

h

)(
i/T − x

h

)j
−
∫ 1

0

K∗
(
u− x
h

)(
u− x
h

)j
du

∣∣∣∣
=

∣∣∣∣ 1

T

∑
i∈Jx

Λ1

(
i/T − x

h

)j
−
∫
Cx

Λ1

(
u− x
h

)j
du

∣∣∣∣
≤ Λ1

T

∑
i∈J∗x

∣∣∣∣(i/T − xh

)j
−
(
ξi − x
h

)j∣∣∣∣+
C

T
≤ C

T
,

where J∗x = Jx \ {i∗} with i∗ = min Jx, and ξi ∈ ((i− 1)/T, i/T ),∀i ∈ J∗x .

Lemma 2.4. Let T ∈ N and f : (R,BR) → (R,BR) be a measurable function. De-

�ne α1,T (j) and α2,T (j) as the mixing coe�cients of the processes {Yt,T} and {f(Yt,T )},
respectively. Then α2,T (j) ≤ α1,T (j), for all 0 ≤ j < T .

Proof. Fix j : 0 ≤ j < T . Denote GkT,i = σ((f(Yl,T )) : i ≤ l ≤ k) and FkT,i = σ((Yl,T ) :

i ≤ l ≤ k) for 1 ≤ i ≤ k ≤ T . If σ(f(Yt,T )) ⊆ σ(Yt,T ), for any t ∈ {1, . . . , T}, then
GkT,i ⊆ FkT,i for any i, k, which in turn implies that α2,T (j) ≤ α1,T (j). But, σ(f(Yt,T )) =

{(Y −1
t,T ◦ f−1)(A) : A ∈ BR} ⊆ {Y −1

t,T (B) : B ∈ BR} = σ(Yt,T ), ∀t ∈ [T ], and so the

result.

A direct consequence of Lemma 2.4 is that if {εt,T} is strongly mixing triangular array

of random variables on (Ω,F) to (R,BR), then so is {|εt,T |}, since the function | · | is
(BR,BR)-measurable.

Now we restate the Proposition 1.12 of Tsybakov (2008).

Lemma 2.5 (Tsybakov). Let x ∈ [0, 1] such that ST,x, de�ned in (2.16), is positive de�nite

and let Q be a polynomial of degree at most 1. Then the local linear weights satisfy

T∑
t=1

Q(xt)Wt,T (x) = Q(x),
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for any sample (x1, . . . , xT ). In particular,

T∑
t=1

Wt,T (x) = 1 and
T∑
t=1

(xt − x)Wt,T (x) = 0. (2.37)

Proof. By hypotesis ∂kQ(xt)/∂x
k
t = 0,∀k ≥ 2, and then expanding Q(xt) around x gives

Q(xt) = Q(x) +Q′(x)(xt − x) := q′(x)

[
1

(xt − x)/h

]
,

where q(x) = (Q(x), Q′(x)h)′. Since the local linear estimator is the solution of a weighted

least squares, for Zt = Q(xt) we have that

β̂T (x) = arg min
βx

(Z −Xxβx)
′W (Z −Xxβx) = arg min

βx

(Xxq −Xxβx)
′W (Xxq −Xxβx)

= arg min
βx

(Xx(q − βx))′W (Xx(q − βx)) = arg min
βx

(q − βx)′X ′xWXx(q − βx)

= arg min
βx

(q − βx)′ST,x(q − βx)

where Z =


Z1

...

ZT

 , Xx =


1 (x1 − x)/h
...

...

1 (xT − x)/h

 , βx = (g(x), g′(x)h)′, q = q(x) and

W = diag(K((x1 − x)/h), · · · , K((xT − x)/h)). The necessary condition for β̂T (x) is

∂q′BT,xq − 2q′BT,xβx + β′xBT,xβx
∂βx

= −2B′T,xq + 2BT,xβx.

As BT,x is symmetric and positive de�nite, the unique solution is given by β̂T (x) = q.

Then ĝ(x) = e′1β̂T (x) = Q(x). Hence Q(x) =
∑

T=1 Q(xt)Wt,T (x) by (2.19). The results

in (2.37) are immediate from the choices Q(xt) = 1 and Q(xt) = xt − x.

The following lemma is an extension of Proposition 1 of Fernández and Fernández

(2001).

Lemma 2.6. Under A.2, for any x ∈ [0, 1], we have

sT,j(x) = µj(x) +O(1/(Th)), ∀j ∈ {0, 1, 2, 3}, (2.38)

where µj(x) =
∫
Gx
ujK(u)du with

Gx =


[−c, 1] , if x = ch

[−1, 1] , if x ∈ (h, 1− h)

[−1, c] , if x = 1− ch
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and 0 ≤ c ≤ 1.

The proof of the above result follows directly from Lemma 2.2 and the de�nition of

Big Oh, and thus is omitted. Lemma 2.6 implies that ST,x → Sx as T →∞ where

Sx =

∫
Gx

[
1 u

u u2

]
K(u)du (2.39)

Lemma 2.7. Let K be nonnegative satisfying Assumption A.2. Suppose µ({K > 0}) > 0.

Then the limiting matrix Sx in (2.39) is positive de�nite. Moreover,

∃λ0, T0 > 0 : λmin ≥ λ0, ∀T ≥ T0, ∀x ∈ [0, 1],

where λmin is the smallest eigenvalue of ST,x.

Proof. Let z ∈ R2 be a nonzero vector. Since K is nonnegative, we have

z′Sxz =

∫
Gx

z′XX ′zKdµ ≥ 0,

for X := X(w) = (1, w)′. To get a contradiction, suppose ∃y 6= 0 :
∫

[−c,c] y
′XX ′yKdµ = 0.

Then y′XX ′y = 0 µ-almost everywhere (a.e.) on {K > 0} ∩ Gx which has positive

measure. However, y′XX ′y is a polynomial of degree at most 2 and cannot be equal to

zero except on �nitely many number of points. This means y′XX ′y
a.e.

6= 0 on {K > 0}∩Gx,

a contradiction. Hence, we must have z′Sxz > 0 .

To show the next result, note that detSx, trSx > 0 as Sx is positive de�nite. Also,

the trace and the determinant are continuous mappings. Since ST,x → Sx, the continuity

implies trST,x → trSx and detST,x → detSx. Therefore, there must be T0 : ∀T ≥ T0

we have detST,x > 2−1 detSx > 0 and trST,x > 2−1 trSx > 0. Thus, the sum and the

product of the two disctinct eigenvalues of ST,x are positive, implying a set of (strictly)

positive eigenvalues, for all su�ciently large T .

For any vector y ∈ R2 and for an eigenpair ((λu, u), (λv, v)) of ST,x, it holds from

Lemma 2.8 that there are λ0, c1, c2 > 0 such that ST,xy = ST,x(c1u+c2v) = c1λuu+c2λvv ≥
λ0y when T is large enough. It implies (1/λ0)‖y‖ ≥ ‖S−1

T,xy‖.
The following lemma is a restatement of Lemma 1.3 of Tsybakov (2008).

Lemma 2.8 (Tsybakov). Let Assumption A.2 hold, T0 be as in Lemma 2.7 and T ∗ ∈ N
is such that ∀T ≥ T ∗, Th ≥ 1/2. Then for any T ≥ max(T ∗, T0) and any x ∈ [0, 1], the

weights of the local linear estimator de�ned in (2.19) satisfy

(i) supt,x|Wt,T (x)| ≤ C
Th

;

(ii)
∑T

t=1 supx|Wt,T (x)| ≤ C;

(iii) Wt,T (x) = 0 if |Xt−x
h
| /∈ suppK.

for some constant C > 0.
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Proof. (i) Denote xt = t/T for all t ∈ {1, . . . , T}. By Lemma 2.7,

|Wt,T (x)| = ‖Wt,T (x)‖ =

∥∥∥∥ 1

Th
e′1S

−1
T,xX

(xt − x
h

)
K
(xt − x

h

)∥∥∥∥
≤ 1

Th
‖e′1‖

∥∥∥∥S−1
T,xX

(xt − x
h

)∥∥∥∥∣∣∣∣K(xt − xh

)∣∣∣∣
≤ 1

Th

1

λ0

∥∥∥∥X(xt − xh

)∥∥∥∥∣∣∣∣K(xt − xh

)∣∣∣∣
≤ 1

Thλ0

∥∥∥∥X(xt − xh

)∥∥∥∥ sup|K|I[(xt − x)/h ∈ suppK]

≤ C

Th

∥∥∥∥X(xt − xh

)∥∥∥∥ ≤ C
√

2

Th
≤ C

Th
.

(ii) From the previous result, Lemma 2.7, it follows that

T∑
t=1

sup
x
|Wt,T (x)| ≤ C

Th

T∑
t=1

I
[
(xt − x)/h ∈ suppK

]
=

C

Th

∑
t∈Jx

1 ≤ C,

with Jx being as in Lemma 2.2, which has cardinality of order O(Th).

(iii) From the proof of (i), we have |Wt,T (x)| ≤ C
Th
I
(
|xt−x

h
| ∈ suppK

)
, and hence the

result.

The next lemmas provide a list of results involving asymptotic notations.

Lemma 2.9. Let at and bt be positive sequences converging to zero. The following results

hold:

(i) If C1, C2 ∈ R : C2 6= 0, then

C1 +O(aT )

C2 +O(bT )
=
C1

C2

+O(aT ) +O(bT );

In particular,
C1

C2 +O(bT )
=
C1

C2

+O(bT );

(ii) If YT = Op(aT ) and aT = o(bT ), then YT = op(bt);

(iii) Op(aT )O(bT ) = Op(aT bT );

(iv) If YT ≤ XT and XT = Op(aT ), then YT = Op(aT );

(v) If cT = o(bT ) and XT = Op(aT ), then cT +XT = Op(aT +bT ); if instead cT = O(bT ),

then also cT +XT = Op(aT + bT ).

Proof. (i) Denote cT = O(aT ) and dT = O(bT ). Then, using Taylor expansion,

C1 + cT
C2 + dT

=
C1

C2

1

1 + dT/C2

+
cT
C2

1

1 + dT/C2

=
C1

C2

{
1− dT

C2

+ o(dT )

}
+
cT
C2

{
1− dT

C2

+ o(dT )

}
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=
C1

C2

+O(dT ) +O(cT ) + o(dT ) =
C1

C2

+O(aT ) +O(bT ).

The second result is obtained analogously by setting cT = 0.

(ii) Let ε, δ > 0 be given. By the hypotheses, ∃T0,M : P (|YT | ≥ MaT ) ≤ ε for all

T ≥ T0. Further, ∃T1 : aT ≤ δbT since aT = o(bT ), for all T ≥ T1. Take δ∗ = Mδ. Hence

P (|YT | ≥ δ∗bT ) ≤ P (|XT | ≥MaT ) ≤ ε,

for every T ≥ max(T0, T1).

(iii) Let Xt = Op(aT ) and cT = O(bT ). Fix ε > 0. Then ∃T ∗,M1, C > 0 : ∀T ≥ T ∗ :

P (|XT | ≥M1aT ) ≤ ε and |cT/bT | ≤ C. Take M = M1C. Then

P (|XT cT | ≥MaT bT ) = P (|XT ||cT/bT | ≥MaT ) ≤ P (C|XT | ≥MaT )

= P (|XT | ≥M1aT ) ≤ ε.

This shows that XT cT = Op(aT bT ) as desired.

(iv) Clearly, P (|YT | ≥M) ≤ P (|XT | ≥M) if YT ≤ XT , and this implies the result.

(v) Let ε > 0 be �xed. By hypothesis, ∀δ > 0, ∃M1 > 0 : P (|XT | ≥ M1aT ) ≤ ε and

|cT | ≤ δbT , for su�ciently large T . Choose M : M ≥ max(δ,M1). Then

P
(
|XT + cT | ≥M(aT + bT )

)
≤ P

(
|XT | ≥M(aT + bT )− |cT |

)
≤ P

(
|XT | ≥M(aT + bT )− δbT

)
= P

(
|XT | ≥MaT + bT (M − δ)

)
≤ P

(
|XT | ≥MaT

)
≤ P

(
|XT | ≥M1aT

)
≤ ε.

The proof for cT = O(bT ) is analogous.

The next lemma is Lemma 2.9's analogue for Big Oh and small oh almost surely.

Let {Yn} be a seqence of random variables on (Ω,F , P ). We say that Yn = O(1)

almost surely, brie�y Yn = O(1)a.s., if ∃M > 0 such that P (lim supn→∞{|Yn| ≤M}) = 1,

and Yn = o(1) a.s. if ∀δ > 0 we have P (lim supn→∞{|Yn| > δ}) = 0.

Lemma 2.10. Let at and bt be positive sequences converging to zero. The following results

hold:

(i) If YT = O(aT ) a.s. and aT = o(bT ), then YT = o(bt) a.s.;

(ii) If YT = O(aT ) a.s. and cT = O(bT ), then YT cT = O(aT bT ) a.s.;

(iii) If YT ≤ XT and XT = O(aT ) a.s., then YT = O(aT ) a.s.;

(iv) If cT = O(bT ) and XT = O(aT ) a.s., then cT +XT = O(aT + bT ) a.s.;

(v) If YT = O(1) a.s., then aTYT = O(aT ) a.s.; similarly, if YT = o(1) a.s., then

aTYT = o(aT ) a.s.;
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(vi) If YT = O(1) a.s. and XT = o(1) a.s., then YT +XT = O(1) a.s.

Proof. In what follows we will use the shorthand lim supT for lim supT→∞.

(i) By hypothesis, ∃M > 0 : P (lim supT{|YT | ≤MaT}) = 1 and aT ≤ δbT for all δ > 0

and all T su�ciently large. Let δ/M > 0 be given. Then, for every T su�ciently large,

{|YT | ≤MaT} ⊆ {|YT | ≤ δbT}

Claim 1. Let AT and BT be two sequence of sets. Suppose that, for all su�ciently large

T , AT ⊆ BT . Then lim supT AT ⊆ lim supT BT .

Proof of claim: By de�nition, lim supT AT =
⋂∞
T=1

⋃∞
k=T Ak :=

⋂∞
T=1CT , where CT =⋃∞

k=T Ak is a decreasing sequence. Similarly, we can write lim supT BT :=
⋂∞
T=1DT ,

with DT =
⋃∞
k=T Bk. By hypothesis, there is some T0 such that, for any T > T0, we have

CT ⊆ DT , which implies
⋂
T>T0

CT ⊆
⋂
T>T0

DT . Since the sets CT and DT are decreasing,

∞⋂
T

CT =
∞⋂

T>T0

CT ⊆
∞⋂

T>T0

DT =
∞⋂
T

DT ,

and hence the result. �

By Claim 1 and using the monotonicity of the measure,

1 = P (lim sup
T
{|YT | ≤MaT}) ≤ P (lim sup

T
{|YT | ≤ δbT}),

which implies that P (lim supT{|YT | ≤ δbT}) = 1. As δ is arbitrary, the result follows.

(ii) By hypothesis, ∃M > 0 : P (lim supT{|YT | ≤ MaT}) = 1 and |bT/cT | ≥ 1/C for

some constant C > 0 and all T su�ciently large. Take M1 = MC. Then, for all T large

enough,

{|YT cT | ≤M1aT bT} = {|YT | ≤M1aT |bT/cT |} ⊇ {|YT | ≤MaT}

From Claim 1 and the monotonicity of P ,

P (lim sup
T
{|YT cT | ≤M1aT bT}) ≥ P (lim sup

T
{|YT | ≤MaT}) = 1

and thus the result.

(iii) By hypothesis and using Claim 1, there is M > 0 satisfying

P (lim sup
T
{|YT | ≤MaT}) ≥ P (lim sup

T
{|XT | ≤MaT}) = 1,

implying the result.

(iv) By hypothesis, ∃M > 0 : P (lim supT{|XT | ≤ MaT}) = 1 and |cT | ≤ CbT for

some constant C > 0 and all T su�ciently large. Choose M1 = max(M,C). For this
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choice and all su�ciently large T ,

{|XT + cT | ≤M1(aT + bT )} ⊇ {|XT | ≤M1(aT + bT )− |cT |}

⊇ {|XT | ≤M1aT + bT (M1 − C)}

⊇ {|XT | ≤M1aT + bT (M1 −M1)}

⊇ {|XT | ≤MaT}

Hence,

P (lim sup
T
{|XT + cT | ≤M1(aT + bT )}) ≥ P (lim sup

T
{|XT | ≤MaT}) = 1,

which gives the result.

(v) By hypothesis we clearly have, for some M > 0,

P (lim sup
T
{|YTaT | ≤MaT}) = P (lim sup

T
{|YT | ≤M}) = 1.

The proof for the small oh goes in the same lines.

(vi) Given any c > 0, note that

w ∈ lim sup
T
{|YT | ≤ c} ⇐⇒ |YT (w)| ≤ c for in�nitely many T

and

w ∈ lim sup
T
{|XT | > c} ⇐⇒ |XT (w)| > c for in�nitely many T

⇐⇒ |XT (w)| ≤ c for all but �nitely many T.

By hypothesis, for all δ > 0 and for some M > 0, we have

|YT (w)| ≤M for in�nitely many T, and

|XT (w)| ≤ δ for all but �nitely many T,

with probability one. Then, with probability one, the triangle inequality gives

|XT (w) + YT (w)| ≤M + δ for in�nitely many T,

and hence the result XT + YT = O(1)a.s.

Lemma 2.11. Let X and Y be two random variables and let b ∈ R. Then

P (|X + Y | > b) ≤ P (|X| > b/2) + P (|Y | > b/2).
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Proof. Let A = {(x, y) : |x + y| ≤ b} and B = {(x, y) : |x| ≤ b/2, |y| ≤ b/2}. Note that
A lies in the square of side b centered at the origin. Then A ⊇ B, which in turn implies

that {(X, Y ) ∈ A} ⊇ {(X, Y ) ∈ B}. Using DeMorgan's Law, it follows that

{(X, Y ) ∈ A}c = {|X + Y | > b} ⊆ {|X| > b/2} ∪ {|Y | > b/2} = {(X, Y ) ∈ B}c.

From the monotonicity and subadditivity of the measure,

P (|X + Y | > b) ≤ P ({|X| > b/2} ∪ {|Y | > b/2}) ≤ P (|X| > b/2) + P (|Y | > b/2).
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Appendix B - The Davydov's inequality

The Davydov's inequality is a covariance inequality which will be extensively used in

this study. Because it is our basic tool, we will review how it can be proved based on Bosq

(2012) and Rio (2017). A good understanding of the results below can give us insights on

how to bound covariances when we are faced with more complicated situations.

De�ne the indicator function of a subset A ⊆ R as

χA(x) =

{
1 , if x ∈ A
0 , if x /∈ A

.

The following identity will be shown to be useful when dealing with covariances.

Lemma 2.12. For any a, b ∈ R, we have that b− a =
∫∞
−∞ χ(−∞,x](a)− χ(−∞,x](b)dx.

Proof. Clearly, χ(−∞,x](a)− χ(−∞,x](b) is nonzero if, and only if, a ≤ x < b or b ≤ x < a.

Furthermore,

a ≤ x < b =⇒
∫ ∞
−∞

χ(−∞,x](a)− χ(−∞,x](b)dx =

∫ b

a

1dx = b− a

and

b ≤ x < a =⇒
∫ ∞
−∞

χ(−∞,x](a)− χ(−∞,x](b)dx =

∫ a

b

−1dx

=

∫ b

a

1dx = b− a.

Hence, regardless the case, the desired equality holds.

Given a measurable space (Ω,A), the above lemma shows that if Z1, Z2 : Ω→ R are

random variables, then Z2(w)− Z1(w) =
∫
χ(−∞,x](Z1(w))− χ(−∞,x](Z2(w))dx, ∀w ∈ Ω.

Let (Ω,A, P ) be a probability space and letX, Y : Ω→ R be random variables. De�ne

the joint distribution function as FX,Y (x, y) = PX,Y ((−∞, x] × (−∞, y]) = P{X(w) ≤
x, Y (w) ≤ y}, where PX,Y : BR2 → [0, 1] is the joint probability distribution (or the push-

forward measure) of X and Y . Given the joint distribution function FX,Y , the marginal

distribution function of X is de�ned as FX(x) = PX,Y ((−∞, x] × R). We assume the

notation {X(w) ∈ B} = X−1(B).

Lemma 2.13 (Hoe�ding's Lemma). Let FX and FY be the marginal distribution functions

of X and Y , respectively, given their joint distribution function FX,Y . Then

Cov(XY ) = E(XY )− E(X)E(Y ) =

∫ ∞
−∞

∫ ∞
−∞

FXY (x, y)− FX(x)FY (y)dxdy, (2.40)

provided the expectations E|XY |, E|X| and E|Y | are �nite.
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Proof. Firstly, we need to show a few results. Let (X, Y ), (X2, Y2) be independent and

identically distributed according to FX,Y .

Claim 2. (i) Cov(X, Y ) = Cov(X2, Y2);

(ii) EX = EX2;

(iii) X ⊥ Y2 and X2 ⊥ Y , where ⊥ denotes the independence of random variables;

(iv) Cov(χ(−∞,x](X), χ(−∞,x](Y )) = Cov(χ(−∞,x](X2), χ(−∞,x](Y2)),∀x ∈ R;

(v) Eχ(−∞,x](X) = Eχ(−∞,x](X2),∀x ∈ R;

(vi) χ(−∞,x](X) ⊥ χ(−∞,x](Y2) and χ(−∞,x](X2) ⊥ χ(−∞,x](Y ),∀x ∈ R;

(vii) E[(χ(−∞,x] ◦X)(χ(−∞,y] ◦Y )] = P ({X ≤ x, Y ≤ y}) and E[(χ(−∞,x] ◦X)] = P ({X ≤
x}).

Proof of claim: (i) The �rst result is obvious. (ii) Since the probability distribution PX,Y is

uniquely determined by the distribution function FX,Y , it follows that FY (y) = PX,Y (R×
(−∞, y]) = PX2Y2(R × (−∞, y]) = FY2(y), which in turn, implies that PY = PY2 . Hence

E(Y ) =
∫
xPY (dx) =

∫
xPY2(dx) = E(Y2). (iii) To see the independence, FX,Y2(x, y2) =

limy,x2→∞ FX,Y,X2,Y2(x, y, x2, y2) = limx2→∞ FX2,Y2(x2, y2) limy→∞ FX,Y (x, y) = FX(x)FY2(y2).

(vi) Since X is independent of Y2, by de�nition, σ(X) = {X−1(B) : B ∈ BR}
and σ(Y2) are independent, meaning that P (A ∩ B) = P (A)P (B), ∀A ∈ σ(Y2), B ∈
σ(X). It is well known that σ(X), σ(Y2) are sub-σ-algebras of A. Given any x, y ∈
R, let f = χ(−∞,x] and g = χ(−∞,y] be two (R,BR) − (R,BR) measurable functions.

Then (f ◦ X)−1(A) = X−1(f−1(A)) ∈ σ(X),∀A ∈ BR, since f−1(A) ∈ BR. The same

holds for g ◦ Y2. It implies that σ(f ◦ X) = {(f ◦ X)−1(A) : A ∈ BR} ⊆ σ(X)

and σ(g ◦ Y2) ⊆ σ(Y2). As σ(Y2) and σ(X) are independent, so are σ(f ◦ X) and

σ(g ◦ Y2). Therefore the measurable indicator functions preserve the independence of

the random variables. (iv) Furthermore, Ff◦X,g◦Y (x1, y1) = P{f(X) ≤ x1, g(Y ) ≤
y1} = P{X ∈ f−1(−∞, x1], Y ∈ g−1(−∞, y1]} = PX,Y (f−1(−∞, x1] × g−1(−∞, y1]) =

PX2Y2(f
−1(−∞, x1]×g−1(−∞, y1]) = Ff◦X2,g◦Y2(x1, y1). This immediately implies Cov(f ◦

X2, g◦Y2) = Cov(f ◦X, g◦Y ). (v) By assumption, it is clear that the marginal probability

distributions must be the same (PX = PX2). Therefore, E(f ◦X) =
∫

Ω
(f ◦X)(z)P (dz) =∫

R f(w)PX(dw) =
∫
R f(w)PX2(dw) = E(f ◦X2), since the indicator function is a nonneg-

ative measurable function. (vii) Finally,∫
Ω

(χ(−∞,x] ◦X)(w)P (dw) =

∫
R
χ(−∞,x](w

′)PX(dw′) = PX((−∞, x]) = P ({X ≤ x})

and ∫
Ω

χ(−∞,x]×(−∞,y](X(w), Y (w))P (dw) =

∫
R2

χ(−∞,x]×(−∞,y](w
′)PX,Y (dw′)

= P ({X ≤ x, Y ≤ y}).
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�

By Claim 2, Lemma 2.12 and the Fubini-Tonelli's theorem, it follows that

2 Cov(X, Y ) = Cov(X, Y ) + Cov(X2, Y2)

= E(X, Y ) + E(X2, Y2)− E(X)E(Y )− E(X2)E(Y2)

= E(X, Y +X2, Y2)− E(X2Y )− E(XY2)

= E((X2 −X)(Y2 − Y ))

=

∫
Ω

∫ ∫ [
χ(−∞,x](X)− χ(−∞,x](X2)

][
χ(−∞,y](Y )− χ(−∞,y](Y2)

]
dxdydP

=

∫ ∫ ∫
Ω

[
χ(−∞,x](X)− χ(−∞,x](X2)

][
χ(−∞,y](Y )− χ(−∞,y](Y2)

]
dPdxdy

= 2

∫ ∫
Cov(χ(−∞,x](X), χ(−∞,x](Y ))dxdy

= 2

∫ ∫
E
[
χ(−∞,x](X)χ(−∞,x](Y )

]
− E

[
χ(−∞,x](X)

]
E
[
χ(−∞,x](Y )

]
dxdy

= 2

∫ ∫
FX,Y (x, y)− FX(x)FY (y)dxdy

since E|X2 −X||Y2 − Y | ≤ 2(E|XY |+ E|X|E|Y |) <∞.

Lemma 2.14. Let F be the distribution function of random variable X and let F−1 :

[0, 1] → R be the generalized inverse distribution function de�ned by F−1(u) = inf{x ∈
R : F (x) ≥ u}. Moreover, de�ne the quantile function of X by Q(z) = inf{x ∈ R :

P (X > x) ≤ z}, z ∈ R. Then, for any x ∈ R and any z ∈ (0, 1)

z < P (X > x) ⇐⇒ x < Q(z). (2.41)

Proof. Let x ∈ R and z ∈ (0, 1). Then x ∈ {y : F (y) ≥ F (x)} and F−1(F (x)) = inf{y :

F (y) ≥ F (x)}, by de�nition. Thus F−1(F (x)) ≤ x, or equivalently, Q(1 − F (x)) ≤ x,

since Q(1 − z) = inf{x : 1 − F (x) ≤ 1 − z} = F−1(z). Also, F (F−1(z)) = F (inf{y :

F (y) ≥ z}) ≥ z. It is clear that Q is nonincreasing since z1 ≤ z2 implies {P (X > x) ≤
z1} ⊆ {P (X > x) ≤ z2}.

Supose z ≥ P (X > x) = 1−F (x). Then Q(z) ≤ Q(1−F (x)) ≤ x. Conversely, if x ≥
Q(z) = F−1(1− z), then F (x) ≥ F (F−1(1− z)) ≥ 1− z ⇐⇒ z ≥ 1−F (x) = P (X > x).

The result follows by contraposition.

The next theorem can be found in Bosq (2012, Theorem 1.1).

Theorem 2.5 (Rio's Inequality). Let X and Y be two integrable random variables and let

Q|X|, Q|Y | be the quantile functions of |X|, |Y |, respectively. Then if Q|X|Q|Y | is integrable

over (0, 1),

|Cov(X, Y )| ≤ 2

∫ 2α

0

Q|X|(u)Q|Y |(u)du (2.42)
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where α = α(σ(X), σ(Y )) = supB∈σ(X),C∈σ(Y )|P (B ∩ C)− P (B)P (C)|.

Proof. Let X = X+ −X− and Y = Y + − Y −. From the bilinearity of the covariance,

Cov(X, Y ) = Cov(X+, Y +) + Cov(X−, Y −)− Cov(X+, Y −)− Cov(X−, Y +)

≤ Cov(X+, Y +) + Cov(X−, Y −) + Cov(X+, Y −) + Cov(X−, Y +)

= Cov(|X|, |Y |).

By the Hoe�ding's Lemma, Cov(X+, Y +) =
∫∞

0

∫∞
0
P (X ≤ u, Y ≤ v)−P (X ≤ u)P (Y ≤

v)dudv. Note that, if A1 = {X ≤ u} and A2 = {Y ≤ v}, then P (A1∩A2)−P (A1)P (A2) =

1 − P (Ac1 ∪ Ac2) − [(1 − P (Ac1))(1 − P (Ac2))] = P (Ac1 ∩ Ac2) − P (Ac1)P (Ac2). Hence

Cov(X+, Y +) =
∫∞

0

∫∞
0
P (X > u, Y > v) − P (X > u)P (Y > v)dudv. Apply the same

argument to the other covariance's terms to obtain the following set of equalities

Cov(X+, Y +) =

∫ ∞
0

∫ ∞
0

P (X > u, Y > v)− P (X > u)P (Y > v)dudv

Cov(X−, Y −) =

∫ ∞
0

∫ ∞
0

P (−X > u,−Y > v)− P (−X > u)P (−Y > v)dudv

Cov(X−, Y +) =

∫ ∞
0

∫ ∞
0

P (−X > u, Y > v)− P (−X > u)P (Y > v)dudv

Cov(X+, Y −) =

∫ ∞
0

∫ ∞
0

P (X > u,−Y > v)− P (X > u)P (−Y > v)dudv.

Put a = P (X > u), b = P (−X > u), c = P (Y > v) and d = P (−Y > v). Note that the

integrand of any of the above equations are bounded by α ≥ 0 as well as by, at least, two

elements of {a, b, c, d}, due to the monotonicity of the measure. Then

|Cov(X, Y )| ≤ |Cov(|X|, |Y |)|

≤ |Cov(X+, Y +)|+ |Cov(X−, Y −)|+ |Cov(X+, Y −)|+ |Cov(X−, Y +)|

=

∫ ∞
0

∫ ∞
0

[
inf{α, a, c}+ inf{α, a, d}+ inf{α, b, c}+ inf{α, b, d}

]
dudv

=

∫ ∞
0

∫ ∞
0

[
inf{2α, 2a, c+ d}+ inf{2α, 2b, c+ d}

]
dudv

=

∫ ∞
0

∫ ∞
0

inf{4α, 2(a+ b), 2(c+ d)}dudv

= 2

∫ ∞
0

∫ ∞
0

inf{2α, P (|X| > u), P (|Y | > v)}dudv, (2.43)

where the last equality follows from

a+ b = P (X > u) + P (−X > u) = P ({X > u} ∪ {X < −u}) + P ({X > u} ∩ {X < −u})

= P ({X > u} ∪ {X < −u}) + P (∅)

= P (|X| > u),
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and, similarly, from c+ d = P (|Y | > v). De�ne e = P (|X| > u) and f = P (|Y | > v), and

note that ∫ α

0

χ(−∞,inf(e,f)](z)dz =

{
α , if α ≤ inf{e, f}
inf{e, f} , if α > inf{e, f}

,

and that z ∈ (−∞, inf(e, f)] ⇐⇒ z ∈ (−∞, e] ∩ (−∞, f ]. Then, by Lemma 2.14,

inf(2α, e, f) =

∫ 2α

0

χ(−∞,e](z)χ(−∞,f ](z)dz =

∫ 2α

0

χ(−∞,Q|X|(z)](u)χ(−∞,Q|Y |(z)](v)dz,

since it holds that 0 ≤ α ≤ 1/4 (see Bradley, 2005). From Fubini-Tonelli's theorem and

(2.43), we have that

|Cov(X, Y )| ≤ 2

∫ ∞
0

∫ ∞
0

[∫ 2α

0

χ(−∞,Q|X|(z)](u)χ(−∞,Q|Y |(z)](v)dz

]
dudv

≤ 2

∫ 2α

0

[∫ Q|X|(z)

0

1du

∫ Q|Y |(z)

0

1dv

]
dz

= 2

∫ 2α

0

Q|X|(z)Q|Y |(z)dz.

Corollary 2.5.1 (Davydov's Inequality). Let X and Y be two random variables such that

X ∈ Lq(P ), Y ∈ Lr(P ) where q > 1, r > 1 are �nite and 1/q + 1/r = 1− 1/p. Then

|Cov(X, Y )| ≤ 2p(2α)1/p‖X‖q‖Y ‖r. (2.44)

Proof. Let X ∈ Lp(P ), Y ∈ Lp(P ), meaning that ‖X‖q = (
∫
|X|qdP )1/q < ∞ and that

‖Y ‖r = (
∫
|Y |rdP )1/r <∞, respectively. By the Markov's inequality, we have that

P

[
|X| > ‖X‖q

u1/q

]
= P

[
|X|q >

(
‖X‖q
u1/q

)q ]
≤ P

[
|X|q ≥

(
‖X‖q
u1/q

)q ]
≤ u

‖X‖qq

∫
Ω

|X|qdP =
u

‖X‖qq
‖X‖qq

= u, ∀u ∈ (0, 1). (2.45)

The inequality (2.45) is equivalent to Q|X|(u) ≤ ‖X‖q/u1/q,∀u ∈ (0, 1), by the contrapo-

sition of Lemma 2.14. These results hold analogously for Y . From Rio's inequality,

|Cov(X, Y )| ≤ 2

∫ 2α

0

Q|X|(u)Q|Y |(u)du ≤ 2

∫ 2α

0

‖X‖q‖Y ‖r
u1/qu1/r

du

= 2‖X‖q‖Y ‖r
∫ 2α

0

u1/p−1du = 2‖X‖q‖Y ‖r(2α)1/pp.
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Assumption A.1 imposes that {εt,T} is strongly mixing on (Ω,F , P ). Remember that

the α-mixing coe�cients are de�ned as

αT (j) = sup
1≤k≤T−j

sup{|P (A ∩B)− P (A)P (B)| : B ∈ FkT,1, A ∈ FTT,k+j}, 0 ≤ j < T,

where FkT,i = σ(εT,l : i ≤ l ≤ k). Let f(A,B) = |P (A∩B)−P (A)P (B)| for any A,B ∈ F .
It holds that

α(σ(εt,T ), σ(εl,T ))
def
= sup{f(A,B) : A ∈ σ(εt,T ), B ∈ σ(εl,T )}

∈ {sup{f(A,B) : A ∈ σ(εj,T ), B ∈ σ(εj+|t−l|,T )} : 0 ≤ j < T}

⊆ {sup{f(A,B) : A ∈ σ(∪ji=1σ(εi,T )), B ∈ σ(∪∞i=j+|t−l|σ(εi,T ))} : 0 ≤ j < T}

= {sup{f(A,B) : A ∈ F j1 , B ∈ F∞j+|t−l|} : 0 ≤ j < T}.

Taking the supremum over j yields α(σ(εt), σ(εl)) ≤ α(|l−t|). We shall use this fact when

applying Davydov's inequality.

If X and Y are essentially bounded random variables (X, Y ∈ L∞(P )), where we

de�ne ‖Z‖∞ = inf
{
a : P (Z > a) = 0

}
< +∞, ∀Z ∈ L∞(P ), then Rio's inequality

implies

|Cov(X, Y )| ≤ 2Q|X|(0)Q|(Y )|(0)

∫ 2α

0

du = 4α‖X‖∞‖Y ‖∞.

This result is also known as Billingsley's inequality. From Corollary 2.5.1, we immediately

see that

|Cov(X, Y )| ≤ 4α1−1/q‖X‖q‖Y ‖∞,

if X ∈ Lq(P ) and Y ∈ L∞(P ). It is then possible to derive another version of Davydov's

inequality.

Corollary 2.5.2 (Davydov's Inequality 2). Let X and Y be two random variables such

that X ∈ Lq(P ), Y ∈ Lr(P ) where q > 1, r > 1 are �nite and 1/q + 1/r = 1− 1/p. Then

|Cov(X, Y )| ≤ 6α1/p‖X‖q‖Y ‖r. (2.46)

Proof. Put M = α−1/r‖Y ‖r, Y1 = Y χ{|Y |≤M} and Y2 = Y − Y1. Then Y = Y1 + Y2 and

|Y1| ≤M . Therefore, applying Corollary 2.5.1 and Holder's inequality,

|Cov(X, Y )| = |Cov(X, Y1 + Y2)| ≤ |Cov(X, Y1)|+ |Cov(X, Y2)|

≤ 4α1−1/q‖X‖q‖Y1‖∞ + 2‖X‖q‖Y2‖q/(q−1)

≤ 2‖X‖q(2Mα1−1/q + ‖Y2‖q/(q−1)).
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Let s = q/(q − 1) for simplicity. By Holder's and Markov's inequalities, it follows that

E(|Y |sχ{|Y |>M}) ≤ [E|Y |r]s/r(P (|Y | > M))1−s/r ≤ [E|Y |r]s/r[E(|Y |r/M r)]1−s/r

= E|Y |rM s−r,

and then

‖Y2‖s =
{
E
∣∣Y (1− χ{|Y |≤M})

∣∣s}1/s
=
{
E
(
|Y |sχ{|Y |>M}

)}1/s
=
{
E|Y |rM s−r}1/s

= {E|Y |r(α−1E|Y |r)(s−r)/r}1/s = (E|Y |r)
1
r

(
1− r

s

)
+ 1
sα−

1
r

(
1− r

s

)
= (E|Y |r)1/rα1/p.

From this, |Cov(X, Y )| ≤ 2‖X‖q(2α1/p‖Y ‖r + ‖Y ‖rα1/p) = 6α1/p‖X‖q‖Y ‖r.



3 CONCLUDING REMARKS

The �rst essay of this thesis develops uniform consistency results for the local linear

estimator under mixing conditions in order to be directly applied in the next essays.

The weak and strong uniform convergence rates were provided for general kernel averages

from which we obtained the uniform rates for the local linear estimator. We restricted our

attention to equally-spaced design points of the form xt,T = t/T, t ∈ {1, . . . , T}, T ∈ N.
The convergences were stablished uniformly over [0, 1] under arithmetically strong mixing

conditions. The kernel function was restricted to be compactly supported and Lipschitz

continuous, and inlcudes the popular Epanechnikov kernel. The uniform convergence in

probability was provided without imposing stationarity while the almost sure uniform

convergence was proved only for the stationary case.

The second essay is the main study of this thesis. We investigated the asymptotic

properties of the estimators obtained by reversing the three-step procedure of Vogt and

Linton (2014), for time series modelled as the sum of a periodic and a trend deterministic

components plus a stochastic error process. In the �rst step, the trend function is esti-

mated; given the trend estimate, an estimate of the period is provided in the second step;

the last step consists in estimating the periodic sequence. The weak uniform convergence

rates of the estimators of the trend function and the periodic sequence were provided.

The asymptotic normality for the trend estimator was also stablished. Furthermore, it

was shown that the period estimator is consistent.

The third essay exploits the bandwidth selection problem and the �nite sample per-

formance of the period estimator studied in the second essay. A plug-in type bandwidth

is proposed in order to estimate the trend function and a simulation exercise showed good

performance for the proposed bandwidth. We also employed another simulation where

the period estimator behaved robustly in response to di�erent bandwidth choices. As a

complement, two applications applications were made: one for climatological data and

the other for economic data. In the former, we used global temperture anomalies data

which is exactly the same as that in Vogt and Linton (2014). The latter application

consists in providing central estimates for the australian non-accelerating in�ation rate of

unemployment by means of the reversed estimation procedure.
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