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Linear stability analysis of large dynamical systems on random directed graphs
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We present a linear stability analysis of stationary states (or fixed points) in large dynamical systems defined
on random, directed graphs with a prescribed distribution of indegrees and outdegrees. We obtain two remarkable
results for such dynamical systems. First, infinitely large systems on directed graphs can be stable even when
the degree distribution has unbounded support; this result is surprising since their counterparts on nondirected
graphs are unstable when system size is large enough. Second, we show that the phase transition between the
stable and unstable phase is universal in the sense that it depends only on a few parameters, such as, the mean
degree and a degree correlation coefficient. In addition, in the unstable regime, we characterize the nature of
the destabilizing mode, which also exhibits universal features. These results follow from an exact theory for
the leading eigenvalue of infinitely large graphs that are locally treelike and oriented, as well as, the right and
left eigenvectors associated with the leading eigenvalue. We corroborate analytical results for infinitely large
graphs with numerical experiments on random graphs of finite size. We discuss how the presented theory can
be extended to graphs with diagonal disorder and to graphs that contain nondirected links. Finally, we discuss
the influence of cycles and how they can destabilize large dynamical systems when they induce strong feedback
loops.
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I. INTRODUCTION

Scientists use networks to depict the causal interactions
between the constituents of large dynamical systems [1–5].
Currently, it is not well understood how the stability of a large
system is affected by the topology of the underlying interac-
tion network. Relating system stability to network topology is
important to understand, among others, how systemic risk in
financial markets is governed by the topology of the network
of liabilities between financial institutions [6–8]; how the
resilience of an ecosystem to external perturbations depends
on the underlying food web of trophic interactions [9–14]; and
how networks of social interactions determine the spreading
of rumours [15–17]. As these examples illustrate, in order to
reduce risk and instability in dynamical systems it is important
to identify topological properties of networks that stabilize
large systems.

In order to study the stability of large dynamical systems,
we consider the linearized dynamics of a large, complex,
dynamical system in the vicinity of a stationary state or fixed
point. We model this dynamics with a set of randomly and
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linearly coupled differential equations of the form

∂t y j (t ) =
n∑

k=1

yk (t )Ak j, (1)

where t � 0 is the time index, �y†(t ) = (y1(t ),
y2(t ), . . . , yn(t )) ∈ Rn is a vector, and A is a random matrix of
size n × n that describes the underlying interaction network
between the degrees of freedom. We use the notation �y(t )
for column vectors and �y†(t ) = (y1(t ), y2(t ), . . . , yn(t )) ∈ Rn

for their transpose (or conjugate transpose). Models like
Eq. (1) appear when linearizing a set of nonlinearly coupled
differential equations in the vicinity of a fixed point [18–20]
as occurs, for example, in the study of neural networks
[21–25] and ecosystems [13,20,26,27]. The vector �y describes
then the deviation of the system from its fixed point, which
is located at the origin, i.e., �y = 0. We will use the generic
model, given by Eq. (1), to study how network topology
affects the stability of stationary states.

Since we aim to develop a better understanding on how
network topology affects system stability, we write Eq. (1) as

∂t y j (t ) =
n∑

k=1;(k �= j)

yk (t ) Ck jJk j − d y j (t ), (2)

where d > 0 represents the rate at which an isolated node
relaxes to the stationary state, where Ck j ∈ {0, 1} are the
entries of the adjacency matrix of a directed graph, and where
Jk j ∈ R are the strengths of the couplings between two nodes
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k and j. Note that Eq. (2) and Eq. (1) are related by

A = −d1n + J ◦ C, (3)

where

[J ◦ C] jk = JjkCjk (4)

and 1n is the identity matrix. The entries of the adjacency
matrix C determine who interacts with whom, while the
entries of the interaction matrix J denote the absolute strength
of the interactions and whether these are inhibitory Jk j < 0 or
excitatory Jk j > 0.

In absence of interactions between system constituents
(Jjk = 0), the fixed point �y = 0 is stable as d > 0. However,
if the constituents of a system interact strong enough, then a
small perturbation around the fixed point �y = 0 will propagate
through the network, grow in size, and destabilize the system.
It is the underlying network topology, represented by the
adjacency matrix C, and the strength of the interactions, given
by J, that determine whether an initial perturbation will grow
or fade away. For example, in an online social network, the
topology of the network determines whether a rumour spreads
throughout the whole system or only reaches a couple of users.

The stability of the fixed point �y = 0 in the dynamics given
by Eq. (1) is governed by the sign of the real part of the
leading eigenvalue λ1(A), which is the eigenvalue with the
largest real part. As discussed in Appendix A, if Re[λ1(A)] >

0, then the fixed point is unstable and limt→∞ |�y(t )| = ∞.
Conversely, if Re[λ1(A)] < 0, then the fixed point is stable
and limt→∞ |�y(t )| = 0. In addition, the left eigenvector asso-
ciated with the leading eigenvalue determines the nature of the
destabilizing mode.

To model dynamical systems on large networks, we con-
sider that C is the adjacency matrix of a random, directed
graph with a prescribed degree distribution pK in,Kout (k, �) of
indegrees K in and outdegrees Kout. This is a paradigmatic
model for networked systems, such as, the World Wide Web
[28,29], neural networks [30–32], food webs [10], and online
social networks [33,34], and it is often called the config-
uration model [2,4,35–37] or the uniform model [38]. The
percolation properties of random, directed graphs have been
well understood, see Refs. [39–41], and recently also spectral
properties of random, directed graphs have been studied, see
Refs. [42–46], but the properties of the leading eigenvalue of
the adjacency matrices of random, directed graphs have not
been studied so far.

In this paper, we perform a linear stability analysis of
fixed points in dynamical systems defined on random, directed
graphs. To this aim, we determine the leading eigenvalue
λ1(A) of the adjacency matrices A of random, directed graphs
with a prescribed degree distribution and with randomly
weighted links. First, building on Ref. [44], we derive exact
analytical expressions for the typical value of λ1 in the limit
of infinitely large n. In addition, we derive in this limit exact
expressions for the statistics of the entries of right and left
eigenvectors associated with λ1. Second, we use these results
to depict a phase diagram for the linear stability of fixed points
in dynamical systems defined on large, directed networks.
Third, the theoretical results for infinitely large graphs are
compared with numerical results for graphs of finite size,

which include random graphs with power-law degree distri-
butions.

Two implications of these results are surprising enough that
they deserve further emphasis. First, we find that dynamical
systems on infinitely large, random, and directed graphs can
be stable, even when the degree distribution has unbounded
support. This result is surprising because dynamical systems
on random, nondirected graphs with a degree distribution
that has unbounded support are unstable if the system size is
large enough. Indeed, the leading eigenvalue of nondirected,
random graphs scales as λ1 ∼ √

kmax [47–49], where kmax
is the expected largest degree of the graph, and therefore
the leading eigenvalue of nondirected graphs diverges for
large n. In contrast, in this paper, we obtain that the leading
eigenvalue of a random, directed graph with a prescribed
degree distribution is in general finite for n → ∞, even when
kmax diverges. Hence, models on random, directed graphs are
significantly more stable than their counterparts on random,
nondirected graphs.

Second, we obtain a universal phase diagram for the
stability of dynamical systems on random, directed graphs
with a prescribed degree distribution. Put in another way,
we show that the leading eigenvalue of these random graphs
only depends on a few system parameters, including the mean
degree and a parameter that characterizes the correlations
between indegrees and outdegrees.

Both the stability and universality of dynamical systems
defined on random, directed graphs are rooted in a common
fact: for large enough n, the local neighborhood of a randomly
selected node is with probability one a tree graph that contains
only unidirectional links. We call this the locally treelike
and oriented property. Using this property, we derive a set
of recursion relations for the components of right and left
eigenvectors associated with the leading eigenvalue. These
recursion relations have first been derived in Ref. [44] using
the cavity method [42,45,50–53], a method borrowed from
the statistical physics of spin glasses [54,55]. In the present
paper, we present an alternative derivation for these recursion
relations based on the Schur formula [56], which we believe
is simpler to understand and thus more insightful.

The outline of the paper is the following. In Sec. II, we
define the random matrices and spectral quantities we study
in this paper. In Sec. III, we present an overview of the theo-
retical results derived in this paper. In Sec. IV, we apply these
theoretical results to a linear stability analysis of stationary
states in networked systems. In Sec. V, we compare theoreti-
cal results for infinitely large matrices with numerical data for
matrices of finite size. In Sec. VI, we discuss extensions of the
theory presented in Sec. III to the cases of adjacency matrices
with diagonal disorder and adjacency matrices of random
graphs that contain nondirected links. Lastly, in Sec. VII, we
present a discussion of the main results. A detailed description
of mathematical derivations are presented in the appendices.
In Appendix A, we show that a linear set of randomly coupled
differential equations, of the form given by Eq. (1), is stable
if and only if all the eigenvalues of A have negative real parts.
Appendix B details the algorithm we use to generate graphs
with a prescribed degree distribution, and in Appendix C, we
discuss properties of oriented ring graphs. In Appendix D, we
show that the algebraic multiplicity of the −d-eigenvalue of
a random, directed graph is related to the size of its strongly
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connected component. Lastly, in Appendices E–I, we derive
recursion relations for the entries of right and left eigenvectors
of random, directed graphs, which are based on the Schur
formula.

A. Notation

We use lower case symbols for deterministic variables,
e.g., x and y. We write (column) vectors as �x and �y, while
for adjoint row vectors we write �x† and �y†. The inproduct
�x · �y = �x†�y = ∑n

k=1 x∗
k yk , where x∗

k is the complex conjugate
of xk . Matrices are written in boldface, e.g., x and y.

We write random variables in upper case, e.g., X and Y .
The probability distribution of a random variable X is denoted
by pX (x). There are a few exceptions to the use of upper
case letters to represent random quantities. For example, we
use the notation λ j (A) to denote the jth eigenvalue of a
random matrix A, and we write pX (x; A) for the probability
distribution of a random variable X that depends on the
matrix A. We denote averages with respect to the distribution
pA(a) by 〈·〉. We denote the identity matrix by 1n and we
use {1, 2, . . . , n} = [n]. We write

∫
R dx f (x) for an integral

over the real line and
∫
C d2z f (z) = ∫

dxdy f (x + iy) for an
integral over the complex plane. We denote the Dirac distri-
bution over the real line by δ(x) and we denote the Dirac
distribution over the complex plane by δ(z) = δ(x)δ(y), where
z = x + iy ∈ C.

II. SYSTEM SETUP AND DEFINITIONS

In this section, we define the random matrices and the
spectral properties we study in this paper.

A. Adjacency matrices of random directed graphs
with a prescribed degree distribution

We consider random matrices A as in Eq. (3), where J
is a square matrix of size n with real entries Jjk ∈ R that
are independent and identically distributed (i.i.d.) random
variables drawn from a distribution pJ , and where C is the
adjacency matrix of a random, directed graph G of size n with
a prescribed degree distribution pK in,Kout (k, �) of indegrees K in

and outdegrees Kout [2,4,37]; note that we call the number of
vertices in a graph its size.

For a simple graph G the entries of the adjacency matrix
satisfy Cjk ∈ {0, 1} and Cj j = 0. We use the convention that
Cjk = 1 if the graph G has a directed edge from node j to
node k. Therefore the indegree K in

j of the jth node equals the
number of nonzero elements in the jth column of C,

K in
j :=

n∑
k=1

Ck j, (5)

and the outdegree Kout
j of the jth node equals the number of

nonzero elements in the jth row,

Kout
j :=

n∑
k=1

Cjk . (6)

The inneighborhood ∂ in
j and the outneighborhood ∂out

j of the
jth node are defined by

∂ in
j := {k ∈ [n] : Ck j = 1} (7)

and

∂out
j := {k ∈ [n] : Cjk = 1}, (8)

respectively, and

∂ j := ∂ in
j ∪ ∂out

j (9)

is the neighborhood of node j.
We say that G is a random graph with a prescribed degree

distribution pK in,Kout (k, �) if the following properties hold: (i)
the degrees (K in

j , Kout
j ) are i.i.d. random variables with a joint

probability distribution pK in,Kout (k, �) and with the additional
constraint

∑n
j=1 K in

j = ∑n
j=1 Kout

j ; (ii) given a certain degree
sequence {K in

j , Kout
j }n

j=1
, the nodes are connected randomly

and hence the edges of G are generated by the configuration
model [2,4,37]. In Appendix B, we describe in detail the
algorithm we use to sample random graphs with a prescribed
degree distribution.

In the specific case when Jjk = 1 and d = 0, A is the
adjacency matrix of a random, directed graph. The variables
Jjk are the weights associated with the links of the graph
represented by the adjacency matrix C, and hence for Jjk �= 1,
the matrix A is the adjacency matrix of a weighted graph.
The constant parameter d affects the spectral properties of A
in a trivial manner, but plays an important role in a stability
analysis of dynamical systems.

B. Ensemble parameters

The random matrix ensemble defined by Eq. (3) depends
on the following parameters: the distribution pJ of weights
Ji j , the joint distribution pK in,Kout of indegrees and outdegrees,
the real number d , and the size n.

We often use the moments of pJ and pK in,Kout to specify the
model of interest. The mth moment of pJ is defined by

〈Jm〉 :=
∫ ∞

−∞
dx xm pJ (x), (10)

and the (m, o)th moment of pK in,Kout is given by

〈(K in )m(Kout )o〉 :=
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)km�o. (11)

Among those, important parameters are the mean degree

c := 〈K in〉 = 〈Kout〉 (12)

and the degree correlation coefficient

ρ := 〈K inKout〉 − c2

c2
. (13)

The mean degree is equal to the average number of edges
that enter or leave a uniformly and randomly selected vertex
in the graph. The parameter c〈J〉 is the average interaction
strength felt by a degree of freedom in the dynamical system
governed by Eq. (2). The degree correlation coefficient ρ char-
acterizes the correlations between indegrees and outdegrees of
vertices in the graph. If 〈K in

j Kout
j 〉 = 〈K in

j 〉〈Kout
j 〉, then ρ = 0,

which means that indegrees and outdegrees are uncorrelated.
If ρ > 0 (ρ < 0), then indegrees and outdegrees are positively
(negatively) correlated.
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WC

IC (trees) IC (1 cycle)

IC (2 or more cycles)

WC

OUT OUT IN SCC

FIG. 1. Topology of directed graphs. Graphical illustration of
the connected components of directed graphs (bow-tie diagram,
see also Refs. [28,40,41]): largest strongly connected component
(SCC), largest incomponent (IN), largest outcomponent (OUT),
largest weakly connected component (WC), and isolated components
(IC), which consist of isolated trees and cycles.

C. Topology of directed graphs

We discuss properties of the topology of random, directed
graphs with a prescribed degree distribution that will be rel-
evant to understand their spectra, namely, connected compo-
nents, percolation transitions, the locally treelike and oriented
structure, and oriented rings.

1. Connected components of directed graphs

Connected components are subgraphs that characterize the
topology of a directed graph. In particular, the connected
components determine which nodes in a dynamical system are
affected by a local perturbation.

The topology of a directed graph can be depicted with
a bow-tie diagram, see Fig. 1 and Refs. [28,40,41,57]. The
bow-tie diagram depicts the following subgraphs of a directed
graph: the largest strongly connected component (SCC), the
incomponent (IN), and the outcomponent (OUT). Besides
these three components, directed graphs also have a largest
weakly connected component (WC) and isolated components
(IC), also depicted in Fig. 1. Finally, directed graphs contain
tendrils [40,41]. Since tendrils play a minor role in the spectral
properties of directed graphs, we omit them in Fig. 1.

We present definitions of the abovementioned subgraphs.
The SCC is the largest subgraph that is strongly connected.
A subgraph is strongly connected if for each pair of vertices
in the subgraph, say j and k, the following two conditions
are met: (a) there exist at least one path starting in j and
ending in k (b) there exist at least one path starting in k
and ending in j. The IN consists of all nodes that can reach
the strongly connected component and the OUT consist of
all nodes that can be reached from the strongly connected
component (by following the edges of the directed graph). The
WC is the largest connected component obtained by ignoring
the directionality of edges. The tendrils consist of all vertices
that belong to the weakly connected component, but do not

belong to the incomponent and outcomponent. Finally, the
IC are connected subgraphs that are disconnected from the
largest weakly connected component.

2. Size of the connected components of random directed graphs
with a prescribed degree distribution

For random, directed graphs with a prescribed degree
distribution pK in,Kout (k, �), the relative sizes of the connected
components are deterministic in the limit of large n. We
denote the limiting value of the relative size of the SCC by
ssc (i.e., the fraction of nodes that belong to the SCC), and
analogously, we use sin, sout, swc, st , and sic, for the limiting
values of the relative sizes of the incomponent, outcomponent,
largest weakly connected component, tendrils, and isolated
components, respectively.

We say that a random graph has a giant SCC when ssc > 0
and, analogously, we say that a random graph has a giant IN,
OUT, or WC when, respectively, sin > 0, sout > 0, or swc > 0.

For small enough values of c(ρ + 1), it holds that ssc = 0
and swc = 0, whereas for large enough values of c(ρ + 1),
it holds that ssc > 0 and swc > 0. The percolation transitions
associated with a giant SCC and a giant WC take place at
the threshold values of c(ρ + 1) for which the quantities
ssc and swc vanish, respectively. Since by definition sin � ssc

and sout � ssc, and sin = sout = 0 if ssc = 0, the percolation
transition associated with the IN and OUT is identical to the
percolation transition associated with the SCC. Hence, in di-
rected graphs, there exist two percolation transitions, namely,
a transition associated with the SCC and one associated with
the WC.

In Ref. [40], an exact set of equations have been derived
for the relative sizes of the various connected components in
directed graphs. It was found that

sin = 1 −
∞∑

k=0

ak
∞∑

�=0

pK in,Kout (k, �) (14)

and

sout = 1 −
∞∑

�=0

b�

∞∑
k=0

pK in,Kout (k, �), (15)

where a and b are the smallest nonnegative solutions to the
equations

a =
∞∑

k=0

ak
∞∑

�=0

� pK in,Kout (k, �)

c
(16)

and

b =
∞∑

�=0

b�

∞∑
k=0

k pK in,Kout (k, �)

c
. (17)

The size of the SCC is given by

ssc = sin + sout + st − swc, (18)

where

st − swc =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �) akb� − 1. (19)
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The percolation transition of the SCC happens when ssc

turns positive, which happens when
∞∑

k=0

∞∑
�=0

k � pK in,Kout (k, �)

c
= 1. (20)

Using in Eq. (20) the definitions (12) and (13) for, respec-
tively, the mean degree c and the degree correlation coefficient
ρ, we obtain that at the critical connectivity

c = 1

1 + ρ
(21)

a giant SCC emerges in a random, directed graph with a
prescribed degree distribution.

Equation (21) implies that random graphs with positively
correlated indegrees and outdegrees percolate at lower con-
nectivities than random graphs with negatively correlated
indegrees and outdegrees.

3. Oriented and locally treelike structure

If the mean degree c is finite, then random graphs with
a prescribed degree distribution are locally treelike and ori-
ented. This means that for large enough n, the finite neigh-
borhood of a randomly selected node is with probability one
an oriented tree [58]. We say that a graph is a tree if it is
connected and does not contain a cycle and we say that a graph
is oriented if all its edges are unidirectional, i.e., Ci jCji = 0
for each pair (i, j). For a precise mathematical definition of
locally treelike graphs, we refer to Sec. 2.1 of Ref. [38].

4. Oriented rings

Since random, directed graphs with a prescribed degree
distribution are locally treelike, one may think that cycles
of finite length are not important to describe their spectral
properties in the limit of large n. However, this is only partly
true since in the limit n → ∞ there exist a finite number of
cycles of finite length �, and these cycles may affect the value
of the leading eigenvalue.

We focus on subgraphs that are oriented rings since only
their contribution matters to the spectrum of A. An oriented
ring of length � is an �-tuple of nodes i1, i2, . . . , i� for which

Ai1i2 Ai2i3 . . . Ai�−1i�Ai�i1 �= 0. (22)

In the limit n → ∞, the average number of oriented rings of
length � in a random, directed graph with a prescribed degree
distribution is given by (see Appendix C)

〈N (�)〉 = 1

�
[c(ρ + 1)]�, (23)

and for c(ρ + 1) < 1 the total number of oriented rings of
finite length reads

〈N〉 =
∞∑

�=2

〈N (�)〉 = − ln[1 − c(ρ + 1)] − c(ρ + 1).

Note that 〈N〉 diverges for c(ρ + 1) → 1.
The distribution of N (�) is Poissonian with mean 〈N (�)〉

[59], and therefore the probability p+ that there exists at least
one oriented ring of length � � 2 is given by

p+ = 1 − e−〈N〉 = 1 − (1 − c(ρ + 1))ec(ρ+1). (24)

Note that p+ → 1 when c(ρ + 1) → 1 and p+ → 0 when
c(ρ + 1) → 0.

D. Spectral observables

1. Finite matrices

The eigenvalues {λα (A)}α∈[n] are the complex roots of the
algebraic equation [60]

det(A − λ1n) = 0. (25)

We sort the eigenvalues in decreasing order, so that

Re[λ1(A)] � Re[λ2(A)] . . . � Re[λn(A)]. (26)

If an eigenvalue is degenerate, then it appears more than once
in the sequence. We call λ1 the leading eigenvalue of A and
λ2 the subleading eigenvalue.

A right eigenvector �R(A) and a left eigenvector �L(A)
associated with an eigenvalue λα are nonzero vectors that
fulfill

A �R = λα �R, and �L† A = λα �L†. (27)

We use the notation Rj and Lj for the components or entries
of the right and left eigenvectors, respectively, where j ∈ [n].

The number m of linearly independent right eigenvectors
(or left eigenvectors) is smaller or equal than the size of the
matrix and greater or equal than the number of eigenvalues of
A. If m = n, then the matrix is diagonalizable.

Right and left eigenvectors of A can be chosen biorthonor-
mal,

�Lβ · �Rα = δαβ, (28)

where α, β ∈ [m] is a label to identify the m linearly in-
dependent right (left) eigenvectors. Biorthonormality is not
sufficient to uniquely characterize right and left eigenvectors
since they can be rescaled as cα �Rα and c−1

α
�Lα , with cα ∈ C.

In order to uniquely define the right and left eigenvectors, we
take the convention that

Im

⎡
⎣ n∑

j=1

Rα, j

⎤
⎦ = 0, Re

⎡
⎣ n∑

j=1

Rα, j

⎤
⎦ � 0 (29)

and we set
n∑

j=1

|Rα, j |2 = n. (30)

The relation (29) specifies the argument of cα and the relation
(30) specifies its norm. When using the conventions (28)–(30),
the norm

∑n
j=1 |Lα, j |2 and the argument of

∑n
j=1 Lα, j are

functions of the entries of A.

2. Infinitely large matrices

In order to characterize properties of random matrices
in the limit of n → ∞, we use sets and distributions. The
spectrum of A is the set

σ (A) := {λ ∈ C : det(A − λ1n) = 0} (31)

of eigenvalues of A. For finite n, σ (A) is discrete. For large n,

the closure σ (A) of the spectrum converges to a limit

lim
n→∞ σ (A) = σ ∪ 
, (32)
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where σ is a deterministic set and 
 is a random set. The
deterministic spectrum

σ = σc ∪ σd (33)

consists of a continuous part σc and a discrete part σd .
The continuous part

σc = σsc ∪ σac (34)

consists of a set σac of nonzero Lebesgue measure, which
we call the absolutely continuous part, and a set σsc of zero
Lebesgue measure, which we call the singular continuous
part. We will be interested in the boundary ∂σac of the set σac

and use the notation

λb ∈ ∂σac (35)

for eigenvalues located at the boundary of σac.
The discrete part of the spectrum consists of deterministic

outlier eigenvalues, which we denote by λisol. We say that
λisol ∈ σ is an outlier eigenvalue—sometimes also called an
isolated eigenvalue—if there exists an ε > 0, such that

σ ∩ {λ ∈ C : |λisol − λ| < ε} = {λisol}. (36)

In the examples considered in this paper, there will be maxi-
mal one deterministic outlier eigenvalue.

Lastly, the limiting spectrum in Eq. (32) may contain a
random set 
 that consists of stochastic (outlier) eigenvalues.

The spectral distribution

μ(λ; A) = 1

n

n∑
α=1

δ(λ − λα (A)) (37)

denotes the relative number of eigenvalues that occupy a cer-
tain region of the complex plane, and we denote its asymptotic
expression by

μ(λ) = lim
n→∞ μ(λ; A). (38)

The support of the distribution is the closure of the set
{λ ∈ C : μ(λ) �= 0}. Since in general μ(λisol ) = 0, the out-
liers do not belong to the support of μ, and therefore the
support of μ is a subset of σ .

We are also interested in the statistics of the components
of right and left eigenvectors. Let �R (�L) be the right (left)
eigenvector associated with an eigenvalue λ. We define the
random variable R (L) as a uniformly randomly sampled entry
of the eigenvector. If R and L refer to an outlier, then we use
the notation Risol and Lisol; if R and L refer to an eigenvalue
located at the boundary of σac, then we use Rb and Lb.

The distributions of the random variables R and L are
defined by

pR(r|A) = 1

n

n∑
i=1

δ(r − Ri ) (39)

and

pL(l|A) = 1

n

n∑
i=1

δ(l − Li ), (40)

respectively, where δ(z) is the Dirac-delta distribution in the
complex plane. In the limit n → ∞, the distributions pR(r|A)

and pL(l|A) often converge to deterministic limits

pR(r) = lim
n→∞ pR(r|A), pL(l ) = lim

n→∞ pL(l|A). (41)

We denote the moments of the limiting distributions pR(r) and
pL(l ) by

〈Rm〉 =
∫

d2r pR(r)rm, and 〈Lm〉 =
∫

d2l pL(r)lm,

(42)

where d2r = dRe(r)dIm(r) and d2l = dRe(l )dIm(l ).
We say that a spectral quantity of a random, directed graph

is universal if it converges for n → ∞ to a deterministic limit
that only depends on the first few moments of the distributions
pJ and pK in,Kout .

III. SPECTRAL PROPERTIES OF INFINITELY LARGE
RANDOM AND DIRECTED GRAPHS

In this section, we present the main theoretical results in
the limit of large n for the spectral properties of adjacency
matrices of random, directed graphs with a prescribed degree
distribution (as defined in Sec. II).

The giant SCC plays an important role in the spectrum of
random, directed graphs. Let us therefore recollect that for
random, directed graphs with a prescribed degree distribution

ssc = 0 if c(ρ + 1) � 1, (43)

and

ssc > 0 if c(ρ + 1) > 1. (44)

This section is organized as follows. First, we discuss in
Sec. III A how the spectral distribution μ(λ) depends on the
size of the SCC. Second, we discuss in Sec. III B how the
deterministic part σ of the spectrum is governed by the SCC.
In particular, we show that if c(ρ + 1) > 1, then σ contains
a continuous part σac and (possibly) a deterministic outlier
λisol, both determined by the SCC. On the other hand, if
c(ρ + 1) < 1, then the spectrum σ = {−d}. In Sec. III B we
also discuss how the nondeterministic part 
 of the spectrum
is determined by oriented ring graphs. Third, in Sec. III C,
we present recursion relations in the distribution of entries
of right eigenvectors associated with deterministic outliers
λisol or with eigenvalues λb located at the boundary of σac.
Subsequently, we use in Secs. III D and III E these recursive
distributional equations to derive analytical expressions for
the boundary of σac and the deterministic outliers λisol, re-
spectively. In Sec. III F, we present results for the leading
eigenvalue λ1. We obtain exact analytical expressions for
the typical value of the leading eigenvalue λ1 in the regime
where c(ρ + 1) > 1, while for c(ρ + 1) < 1 we show that the
leading eigenvalue is governed by oriented ring graphs. Lastly,
in Sec. III G, we discuss the spectral gap, and in Sec. III H, we
comment on the relation between the derived results and the
Perron-Frobenius theorem [60].

We focus on right eigenvectors since the left eigenvectors
of A are simply the right eigenvectors of AT . Therefore results
for left eigenvectors can be obtained from the results for right
eigenvectors through the substitutions “R → L” and “in ↔
out.”
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A. Spectral distribution

We discuss how the spectral distribution μ(λ) of an adja-
cency matrix of a random, directed graph depends on the size
of its connected components. In Appendix D, we show that
the spectral distribution μ(λ) takes the form

μ(λ) = (1 − ssc)δ(λ + d ) + ssc μ̃(λ), (45)

where μ̃(λ) is a normalized distribution associated with the
SCC and supported on σac; see Fig. 9 of Ref. [45] for an ex-
ample of μ̃(λ) in the case of directed Erdős-Rényi ensembles.

Equation (45) implies that the algebraic multiplicity of the
−d eigenvalue is equal to

n(1 − ssc)(1 + on(1)). (46)

The high degeneracy of the −d eigenvalue follows from
the fact that (i) random, directed graphs with a prescribed
degree distribution are locally treelike and oriented and (ii)
an oriented tree graph has only zero eigenvalues, and in the
present case where the diagonal elements are all set equal to
−d , all eigenvalues of an oriented tree graph are equal to −d .
Hence, a random, directed graph develops eigenvalues that
differ from −d trough the presence of oriented rings, which
are defined by Eq. (22) in Sec. II C 4.

B. Spectrum

The spectrum σ ∪ 
 of a random, directed graph in the
limit of infinitely large n is determined by three topological
components, namely the SCC, nodes that do not belong to the
SCC, and oriented rings of finite length.

If c(ρ + 1) > 1, then the deterministic part σ of the spec-
trum consists of a continuous set σac and (possibly) an outlier
λisol, both determined by the SCC.

On the other hand, if c(ρ + 1) < 1, then σ = {−d}.
In addition, due to the presence of cycles of finite length,

random, directed graphs can contain stochastic outliers.
Stochastic outliers appear in the spectrum due to the presence
of oriented rings in the random, directed graph. As shown in
the Appendix C, the eigenvalues of an oriented ring of length
� are located on a circle of radius

γ =
⎛
⎝ n∏

j=1

|Jj |
⎞
⎠

1/�

, (47)

where Jj are the random weights attributed to the ring graph.
If c(ρ + 1) < 1, then these eigenvalues appear as outliers in
the spectrum. On the other hand if c(ρ + 1) > 1, then the
eigenvalues of oriented rings form stochastic outliers only
when γ is large enough, so that they do not belong to σac.
As a consequence, unweighted graphs, i.e., with Ji j = 1, do
not contain stochastic outliers when c(ρ + 1) > 1. However,
if the graph has weighted links, then stochastic outlier eigen-
values exist, even though the probability to observe them is in
general small.

C. Recursive distributional equations for right eigenvectors

In Appendix E, we derive a set of recursive distributional
equations for the distributions pR as defined in Eq. (41) for
right eigenvectors associated with deterministic eigenvalue

outliers λisol and with eigenvalues located at the boundary
of the continuous part σac. In particular, we show that the
distribution pR solves the recursive distributional equation

pR(r) =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)

×
∫ �∏

j=1

d2r jqR(r j )
∫ �∏

j=1

dx j pJ (x j )

× δ

[
r −

∑�
j=1 x jr j

λ + d

]
, (48)

where qR is a distribution that solves

qR(r) =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)
k

c

×
∫ �∏

j=1

d2r jqR(r j )
∫ �∏

j=1

dx j pJ (x j )

× δ

[
r −

∑�
j=1 x jr j

λ + d

]
. (49)

When

pK in,Kout (k, �) = pK in (k)pKout (�), (50)

it holds that pR(r) = qR(r) and we recover the results from
Ref. [44].

The relations (48) and (49) admit, for any value of λ, the
trivial solution

pR(r) = δ(r), (51)

which cannot be associated with a right eigenvector of the
random matrix A. However, the relations (48) and (49) also
admit normalizable solutions for which∫

d2r pR(r)|r|2 ∈ (0,∞). (52)

These normalizable solutions are associated with right eigen-
vectors of the random matrix A.

As a consequence, we can obtain explicit expressions for
the outliers λisol and the eigenvalues λb ∈ ∂σac by identifying
values of λ for which the relations (48) and (49) admit
normalizable solutions. This is the program that we pursue
in Appendix G, while we present the main results of those
derivations in the next two sections.

D. Eigenvalues at the boundary of the continuous
part of the spectrum

The spectrum σ contains a continuous part σac if c(ρ +
1) > 1, as we have shown in Sec. III A. For values λ = λb ∈
∂σac located at the boundary of σac, the relations (48) and (49)
admit a normalizable solution. Using this criterion, we obtain
in Appendix G that

|λb + d|2 = c(ρ + 1)〈J2〉. (53)

The relations (48) and (49) provide us also with the statis-
tics of right eigenvectors �Rb associated with eigenvalues λb.
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We distinguish between the cases where λb /∈ R and λb ∈ R.
In the former case, the components Rb are complex-valued
random variables with

〈Rb〉 = 〈
R2

b

〉 = 0. (54)

On the other hand, if λb ∈ R, then the components are real-
valued random variables with

〈Rb〉 = 0,
〈
R2

b

〉 = 1. (55)

In addition to these results, we show in Appendix H that
the distribution pRb (r) contains a delta peak at the origin due
to all nodes that do not belong to the giant outcomponent,
i.e.,

pRb (r) = (1 − sout )δ(r) + sout p̃Rb (r), (56)

where sout is the size of the giant outcomponent given by
Eq. (15), and p̃Rb (r) is a normalized distribution.

E. Outlier eigenvalue

There exists a second class of normalizable solutions to
Eqs. (48) and (49), which are associated with deterministic
outlier eigenvalues λisol. If c(ρ + 1) > 1 and 〈J2〉 < c(ρ +
1)|〈J〉|, then there exists a deterministic eigenvalue outlier
located at

λisol = −d + c(ρ + 1)〈J〉. (57)

Reference [61] observes that Eq. (57) describes well the
largest eigenvalue of unweighted adjacency matrices of ran-
dom graphs with a prescribed degree distribution. In Ap-
pendix G, we show that Eq. (57) is in fact an exact expression
for the deterministic outlier.

The entries of the eigenvector �Risol are real, and the first
moment of Risol satisfies

〈Risol〉2〈
R2

isol

〉 = c3(ρ + 1)[c(ρ + 1)〈J〉2 − 〈J2〉]
c2(ρ + 1)2〈J〉2[〈(Kout )2〉 − c] + 〈J2〉ρout

2

, (58)

where

ρout
2 = 〈K in(Kout )2〉 − c(1 + ρ)〈(Kout )2〉. (59)

For uncorrelated indegrees and outdegrees it holds that ρ = 0
and ρout

2 = 0, and we recover the results in Ref. [44].
Analogous to Eq. (56) for pRb , the distribution pRisol takes

the form

pRisol (r) = (1 − sout )δ(r) + sout p̃Risol (r), (60)

where sout is the size of the giant outcomponent (15) and
p̃Risol (r) is a normalized distribution (see Appendix H).

F. Leading eigenvalue

We discuss the implications of the results derived in
Secs. III D and III E for the leading eigenvalue λ1 of random
graphs with a prescribed degree distribution pK in,Kout .

1. Distribution of λ1

The theory in Secs. III E and III D provides exact expres-
sions for the boundary ∂σac of the continuous part of the
spectrum, which is given by the eigenvalues λb in Eq. (53),
and the deterministic eigenvalue outlier λisol, which is given

FIG. 2. Distribution of the leading eigenvalue. Sketch of the
distribution pλ1 of the leading eigenvalue λ1 of random matrices A,
as defined in Sec. II, in the regime c(ρ + 1) > 1. The distribution
consists of a delta distribution at the typical value λ∗ given by
Eq. (61) and a continuous distribution pcycle with a total weight
ν ≈ 0.

by Eq. (57), in random, directed graphs that are infinitely
large. The question remains how the leading eigenvalue λ1 is
related to λb and λisol.

If we neglect the contributions from cycles of finite length
�, then the leading eigenvalue of an infinitely large random,
directed graph is given by

λ∗ =
{

max{λisol, |λb + d| − d} if c(ρ + 1) � 1,

−d if c(ρ + 1) < 1.
(61)

Hence, if a random, directed graph contains no cycles of small
length � in the limit n → ∞, then Eq. (61) is exact. However,
as we have discussed in Sec. II C 4, random, directed graphs
with a prescribed degree distribution pK in,Kout typically contain
a finite number of cycles of a given length �, even in the limit
n → ∞, and therefore we need to discuss how these cycles
will affect λ1.

Cycles that are oriented rings may contribute stochastic
outlier eigenvalues to the spectrum, see Sec. II C 4. As a
consequence, λ1 is not a self-averaging quantity but is instead
a random variable with a distribution

pλ1 (x) := lim
n→∞〈δ(x − λ1(A))〉 (62)

of nonzero variance.
The distribution pλ1 takes the form

pλ1 (x) = (1 − ν)δ(x − λ∗) + ν pcycle(x), (63)

where ν is the probability that the leading eigenvalue is a
stochastic outlier contributed by an oriented ring, and pcycle(x)
is the distribution of those stochastic outliers that are leading
eigenvalues. Note that the distribution pcycle(x) is supported
on the half line [λ∗,∞), see Fig. 2 for a sketch of pλ1 .

Since for c(ρ + 1) < 1 it holds that λ∗ = −d , oriented
rings will play an important role in pλ1 (x) when A does not
have a giant SCC. On the other hand, if A has a giant SCC,
i.e., c(ρ + 1) > 1, then it will be unlikely that the leading
eigenvalue is a stochastic outlier. We show this explicitly in
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the next section for unweighted graphs, and subsequently we
discuss the case of weighted graphs.

2. Unweighted graphs

We consider adjacency matrices A of unweighted graphs,
such that Ji j = 1 for all values of i and j. In this case,
we obtain an exact expression for pλ1 (x). Indeed, since the
eigenvalues of oriented rings with Ji j = 1 are located on a
circle of radius 1 centered around −d , see Eq. (47), it holds
that

ν =
{

0 if c(ρ + 1) � 1,

p+ if c(ρ + 1) < 1,
(64)

where p+ is the probability that the graph contains at least one
oriented ring graph, given by Eq. (24). Moreover, it holds that

pcycle(x) = δ(x − 1 + d ), (65)

and that

λ∗ =
{−d + c(ρ + 1) if c(ρ + 1) � 1,

−d if c(ρ + 1) < 1.
(66)

Using Eqs. (64)–(66) in Eq. (63), we obtain that

pλ1 (x)

=
{

δ(x + d − c[ρ + 1]) if c(ρ + 1) � 1,

(1−p+)δ(x + d ) + p+δ(x−1+d ) if c(ρ+1) < 1.

(67)

Hence, the leading eigenvalue of an unweighted, random,
directed graph is deterministic and given by the value λ∗ if
the graph contains a giant SCC. On the other hand, if there
is no giant SCC, then with probability p+ an oriented ring
determines the leading eigenvalue.

From Eq. (67), we obtain the average leading eigenvalue,
which is given by

〈λ1〉 =
{−d + c(ρ + 1) if c(ρ + 1) � 1,

−d + p+ if c(ρ + 1) < 1,
(68)

and its variance

var[λ1] =
{

0 if c(ρ + 1) � 1,

p+(1 − p+) if c(ρ + 1) < 1,
(69)

where p+ is given by Eq. (24). Note that var[λ1] = 0 if A has
a giant SCC, and the leading eigenvalue is thus self-averaging
in this regime, while var[λ1] > 0 if A does not have a giant
SCC, and the leading eigenvalue is thus not self-averaging in
this regime.

In the next section, we discuss how these results extend to
the case of weighted graphs for which the Ji j are drawn from
a nontrivial distribution pJ .

3. Weighted graphs

In the general case of weighted graphs, it is difficult to
obtain exact expressions for ν and pcycle(x). However, we can
discuss the qualitative features of pλ1 (x) in the two regimes
c(ρ + 1) < 1 and c(ρ + 1) > 1.

If c(ρ + 1) > 1, then

ν ≈ 0, (70)

since it is unlikely that an oriented ring contributes an eigen-
value to the spectrum that is larger than λ∗; this would require
that γ , given by Eq. (47), is larger than λ∗ + d . Therefore,
if the graph has a giant SCC, then the variance of λ1 will be
small and the typical value of λ1 is given by λ∗ in Eq. (61). As
a consequence, if the graph has a giant SCC, then

〈λ1〉 ≈ λ∗ =
⎧⎨
⎩ −d + c(ρ + 1)〈J〉 if 〈J〉 >

√
〈J2〉

c(ρ+1) ,

−d +
√

c(ρ + 1)〈J2〉 if 〈J〉 �
√

〈J2〉
c(ρ+1) ,

(71)

since λ∗ is the typical value of λ1.
On the other hand, when c(ρ + 1) < 1, then λ∗ = −d , and

therefore the leading eigenvalue is with a probability

ν = p+ (72)

a stochastic outlier coming from an oriented ring graph.
Hence, in the absence of a SCC, the variance of pλ1 (x) is large.

4. Right eigenvector associated with λ1

We derive exact expressions for the first moment 〈R1〉 of
right eigenvectors associated with the leading eigenvalue λ1.

We first consider the case c(ρ + 1) > 1. Assuming that the
leading eigenvalue takes its typical value λ∗, given by either
the outlier λisol or the maximum value of Re[λb], see Eq. (71),
we obtain that

〈R1〉
〈|R1|2〉 =

⎧⎨
⎩〈Risol〉/〈|Risol|2〉 if 〈J〉 >

√
〈J2〉

c(ρ+1) ,

0 if 〈J〉 �
√

〈J2〉
c(ρ+1) ,

(73)

where 〈Risol〉/〈|Risol|2〉 is given by Eq. (58).
On the other hand, if c(ρ + 1) < 1, then the right eigen-

vector of λ1 will be localized on a finite number of nodes and

〈R1〉
〈|R1|2〉 = 0. (74)

Interestingly, we observe in Eq. (73) that 〈R1〉 behaves
as an order-parameter of a phase transition between a ferro-
magnetic phase (〈R1〉 > 0) and a spin glass phase (〈R1〉 =
0). A similar type of behavior has been found in sparse
symmetric random matrices [49,62–64]. The analogy between
〈R1〉 and the order parameter of a ferromagnetic phase can
be made explicit. Indeed, the leading right eigenvector �R1 is
the stationary state of a spherical model defined on the graph
represented by the adjacency matrix A, see equations (45) till
(52) in Ref. [45]. The spherical model at zero temperature
exhibits either a ferromagnetic phase or a spin-glass phase,
see Ref. [65], and 〈R1〉 serves as the order parameter for
this phase transition. Notice that the 〈R1〉 = 0 regime does
not correspond to a paramagnetic phase since the spherical
model will be frozen into the configuration represented by the
leading right eigenvector [65].

5. Limiting case of dense graphs

We discuss the limit of dense graphs by setting c = n and
ρ = 0. Eq. (71) then reduces to

λ1 =
{

n〈J〉 〈J〉 > 0,√
n〈J2〉 〈J〉 � 0,

(75)
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which is the well-known expression for the leading eigenvalue
λ1 of a random matrix with independent and identically
distributed matrix elements drawn from a distribution pJ , see
Refs. [66–71], as well as Refs. [13,20]. However, note that
the formula (71) holds for graphs with c ∈ On(1) and there-
fore the correspondence holds only formally. Analogously,
we obtain in this limit that

〈R1〉
〈|R1|2〉 =

{
1 if 〈J〉 > 0,

0 if 〈J〉 � 0.
(76)

G. Subleading eigenvalue and spectral gap

The spectral gap is the difference λ1 − Re[λ2] between
the leading eigenvalue and the real part of the subleading
eigenvalue. From the results in Secs. III E–III F, we readily
obtain an expression for the typical value of the spectral gap
when c(ρ + 1) > 1, namely,

λ1 − Re[λ2]

=
⎧⎨
⎩c(ρ + 1)〈J〉 −

√
c(ρ + 1)〈J2〉 if 〈J〉 >

√
〈J2〉

c(ρ+1) ,

0 if 〈J〉 �
√

〈J2〉
c(ρ+1) .

(77)

The expected value of the entries of the right eigenvector
associated with the subleading eigenvalue satisfies

〈R2〉
〈|R2|2〉 = 0. (78)

H. Perron-Frobenius theorem

Here we discuss how the theoretical results are related to
the celebrated Perron-Frobenius theorem [60], which states
that the eigenvalue λ1 of a nonnegative matrix, and the compo-
nents of its right (left) eigenvector, are nonnegative numbers.
In other words, the Perron-Frobenius theorem implies that
R1, j � 0 for all j = 1, 2, . . . , n.

Interesting conclusions about the localization of eigenvec-
tors of A are drawn if we combine the Perron-Frobenius
theorem with the result (73). If c(ρ + 1) � 〈J2〉/〈J〉2 and
c(ρ + 1) > 1, such that λ1 is part of ∂σac, then 〈R1〉 = 0
and 〈R2

1〉 = 1, see Eq. (30). Since according to the Perron-
Frobenius theorem R1 � 0, we obtain that R1 = 0 holds with
probability one. The two conditions limn→∞〈R1(An)〉 = 0 and
limn→∞〈R2

1(An)〉 = 1 can be simultaneously valid provided
that a few components of the eigenvector �R1(A) diverge, such
that limn→∞〈R2

1(An)〉 �= 〈limn→∞ R2
1(An)〉.

Hence, (73) and the Perron-Frobenius theorem imply that
for nonnegative matrices for which the conditions c(ρ + 1) �
〈J2〉/〈J〉2 and c(ρ + 1) > 1 are fulfilled, the right eigenvector
�R1 associated with the leading eigenvalue is localized on a few
nodes.

IV. STABILITY OF COMPLEX SYSTEMS ON RANDOM
AND DIRECTED GRAPHS

We apply the results from the previous section to a linear
stability analysis of dynamical systems defined on random,
directed graphs.

Let �x†(t ) = (x1(t ), . . . , xn(t )) be the state vector of a large
dynamical system of interest, and let

∂t �x(t ) = �f [�x(t )] (79)

be a set of nonlinearly coupled differential equations that
describe the dynamics of the system of interest.

We consider a fixed point or stationary state �x∗ and study
the dynamics described by Eq. (78) in the vicinity of �x∗. A
stationary state is a vector that satisfies

f [�x∗] = 0. (80)

Note that a nonlinear system may contain several stationary
states [72], but here we are only interested in the dynamics
of �x(t ) in the vicinity of one given stationary state. According
to the Hartman-Grobman theorem [18,19], the dynamics de-
scribed by Eq. (78) is in the vicinity of the fixed point �x∗ well
approximated by the set of linearly coupled equations given
by Eq. (1) with A the Jacobian of f and

�y(t ) = �x(t ) − �x∗ (81)

the deviation vector.
The stability of the stationary state �x∗ is determined by the

sign of the real part of the leading eigenvalue λ1(A). Indeed,
if the matrix A is diagonalizable, then the dynamics of �y†(t ) is
governed by the eigenvalues λ j (A) and their associated right
eigenvectors �Rj (A) and left eigenvectors �Lj (A) [60], namely,

�y†(t ) =
n∑

j=1

(�y(0) · �Rj ) eλ j t �L†
j . (82)

In the case when all eigenvalues have negative real parts, then
limt→∞ �y†(t ) = 0, which implies that the stationary state is
stable. On the other hand, if there exists at least one eigenvalue
with a positive real part, then the stationary state is unstable.
With a bit more effort, one can show that the stability criterion
based on the sign of the real part of the leading eigenvalue also
holds for systems described by nondiagonalizable matrices,
see Appendix A.

From Eq. (81), we also observe that right and left eigenvec-
tors associated with the leading eigenvalue contain valuable
information about the dynamics of a system in the vicinity
of a fixed point. In particular, the nature of the mode that
destabilizes the system takes the form of the left eigenvector
�L1. For instance, if the eigenvector �L1 has a positive mean
〈L1〉 > 0, then the instability is reminiscent of a ferromagnetic
phase, whereas if 〈L1〉 = 0, then the instability is reminiscent
of a spin-glass phase [54,55,73].

We study here the stability of large systems coupled
through random matrices A defined on random, directed
graphs with a prescribed degree distribution pK in,Kout , as de-
fined in Sec. II. To this aim, we use the theory from Sec. III F
for the leading eigenvalue λ1 and the associated values of 〈L1〉
and 〈R1〉 (which in this ensemble are equivalent).

A first interesting observation is that for random, directed
graphs λ1 is finite, even in the limit n → ∞. This stands in
contrast with the leading eigenvalue of random, nondirected
graphs [47,48], which diverges for increasing n. As a con-
sequence, random, directed graphs with a prescribed degree
distribution are stable in the limit of large n, which provides
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an interesting take on the diversity-stability debate [9]. The
remarkable stability of large dynamical systems defined on
directed graphs follows from their locally treelike and oriented
nature. Since the local neighborhood of a randomly selected
node is an oriented tree, there exist no feedback loops that
can amplify the amplitude of local perturbations. On the other
hand, in random, nondirected graphs local perturbations are
amplified through feedback loops provided by the nondi-
rected links. As a consequence, dynamical systems on locally
treelike networks with unidirectional interactions are much
more stable than dynamical systems defined on networks with
bidirectional interactions.

It remains of interest to study how network architecture
affects the stability of large dynamical systems defined on
random, directed graphs. Since λ1 is a random variable in the
limit of infinitely large n, we focus first on its typical value λ∗,
given by Eq. (71). Interestingly, for the interaction networks
defined in Sec. III, the eigenvalue λ∗ is solely governed by
three parameters that characterize the network architecture:
the effective mean degree

c(1 + ρ) (83)

that characterizes the effective number of degrees of freedom
each node in the network interacts with; the coefficient of
variation

vJ :=
√

〈J2〉 − 〈J〉2/〈J〉 (84)

that characterizes the fluctuations in the coupling strengths
between the constituents of the system; and the effective
interaction strength

α := 〈J〉/d (85)

that quantifies the relative strength of the interactions with
regard to the rate d of decay. Hence, the system stability,
characterized by the typical value of the leading eigenvalue
λ1, only depends on these three parameters, and thus enjoys a
high degree of universality.

In order to better understand how the three parameters
c(1 + ρ), vJ , and α govern the stability of dynamical systems
on random, directed graphs, we present in Fig. 3 the phase
diagram of the system in the (vJ , c(1 + ρ)) plane, for fixed
values of α ∈ [0, 1] and c(1 + ρ) > 1. The reason we choose
these parameter regimes is because for α > 1 there exist no
stable phase and for c(1 + ρ) < 1 the graph does not have a
giant strongly connected component; in the latter regime, the
system falls apart in the sense that it is a union of a large
number of small isolated subsystems, and thus we are not
considering anymore the linear stability of a large system of
interacting degrees of freedom.

The phase diagram shows the critical connectivity c∗ (black
lines) that separates the stable phase (Re[λ∗] < 0), for sys-
tems at low connectivity c(1 + ρ), from the unstable phase
(Re[λ∗] > 0), for systems at high connectivity c(1 + ρ). If
α > 0, then the critical line is determined by

c∗ =

⎧⎪⎨
⎪⎩

1/α, v2
J < 1/α − 1,

1/
[
α2
(
v2

J + 1
)]

, v2
J ∈ [1/α − 1, v2

∗],

\ v2
J > v2

∗,
(86)

FIG. 3. Universal phase diagram for the stability of dynamical
systems on random, directed graphs with positive 〈J〉. Black solid
line and black dashed line separate the unstable phase at large
effective connectivity c(ρ + 1) from the stable phase at small con-
nectivity c(ρ + 1) for two given values of α = 〈J〉/d . The red dotted
line separates the gapped phase at small vJ from a gapless phase
at high vJ , which can also be considered a transition line from a
ferromagnetic phase (gapped) to a spin-glass phase (gapless).

which provides the effective connectivity c∗ = c(ρ + 1) for
which Re[λ∗] = 0 as a function of α and vJ ; in formula
(86) we have used the symbol v2

∗ = 1−α2

α2 . Since the critical
connectivity is finite for all values of α and vJ , it follows that
dynamical systems with large enough c(1 + ρ) are unstable,
which is consistent with the result in Ref. [20] that states
that fully connected systems are unstable when they are large
enough. Moreover, we see from Eq. (86) and Fig. 3 that the
phase transition to the stable phase at low connectivities has
three qualitatively different regimes, which we discuss in the
following paragraphs.

The critical value v∗ separates the regime vJ > v∗, for
which the system is unstable, from the regime vJ < v∗,
for which the system is stable when c(ρ + 1) > 1 is small
enough. Hence, for small enough fluctuations in the interac-
tion strengths (vJ < v∗) it is possible to stabilize a system by
rewiring edges in its graph in such a way that the correlation
ρ between indegrees and outdegrees decreases.

Stabilizing the system by rewiring edges is however not
possible when vJ > v∗.

Moreover, the regime vJ < v∗ consists of two distinct
regimes: a gapped regime, which appears when the fluctu-
ations in the interaction strengths are small (v2

J < 1/α − 1),
and a gapless regime, which appears when the fluctuations in
the interaction strengths are large (v2

J > 1/α − 1). In Fig. 3,
these two regimes are separated by the red dotted line. In
the gapped regime the leading eigenvalue is an outlier and
the critical connectivity c∗ is independent of v2

J . This implies
that fluctuations do not affect the system stability when the
leading eigenvalue is an outlier. On the other hand, in the
gapless regime the leading eigenvalue is part of the boundary
of the continuous spectrum and the critical connectivity c∗
decreases as a function of vJ . In this regime, fluctuations in
the interaction strengths render the system less stable. The
differences between the gapped and gapless regimes can be
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FIG. 4. Universal phase diagram diagram for the stability of
dynamical systems on random, directed graphs with negative 〈J〉.
Similar as in Fig. 3, but now for negative α. In this case, there is no
gapped (or ferromagnetic) phase.

understood in terms of the nature of the destabilizing mode.
In the gapped regime, the mode that destabilizes the system is
ferromagnetic, i.e., 〈L1〉 > 0, whereas in the gapless regime,
the mode that destabilizes the system is spin-glasslike, i.e.,
〈L1〉 = 0. Hence, increasing the fluctuations vJ for fixed val-
ues of the mean strength α does not affect the ferromagnetic
mode, which gives an intuitive understanding why the location
of the outlier is independent of vJ .

We can quantify the overall stability of systems coupled
through random matrices (3) in terms of a single parameter
astab, defined as the area in Fig. 3 where the system is stable
and c(1 + ρ) > 1. The quantity astab is given by

astab = 1

α

√
1 − α

α
(1 −

√
α(1 + α))

+ 1

α2

[
tanh−1

(√
1 − α2

α2

)
− tanh−1

(
1 − α

α

)]
.

The area astab is a monotonic decreasing function of α, which
approaches astab → 0 as α → 1 and astab → ∞ as α → 0.
Thus, the increase of the average interaction strength between
the elements of a network system, in the sense that 〈J〉
approaches d , makes the system less stable.

In Fig. 4, we present the phase diagram for α < 0 or
equivalently 〈J〉 < 0. Since in this case the outlier is negative,
the critical connectivity is

c∗ =
{

1/
[
α2
(
v2

J + 1
)]

, v2
J ∈ [0, v2

∗],

\ v2
J > v2

∗.
(87)

Note that for small values of v2
J the system is more stable in

the case of negative 〈J〉 since then there exists no outlier that
renders the system less stable.

Finally, we discuss how the phase diagrams, given by
Figs. 3 and 4, are modified by the presence of small cycles
in the network. As illustrated in Fig. 2 and discussed in
Sec. III F, there is a finite, albeit small, probability ν that the
leading eigenvalue λ1 is larger than λ∗. This happens when
a random, directed graph contains a cycle that generates a

strong enough feedback loop. As a consequence, one should
interpret the phase diagrams Figs. 3 and 4 as describing the
typical behavior of dynamical systems defined on random,
directed graphs in the limit n → ∞. There is however a small
nonzero probability that a random, directed graph contains a
cycle that destabilizes the system through the feedback loop
that it generates.

V. NUMERICAL EXAMPLES ON MATRICES
OF FINITE SIZE

In this section, we compare theoretical results for infinitely
large matrices with direct diagonalization results on matrices
of finite size n ∼ O(103). Such numerical experiments reveal
the magnitude of finite size effects, which are important for
applications because real-world systems are finite. Moreover,
this comparison allows us to better understand the potential
limitations of the theory.

Since a nonzero d results in a constant shift of all eigenval-
ues by −d , i.e. λ j → λ j − d , we set in all examples

Aj j = d = 0, ∀ j ∈ [n]. (88)

The numerical experiments are designed as follows. First,
we use the algorithm presented in Appendix B to sam-
ple a matrix from a random matrix ensemble with a pre-
scribed degree distribution. Second, we use the subroutine
gsl_eigen_nonsymmv from the GNU Scientific Library to
compute the n eigenvalues of the sampled matrix and the
entries of their right eigenvectors. Third, in order to test the
theory in Sec. III, we compute for each matrix sample A
the leading eigenvalue λ1(A), the real part of the subleading
eigenvalue λ2(A), and the observable

R1(A) =
∑n

j=1 R1, j (A)√∑n
j=1 |R1, j (A)|2

, (89)

which quantifies the mean value of the components of the
right eigenvector associated with λ1(A). Before we compute
R1(A) with the above equation, we rotate all the elements
R1, j (A) by a constant phase eiθ , such that the empirical mean∑n

j=1 R1, j (A) is a positive real number, in accordance with
our conventions in Eq. (29). Lastly, we compute the mean
values λ1, λ2, and R1 of the sampled populations, together
with the standard deviations for each quantity. Empirical mean
values for, say λ1, are compared with either the theoretical en-
semble averages 〈λ1〉 or with the typical value of λ1 provided
by the deterministic outlier λisol or by the boundary |λb| of the
continuous part of the spectrum. Note that we use the notation
〈λ1〉 for theoretical ensemble averages, while λ1 is used for
empirical mean values over the sampled populations, which
forms an estimate of 〈λ1〉.

The present section is organized into three sections. In
Sec. V A, we consider adjacency matrices of random, directed
graphs with negative degree correlations (ρ < 0) and un-
weighted links (Ji j = 1). For this ensemble, we have derived
in Sec. III F 2 exact results for the statistics of the leading
eigenvalue λ1 in the limit n → ∞. Hence, we expect a good
correspondence between theory and experiment in all param-
eter regimes. Deviations between theory and experiment will
be due to finite size effects and finite sampling statistics only.
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In Sec. V B, we consider the adjacency matrices of ran-
dom, directed graphs with positive degree correlations (ρ >

0) and weighted links. For this ensemble, we have derived
in Sec. III F 3 exact results for the typical value of λ1 in
the regime c(ρ + 1) > 1 Hence, we expect in this regime
a good correspondence between theory and experiment, and
deviations between theory and experiment will be due to
finite size effects, finite sampling statistics, and because of
deviations between the mean and typical value of λ1.

In Sec. V C, we apply the theoretical results of Sec. III to
adjacency matrices of random, directed graphs with power-
law degree distributions, which have diverging moments.
Since the graphs are unweighted, the theory of Sec. III F 2
applies. However, since for power-law random graphs the tails
of the degree distributions decay very slowly, we expect to
observe deviations between theory and experiment, and in
Sec. V C we test the limitations of the theory for power-law
random graphs.

Lastly, in Sec. V D, we test the predictions given by
Eqs. (56) and (60) for the number of zero-valued entries in
the right eigenvector �R1.

A. Adjacency matrices of unweighted and directed random
graphs with negative degree correlations

We consider the adjacency matrices of Poissonian ran-
dom graphs—also called Erdős-Rényi random graphs—and
geometric random graphs with negative degree correlation
coefficient ρ ∈ [−1, 0] and with constant weights Ji j = 1.

For Poissonian random graphs, the prescribed degree dis-
tribution is given by

pK in,Kout (k, �) = (1 + ρ) pp(k; c)pp(�; c)

−ρ

2
[δk,0 pp(�; 2c) + δ�,0 pp(k; 2c)], (90)

where k, � ∈ {0, 1, . . . , n − 1} and where

pp(k; c) = 1

Np

ck

k!
, (91)

with Np = ∑n−1
k=0 ck/k! the normalization constant. For n →

∞, pp(k; c) is the Poisson distribution with mean degree c and
Np = ec. For geometric random graphs, the prescribed degree
distribution is given by

pK in,Kout (k, �) = (1 + ρ) pg(k; c)pg(�; c)

−ρ

2
[δk,0 pg(�; 2c) + δ�,0 pg(k; 2c)], (92)

where k, � ∈ {0, 1, . . . , n − 1} and where

pg(k; c) = 1

Ng

(
c

1 + c

)k

, (93)

with Ng = ∑n−1
k=0 ( c

1+c )k the normalization constant. For n →
∞, pg(k; c) is the geometric distribution with mean degree c
and Ng = c + 1.

Throughout this section, we consider unweighted graphs
for which Jjk = 1 for all j �= k, and thus

pJ (x) = δ(x − 1). (94)

In Fig. 5, we show how the degree correlation coefficient
ρ affects the spectral properties of adjacency matrices of ran-
dom, directed graphs with mean degree c = 2. We compare
the theoretical results given by Eqs. (57), (53), (58), (68), (73),
and (77) with direct diagonalization results.

In panels (a) and (b) of Fig. 5, we provide a global picture
of the spectra of adjacency matrices of Poissonian random
graphs by comparing the spectra of matrices with ρ = 0 and
−0.3. We observe how negative degree correlations contract
the spectrum: for ρ = −0.3 the leading eigenvalue is smaller
than for ρ = 0, and the spectrum concentrates around the
origin when ρ is more negative.

In panel (c) of Fig. 5, we present a more detailed analysis of
the behavior of the leading eigenvalue λ1 and the subleading
eigenvalue λ2 as a function of ρ. As discussed in Sec. III,
for c(ρ + 1) > 1, the leading and subleading eigenvalues are
self-averaging and given by λ1 = λisol and Re[λ2] = |λb|,
respectively. These findings are well corroborated by the
numerical results in Fig. 5(c). We observe that λ1 = λ2 at
the critical percolation threshold ρ = −1 + 1/c = −0.5, as
predicted by the theory. For c(ρ + 1) < 1, there does not exist
a giant strongly connected component, see Sec. II C 2, and
therefore the leading eigenvalue is either 0 or 1, depending
on whether the graph contains an oriented ring or not. In
this regime, the mean value 〈λ1〉 is given by Eq. (68) and its
variance is given by Eq. (69), both findings which are well
corroborated by numerical results in Fig. 5(c).

In Fig. 5(d), we present a systematic study of the first
moment 〈R1〉 of the eigenvector �R1 associated with the leading
eigenvalue, which is an outlier for ρ � −0.5. The theoretical
result Eq. (58) is well corroborated by direct diagonalization
results for the empirical observable R1, defined in Eq. (89).
We observe a phase transition from a phase with 〈R1〉 = 0,
for ρ < −0.5, to a phase with 〈R1〉 > 0, for ρ > −0.5. Note
that 〈R1〉 = 0 for ρ < −0.5 since in this regime there exists
no giant SCC, and therefore the right eigenvector is localized
on an isolated component with a finite number of nodes.

Taken together, the results in Fig. 5 illustrate how the lead-
ing eigenvalue of the adjacency matrix of a random, directed
graph increases as a function of ρ. These results imply that
one can reduce λ1 significantly reduced a rewiring procedure
that decreases correlations between indegrees and outdegrees.
These results are in agreement with the phase diagram in
Fig. 3, which shows that dynamical systems coupled through
graphs with negative ρ are more stable than those coupled
through graphs with positive ρ > 0.

B. Adjacency matrices of weighted and directed random graphs
with positive degree correlations

We analyze the spectral properties of the adjacency matri-
ces of Poissonian and geometric random graphs with positive
ρ and random weights.

The Poissonian ensemble with positive ρ has a prescribed
degree distribution

pK in,Kout (k, �) = (1 − cρ)pp(k)pp(�) + cρ pp(�)δk,�, (95)

where ρ ∈ [0, 1/c], and where pp is the truncated Poisson
distribution defined by Eq. (91). The geometric ensemble with
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(a) (b)

(c) (d)

FIG. 5. Effect of negative ρ on the spectral properties of the adjacency matrices of random, directed graphs. Spectral properties for the
adjacency matrices of Poissonian [see Eq. (90)] or geometric [see Eq. (92)] random, directed graphs with a mean degree c = 2 and negative
ρ are presented. Direct diagonalization results for matrices of size n = 4000 (markers) are compared with the theoretical results for infinitely
large matrices (lines) derived in Sec. III. [(a) and (b)] eigenvalues λ j (A) of the adjacency matrices of two Poissonian random graphs with ρ = 0
(a) and −0.3 (b), respectively, are plotted and compared with the theoretical boundary λb for the spectrum given by Eq. (53). (c) Mean values
of the leading eigenvalue λ1 and real part of the subleading eigenvalue Re[λ2] are plotted as a function of ρ and compared with theoretical
results λisol = 2ρ and |λb| = √

2ρ if ρ > −0.5 and 〈λ1〉 = 1 − (1 − c(ρ + 1))ec(ρ+1) if ρ < −0.5. (d) Mean value R1 for the entries of the right

eigenvector associated with the leading eigenvalue are plotted as a function of ρ and compared with the theoretical results 〈R1〉√
〈|R1|2〉

=
√

1+2ρ

2+ρ−2ρ2

and 〈R1〉√
〈R2

1〉 =
√

1+2ρ

2(2+ρ−2ρ2 )
for the Poissonian and geometric ensemble, respectively, when ρ � −0.5, and with 〈R1〉√

〈|R1|2〉
= 0 when ρ < −0.5.

In (c) and (d), direct diagonalization results are the sample means over 1000 matrix realizations and error bars represent the sample standard
deviations.

positive ρ has the prescribed degree distribution

pK in,Kout (k, �)

=
(

1 − cρ

c + 1

)
pg(k)pg(�) + cρ

c + 1
pg(�)δk,�, (96)

where ρ ∈ [0, (c + 1)/c], and pg is the truncated geometric
distribution defined by Eq. (93).

The off-diagonal matrix entries Jjk are i.i.d. random vari-
ables drawn either from a Gaussian distribution

pJ (x) = 1√
2πv2

e− (x−μ0 )2

2v2 , (97)

or from a bimodal distribution

pJ (x) = bδ(x − x0) + (1 − b)δ(x + x0), (98)

with the parametrization x0 =
√

μ2
0 + v2 and 2b = 1 +

μ0/x0. In each case, the parameters μ0 and v denote, respec-
tively, the mean and the standard deviation of the distribution
pJ (x).

In Fig. 6, we analyze how positive values of ρ affect
the spectral properties of adjacency matrices of randomly
weighted directed graphs. We compare the spectral properties
for different values of ρ and fixed parameters c = 2, μ0 = 1,
and v = 1.2. We compare theoretical results from Sec. III
(lines) with direct diagonalization results for matrices of size
n = 4000 (markers).

In panels (a) and (b) of Fig. 6, we provide a global picture
of the spectra of Poissonian random graphs by comparing the
spectrum of a graph without degree correlations [ρ = 0, (a)]
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Effect of positive ρ on the spectral properties of adjacency matrices of weighted, random, directed graphs. Spectral properties for
the adjacency matrices of Poissonian [see Eq. (95)] or geometric [see Eq. (96)] random, directed graphs with a mean degree c = 2 and positive
ρ are presented. The off-diagonal weights are drawn from a Gaussian or a bimodal distribution with mean μ0 = 1 and standard deviation
v = 1.2 [see Eqs. (97) and (98)]. Direct diagonalization results of matrices of size n = 4000 (markers) are compared with theoretical results
for n → ∞ (lines), presented in Sec. III. [(a) and (b)] eigenvalues λ j (A) of the adjacency matrices of two Poissonian random graphs with
ρ = 0 (a) and 0.5 (b), respectively, are plotted and compared with the theoretical boundary λb for the spectrum given by Eq. (53). [(c)–(f)]
the sample means for the leading eigenvalue Re[λ1], the spectral gap Re[λ1] − Re[λ2] and the first moment of the right eigenvector R1 are
plotted as a function of ρ and compared with the theoretical expressions λ1, λ1 − Re[λ2] and 〈R1〉 derived in Sec. III. Sample means are over
1000 matrix realizations of size n = 4000 [except for the blue circles in (e), which are for n = 1000]. The error bars denote sample standard
deviations.
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with the spectrum of a graph with positive degree correlations
[ρ = 0.5, (b)]. In the latter case, the correlations are perfect
in the sense that K in

j = Kout
j for each node j. The direct

diagonalization results corroborate well the formula Eq. (53)
for the boundary of the continuous part of the spectrum. We
also observe that the leading eigenvalue λ1(A) increases as a
function of ρ, that λ1(A) is located at the boundary ∂σac for
ρ = 0 (a), and that λ1(A) is an outlier for ρ = 0.5 (b).

In panels (c) and (d) of Fig. 6, we provide a more detailed
view of the eigenvalues λ1 and λ2 as a function of ρ. We
observe that both λ1 and λ2 are monotonically increasing
functions of ρ, and that there is a continuous transition from
a gapless phase for ρ < 〈J2〉/(c〈J〉2) − 1 ≈ 0.22 to a gapped
phase for ρ > 〈J2〉/(c〈J〉2) − 1. We observe that the values of
λ1 and λ2 are universal, in the sense that they depend on the
distributions pJ and pK in,Kout only through the parameters c, ρ,
〈J〉, and 〈J2〉. Theoretical results are well corroborated with
direct diagonalization results, although finite size effects are
more significant for the spectral gap.

Lastly, panels (e) and (f) of Fig. 6 compare the theoretical
result 〈R1〉 of Sec. III with the sampled average R1 of the
quantity R1, as defined in Eq. (89). In the gapless phase, we
have 〈R1〉 = 0, while in the gapped phase we obtain 〈R1〉 > 0,
which is reminiscent of a continuous phase transition between
a spin-glass phase and a ferromagnetic phase. We observe
that in the gapped phase direct diagonalization results are
in very good agreement with the theoretical expressions for
infinitely large matrices, whereas in the gapless phase there
are significant deviations between theory and direct diag-
onalization results. These deviations are due to finite size
effects, which are significant because of our convention to
normalize the eigenvectors with Eq. (29). In spite of that, we
observe that direct diagonalization results slowly converge to
the theoretical values as the matrix size n increases.

Overall, we conclude that the theoretical results for the
typical values of λ1, λ2, and 〈R1〉, presented in Sec. III,
describe well the numerically estimates for their ensemble
average. This is because in the regime c(ρ + 1) > 1 it is
unlikely that a stochastic outlier eigenvalue exists.

C. Adjacency matrices of random graphs with power-law
degree distributions

In this section, we analyze the spectral properties of the ad-
jacency matrices of random, directed graphs with power-law
degree distributions. Power-law random graphs are interesting
from a practical point of view, since degree distributions of
real-world systems often have tails that are fitted well by
power-law distributions [10,74–76]. For example, the World
Wide Web is a directed graph with a power-law degree dis-
tribution of the form pK in,Kout (k, �) ∼ k−2.1�−2.7 [28]. Since
power-law degree distributions have diverging moments, these
ensembles exhibit strong finite size effects and large sample-
to-sample fluctuations, and it is thus interesting to test the
possible limitations of the theory in Sec. III for power-law
random graphs.

We consider two classes of power-law random graphs,
namely, an ensemble without correlations between indegrees
and outdegrees (ρ = 0), and an ensemble with perfect degree
correlations, where K in

j = Kout
j for all nodes j (ρ > 0). The

ensemble without degree correlations has a prescribed degree
distribution

pdeg(k, �) = k−a�−a

N 2
pow

, (99)

with k, � ∈ [n − 1] and with Npow = ∑n−1
k=1 k−a, while the

ensemble with perfect degree correlations has the prescribed
degree distribution

pdeg(k, �) = k−a

Mpow
δk,�, (100)

with k, � ∈ [(n − 1)/2] and with Mpow = ∑(n−1)/2
k=1 k−a the

normalization constant. The parameter a controls how fast the
degree distribution decays for large degrees.

We discuss the values of the parameters c and ρ in the limit
n → ∞. If a > 2, then the mean degree is given by

c = ζ (a − 1)/ζ (a), (101)

with ζ (x) the Riemann zeta function. Also, if a > 2, then the
ensemble of Eq. (99) has a degree-correlation coefficient

ρ = 0, (102)

while if a > 3, then the ensemble of Eq. (100) has a degree-
correlation coefficient

ρ = ζ (a − 2)ζ (a)

ζ 2(a − 1)
− 1. (103)

Note that c(ρ + 1) > 1, and therefore the power-law graphs
we consider have a giant SCC.

We consider unweighted power-law random graphs with
Jjk = 1 for all j, k ∈ [n].

We now resort to direct diagonalization in order to gain a
better understanding of the statistics of the leading eigenvalue
of power-law random graphs. In Panel (a) of Fig. 7, we plot the
sample mean λ1 of the leading eigenvalue λ1(A) and the sam-
ple mean Re[λ2] of the real part of the subleading eigenvalue
λ2(A) as a function of a in the ensemble defined by Eq. (99)
for which ρ = 0. We observe that for a � 3 the theoretical
expressions Eqs. (57) and (53) for λisol and |λb|, respectively,
are in very good agreement with direct diagonalization results
for the leading and subleading eigenvalue. In the regime
a � 3, we observe significant deviations between theory and
numerical experiments. Such deviations are expected, since
c → ∞ for a → 2+, and therefore the theoretical expressions
for λisol and |λb| diverge for a → 2+. Analogously, in panel
(b) of Fig. 7, we present results for λ1 and Re[λ2] as a function
of a for the ensemble defined by Eq. (100) for which ρ > 0.
In this case, the theory works well when a � 4, whereas
for a � 4, we observe significant deviations between theory
and numerical experiments. This is because for a → 3+ the
degree correlation coefficient ρ diverges, and therefore the
theoretical expressions for λisol and |λb| also diverge. Overall,
these results show that Eqs. (57) and (53) work remarkably
well for power-law random graphs.

Lastly, in panels (c) and (d) of Fig. 7, we plot the empirical
mean R1 as a function of a and compare results from the
direct diagonalization of randomly sampled matrices with

033313-16



LINEAR STABILITY ANALYSIS OF LARGE … PHYSICAL REVIEW RESEARCH 2, 033313 (2020)

(a) (b)

(c) (d)

FIG. 7. Leading and subleading eigenvalues for adjacency matrices of power-law random graphs with prescribed degree distributions.
[(a) and (b)] Results for the leading eigenvalue λ1 and the real part of the subleading eigenvalue Re[λ2] are presented as a function of the
exponent a of power-law random graphs with degree distributions given by either Eq. (99) (a), for which ρ = 0, or by Eq. (100) (b), for
which ρ > 0. Direct diagonalization results (markers) in (a) and (b) are compared with the theoretical results (lines) given by |λb|2 = λisol =
ζ (a − 1)/ζ (a) and |λb|2 = λisol = ζ (a − 2)/ζ (a − 1), respectively. [(c) and (d)] Results for the mean values R1 and R2 of the entries of right
eigenvectors associated with the leading and subleading eigenvalue, respectively, are presented as a function of the exponent a for power-law
random graphs with degree distributions given by either Eq. (99) (c), for which ρ = 0, or by Eq. (100) (d), for which ρ > 0. In (c), direct

diagonalization results are compared with 〈Risol〉√
〈R2

isol〉
=
√

ζ (a−1)[ζ (a−1)−ζ (a)]
ζ (a)[ζ (a−2)−ζ (a−1)] if a > 3, and with 〈Risol〉√

〈R2
isol〉

= 0 if a < 3. In (d), direct diagonalization

results are compared with 〈Risol〉√
〈R2

isol〉
=
√

ζ (a−1)ζ (a−2)[ζ (a−2)−ζ (a−1)]
ζ (a)ζ (a−1)ζ (a−3)−ζ 2(a−1)ζ (a−2)+[ζ (a−1)−ζ (a)]ζ 2 (a−2)

, if a > 4, and with 〈Risol〉√
〈R2

isol〉
= 0 if a < 4. In all four panels

weights are set equal to Jjk = 1 and markers are sample means over either 2000 or 1000 matrices of size n = 2000 or 4000, respectively. Error
bars denote standard deviations over the population of different matrix realizations.

the theoretical expression for 〈Risol〉 given by Eq. (58). We
observe a reasonable good agreement between theoretical re-
sults and numerical experiments, considering that power-law
random graphs exhibit significant finite-size effects and fluc-

tuations. Interestingly, the normalized mean 〈Risol〉/
√

〈R2
isol〉

vanishes at a = 3 and 4 for ensembles with degree distribu-
tions (99) and (100), respectively. Since the Perron-Frobenius
theorem applies to this ensemble, this is a transition from a

delocalized phase (〈Risol〉/
√

〈R2
isol〉 > 0) to a localized phase

(〈Risol〉/
√

〈R2
isol〉 = 0), as argued in Sec. III H. In other words,

the leading eigenvector is localized when the exponent a that
characterizes the decay of the power-law degree distribution
is small enough.

D. Distribution pR for the entries of the right eigenvectors

So far, we have studied the mean value of the distribution
pR. Differently, in this section we analyze properties of the
full distribution pR.

Equations (56) and (60) state that the distribution pR con-
tains a delta peak at the origin with weight 1 − sout, where sout

is the relative size of the OUT component. In other words, the
number of nonzero entries in a right eigenvector is equal to
the size of the OUT component. Figure 8 tests this prediction
for the adjacency matrix of a directed random graph with a
Poissonian degree distribution given by Eq. (90) with c = 3.

In panel (a) of Fig. 8, we compare theoretical predic-
tions for pR, obtained by solving the recursive distributional
Eqs. (48-49) at λ = λisol through a population dynamics
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(a) (b)

FIG. 8. Properties of the distribution pR1 . Results are for the adjacency matrices of random, directed graphs with a Poisson degree
distribution given by Eq. (90) and with mean c = 3. Edges are weighted by random couplings Ji j drawn from a Gaussian distribution [see
Eq. (97)] with mean μ0 = 1 and variance v2 = 0.2. (a) Theoretical results for pR solving Eqs. (48) and (49) with λ = λisol (solid lines)
are compared with a histogram of the entries of �R1 obtained from direct diagonalizing 2e + 4 matrices of size n = 1000 (markers). The
degree correlation coefficient ρ = 0. (b) Fraction of nonzero entries of the leading right eigenvector �R1 as a function of the degree-correlation
coefficient ρ. Direct diagonalization results for matrices of size n = 100 and n = 1000 (markers are sample averages over 100 and 20 samples,
respectively) are compared with theoretical results for sout (solid line) obtained from solving Eqs. (15) and (17). In the numerical experiments,
we have used the criterion |Ri|2 < 1e − 20 to identify a zero-valued entry.

algorithm [44,54,77,78], with a histogram of the entries of the
right eigenvector associated with the leading eigenvalue λ1,
obtained through direct diagonalization results. We have set
ρ = 0 and the couplings Ji j are drawn from a Gaussian distri-
bution. In Fig. 8, we observe an excellent agreement between
theory and numerical experiments and we also observe a delta
peak at the origin, which is clearly discernible in both theory
and numerical experiments.

In order to quantify the weight of the delta peak at the
origin, we plot in panel (b) of Fig. 8 the fraction of entries
Ri that are not equal to zero. We compare direct diagonaliza-
tion results for right eigenvectors associated with the leading
eigenvalue λ1 with the theoretical expression sout obtained by
solving Eqs. (15) and (17). We find again an excellent agree-
ment between theory and numerical experiments, confirming
that the number of nonzero elements in �R equals the size sout

of the OUT component

VI. EXTENSIONS OF THE THEORY

Here we extend the theory from Sec. III C to the case
of random matrices with diagonal disorder and graphs that
contain nondirected links.

A. Random matrices with diagonal disorder

We consider random matrices of the form

A = −D + J ◦ C, (104)

where J and C are defined in exactly the same way as in
Eq. (3), but where D is now a diagonal matrix with entries
[D] j j = Dj that are i.i.d. random variables drawn from a
probability distribution pD(x) with x ∈ R+. Note that pD has
a support on the positive real axis since otherwise Re[λ1] > 0
and the dynamical system described by A will not be stable.

In the special case when

pD(x) = δ(x − d ), (105)

we recover the model given by Eq. (3).
The theory of Sec. III C applies to the model given by

Eq. (104) after some minor modifications. As shown in Ap-
pendix I, for the present model the distribution pR solves the
recursion relation

pR(r) =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)
∫

dy pD(y)
∫ �∏

j=1

d2r jqR(r j )

×
∫ �∏

j=1

dx j pJ (x j )δ

[
r −

∑�
j=1 x jr j

λ + y

]
(106)

and qR solves the recursion relation

qR(r) =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)
k

c

∫
dy pD(y)

∫ �∏
j=1

d2r jqR(r j )

×
∫ �∏

j=1

dx j pJ (x j )δ

[
r −

∑�
j=1 x jr j

λ + y

]
. (107)

If D is deterministic, then Eq. (105) holds and we recover the
recursion Eqs. (48) and (49).

In Appendix I, we derive the values of λ for which the
recursion Eqs. (106) and (107) admit normalizable solutions.
In this way, we obtain that the deterministic outliers of A solve
the equation

c(ρ + 1)〈J〉
〈

1

λisol + D

〉
= 1, (108)
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and the eigenvalues λb ∈ C at the boundary of the continuous
part of the spectrum solve

c(ρ + 1)〈J2〉
〈

1

|λb + D|2
〉

= 1. (109)

Using Eqs. (108) and (109), it is possible to derive phase
diagrams, similar to those presented in Figs. 3 and 4, for the
stability of dynamical systems with disordered decay rates Dj .
We leave this open for future studies.

B. Nondirected graphs with random couplings

We consider random matrices of the form

An = −d 1n + J̃n ◦ C̃n, (110)

where C̃n is the adjacency matrix of a nondirected, random
graph with a prescribed degree distribution pdeg(k), and where
J̃n is a random matrix with zero entries on the diagonal and
with offdiagonal pairs (J̃ jk, J̃k j ) that are i.i.d. random variables
with a distribution pJ̃1,J̃2

(x, y). We assume that pJ̃1,J̃2
satisfies

the symmetry property

pJ̃1,J̃2
(x, y) = pJ̃1,J̃2

(y, x). (111)

The random matrix model defined by Eq. (110) is locally
treelike, but it is in general not locally oriented. Nevertheless,

locally oriented ensembles can be recovered in the limiting
case

pJ̃1,J̃2
(x, y) = 1

2 pJ (x)δ(y) + 1
2 pJ (y)δ(x). (112)

In this case, the model given by Eq. (110) is the adjacency
matrix of a directed random graph with a joint degree distri-
bution

pK in,Kout (k, �)

=
∞∑

m=0

pdeg(m)

2m

m∑
n=0

m!

n!(m − n)!
δk,nδ�,m−n, (113)

which is a special case of the model defined by Eq. (3). On the
other hand, if

pJ̃1,J̃2
(x, y) = δ(x − y)pJ (x), (114)

then Eq. (110) defines symmetric random matrices.
In Appendix I, we derive a set of recursion relations for pR.

We obtain that the distribution pR is the marginal

pR(r) =
∫

d2g pG,R(g, r) (115)

of the joint distribution pG,R(g, r) that solves the recursion
relation

pG,R(g, r) =
∞∑

k=0

pdeg(k)
∫ k∏

�=1

d2g�d2r� qR,G(r�, g�)
∫ k∏

�=1

dx� dy� pJ̃1,J̃2
(x�, y�)

×δ

(
r +

∑k
�=1 x�r�

−λ − d −∑k
�=1 x�g�y�

)
δ

(
g − 1

−λ − d −∑k
�=1 x�g�y�

)
, (116)

and qG,R solves the equation

qG,R(g, r) =
∞∑

k=0

k pdeg(k)

c

∫ k−1∏
�=1

d2g�d2r� qR,G(r�, g�)
∫ k−1∏

�=1

dx� dy� pJ̃1,J̃2
(x�, y�)

×δ

(
r +

∑k−1
�=1 x�r�

−λ − d −∑k−1
�=1 x�g�y�

)
δ

(
g − 1

−λ − d −∑k−1
�=1 x�g�y�

)
. (117)

Note that in the special case of symmetric random matrices
[i.e., when Eq. (114) holds], Eqs. (116,117) are equivalent to
those derived in Refs. [49,62–64].

The outliers λisol and the boundary λb of the continuous
part of the spectrum are found as values of λ for which the
relations (116) and (117) admit normalizable solutions. In the
present case, we do not know how to derive compact ana-
lytical expressions for λisol and λb. However, Eqs. (116) and
(117) can be solved numerically with a population dynamics
algorithm, as described in Refs. [54,77,78], and consequently
a stability phase diagram as in Figs. 3 and 4 can be derived.
We leave such a study open for future work.

VII. DISCUSSION

Random matrices appear in linear stability analyses of
large dynamical systems. So far, most studies have consid-

ered dynamical systems for which the system constituents
interact with either a number of degrees of freedom that in-
creases with system size, see, e.g., Refs. [13,20,22,26,27,79–
84], or interact through a one-dimensional chain, see, e.g.,
Refs. [25,85,86]. However, real-world systems often consist
of components interacting through large networks, see, e.g.,
Refs. [1–5]. Therefore an interesting question is how network
topology affects system stability.

In this paper, we have analysed the linear stability of large
dynamical systems defined on random, directed graphs with a
prescribed degree distribution pK in,Kout , which serve as a model
for, among others, the World Wide Web [28,29] and neural
networks [30–32]. We have shown that dynamical systems
defined on random, directed graphs are more stable than sys-
tems defined on nondirected graphs. Indeed, we have shown
that for random, directed graphs the leading eigenvalue is with
probability one finite in the limit of infinitely large n. This
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result brings an interesting perspective in the diversity-
stability debate [9]. Dynamical systems defined on dense
matrices or nondirected graphs are unstable when n is large
enough: in the former because λ1 is of the order O(

√
n)

[20], while in the latter because λ1 is of the order O(
√

kmax)
[47–49]. Hence, a large and complex system will be in general
unstable [20,87]. However, if the system is defined on a ran-
dom, directed graph, then it can be infinitely large and stable
since λ1 converges to a finite limit for large n. The stabilising
nature of random, directed graphs is a consequence of their
locally treelike and oriented structure, which implies that there
exist no feedback loops that amplify local perturbations.

A second surprising result is that the stability of dynam-
ical systems defined on directed random graphs exhibits a
universal character, in the sense that it is governed by only
three network parameters: the effective mean degree c(ρ + 1),
the coefficient of variation vJ =

√
〈J2〉 − 〈J〉2/〈J〉, and the

ratio α = 〈J〉/d between the mean interaction strength and the
decay rate. This result follows from the analytical expression,
given by Eq. (71), for the typical value of the leading eigen-
value of the adjacency matrix that encodes the network of
interactions between the system constituents. From the analyt-
ical expression for the typical value of the leading eigenvalue,
we obtain the universal phase diagrams of Figs. 3 and 4.

Analyzing these phase diagrams, we obtain the following
interesting conclusions on how network topology affects sys-
tem stability. First, negative correlations between indegrees
and outdegrees stabilize large dynamical systems, whereas
the mean coupling strength α and the coupling fluctuations
vJ render dynamical systems less stable. Second, when the
fluctuations vJ of the coupling strengths are small enough,
then the stability is controlled by an outlier and is independent
of vJ . On the other hand, when vJ is large enough, then the
leading eigenvalue is determined by the boundary of the con-
tinuous part of the spectrum and the system stability decreases
as a function of vJ . Moreover, in the first scenario, the unsta-
ble mode is ferromagnetic (〈R〉 > 0) whereas in the second
scenario it is spin-glasslike (〈R〉 = 0). Lastly, systems with
coupling fluctuations vJ larger than the critical value v∗ =√

1−α2

α2 do not contain a stable phase, no matter how large the
negative correlations between indegrees and outdegrees are.

The universal phase diagrams of Figs. 3 and 4 have
been derived with a mathematical method, akin to the cavity
method in statistical physics, which computes the typical
value of the leading eigenvalue of random, directed graphs
that have a giant SCC in the limit of n → ∞. The cavity
method computes the typical value of λ1 by neglecting contri-
butions of cycles of finite length. However, if the graph con-
tains disorder in the weights Ji j , then the leading eigenvalue is
not a self-averaging quantity and there exists a finite (albeit)
small probability that the leading eigenvalue comes from a
cycle of finite length that is part of the graph, as sketched in
Fig. 2. Hence, short cycles can destabilize large dynamical
systems defined on random, directed graphs when they induce
strong enough feedback loops.

The derived theoretical results for the spectra of large,
sparse, non-Hermitian, random matrices may also be useful

for applications other than the linear stability analysis of
large dynamical systems described by differential equations.
For example, the theory is also useful to study the stability
of dynamical systems in discrete time [88], which are rel-
evant for the study of systemic risk in networks of banks
connected through financial contracts [8,84]. For discrete-
time systems, the stability is controlled by the spectral ra-
dius r(A) = max{|λ1|, |λ2|, . . . , |λn|}. Another example of an
application is the analysis of spectral algorithms that use
the right or left eigenvector associated with the (sub)leading
eigenvalue to obtain information about a system, e.g., spectral
clustering algorithms [89,90], centrality measures based on
eigenvectors [91–93], or algorithms for the low-rank matrix
estimation problem [94,95]. Detectability thresholds of spec-
tral algorithms often depend on the location of the leading
and subleading eigenvalue [90,95–98]. A fourth example of an
application is the analysis of stochastic processes with spectra
of Laplacian or Markov matrices [99–103]: the stationary
state of a Markov process is the right (or left) eigenvector
associated with the leading eigenvalue of a Markov matrix
[103], the relaxation time is provided by the spectral gap
[104–106], and the cumulant generating function of a time-
additive observable can be expressed in terms of the leading
eigenvalues of a sequence of Markov matrices [107–111].
A fifth application is the study of nonHermitian quantum
mechanics on random graphs [85,112,113]. Lastly, we remark
that the subleading eigenvalue, and its associated right (left)
eigenvector, provide not only information about the asymp-
totic stability of large dynamical systems, but also about their
response to random perturbations as shown in Ref. [46]. Taken
together, we conclude that the spectral theory presented in this
paper can be used in various contexts.

The theoretical results obtained in this paper are conjec-
tures about the spectral properties of random, directed graphs.
Reference [95] provides a mathematical proof for Eqs. (68)
and (77) for the leading and subleading eigenvalues in the
special case of directed Erdős-Rényi graphs with Ji j = 1. To
our knowledge, there exist no proofs for Eqs. (53) and (57) for
λisol and λb, respectively, for graph ensembles other than di-
rected Erdős-Rényi graphs. Also, we are note aware of proofs
for Eqs. (54), (55), and (58) for the mean value of the distribu-
tion of right eigenvector elements, the recursion relations for
pR given by Eqs. (48) and (49), the algebraic multiplicity of
the trivial −d eigenvalue given by Eq. (45), and Eqs. (56) and
(60) for the number of zero entries of right eigenvectors. The
results in the present paper are thus interesting conjectures
about the spectral properties of sparse, nonHermitian, random
matrices.

In the present paper, we have focused on systems that
are locally treelike and oriented. For future work, it would
be interesting to understand how network topology affects
the linear stability of nonoriented systems [114] and systems
that contain small cycles or motifs [52,53,115,116]. Based on
the results in the present paper, we would expect that those
systems are in general less stable than locally treelike and
oriented systems.
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APPENDIX A: STABILITY CRITERION FOR A LINEAR
DYNAMICAL SYSTEM DESCRIBED BY EQS. (1)

We call a linear dynamical system, described by Eqs. (1),
stable if

lim
t→∞ �y(t ) = 0 (A1)

for all initial states �y(0).
In this Appendix, we show that a linear dynamical system

is stable if and only if all the eigenvalues of A have negative
real parts. To this aim, we express the matrix A in its canonical
form, which contains as few as possible nonzero offdiagonal
matrix entries. For a diagonalizable matrix, the canonical
form is diagonal, whereas for a nondiagonalizable matrix, the
canonical form is a Jordan matrix [60].

1. Diagonalizable matrices

If A is a diagonalizable matrix of size n, then there exists a
nonsingular matrix S such that [60]

A = S�S−1, (A2)

where � is a diagonal matrix with diagonal elements [�] j j =
λ j (A). As a consequence, the jth column of S is a right
eigenvector �Rj associated with the eigenvalue λ j , and the
jth row of S−1 is a left eigenvector �L†

j associated with the
eigenvalue λ j . Since S is a nonsingular matrix, both right
eigenvectors and left eigenvectors form a set of n independent
vectors that span Cn, and because S−1S = 1n, right and left
eigenvectors form a biorthonormal system,

�Lj · �Rk = δ j,k . (A3)

As a consequence, the matrix A can be written as

A =
n∑

j=1

λ j �Rj �L†
j . (A4)

We can decompose �y†(t ) into the basis of left eigenvectors
�L†

j , such that

�y†(t ) =
n∑

j=1

c j (t )�L†
j . (A5)

The coefficients

c j (t ) = �y(t ) · �Rj (A6)

follow from the biorthonormality condition (A3) of left and
right eigenvectors.

Substituting the canonical form of A, given by Eq. (A4),
into Eq. (1), and using that the decomposition (A5) is unique,
we obtain the n independent and linear differential equations

∂t c j (t ) = λ j c j (t ). (A7)

Finally, solving Eqs. (A7), we obtain

c j (t ) = eλ j t c j (0) (A8)

and the expression Eq. (82) for �y†(t ) after substituting (A8)
into (A5).

The expression (82) for �y†(t ) implies that a system de-
scribed by a diagonalizable matrix is stable, if and only if,
the real part of all eigenvalues is negative.

2. Nondiagonalizable matrices

A matrix A is nondiagonalizable if there does not exist a
nonsingular matrix S for which relation (A2) holds with �

being a diagonal matrix. Nondiagonalizable matrices contain
at least one eigenvalue with a geometric multiplicity that is
smaller than its algebraic multiplicity. The algebraic multi-
plicity of an eigenvalue λ is the multiplicity of λ as the root
of the polynomial equation det[A − λ1n] = 0. The geometric
multiplicity an eigenvalue is the number of linearly indepen-
dent right eigenvectors associated with this eigenvalue.

If A is a nondiagonalizable matrix of size n, then there
exists a nonsingular matrix S such that [60]

A = SHS−1, (A9)

where H is a Jordan matrix. The Jordan matrix has the form

H =

⎡
⎢⎢⎣

Jn1 (λ�1 ) 0
Jn2 (λ�2 )

. . .
0 Jnm (λ�m )

⎤
⎥⎥⎦, (A10)

where

�α = 1 +
α−1∑
β=1

nβ, with α ∈ [m], (A11)

and

Jn(λ) =

⎡
⎢⎢⎢⎢⎣

λ 1 0 . . . 0
0 λ 1
...

. . .
. . .

1
0 λ

⎤
⎥⎥⎥⎥⎦ (A12)

is a Jordan block of size n.
The number of Jordan blocks associated with an eigen-

value λ equals the geometric multiplicity of the eigenvalue
λ. Hence, the number of independent right eigenvectors of the
matrix A is equal to the number m of Jordan blocks in the
matrix H.

The columns of S are the generalized right eigenvectors
�R j of the matrix A. Since the matrix S is nonsingular, the

generalized right eigenvectors form a set of n independent
vectors that span Cn. Analogously, the rows of S−1 are the
generalized left eigenvectors �L†

j of A. Also, generalized left
and right eigenvectors form a biorthonormal system,

�L j · �Rk = δ j,k, with j, k ∈ [n], (A13)

because SS−1 = 1n. The m right eigenvectors of A are

�Rα = �R�α
, with α ∈ [m], (A14)
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with the �α as defined in Eq. (A11). Analogously, the m left
eigenvectors are

�Lα = �L�α+nα−1, with α ∈ [m]. (A15)

Since the generalized right and generalized left eigen-
vectors form a biorthonormal system, the matrix A can be
expressed in the form

A =
m∑

α=1

nα−2∑
κ=0

�R�α+κ

(
λ�α

�L†
�α+κ + �L†

�α+κ+1

)

+
m∑

α=1

λ�α
�R�α+nα−1 �L�α+nα−1. (A16)

Since S is nonsingular, the �L†
j form a basis of Cn, and

therefore we can decompose �y†(t ) into this basis, namely,

�y†(t ) =
n∑

j=1

c j (t ) �L†
j . (A17)

The coefficients

c j (t ) = �y(t ) · �R j, j ∈ [n] (A18)

follow from the biorthonormality relation (A13) of general-
ized left and generalized right eigenvectors.

Substituting the canonical form of A, given by Eq. (A16),
into Eq. (1), and using that the decomposition (A17) is unique,
we obtain a set of m independent linearly coupled differential
equations corresponding with each of the m Jordan blocks of
the matrix A. For the αth Jordan block of size nα , we obtain
the differential equation

∂t c�α+nα−1(t ) = λαc�α+nα−1(t ) (A19)

together with the coupled differential equations

∂t c�α+κ (t ) = λ�α
c�α+κ (t ) + c�α+κ+1(t ) (A20)

for κ = 0, 1, . . . , nα − 2. The coupled Eqs. (A20) represent a
feedforward loop [22]. Solving Eq. (A19), we obtain that

c�α+nα−1(t ) = eλαt c�α+nα−1(0), (A21)

and solving Eqs. (A20), we obtain that

c�α+κ (t ) = eλαt p(α)
κ (t ), (A22)

where

p(α)
κ (t ) =

nα−1−κ∑
β=0

tβ

β!
c�α+κ+β (0) (A23)

is a polynomial of degree nα − 1 − κ and where κ =
0, 1, . . . , nα − 1. Substituting the explicit solution of the co-
efficients c j (t ) in Eq. (A17), we find that

�y†(t ) =
m∑

α=1

eλαt
nα−1∑
κ=0

p(α)
κ (t ) �L†

�α+κ . (A24)

For large t → ∞, the dynamics of �y†(t ) is dominated by
the eigenvalue with the largest real part, say λ1, such that

�y†(t ) = O(eRe[λ1]t t n1−1). (A25)

Hence, the dynamical system is stable if Re[λ1] < 0 and it is
unstable if Re[λ1] > 0.

This proves that �y(t ) is stable if and only if all eigenvalues
of A have negative real parts and it is unstable if and only if
there exists at least one eigenvalue with a positive real part.

APPENDIX B: DIRECTED GRAPHS WITH A PRESCRIBED
DEGREE DISTRIBUTION pKin,Kout

In this Appendix, we define the random, directed graphs
with a prescribed degree distribution pK in,Kout , which we use
throughout this paper. Subsequently, we detail the algorithm
we use to sample graphs from this ensemble.

1. Definition

A random graph G of size n is a random set E ⊂ [n] × [n]
of directed links.

In the present paper, we consider random graphs with a
given prescribed degree distribution pK in,Kout . In this ensemble,
graphs are drawn with probability

Prob(E = e) =
p{K in

j ,Kout
j } j∈[n]

({
kin

j , kout
j

}
j∈[1,n]

)
n
({

kin
j , kout

j

}
j∈[n]

) , (B1)

where p{K in
j ,Kout

j }
j∈[n]

is the probability distribution of a degree

sequence and where n({kin
j , kout

j }
j∈[n]

) is the number of graphs

with a degree sequence {kin
j , kout

j }
j∈[n]

. The probability distri-
bution of a degree sequence is proportional to

p{K in
j ,Kout

j } j∈[1,n]
∼ δ∑n

j=1 kin
j ,
∑n

j=1 kout
j

n∏
j=1

pK in,Kout

(
kin

j , kout
j

)
. (B2)

This model is called the uniform model [38]. It is the con-
figuration model [2,4,37] conditioned on the event that there
are no self-links and multiple edges. However, since in the
configuration model self-links and multiple edges are rare,
the results in this paper apply both to the configurational
model and the uniform model (the local neighborhood of a
randomly selected node is for both models the same in the
limit n → ∞).

2. Algorithm

We detail the algorithm we use in this paper to sample
graphs from the ensemble defined in Sec. B 1. We consider
the specific case of a distribution of the form

pK in,Kout (k, �) = q pdeg(k)pdeg(�) + (1 − q)pdeg(k)δk,�. (B3)

The algorithm we have used to generate random graphs from
this degree distribution consists of the following steps. (1)
We generate a sequence of n i.i.d. variables kin

j from the
distribution pK in . (2) We generate a sample of n i.i.d. Bernoulli
random variables x j ∈ {0, 1}, which take the value x j = 1 with
probability q and x j = 0 with probability 1 − q. (3) If x j = 0,
then we set kout

j = kin
j . (4) We generate a random permutation

ζ on the set of indices j ∈ [1, n] for which x j = 1. (5) If
x j = 1, then we set kout

j = kin
ζ ( j). (6) To each j we associate kin

j

insockets and kout
j outsockets. (7) We randomly connect pairs

of insockets with outsockets by starting with the node with the
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highest total degree kin
j + kout

j and connecting its sockets to
kin

j randomly selected outsockets and kout
j randomly selected

insockets. Two connected sockets create a directed edge. (8)
We do not allow for self-links and we do not allow for multiple
edges. Sometimes step seven in the algorithm fails because
connecting two sockets would create either a self-link or a
multiple edge. In this case, we the algorithm restarts step
seven. (9) We repeat step seven until the algorithm has found
a proper set of edges that defines an oriented simple random
graph.

This algorithm works very well for most of the degree
distributions discussed in this paper, except for power-law
random graphs with a small exponent a, see Sec. V C. This
is because for power-law random graphs it can be difficult
to avoid multiple edges or self-links. Generating graphs with
a power-law degree distribution with a small exponent a
requires more sophisticated algorithms, such as, algorithms
using Markov chains [117,118]. Alternatively, one could
consider the configurational model instead of the uniform
model and allow for self-links and multiple edges. One should
however bare in mind that for power-law random graphs with
small exponent a the configuration model and the uniform
model may not be equivalent anymore because finite size
effects will be significant.

APPENDIX C: ORIENTED RINGS IN RANDOM
AND DIRECTED GRAPHS

An oriented ring graph of length � is a subgraph of size �

that has an adjacency matrix of the form

Ai j =
{

Jiδ j,i+1 i ∈ [� − 1],
J�δ j,1 i = �,

(C1)

where Ji ∈ R.
Oriented ring graphs may contribute stochastic outliers

to the spectra of random graphs with a prescribed degree
distribution pK in,Kout . Here, we first derive explicit expressions
for the eigenvalues of an isolated oriented ring graph, and then
we count the number of oriented ring graphs in random and
directed graphs.

1. Eigenvalues of an oriented ring graph

The eigenvalues λ j of an oriented ring graph are located on
the circle centered at the origin with radius

γ =
⎛
⎝ �∏

j=1

|Jj |
⎞
⎠

1/�

(C2)

and are given by

λ j = γ sign

⎛
⎝ �∏

j=1

Jj

⎞
⎠ ei π

�
( j−1), j ∈ [�]. (C3)

Notice that for simplicity we have used that Aii = 0. If
Aii = −d , then the eigenvalues are located on the circle with
radius γ centered at −d .

2. Number of oriented ring graphs in a random
and directed graph

We count the average number 〈N (�)〉 of oriented ring
graphs of length � located in a random and directed graph with
a prescribed degree distribution.

Before considering the general case, we count the number
of oriented rings in the directed Erdös-Rényi ensemble. For
the directed Erdös-Rényi ensemble, we obtain [119]

〈N (�)〉 = 1

�

( c

n

)�

n(n − 1) . . . (n − � + 1), (C4)

which is the probability of drawing � edges multiplied by the
total number of ordered sequences of � indices. In the limit of
large n,

〈N (�)〉 = c�

�
. (C5)

The expected number of cycles of finite length is for c < 1
given by

〈N〉 =
∞∑

�=2

〈N (�)〉 = − ln(1 − c) − c. (C6)

Consider now a random and directed graph with a pre-
scribed degree distribution pK in,Kout . The distribution of outde-
grees obtained by following a link in a directed graph is given
by

pK in,Kout (k, �)k

c
. (C7)

Hence, the average number of oriented rings of length � is
given by

〈N (�)〉 = 1

�

〈KoutK in〉�
c�

n(n − 1) . . . (n − � + 1) (C8)

and in the limit of large n

〈N (�)〉 = 1

�

〈KoutK in〉�
(cn)�

= 1

�
[c(ρ + 1)]�. (C9)

If ρ = 0, then Eq. (C9) is equivalent to Eq. (C5).
The total expected number of cycles of finite length is for

c(ρ + 1) < 1 given by

〈N〉 =
∞∑

�=2

〈N (�)〉 = − ln[1 − c(ρ + 1)] − c(ρ + 1).

The distribution of N , the number of oriented cycles of
finite length, is a Poisson distribution with mean 〈N〉.

The probability p+ to have at least one cycle of length
larger than 2 is given by

p+ = 1 − e−〈N〉 = 1 − (1 − c(ρ + 1))ec(ρ+1).

Note that p+ → 0 for c(ρ + 1) → 0 and p+ → 1 for c(ρ +
1) → 1. Hence, at the percolation transition of the SCC there
exists with probability one at least one cycle of finite length.

APPENDIX D: THE ALGEBRAIC MULTIPLICITY OF THE
−d-EIGENVALUE IN RANDOM AND DIRECTED GRAPHS

We show that the spectral distribution μ(z) of the adja-
cency matrix A of random and directed graphs, as defined in
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Eq. (3), takes the form

μ(z) = (1 − ssc)δ(z + d ) + ssc μ̃(z), (D1)

where ssc is the relative size of the giant strongly connected
component, see Sec. II C 1, and where μ̃(λ) is the normal-
ized spectral distribution associated with the giant strongly
connected component. Since d only contributes a trivial shift
λ j → λ j − d to all eigenvalues, we can set d = 0 without loss
of generality.

In order to demonstrate Eq. (D1), we use the spectral
theory for sparse, non-Hermitian, random matrices from
Refs. [42,45]. As shown in those references, the spectral
distribution μ(z) of matrices of the form given by Eq. (3) can
be expressed as

μ(z) = 1

π
lim

η→0+
∂z∗

∫
d2g pG(g) [g]21, (D2)

where ∂z∗ = (∂x + i∂y)/2 and where g is a 2 × 2 square matrix
with complex-valued entries. The distribution pG solves the
recursive distributional equation

pG(g) =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)
∫ k∏

j=1

d2g jqin(g j )
∫ �∏

j=1

d2h jqout (h j )δ

[
g − 1

z − iη12 − σ−
∑k

j=1 g jσ+ − σ+
∑�

j=1 h jσ−

]
,

(D3)

where

z =
(

0 z
z∗ 0

)
, 12 =

(
1 0
0 1

)
, (D4)

and

σ− =
(

0 0
1 0

)
, σ+ =

(
0 1
0 0

)
. (D5)

The distributions qout and qin solve the recursive distributional equations

qout (g) =
∞∑

k=0

∞∑
�=0

k pK in,Kout (k, �)

c

∫ k−1∏
j=1

d2g jqin(g j )
∫ �∏

j=1

d2h jqout (h j )δ

[
g − 1

z − iη12 − σ−
∑k−1

j=1 g jσ+ − σ+
∑�

j=1 h jσ−

]

(D6)

and

qin(h) =
∞∑

k=0

∞∑
�=0

� pK in,Kout (k, �)

c

∫ k∏
j=1

d2g jqin(g j )
∫ �−1∏

j=1

d2h jqout (h j )δ

[
h − 1

z − iη12 − σ−
∑k

j=1 g jσ+ − σ+
∑�−1

j=1 h jσ−

]
,

(D7)

respectively.
In order to derive the result (D1), we use the ansatz

qout (g) = b
∫

d2x q̂out (x)δ

[
g −

(
x 1/z∗

1/z 0

)]
+ (1 − b)q̃out (g) (D8)

and

qin(g) = a
∫

d2x q̂in(x)δ

[
g −

(
0 1/z∗

1/z x

)]
+ (1 − a)q̃int (g), (D9)

where a, b ∈ [0, 1], and q̂out (x), q̃out (g), q̂in(x), and q̃in(g) are normalized distributions.
Using the ansatz (D8) and (D9) in the relations (D6) and (D7), we obtain that a and b solve the self-consistent equations (16)

and (17), and the distributions q̂out (x), q̃out (g), q̂in(x), and q̃in(g) solve a set of recursive distributional equations, whose precise
form will not matter.

Using the ansatz (D8) and (D9) in Eq. (D3), we obtain

pG(g) = (1 − swc + st )δ
(
g − z−1

)+ (swc − sin − st )
∫

dx p̂in(x)δ

[
g −

(
x 1/z∗

1/z 0

)]

+(swc − sout − st )
∫

dx p̂out (x)δ

[
g −

(
0 1/z∗

1/z x

)]
+ (sin + sout + st − swc) p̃(g), (D10)

where sin, sout, swc, and st denote the relative sizes of the incomponent, outcomponent, weakly connected component, and tendrils,
respectively (see Sec. II C or Refs. [28,40,41]). The distributions p̂in(x), p̂out (x), and p̃(g) solve a set of recursive distributional
equations that we have omitted because their precise form does not matter here.
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Equations (D2) and (D10), together with the formulas

1

π
∂z∗

1

z
= δ(z) (D11)

and

ssc = sin + sout + st − swc, (D12)

imply the final result (D1), which we aimed to prove in this
Appendix.

APPENDIX E: DERIVATION OF THE RECURSIVE
DISTRIBUTIONAL EQUATIONS FOR pR IN RANDOM

AND DIRECTED GRAPHS WITH A PRESCRIBED
DEGREE DISTRIBUTION pKin,Kout

In this Appendix, we derive the recursive distributional
equations (48) and (49) for the distribution pR of entries
of right eigenvectors in random and directed graphs with a
prescribed degree distribution pK in,Kout . The relations (48) and
(49) apply to the eigenvalues λb located at the boundary of
the continuous part σac of the spectrum and to deterministic
eigenvalue outliers λisol.

The derivations we present are based on the theory of
Ref. [44] that relies on the cavity method [45,50,54–56] (also
known as the objective method in probability theory [56,58]
and belief propagation in computer science [120–122]).

The theory of Ref. [44] builds on two properties of random
and directed graphs with a prescribed degree distribution,
namely, that these random graphs are locally treelike and
oriented. In addition, it uses that eigenvalues λb and λisol are
stable, i.e., insensitive to small matrix perturbations.

In a first section, we clarify what we mean by a matrix
being locally treelike and oriented, and in the second and third
sections, we derive the recursive distributional Eqs. (48) and
(49).

1. Locally treelike
and oriented random matrices

We say that a nondirected graph is a tree if it is connected
and it does not contain cycles, see Ref. [123], and we say
that a matrix is oriented if Ai jA ji = 0 for all pairs i and j.
In the following, we extend these global definitions to local
definitions that apply to sequences of random matrices An,
with n ∈ N.

First we define the concept of local treelikeness. Let An,
with n ∈ N, be a sequence of random matrices and let Cn

be their associated adjacency matrices, i.e., Ck j = 1 when
Ak j �= 0 and Ck j = 0 when Ak j = 0. We also consider the
associated symmetrized adjacency matrices C̃n with entries
C̃jk = max{Cjk,Ck j}, which are the adjacency matrices of
nondirected simple graphs. We define the nondirected �-
neighborhood of a node i as the subgraph of C̃n formed by
the nodes that are separated no more than a distance � from
i. We say that the sequence of random matrices An is locally
treelike if, for each � ∈ N, the nondirected � neighborhood of
a uniformly and randomly selected node in C̃n is in the limit
n → ∞ with probability one a tree, see Ref. [56].

Second, we define local orientedness of a sequence of
random matrices An. We say that the sequence of random

matrices An is locally oriented if, for each � ∈ N, the principal
submatrix of An formed by the nodes in the nondirected �

neighborhood of a uniformly and randomly selected node i
is in the limit n → ∞ with probability one oriented.

2. Recursion relations for pR in locally treelike
and oriented matrices

Let λ be an eigenvalue of the matrix A and let �R be the right
eigenvector associated with λ. Equation (27) implies that

Rj = 1

λ − Aj j

n∑
k=1;k �= j

A jkRk, (E1)

for all j ∈ [n]. Using Eq. (3) and the graph definitions in
Sec. II A, we obtain

Rj = 1

λ + d

∑
k∈∂out

j

J jkRk . (E2)

In general, the random variables Rk are correlated with the
entries Jjk and the degree Kout

j , and therefore, Eq. (E2) is
not useful to derive a selfconsistent distributional equation.
However, if A is a locally treelike and oriented matrix, then
the Rk are statistically independent from the Jjk and Kout

j .
The statistical independence between Rk and Ajk can be

understood from a recursive argument. Let A( j) be the princi-
pal submatrix obtained from A by deleting its jth column and
row, and let �R( j) be the right eigenvector of A( j) associated
with the same eigenvalue λ; hence, λ is an eigenvalue of both
A and A( j). Then, for a locally treelike and oriented matrix it
holds, in the limit n → ∞, that

Rk = R( j)
k , (E3)

for all k ∈ [n] and j ∈ ∂ in
k , where R( j)

k is the kth element of the
right eigenvector �R( j). For a detailed derivation of Eq. (E3),
we refer to the next Appendix F. Importantly, the derivation
of Eq. (E3) in Appendix F relies on the assumption that λ is
either a deterministic eigenvalue outlier λisol or an eigenvalue
λb located at the boundary of the continuous part of the
spectrum.

Equations (E2) and (E3) imply that

R( j)
k = 1

λ + d

∑
�∈∂out

k

Jk�R(k)
� , (E4)

for all k ∈ [n] and j ∈ ∂ in
k . Since we are interested in the

statistics of R, we will also use the relation

Rj = 1

λ + d

∑
k∈∂out

j

J jkR( j)
k , (E5)

which also follows from Eqs. (E2) and (E3).
In the remaining part of this Appendix, we use Eqs. (E4)

and (E5) to derive the recursion relations (48) and (49). We
define the distributions of right eigenvector entries Rj ,

pR(r|A) = 1

n

n∑
j=1

δ(r − Rj ) (E6)
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and the distribution of entries R( j)
k ,

qR(r|A) = 1

c n

n∑
k=1

∑
j∈∂ in

k

δ
(
r − R( j)

k

)
, (E7)

where c is the mean outdegree. The distribution pR(r|A) is
obtained by selecting uniformly at random a node j and ask-
ing what is the corresponding eigenvector entry Rj , whereas
the distribution qR(r|A) is obtained by selecting uniformly at
random an edge j → k and asking what is the eigenvector
entry R( j)

k . Since the model defined in Sec. II A is locally tree-
like, all random variables on the right hand side of Eqs. (E4)
and (E5) are independent. In addition, using that all nodes are
statistically equivalent, we obtain the recursion relations (48)
and (49), which we were meant to derive.

APPENDIX F: RECURSION RELATIONS FOR THE
ENTRIES Rj OF RIGHT EIGENVECTORS

We derive a set of recursion relations for the entries Rj of
the right eigenvectors associated with deterministic outliers
λisol or eigenvalues located at the boundary of the continuous
part of the spectrum σac in locally treelike random matrices in
the limit of infinitely large n. In the special case of locally tree-
like and oriented matrices, see Appendix E 1 for a definition,
we show that Eq. (E3) holds.

In order to clearly show how the assumptions of locally
treelikeness and locally orientedness enter in the theory, we
first derive a set of recursion relations in the entries Rj of a
general matrix A. As we will demonstrate, the relations for
general matrices are not closed and are thus not useful. In
order to close these equations, we make the assumption that A
is locally treelike. Lastly, we show how the recursion relations
simplify when A is also locally treelike and oriented.

1. General matrices

The derivations we present rely on a recursive implemen-
tation of the Schur formula to the resolvent of A.

The resolvent of A is defined by

GA(z) = 1

A − z 1n
, z ∈ C \ {λ1, λ2, . . . , λn}, (F1)

with 1n the identity matrix of size n. In the limit of n → ∞,
the resolvent GA(z) only exists for values z /∈ σac.

Let λ be a nondegenerate eigenvalue, and let �R and �L be
a corresponding left and right eigenvector. We assume that
there exists a path in the complex plane that reaches λ and
along which GA(λ − η) exists. In addition, we assume that
λ is a stable eigenvalue of A, i.e., we assume that if λ is an
eigenvalue of A, then λ is also an eigenvalue of the principal
submatrix A( j), which we obtain from A by deleting the jth
row and column. Hence, λ is either a deterministic eigenvalue
outlier or is located at the boundary of the continuous part of
the spectrum σac.

Since there exists a path that reaches λ and along which
GA(λ − η) exists, we can write

lim
η→0

ηGA(λ − η) = �R �L† + O(|η|). (F2)

Note that relation (F2) also holds when the matrix A is
not diagonalizable since we can decompose GA(λ) in a
biorthonormal system of generalized left and right eigen-
vectors, analogous to the decomposition of A in Eq. (A16).
Eq. (F2) implies that the components Rj of �R are given by

Rj = �e j · �R = lim
η→0

η

∑n
�=1 Gj�(λ − η)

�L · �1 , (F3)

where Gj�(λ − η) = [GA(λ)] j�, �1 is the column vector with
all components equal to one, and �e j is the column vector with
all components equal to zero, except for the jth component,
which is equal to one.

To compute the elements Gj�(λ) of the resolvent matrix,
we use the Schur formula, which is a common tool in random
matrix theory (see, for instance, Sec. 2.4.3 in Ref. [124] and
also Refs. [56,70,125]). Let(

a b
c d

)
(F4)

be a block matrix, then

sa := d − ca−1b (F5)

is the Schur complement of block a, and

sd := a − bd−1c (F6)

is the Schur complement of block d. If a and its Schur-
complement sa are invertible matrices, then the following
block inversion formula holds:(

a b
c d

)−1

=
(

s−1
d −s−1

d bd−1

−d−1c s−1
d s−1

a

)
, (F7)

which we call the Schur formula.
We use the Schur formula to derive recursion relations for

the elements of the resolvent GA and eventually Eqs. (E4) and
(E5). Applying the Schur formula to the off-diagonal elements
Gj� of the resolvent, we obtain

Gj� = −Gj j

n∑
k=1;(k �= j)

AjkG( j)
k�

, (F8)

where

G( j)
k�

= [GA( j) ]k� (F9)

GA( j) = (
A( j)

n−1 − λ1n−1
)−1

. (F10)

Summing over the index �, we obtain

n∑
�=1

Gj� = Gj j

⎛
⎝1 −

n∑
k=1;(k �= j)

Ajk

n∑
�=1;(� �= j)

G( j)
k�

⎞
⎠. (F11)

Finally, using Eq. (F3), we find

Rj = lim
η→0

η
Gj j

�L · �1 − Gj j

n∑
k=1;(k �= j)

Ajk lim
η→0

η

∑n
�=1;(� �= j) G( j)

k�

�L · �1
+ O(|η|). (F12)

The first term can be neglected with respect to the second term
as it is a factor O(1/n) smaller, and in the second term, we
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identify

R( j)
k = lim

η→0
η

∑n
�=1;(� �= j) G( j)

k�

�L( j) · �1 , (F13)

where we have used that �L · �1 ≈ �L( j) · �1 for large enough n.
Hence, we obtain the relation

Rj = −Gj j (λ − η)
n∑

k=1;(k �= j)

AjkR( j)
k . (F14)

We can repeat the above line of reasoning to obtain a
recursion relation for the entries R( j)

k of the right eigenvector
�R( j) associated with the eigenvalue λ of A( j). We obtain then
that

R( j)
k = −G( j)

kk (λ − η)
n∑

�=1;� �= j,k

Ak�R( j),(k)
� , (F15)

where R( j),(k)
� is the �th entry of the right eigenvector �R( j),(k)

associated with the eigenvalue λ of the principal submatrix
A( j),(k). The principal submatrix A( j),(k) is obtained from A by
removing both the jth and kth rows and columns.

In order to obtain an expression for the diagonal elements
Gkk and G( j)

kk that appear in the recursion Eqs. (F14) and (F15),
we use again the Schur formula (F7). We obtain that

Gj j (z) = 1

−z + Aj j −∑n
k,k′=1(k,k′ �= j) AjkG( j)

kk′ (z)Ak j

(F16)

and

G( j)
kk (z) = 1

−z + Akk −∑n
�,�′=1(�,�′ �=k, j) Aj�G( j,k)

��′ (z)A�′ j

, (F17)

for all z /∈ σac.
It is insightful to rewrite these equations using the notation

Ajk = −Djδ j,k + (1 − δ j,k )JjkCjk (F18)

where Cjk ∈ {0, 1} is the adjacency matrix denoting whether
Ak j �= 0 (Ck j = 1) or Ak j = 0 (Ck j = 0).

Equations (F14) and (F15) read then

Rj = −Gj j (λ − η)
∑

k∈∂out
j

J jkR( j)
k (F19)

and

R( j)
k = −G( j)

kk (λ − η)
∑

�∈∂out
k \{ j}

Jk�R( j),(k)
� , (F20)

where j ∈ ∂ in
k , and Eqs. (F16) and (F17) read

Gj j = 1

−z − Dj −∑
k∈∂out

j ,k′∈∂ in
j

J jkG( j)
kk′Jk′ j

(F21)

and

G( j)
kk = 1

−z − Dk −∑
�∈∂out

k \{ j}
∑

�′∈∂ in
k \{ j} Jk�G( j),(k)

��′ J�′k
. (F22)

The recursion Eqs. (F19) and (F22) hold for general ma-
trices A. However, they do not form a closed set of equations
and are thus not useful. In order to close this set of recursion

relations, we make the assumption that the matrices A are
locally treelike.

2. Locally treelike matrices

We show how the set of recursion Eqs. (F19)–(F22) sim-
plify for random matrices A that are locally treelike.

For matrices that are locally treelike, it holds that

R( j),(k)
� = R(k)

� , (F23)

for all � ∈ [n], k ∈ ∂ in
� and j ∈ ∂ in

k . This is because � and j
belong to disjoint trees of the forest represented by the matrix
A(k). As a consequence, Eqs. (F20) simplify into

R( j)
k = −G( j)

kk (λ − η)
∑

�∈∂out
k \{ j}

Jk�R(k)
� , (F24)

for all k ∈ [n] and j ∈ ∂ in
k .

The resolvent Eqs. (F21) and (F22) also simplify because
for locally treelike graphs it holds that

G( j)
kk′ = 0 (F25)

for all k ∈ ∂out
j and k ∈ ∂ in

j , and

G( j),(k)
�� = G(k)

�� (F26)

for all � ∈ [n], k ∈ ∂� and j ∈ ∂k \ {�}.
The relations (F25) and (F26) follow from the fact that for

values z /∈ σac, we can develop the series expansion

GAn (z) = −1

z

∞∑
m=0

Am

zm
, (F27)

and hence

Gjk (z) := [GAn (z)] jk = −1

z

∞∑
m=0

[Am] jk

zm
. (F28)

Equation (F25) follows now from Eq. (F28) and the fact
that for locally treelike matrices it holds that

[(A( j) )m]kk′ = 0 (F29)

for all k ∈ ∂out
j , k′ ∈ ∂ in

j , and m ∈ N, since k ∈ ∂out
j and k′ ∈

∂ in
j belong to disjoint trees of the forest represented by the

adjacency matrix A( j), and hence there exists no path of finite
length that connects k to k′.

Equation (F26) on the other hand, follows from Eq. (F28)
and the fact that

[(A( j),(k) )m]�� = [(A(k) )m]�� (F30)

for all � ∈ [n], k ∈ ∂�, j ∈ ∂k \ {�} and m ∈ N, since j and �

belong to disconnected trees of the forest represented by A(k).
Using Eqs. (F25) and (F26) in Eqs. (F21) and (F22), we

obtain [44,45]

Gj j = 1

−z − Dj −∑
k∈∂out

j
J jkG( j)

kk Jk j

(F31)

and

G( j)
kk = 1

−z − Dk −∑
�∈∂out

k \{ j} Jk�G(k)
�� J�k

. (F32)
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Note that for symmetric random matrices, Eqs. (F31) and
(F32) are equivalent to the recursion relations for the diagonal
elements of the resolvent derived in Refs. [42,77,78].

Equations (F19), (F24), (F31), and (F32) form a closed
set of recursion relations. They can either be solved on a
given graph instance or we can solve these equations in a
distributional sense for a random graph ensemble. In either
case, we obtain information about the statistics of Rj .

3. Locally treelike and oriented matrices

For random matrices that are locally treelike and oriented,
we can use in Eqs. (F31) and (F32) that

JjkJk j = 0. (F33)

As a consequence, we obtain the explicit expressions

Gj j = 1

−z − Dj
(F34)

and

G( j)
kk = 1

−z − Dk
. (F35)

Substituting Eqs. (F34) and (F35) into Eqs. (F19) and (F24),
we obtain

Rj = 1

λ + Dj

∑
k∈∂out

j

J jkR( j)
k (F36)

and

R( j)
k = 1

λ + Dk

∑
�∈∂out

k \{ j}
Jk�R(k)

� . (F37)

From Eqs. (F36) and (F37), we observe that

Rk = R( j)
k (F38)

for all k ∈ [n] and j ∈ ∂ in
k , since then j /∈ ∂out

k and thus the
right-hand side of Eqs. (F36) and (F37) are identical.

This concludes the derivation of Eq. (E3), which we were
meant to show.

APPENDIX G: NORMALIZABLE SOLUTIONS TO THE
RECURSIVE DISTRIBUTIONAL EQS. (48) AND (49) FOR pR

In this Appendix, we derive analytical results for λb ∈ ∂σac,
and λisol by identifying values of λ for which Eqs. (48) and
(49) admit a normalizable solution.

Since Eqs. (48) and (49) are linear distributional equations,
we can derive a set of fixed-point equations for the lower-order
moments of R and L. In order to distinguish averages with
respect to pR with those with respect to qR, we introduce the
notation

〈 f (R)〉 =
∫

d2r pR(r) f (r) (G1)

and

〈 f (R)〉q =
∫

d2r qR(r) f (r), (G2)

where f is an arbitrary function. From Eq. (49), we obtain that

〈R〉q = 〈K inKout〉
c(λ + d )

〈J〉〈R〉q, (G3)

〈R2〉q = 〈K inKout〉
c(λ + d )2

〈J2〉〈R2〉q

+〈K inKout (Kout − 1)〉
c(λ + d )2

〈J〉2〈R〉2
q, (G4)

〈|R|2〉q = 〈K inKout〉
c|λ + d|2 〈|J|2〉〈|R|2〉q

+〈K inKout (Kout − 1)〉
c|λ + d|2 |〈J〉|2|〈R〉q|2, (G5)

and from Eq. (48), we obtain

〈R〉 = c

λ + d
〈J〉〈R〉q, (G6)

〈R2〉 = c

(λ + d )2
〈J2〉〈R2〉q

+〈(Kout
)2〉 − c

(λ + d )2
〈J〉2〈R〉2

q, (G7)

〈|R|2〉 = c

|λ + d|2 〈|J|2〉〈|R|2〉q

+〈(Kout
)2〉 − c

|λ + d|2 |〈J〉|2|〈R〉q|2. (G8)

Equations (G3)–(G8) admit three kind of solutions. The
first type of solution is obtained when 〈R〉q �= 0. We denote
this solution by λ = λisol and R = Risol since it identifies the
outliers of the random matrix ensemble. In this case, Eq. (G3)
implies that

〈K inKout〉
c(λisol + d )

〈J〉 = 1, (G9)

which gives the result Eq. (57) for the outlier eigenvalue.
Since λisol ∈ R, it holds that Risol ∈ R. Consequently, we
obtain Eq. (58) for 〈Risol〉 by solving Eqs. (G3)–(G8) at λ =
λisol.

The second type of solution is obtained when 〈R〉q = 0 and
λ /∈ R. We denote this solution as λ = λb and R = Rb. Solving
Eq. (G5), we obtain the relation

〈K inKout〉
c|λb + d|2 〈|J|2〉 = 1, (G10)

which leads to Eq. (53), if we use the degree correlation
coefficient ρ as defined in (13). In this case, Rb is a complex
random variable and its first two moments are zero.

The third type of solution is obtained when 〈R〉q = 0 and
λ ∈ R, and we denote this solution also by λ = λb and R =
Rb. Solving Eq. (G3), we obtain

〈K inKout〉
c(λb + d )2

〈|J|2〉 = 1. (G11)

For this solution, we have that 〈Rb〉 = 0, but the value of
〈R2

b〉 �= 0 depends on the normalization of Rb.
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APPENDIX H: FRACTION OF ZERO-VALUED ENTRIES
IN RIGHT EIGENVECTORS OF DIRECTED

RANDOM GRAPHS

We analyze how the topology of random and directed
graphs, in the sense of connected components as discussed
in Sec. II C and illustrated in Fig. 1, affects the distribution
pR(r). In particular, we show that for the right eigenvectors of
random, directed graphs it holds that

pR = (1 − sout )δ(r) + sout p̃R(r), (H1)

where sout is the relative size of the OUT component.
Using the ansatz

qR(r) = bδ(r) + (1 − b)q̃R(r). (H2)

in Eq. (49), we obtain that b solves Eq. (17) and

q̃R(r) =
∞∑

k=0

∞∑
�=0

pK in,Kout (k, �)
k

c

×
�∑

m=1

b�−m

(
�

m

)∫ m∏
j=1

d2r j q̃R(r j )

×
∫ m∏

j=1

dx j pJ (x j )δ

[
r −

∑m
j=1 x jr j

λ + d

]
. (H3)

Furthermore, using (H2) in (48), we obtain Eq. (H1).
Note that analogously, for the distribution pL of entries of

left eigenvectors, it holds that

pL(l ) = (1 − sin )δ(l ) + sin p̃L(l ), (H4)

with sin the relative size of the IN component of the underlying
graph.

APPENDIX I: MATHEMATICAL DERIVATIONS FOR
RANDOM MATRICES WITH DIAGONAL DISORDER AND
NONDIRECTED GRAPHS WITH RANDOM COUPLINGS

We derive recursions relations for the distribution pR in
the case of random matrices with diagonal disorder [the
model defined in Eq. (104)] and for random matrices defined
on random, nondirected graphs with random couplings [the
model defined in Eq. (110)]. For the first model, we obtain
also compact expressions for the values of λ for which the
recursion relations admit a normalizable solution for pR.

1. Random matrices with diagonal disorder

First, we derive the recursion Eqs. (106) and (107) for the
random matrix model Eq. (104) with diagonal elements Dj

drawn from a distribution pD. Using Eqs. (F36) and (F37)
for the eigenvector elements Rj and R( j)

k , and the fact that
for the locally treelike random matrices defined in Eq. (104)
all random variables on the right-hand side of Eqs. (F36)
and (F37) are independent, we readily obtain the recursion
Eqs. (106) and (107), with pR and qR as defined in Eqs. (E6)
and (E7).

Second, we determine the values of λ for which the recur-
sion Eqs. (106) and (107) admit normalizable solutions, which
provide us with the deterministic outlier eigenvalues λisol and

the eigenvalues λb at the boundary of the continuous part of
the spectrum. To this aim, we use Eqs. (106) to derive the set
of self-consistent equations

〈R〉q = 〈K inKout〉
c

〈
1

λ − D

〉
〈J〉〈R〉q, (I1)

〈R2〉q = 〈K inKout〉
c

〈
1

(λ − D)2

〉
〈J2〉〈R2〉q

+
〈 〈K inKout (Kout − 1)〉

c(λ − D)2

〉
〈J〉2〈R〉2

q,

〈|R|2〉q = 〈K inKout〉
c

〈
1

|λ − D|2
〉
〈|J|2〉〈|R|2〉q

+
〈 〈K inKout (Kout − 1)〉

c(λ − D)2

〉
|〈J〉|2|〈R〉|2q, (I2)

in the lower order moments of qR. Solving Eq. (I1) for 〈R〉q �=
0, we obtain Eq. (109) for the eigenvalue outliers λ = λisol

of the random matrix ensemble. On the other hand, setting
〈R〉q = 0 in Eq. (I2), ew obtain Eq. (108) for the eigenvalues
λ = λb located at the boundary ∂σac of the continuous part σac

of the spectrum.
The moments of the distribution pR of right eigenvector

entries associated with either λ = λisol or λ = λb solve the
self-consistent equations

〈R〉 =
〈

c

λ + D

〉
〈J〉〈R〉q, (I3)

〈R2〉 =
〈

c

(λ + D)2

〉
〈J2〉〈R2〉q

+ [〈(Kout )2〉 − c]

〈
1

(λ + D)2

〉
〈J〉2〈R〉2

q, (I4)

〈|R|2〉 =
〈

c

|λ + D|2
〉
〈|J|2〉〈|R|2〉q

+ [〈(Kout )2〉 − c]

〈
1

|λ + D|2
〉
|〈J〉|2|〈R〉q|2. (I5)

Note that Eqs. (I3)–I4 generalize Eqs. (G6)–(G8) for the
case of constant D = d .

2. Undirected graphs with random couplings

We derive the recursion Eqs. (117) and (116) for the ran-
dom matrix model Eq. (110). Random matrices in this model
are locally treelike, and therefore, we can use Eqs. (F19),
(F24), (F31), and (F32) derived in Appendix F 2. In order to
obtain a set of recursive distribution equations, we define the
joint distributions

pR,G(r, g|A) = 1

n

n∑
j=1

δ(r − Rj )δ(g − Gj ) (I6)
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and

qR,G(r, g|A) = 1

c n

n∑
k=1

∑
j∈∂k

δ
(
r − R( j)

k

)
δ
(
g − G( j)

k

)
, (I7)

where ∂k is the neighborhood of node k, as defined in Eq. (9).
Since A is locally treelike, the random variables on the
right-hand side of Eqs. (F19), (F24), (F31) and (F32) are
independent, and we readily obtain the recursive distributional
Eqs. (116) and (117).
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