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ABSTRACT 

 
Proper mining requires correct decisions on each block destination, i.e. an extracted block should go to the mill or to 
the waste dump. To help this decision, short term mine planning requires further sampling to reduce prediction 
uncertainty. Commonly the practice of estimation keeps only hard data, i.e., data considered precise and accurate 
verified by a quality control program. In a worst case scenario practitioners combine these hard data with soft data 
that are imprecise and in some circumstances biased. In this paper, direct sequential cosimulation is used to integrate 
secondary imprecise, biased data (soft data) into short term mine planning to update grades block model. Direct 
sequential cosimulation models are used to assess the uncertainty and using hard data against the model derived from 
using both hard and soft data, the last standardized to filter the bias. The results show the benefit of incorporating soft 
data after its bias correction. A case study illustrates the method. 
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1- INTRODUCTION 
 

Sampling is a continuous process along the life of the mine. Uncertainty in mine planning can be reduced by 
adding more samples. Frequently, sampling methods produce samples derived from distinct methods with different 
quality and quantity of samples. During exploration sampling is carried out by diamond drill cores (more common), 
which are expensive and known to produce accurate and precise results. At this stage, there are few data with high 
quality and they are herein referred as hard data. 

Later during quasi mining more samples are available. Frequently these samples may have been collected along 
several campaigns, prepared using different protocols or analyzed at different laboratories. In General these 
informations do not have the same quality, therefore, they constitute different statistical populations. At this late stage 
there are many data with poor quality if compared to diamond drill cores. These samples are named soft data. 
The idea here is evaluate uncertainty reduction and the benefits in enhancing resource classification of resources 
compared to the results using only hard data, accessing error by stochastic simulation and cosimulations. The results 
from different methodologies were checked considering precision for the different produced model. 
 

2- METHODOLOGY 
 

Three methods were chosen to evaluate the uncertainty of block grades given imprecise and biased soft data 
combined with hard data, namely: Direct sequential simulation (Soares, 2001) (DSS) using only hard data; Direct 
sequential simulation (DSS) with hard and soft data with bias and imprecision correction; Direct Sequential 
Cosimulation (CoDSS) with hard and soft data.  

The main advantage of the proposed algorithm (DSS) is that it allows the simulaton/cosimulation without 
calling for any transformation of the original variables. The idea is to use the simple kriging estimated local mean and 
variance, not to define the local cdf but to sample from the global cdf.  
 
2.1- Direct Sequential Simulation 
 

Let us consider the continuous variable Z(x) with a global cdf Fz(z) = prob{Z(x) < z} and stationary variogram 
γ (h).The intention is to reproduce both Fz(z) and γ (h) in the final simulated maps. 
 
 The direct sequential simulation algorithm of a continuous variable follows the classical methodological 
sequence: 
 
1. Define a random path over the entire grid of nodes xu, u = 1, Ns, to be simulated. 
2. Estimate the local mean and variance of z(xu), identified, respectively, with the simple kriging estimate z(xu)* and 
estimation variance 𝝈𝝈𝑺𝑺𝑺𝑺𝟐𝟐  (xu) conditioned to the experimental data z (xi) and previous simulated values zs

 (xi). 
3. Define the interval of Fz(z) to be sampled, by using the Gaussian cdf: 

 
G (y (xu)*, 𝝈𝝈𝑺𝑺𝑺𝑺𝟐𝟐  (xu)), where (𝝋𝝋𝟏𝟏(z (xu)*). 

  
4. Draw a value zs

 (xu) from the cdf Fz(z). 
• Generate a value p from a uniform distribution U (0, 1); 
• Generate a value 𝑦𝑦𝑠𝑠  from G (y (xu)*, 𝜎𝜎𝑆𝑆𝑆𝑆2  (xu)): 𝑦𝑦𝑠𝑠 = 𝐺𝐺−1 (y (xu)*, 𝜎𝜎𝑆𝑆𝑆𝑆2  (xu), p); 
• Return the simulated value 𝑧𝑧𝑙𝑙𝑠𝑠(xu) = 𝜑𝜑1

−1 (𝑦𝑦𝑠𝑠). 
5. Loop until all Ns nodes have been visited and simulated. 

 
2.2- Direct Sequential Cosimulation 
 

Instead of simulating Nv variables simultaneously, each variable is simulated in turn conditioned to the 
previously simulated variable (Gomez-Hernandez, Jaime and Journel, 1993; Goovaerts, 1997). Suppose just two 
variables, Z1(x) and Z2(x). Choosing the primary variable, say Z1(x), as the most important or with a more evident 
spatial continuity (Almeida & Journel, 1994), the joint simulation algorithm is described in detail as follows: 
 
1. Define a random path visiting each node of a regular grid of nodes.  
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2. At each node xu Simulate the value 𝑥𝑥𝑙𝑙
𝑠𝑠(xu) using the DSS algorithm described in step 2 above: 

• Identify the local mean and variance of z1 (xu) as the SK estimate and estimation variance z1 (xu)* and 𝜎𝜎𝑆𝑆𝑆𝑆
2  (xu); 

calculate y (xu)* = 𝜑𝜑1(z (xu)*), 𝜑𝜑1 being the normal score transform of the primary variable z1 (x); 
• Generate a value p from a uniform distribution U (0, 1); 
• Generate a value 𝑦𝑦𝑠𝑠  from G (y (xu)*, 𝜎𝜎𝑆𝑆𝑆𝑆

2  (xu)): 𝑦𝑦𝑠𝑠 = 𝐺𝐺−1 (y (xu)*, 𝜎𝜎𝑆𝑆𝑆𝑆
2  (xu), p); 

• Return the simulated value 𝑧𝑧𝑙𝑙
𝑠𝑠(xu) = 𝜑𝜑1

−1 (𝑦𝑦𝑠𝑠) of the primary variable. 
 

The same DSS algorithm is applied to simulate Z2(x) assuming the previously simulated Z1(x) as the 
secondary variable. Colocated simple cokriging is used to calculate z2(x)* and 𝜎𝜎𝑆𝑆𝑆𝑆

2  (xu) conditioned to neighborhood 
data z2(xα)* and the colocated datum z1 (xu) (Goovaerts, 1997): 
 

𝑍𝑍2(𝑥𝑥𝑢𝑢)𝑆𝑆𝑆𝑆𝑆𝑆=
∗ ∑ 𝜆𝜆𝛼𝛼

𝑁𝑁
𝛼𝛼=1 (𝑥𝑥𝑢𝑢)[𝑧𝑧2(𝑥𝑥𝛼𝛼) − 𝑚𝑚2] + 𝜆𝜆𝛽𝛽(𝑥𝑥𝑢𝑢)[𝑧𝑧1(𝑥𝑥𝑢𝑢) − 𝑚𝑚1] + 𝑚𝑚2       (1) 

 
• Transform y (xu)* = 𝜑𝜑2(z2(xu)*). 𝜑𝜑2 is the normal score transform of the Z2(x) variable. 
• Generate a value p from a uniform distribution U (0, 1); 
• Generate a value 𝑦𝑦𝑠𝑠  from G (y2 (xu)*, 𝜎𝜎𝑆𝑆𝑆𝑆

2  (xu)): 𝑦𝑦𝑠𝑠 = 𝐺𝐺−1 (y2 (xu)*, 𝜎𝜎𝑆𝑆𝑆𝑆
2  (xu), p); 

• Return the simulated value 𝑧𝑧2
𝑠𝑠 (xu) = 𝜑𝜑2

−1(𝑦𝑦𝑠𝑠 ) of the secondary variable. 
3. Loop until all nodes are simulated. 
 

2.3- Standardized data: Proposal for filtering the bias and imprecision error in soft data 
 

From geostatistical view this difference in precision and accuracy data has to be considered for integrating 
the two data types.  

For building the model, where the hard and soft data were pooled together, it was used a correction factor to 
correct the mentioned bias in secondary (soft) data. This workflow can be used for situations where hard and soft data 
are strongly correlated. Innitally, soft data (𝑍𝑍2(𝑢𝑢𝛼𝛼2)) are standardized (Equation 2) using the mean (𝑚𝑚2) and the 
standard deviation (𝜎𝜎2) of the soft data. The transformation using Equation 2 leads to a zero mean and an unity standard 
deviation in the transformed data.(Minnitt & Deutsch, 2014)  

𝑍𝑍2(𝑢𝑢𝛼𝛼2)∗ =[𝑍𝑍2(𝑢𝑢𝛼𝛼2)−𝑚𝑚2]
𝜎𝜎2

 (𝟐𝟐) 

 
Next, the soft standardized data 𝑍𝑍2(𝑢𝑢𝛼𝛼2)∗ are rescaled to match the hard data statistics (Equation 3) using 

their mean (𝑚𝑚1) and standard deviation (𝜎𝜎1). Thus, the mean for the hard and soft data would now match. 
𝑍𝑍2(𝑢𝑢𝛼𝛼2)𝑇𝑇

∗ = 𝑍𝑍2(𝑢𝑢𝛼𝛼2)∗*𝜎𝜎1 + 𝑚𝑚1 (𝟑𝟑) 
 

It is important to evaluate the data, when was created the variable “soft data with bias correction” (global 
correction), does not guarantee that the corrected values are within the limits "realistic"(positive values). For example, 
if the distribution content starts at zero, the corrected values may theoretically be negative.  

 

3- CASE STUDY 
 

3.1- Data Presentation 
 

This study uses the exhaustive Walker Lake dataset (Isaaks & Srivastava, 1989) with 78 000 point support 
samples distributed regularly at 1 × 1 m (V_Ref_Points),. The variable V was used and the original unit was rescaled 
so that it resembled grades from a copper mineral deposit. To obtain the reference block grade distribution 
(V_Ref_blocks), the exhaustive point support dataset was averaged into 3120 blocks of size 5 × 5 m. These blocks 
represent the true block grades and were used for comparison. 
 

In this case study, the data set was adapted (Araujo, 2015) from the original ones. Two types of data were 
considered. First, point samples were obtained regularly spaced at 20 × 20 m (V_20x20). These samples were precise 
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and accurate and mimick diamond drillhole samples (hard data). Next soft data (secondary samples) were obtained 
sampling the exhaustive dataset at a of 5 × 5 m regular grid where imprecision and bias were added. Note that the 
direct cosimulation was performed, assuming soft data are known every node of the grid (collocated cosimulation) 
For this, ordinary kriging was carried out in order to obtain exhaustive soft data (V_5X5_+25%_Exhaustive). Figure 
1 shows the regularly spaced samples used in this case study. 

 

 
 

Figure 1- Data set with regular spaced samples 

 
Table 1 shows the summary statistics for the reference point support dataset (V_Ref_points), the reference 

block grade distribution (V_Ref_blocks), and the sample dataset with accurate and precise data (V_20×20). The 
sample datasets have their mean values very close to the true mean, which indicates that there were no biases or 
imprecision. The data with bias and imprecision (V_5×5_+25% and V_5X5_+25%_Exhaustive) has a mean and 
standard deviation 25% greater than those of the reference point distribution (V_Real_points) to mimic the situation 
in which poor-quality data induce biases that are subsequently transferred to the grade estimation process. 

 
Table 1- Summary statistics for the original reference and for the biased and imprecise soft data 

Data Nº of 
samples 

Mean Standard 
Deviation 

CV Minimum Maximum 

V_Ref_points 78000 2.78 2.50 0.90 0.00 16.31 
V_Ref_blocks 3120 2.78 2.49 0.89 0.00 15.68 

V_20X20 195 2.73 2.43 0.89 0.00 10.13 
V_5X5_+25% 2925 3.44 3.12 0.90 0.00 18.30 

V_5X5_+25%_Exhaustive 78000 3.44 3.12 0.90 0.00 18.30 
 

Figure 2 shows the cross correlogram between hard data and soft data. The samples present moderated 
correlation (0.60). This moderate correlation can be caused by different sampling techniques or by distinct preparation 
protocols, which lead to possible measurement errors formed by laboratory analytical error plus the sum of all other 
sampling preparation errors. 
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Figure 2- Omnidirectional cross correlogram for hard data and soft data 

 

Equation 4 shows the variogram used for simulating using the different methodologies: Direct sequential 
simulation and Direct sequential cosimulation. In the cosimulation, for simplicity, the collocated cokriging was 
applied with the Markov-type approximation (Goovaerts, 1997), i.e., only the hard data variogram and the correlation 
coefficient between hard  and soft data is needed. For the spatial continuity, the major direction was defined as 157.5º, 
the minor direction as 67.5º and a spherical (Sph) variogram model. For each methodology, 50 realizations were 
simulated. 

 

𝐕𝐕(𝐡𝐡) = 𝟏𝟏. 𝟎𝟎 + 𝟐𝟐. 𝟎𝟎 ∙ 𝐒𝐒𝐒𝐒𝐒𝐒(𝟏𝟏) ∙ (𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍.𝟓𝟓𝟓𝟓
𝟑𝟑𝟑𝟑 𝐦𝐦 , 𝐍𝐍𝐍𝐍𝐍𝐍.𝟓𝟓𝟓𝟓

𝟏𝟏𝟏𝟏 𝐦𝐦 ) + 𝟐𝟐. 𝟗𝟗𝟗𝟗 ∙ 𝐒𝐒𝐒𝐒𝐒𝐒(𝟐𝟐) ∙ (𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍.𝟓𝟓𝟓𝟓
𝟖𝟖𝟖𝟖 𝐦𝐦 , 𝐍𝐍𝐍𝐍𝐍𝐍.𝟓𝟓𝟓𝟓

𝟒𝟒𝟒𝟒𝟒𝟒 )     (4) 

 

4- RESULTS AND DISCUSSION 
 

4.1 Validation 
 

In Figure 3 the black line represents the declustered hard data (V_20X20) cumulative histogram and the red 
lines are the realization histograms. Figure 3a shows the histograms of Direct sequential simulation with only hard 
data whilst figure 3b the histograms of Direct sequential simulation with hard and soft data with bias correction. The 
plots show good statistics reproduction. Figure 3c shows histogram reproduction for Direct sequential cosimulation 
with hard and soft data. The results depart from the hard data statistics when soft data was used with their error 
embedded. The difference is more evident around the upper quartile (Q3), where cumulative probabilities are 
overestimated when compared against situations a and b. In this last case, the bias and imprecision were transferred 
to realizations. 
 

a) b) 

  



MINERAL EXPLORATION |  85

c) 

 
 
Figure 3- Histogram of simulated models compared against the hard data histogram a) Direct Sequential Simulation 
with only hard data b) Direct Sequential Simulation with hard and soft data with bias correction c) Direct Sequential 

Cosimulation with hard and soft data 

 
Figure 4 shows the variograms reproduction by the models. Red line represent the input variogram model 

(V_20X20) and green lines the ones derived from the realizations at the major and minor directions.  
 

a)  

  
b)  

  
c)  
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Figure 4- Variograms reproduction by the various models) Direct Sequential Simulation with only hard data b) 
Direct Sequential Simulation with hard and soft data with bias correction c) Direct Sequential Cosimulation with 

hard and soft data  

 

 For evaluating the correlation reproduction between hard and soft data by cosimulated models figure 5 shows 
the scatterplot between realization_4 and realization_20 obtained by direct cosimulation using both hard and soft data 
versus the reference block model, the correlation coefficient is 0.58, which is close to correlation between hard and 
soft data. 

 

a) b) 

 
 

 

 

Figure 5-Scatterplot of the point simulated grid in Direct sequential cosimulation with hard and soft data a) 
Realization_4 and b) Realization_20 versus point references of soft data (ρ = 0.60). This is plotted point simulated 

grid versus point references 

 

. 4.2-Reducing block misclassification 

The simulations and reference model were reblocked into 5x5 m blocks (Table 1). To calculate the real 
error (equation 5) it was used the E-type model and the reference block model [V_ (Ref_blocks)] which represents 
the true block values. 
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
[𝐸𝐸_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉Ref_blocks]

𝐸𝐸 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
(𝟓𝟓) 

 

Figure 6 shows real error when the methodologies are compared. For Direct cosimulation with hard and soft 
data (brow line) the error is lower, it means,more precise when compared against Direct simulation using only hard 
data (blue line). Direct sequential simulation model with hard and soft data with bias correction (yellow line), has 
more blocks with less error and it is more precise. In this methodology, when the soft data was corrected using the 
bias and imprecise error, , more data was used to conditioning the realizations and the results tend to be closer to the 
reference block model, increasing influence of the soft data in the realizations. 

 
 

Figure 6- Real error in block using the reference block model for comparison between the methodologies a) 
Direct Sequential Simulation with only hard data b) Direct Sequential Simulation with hard and soft data 

with bias correction c) Direct Sequential Cosimulation with hard and soft data 
 

Equation 6 shows how error was obtained using the interquartile range and E-type from the 
simulations at blocks 5x5 meters (other approach of the error in Li, Dimitrakopoulos, Scott, & Dunn, 2004, 
for instance): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶=(𝑄𝑄95−𝑄𝑄5)/2
𝐸𝐸−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (𝟔𝟔) 

 
where the interquartile range 𝑄𝑄𝑅𝑅=(𝑄𝑄95 − 𝑄𝑄5)/2, measures spread of the block values and E-type 
approximates the estimated value for  the block. 
  

Figure 7 shows the calculated block error used as a criterion to classify the blocks with uncertainty 
within 10% to 90% interval. In the Direct Sequential Simulation considering only hard data, all the blocks 
had uncertainty larger than 30%, due to the few and sparse data. In the Cosimulation, the results were better 
if compared to Direct Sequential Simulation using only hard data, as the correlation between hard and soft 
data is moderate. Using Direct sequential simulation with hard and soft data with bias correction, and 
considered as hard data afterwards, improved the results and decreased the uncertainty at every block. 
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Figure 7- Calculated error of block using the reference block model for comparison between the 
methodologies a) Direct Sequential Simulation with only hard data b) Direct Sequential Simulation with 

hard and soft data with bias correction c) Direct Sequential Cosimulation with hard and soft data 

5- CONCLUSION 
 

Direct sequential simulation and Cosimulation presented in this case study use the original variable without 
requiring any priory or posterior transformation. In general, these algorithms showed a good reproduction of univariate 
and bivariate statistics and spatial continuity model of the data. 

In the case of using few hard data (precise and accurate) withr Direct sequential simulation there is a clear loss of 
precision in the derived model. 

 
For using soft (imprecise and inaccurate) data integrated with hard data it was proposed two methodologies: Direct 
sequential collocated cosimulation combining either hard and soft data. Hard and Soft data exhibit moderate 
correlation which means no significant weights will be assigned to the second ones when estimating/simulating the 
primary variable.  An alternative chosen used using Direct Sequential Simulation with hard and soft data after bias 
correction. This led to the best results showing that the soft data may improve short term geological modelling whether 
an appropriate methodology is used to include these data (after correction). Thus, when the bias and imprecise error 
was filtered from the soft data, more data was used in the simulations and realizations were closer to the reference 
block model. Consequently, the real error and calculated error in the block values were lower.Therefore, it is 
advantageous to incorporate imprecise measurements for stochastic simulations using the adequate methodology. 
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