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ROCHA, B. P. Efficiency and NOx Emissions Optimization by Genetic Algorithm of a Coal-Fired 

Steam Generator Modeled with Artificial Neural Networks. 2019. 37 páginas. Monografia (Trabalho 

de Conclusão do Curso em Engenharia de Energia) – Escola de Engenharia, Universidade Federal do Rio 

Grande do Sul, Porto Alegre, 2019. 

RESUMO 

Este trabalho faz parte do desenvolvimento de um modelo de apoio à decisão para a operação de um gerador 

de vapor real. O estudo propõe uma otimização combinada que visa encontrar pontos de operação que 
atinjam a maior eficiência do gerador de vapor associada à menor emissão de NOx, aplicando algoritmo 

genético na saída de modelos de redes neurais artificiais (RNA). A base de dados é formada por 10 

parâmetros de operação coletados durante um ano e meio com passo de meia hora e tratados 

estatisticamente. O comportamento do gerador de vapor é modelado por redes neurais artificiais Perceptron 
de várias camadas, com saídas separadas para eficiência e emissão de NOx. As métricas de avaliação 

empregadas nas RNAs foram o erro médio absoluto (MAE), erro quadrático médio (MSE), erro médio 

percentual (MAPE) e coeficiente de determinação (R2). A RNA para predizer o comportamento da 
eficiência apresenta MSE e MAE do seu teste de 0,7572 e 0,6206, respectivamente e a RNA para NOx 

apresenta MSE e MAE do seu teste de 312,43 e 12,36.  A otimização tem como alvo atingir 98% de 

eficiência do gerador de vapor e 220,00 mg/mN³ de emissões de NOx, e se aproxima dessas metas com 
97,95% de eficiência e 222,28 mg/mN³ de emissões de NOx.  

 

 

PALAVRAS-CHAVE: Projeto de Experimentos, Gerador de Vapor a Carvão Pulverizado, Metamodelo, 
Otimização Combinada, Termelétrica a Carvão. 
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Steam Generator Modeled with Artificial Neural Networks. 2019. 37 pages. Monografia (Trabalho de 

Conclusão do Curso em Engenharia de Energia) – Escola de Engenharia, Universidade Federal do Rio 

Grande do Sul, Porto Alegre, 2019. 

ABSTRACT 

This work is part of the development of a decision support model for the operation of a real steam generator. 

The study proposes a combined optimization that aims to find operating points that achieve the highest 
efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the 

output of artificial neural network (ANN) models. The database consists of 10 operating parameters 

collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam 

generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency 
and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean 

square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for 

predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA 
for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam 

generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 

222.28 mg/mN³ of NOx emissions. 
 

KEYWORDS: Coal Power Plant, Combined Optimization, Design of Experiments, Metamodel, 

Pulverized Coal Steam Generator. 
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1 INTRODUCTION 

Annual world energy consumption grew by 2.3% in 2018 driven by a strong global economy paired 

with rising demand for heating and cooling The increase in electricity demand accounted for about half of 

this growth (IEA, 2018a), which represents almost twice the average growth rate seen since 2010.  

Global coal demand grew for the second year in a row in 2018, but its share on the energy mix 
continued to fall. While coal's share of primary energy demand and electricity generation continues to 

slowly decline, it remains the world's largest source of electricity and the second largest source of primary 

energy (IEA, 2018b). As a result of higher energy consumption, 2018 CO2 emissions increased by 1.7% 
over the previous year and set a new record. Coal-fired power generation remains the largest single emitter, 

accounting for 30% of all energy-related carbon dioxide emissions (IEA, 2018a).  

Although renewable energy is constantly growing in the global energy matrix, fossil fuel still 
remains predominant at the base. The Brazilian electric system can be considered mostly hydrothermal, 

where thermoelectric generation represents 24.52% of the installed power (ANEEL, 2019). Coal has a 

12.9% stake in thermoelectric generation (EMPRESA DE PESQUISA ENERGÉTICA - EPE, 2018), 

concentrated mainly in southern Brazil, where the largest deposits are located. 
Coal offers the benefit of the lower fuel cost among fossil fuels, but in addition to having higher 

initial construction costs, it is more difficult to operate compared to oil or gas plants (GP STRATEGIES, 

2013). In China, coal-fired power plants are the main suppliers of electricity, as well as the largest consumer 
of coal and water resources and the largest emitter of SOx, NOx and greenhouse gases (GHGs) (XU et al., 

2011). Therefore, it is important to establish a comprehensive, scientific, reasonable and feasible evaluation 

system for coal-fired thermal power plants to guide them in the multiple optimization of their thermal, 
environmental and economic performance.  

Fossil fuel boilers have been in their present form since the early 1900s. While designs have evolved 

into larger sizes, better materials and better efficiency, the basic concept of heat transfer generated from the 

combustion reaction to water cooled pipes remains the same. The boiler's main objectives are to mix 
combustion air and fuel, burn the air-fuel mixture, transfer the maximum amount of heat from the 

combustion process to the working fluid and exhaust combustion through the products. Conventional 

boilers typically operate at about 85 to 90% efficiency (GP STRATEGIES, 2013). 
Steam generators are complex and highly relevant heat exchangers within the simulation of 

thermoelectric plants. Traditional mathematical methods that make use of mass and energy balances can 

become complicated due to the large number of parameters and the nonlinearity of the phenomena involved. 

This difficulty of implementation drove the use of artificial intelligence to do so. 
Technological advances in data acquisition and computational power over the last decades have 

enabled the implementation of artificial intelligence algorithms to support the solution of real engineering 

problems. Machine learning models, such as artificial neural networks (ANN), have the ability to recognize 
patterns and infer relationships from a dataset. Artificial neural networks enable easy-to-implement 

modeling with quick and appropriate responses to problems in many areas, including complex physical 

problems such as steam generators.  
ANNs have already been successfully applied to reproduce and simulate the behavior of heat 

transfer problems involving gas modeling, energy efficiency optimization and NOx emissions, energy 

resource prediction, among others (GHUGARE et al., 2014). ANN models can be developed and applied 

to existing systems using actual plant data stored, and this dataset can be further updated with new plant 
data. ANN modeling of real plant data has been previously investigated by DE et al., 2007; MESROGHLI; 

JORJANI; CHEHREH CHELGANI, 2009; SMREKAR et al., 2009; STRUŠNIK; GOLOB; AVSEC, 2015. 

It is worth noting that there is no generic model and it is necessary to develop a specific model to reproduce 
the actual equipment or system. 

Hybrid models that combine experimental data with artificial neural network modeling and 

optimization algorithms, have already been implemented to assist obtaining adjustment points for variables 
of interest with opposite behaviors. Liu et al. (2016) and Chang (2014) have proposed the application of a 

genetic algorithm on an ANN output to improve coal-fired boiler efficiency while reducing pollutant 

emissions caused by NOx. 

The objective of this paper is to present a methodology for optimizing the combined effect of the 
efficiency and NOx emissions of a coal-fired steam generator modeled by artificial neural network. The 
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proposed work is part of a set of tools aiming to guide the steam generator operation and support the 

operator’s decisions. 
The specific objectives are as follows: 

• Assemble a data set to build ANNs based on actual measured data from the Pecém power plant 

through statistical analysis. 
• Analyze and validate different artificial neural network topologies to define the most suited to 

represent the problems at hands. 

• Propose different importance weights of efficiency and NOx emissions on the genetic algorithm 
fitness function.  

2 THEORETICAL BACKGROUND 

2.1  History of Artificial Neural Networks and their relationship with Artificial Intelligence   

Artificial Intelligence is the large area defined by John McCarthy as "The science and engineering 

of producing intelligent machines." Within, there are still other subareas such as Machine Learning and 

Deep Learning that can best be seen in Figure 2.1 along with the location of Artificial Neural Networks. 

Figure 2.1 - Artificial intelligence and its subareas. 

 
Source: The author. 

While artificial intelligence can be defined as science capable of mimicking human skills, Machine 

Learning is a specific strand that trains machines to learn from data. ANNs are one of the existing methods 

within Machine Learning and the one chosen to be applied in this work. 

The history of artificial intelligence begins in conjunction with Artificial Neural Networks, tracing 
back the work done by MCCULLOCH and PITTS (1943) whose proposed the first artificial neuron model. 

They presented an analogy between living cells and electronic processes, simulating the behavior of a 

biological neuron. The proposed neuron model presented binary activity and had no weighting. From this 
work, several studies on RNA's have been proposed over the decades. 

HEBB (1949) proposed a learning law, demonstrating that the network's learning potential depends 

on the activation of pre- and postsynaptic cells, which once activated simultaneously lead to a change in 
synaptic weight. In 1958, ROSENBLATT suggested the neural model called the perceptron with the goal 

of training an RNA to achieve greater synaptic efficiency by inserting weights at each input. 

RUMELHART, G. E. HINTON and R.J.WILLIAMS (1986) developed the training method called 

backpropagation algorithm for the training of neural networks using multilayer perceptrons. This algorithm 
made it possible to solve more complex and nonlinearly separable problems.  

 

2.2 Artificial Neural Networks 

An artificial neural network consists of an information processing system created based on the 

functioning of biological neurons. Resembling the human brain, ANNs are composed of a large number of 

simple processing elements called neurons, which will gather information from the environment through a 
learning process, which will be further described in the following section. Each neuron is connected to other 
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neurons via targeted communication links reproducing a synapse, each with an associated weight 

(HAYKIN, 2014). 
Haykin (2014) identifies three basic elements of the neural model that can be seen in Figure 2.2:  

1. A set of synapses, or connection links characterized by a weight. Specifically, a signal xj at the 

synapse input j connected to neuron k is multiplied by the synaptic weight wkj, where k refers to the neuron 
in question, and j to the input parameter to which the weight refers. Weight may be in a range that includes 

both negative and positive values. 

2. An adder to sum the input signals, weighted by the respective synaptic forces of the neuron. 

3. An activation function 𝜑 to limit the output amplitude of a neuron. 

Figure 2.2 - Model of a neuron  

 
Source: HAYKIN, 2014 

 

The neural model of also includes an externally applied bias denoted by bk. The bias is the 
adjustable value whose effect is to increase or decrease the net input of the activation function in order to 

transfer it to the axis. In mathematical terms, we can describe the neuron k by writing the pair of equations: 

𝜐𝑘 = ∑ 𝑥𝑖𝑤𝑘𝑖 + 𝑏𝑘

𝑚

𝑖=1

 (2.1) 

 

𝑦𝑘 = 𝜑(𝜐𝑘) 
(2.2)  

Eq. (2.1) describes the internal activity level 𝜐𝑘 of the neuron, composed by the sum of the weighted inputs 

𝑥𝑖𝑤𝑘𝑖  plus the bias 𝑏𝑘 of the neuron k. It is observed in Eq. (2.2) that the output of neuron k will be 𝜐𝑘 

applied to the activation function 𝜑(. ). 

 

2.2.1 Multi-Layer Perceptron 

The perceptron network is a model that is bounded by one layer of input neurons and another by 

output neurons. Whenever intermediate layers are added, the model is called Multi-Layer Perceptron 

(MLP), which is an extension of the perceptron model proposed by Rosenblatt. It is composed of several 

intermediate or hidden layers of artificial neurons. Figure 2.3 shows a schematic representation of the MLP 
architecture: 
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Figure 2.3 - Perceptron Multi-Layer Scheme.  

 
Source: HAYKIN, 2014. 

 

The MLP architecture houses an input layer, an output layer, and intermediate layers called hidden 

layers. The inputs are associated with neurons in the left layer of the input, where external information 
feeds the network. As a next step, the information passes to the hidden layer to be processed. The processed 

information is then transferred to the output layer. 

The MLP model stands out for three characteristics: nonlinear activation function, hidden neurons 
and high degree of connectivity. The enable function should exhibit smooth nonlinearity for gradient 

variation and error to be reduced. Hidden neurons are responsible for the absorption of progressive 

knowledge, allowing the execution of more complex tasks. Finally, it is important to emphasize that the 

network has high connectivity of its synapses and that any modification to the network requires that it be 
restructured (HAYKIN, 2014). 

It must be determined whether the expected output meets the stipulated precision requirements. If 

the expected output and actual output error do not meet the accuracy requirement and do not reach the 
maximum training time, it will enter the error propagation phase. This occurs when the error is transferred 

layer by layer from through the hidden layers to the input layer. The error signal of each neuron will then 

change the value of each neuron. This weighting process is the learning network training process, 
responsible for a continuous loop until the network output error is reduced to the required accuracy or to a 

predefined maximum number of times. 

 

2.3 Genetic algorithm 

Evolutionary optimization methods are a family of heuristic-based algorithms typically inspired by 

some phenomena from nature, wildly used to solve challenging optimization problems. As ROMANYCIA 

and PELLETIER (1985) defined, heuristic techniques are practical methods that cannot guarantee finding 
a global optimal, but are able to reach short-term, satisfactory solutions for impractical problems. 

Evolutionary algorithms are extensively used in the analysis, design, and operation of systems that are 

highly nonlinear, high dimensional and noisy or for solving problems that are not easily dealt by classical 
deterministic methods of optimization (VENKATESWARLU et al., 2020). 

Genetic algorithms (GA) combine the concepts of genetics and evolution into an optimization 

algorithm that involves iterative search procedures inspired by the natural selection process (Darwinism) 

(MEYER-BAESE et al., 2014). GAs, as they are known today, were first introduced by John Holland in 
the 1960s. HOLLAND (1975) defined in his book “Adaptation in Natural and Artificial Systems” the 

method for moving from one population of “chromosomes” (binary strings representing candidate solutions 

for a problem) to a new population, using selection together with the genetic operators of crossover, 
mutation and inversion (MITCHELL; STEPHANIE FORREST, 1994).  

Figure 2.4 describes in a scheme the general operations made in a genetic algorithm. 
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Figure 2.4 - Schematic to present genetic algorithm functioning. 

 

Source: SONI, 2018. 

 

The algorithm is initialized with a number of randomly selected individuals, which correspond to a set 
of potential solutions to the problem in question. A percentage of these individuals are subjected to 

reproduce and form offspring through crossover. Another percentage can suffer mutations in their genes 

and become new individuals. The resulting population of candidates composed of the individuals that were 
untouched and the new ones, is evaluated according to the fitness function. Only the winning candidates 

are allowed to pass on to a new generation and restart the process.  

Liu, Li, Gao, 2016 and Chang, 2014 proposed a combined objective function f  (Eq. (2.3)) based on 

the minimization of deviations to find operational inputs able to  reach targeted values of efficiency  𝜂 and 
NOx emissions. 

 

min 𝑓 = 𝑎(𝜂𝑜𝑝𝑡 − 𝜂𝑝𝑟𝑒𝑑) + 𝑏([𝑁𝑂𝑥]𝑝𝑟𝑒𝑑 − [𝑁𝑂𝑥]𝑜𝑝𝑡) 

 

(2.3) 

with 𝜂𝑝𝑟𝑒𝑑 and  [𝑁𝑂𝑥]𝑝𝑟𝑒𝑑  as the predicted values and 𝜂𝑜𝑝𝑡   and [𝑁𝑂𝑥]𝑜𝑝𝑡  the targeted ones; 𝑎 and 𝑏 are 

two weighting variables. 
 

2.4 Design of Experiments 

Design of Experiments (DoE) is a statistic approach employed to acquire and assess data by 

exploiting the coupled sensitivity of multi-input factors on the responses of a experiment 
(MONTGOMERY, 2013). The methodology is based on ANOVA (analysis of variance) and the parameters 

significance is determined through hypothesis testing. Hypothesis testing is a statistical assistance tool used 

to state some conjecture about the problem situation, reflecting whether a proposal hypothesis is true or 
false within a confidence interval. The p-value is used to report whether the null hypothesis was or was not 

rejected. For the case of parameters significance, the null hypothesis is that there is no significant correlation 

between the parameters and the alternative hypothesis is its opposite   (MONTGOMERY, 2013). 
Among many DoE techniques, the Response Surface Methodology (RSM) Box-Behnken with 

central composition has proven to be more efficient, generating a smaller number of combinations when 

compared to 3k factorial designs and avoiding experiments performed under extreme conditions 

(FERREIRA et al., 2007). 

2.5 Pearson correlation 

Pearson Correlation 𝜌 is used to verify the correlation between the parameters under analysis. It 

enables the measurement of the intensity and direction of the linear association between two variables. This 

correlation is given by Eq. (2.4).  
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𝜌 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

(𝑛 − 1)𝑠𝑥𝑠𝑦
 (2.4) 

  

with �̅� the sample mean for the first variable, 𝑠𝑥  the standard deviation for the first variable, �̅� the sample 

mean for the second variable, 𝑠𝑦 the standard deviation for the second variable and 𝑛 the number of sample 

elements or events. Pearson correlation levels are presented in Table 2.1. 

Table 2.1 - Pearson correlation levels 

Correlation Size Coefficient Interpretation 

0.8 to 1.0 Very strong correlation 

0.6 to 0.8 Strong correlation 

0.4 to 0.6 Moderate correlation 
0.2 to 0.4 Weak correlation 

0.0 to 0.2 Very weak or nonexistent correlation 

  Source: SALKIND, 2013. 

 
P-value is an important indicator to be looked along with the Pearson correlation. The p-value 

assess whether a correlation coefficient is significantly different from 0 compared to a significance level α. 

You can only conclude that the correlation is different from 0 with p-value ≤ α. Otherwise, you cannot 
conclude anything.  

2.6 Metrics  

Different errors can be used as evaluation metrics to many analyses. Mean Absolute Error (MAE), 

Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and coefficient of determination 

(R2 ) are here defined. In all the equations below, 𝑌𝑖 stands for the observed values, �̂�𝑖 the predicted values, 

𝑌�̅� the average of the values being predicted and 𝑛 the number of data points. 

• MAE 

The mean absolute error is calculated as in Eq. (2.5).  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖 − �̂�𝑖|

𝑛

𝑖=1

 
(2.5) 

  

MAE is an average of the absolute error between a variable and its prediction, measuring the magnitude of 

the residuals for which all individuals have equal weight. This error uses the same scale as the measured 
data and therefore cannot be directly compared to MAE of other variables with different scales . 

• MSE 

The mean squared error is calculated as in Eq. (2.6).  

𝑀𝑆𝐸 =
1

𝑛
∑|𝑌𝑖 − �̂�𝑖|

2
𝑛

𝑖=1

 
(2.6) 

 

  

MSE is a measure of the quality of an estimator and incorporated both the variance of the estimator (how 

widely spread are the predictions from the observed data) and its bias (distance from the average). The 

squaring of the errors gives more weight to larger differences. MSE is expressed by the same unit as the 
square of the evaluated unit. 

 

• MAPE 

The mean absolute percentage error is calculated as shown in Eq (2.7). 
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𝑀𝑃𝐸 = |
𝑌𝑖 − �̂�𝑖

𝑌𝑖
| (2.7) 

  
MAPE measures the size of the error in percentage terms. This error is scale sensitive and easy to interpret. 

Usually used for assessing forecast accuracy in statistics methods and in loss functions for machine learning 

regression problems. 

• R² 

The coefficient of determination can be calculated through the equations presented in Eq.(2.8),(2.9) 
and (2.10). 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
 (2.8) 

  

𝑆𝑆𝐸 =  ∑ (𝑦𝑖  −  𝑦�̂� ) 2
𝑛

𝑖=1
 (2.9) 

  

𝑇𝑆𝑆 =  ∑ (𝑦𝑖  − 𝑦�̅� ) 2
𝑛

𝑖=1
 (2.10) 

  

with 𝑆𝑆𝐸 the sum of the squared errors and 𝑇𝑆𝑆  the total sum of the squares. R² measures how well the 

predicted values are replicated by a model, based on the proportion of total variation of the values being 
predicted.  

 

2.7 Efficiency 

The efficiency of a steam generator can be evaluated by two methods: the direct and the indirect. 

Both provide different results. The direct method accounts the energy gained by the working fluid compared 

to energy contained in the fuel, while the indirect method includes all heat losses of the system and 
compares it with the energy input. 

The indirect method accounts takes into account several process parameters and imposes 

difficulties to measure all losses. Therefore, the use of the direct method to calculate the steam generator 

efficiency parameter presents advantages due to its ease of implementation with instant process data. 
CHETAN, VIJAY and BHAVESH (2013) and M.RAUT, KUMBHARE and THAKUR (2014) present the 

efficiency direct method as the ratio of heat output per heat input as in Eq. (2.11):  

 

𝜂 =
𝑆𝑡𝑒𝑎𝑚 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑠𝑡𝑒𝑎𝑚 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 − 𝑓𝑒𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦)

(𝐹𝑢𝑒𝑙 𝑓𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) (𝐻𝑖𝑔ℎ𝑒𝑟 𝐻𝑒𝑎𝑡 𝑉𝑎𝑙𝑢𝑒)
 100 (2.11)  

 

Considering the fraction of regenerated steam, the direct efficiency can be calculated as in Eq 
(2.12). 

 

𝜂 =
 �̇�𝑀𝑆(ℎ𝑀𝑆 − ℎ𝑓) + �̇�𝑅𝑆(ℎ𝑅𝑆 − ℎ𝑆𝑅)

�̇�𝑐𝑜𝑎𝑙  𝐻𝐻𝑉
 100 (2.12) 

  

With �̇�𝑀𝑆 the main steam flow rate in t/h, �̇�𝑅𝑆 the reheat steam flow rate in t/h, �̇�𝑐𝑜𝑎𝑙 the fuel mass flow 

in t/h, ℎ𝑀𝑆 the main steam enthalpy in kJ/kg, ℎ𝑓 the feed water enthalpy in kJ/kg, ℎ𝑅𝑆 the reheated steam 

enthalpy in kJ/kg,  ℎ𝑆𝑅 the enthalpy of the steam to be reheated in kJ/kg and 𝐻𝐻𝑉 the higher heating value 

of the fuel in kJ/kg. 
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3 PROBLEM DESCRIPTION 

The Pecém power plant is a complex composed of 3 identical and independent generation groups 

each equipped with a pulverized coal superheated steam generator (SHSG) designed to meet 360MW of 

electrical generation. The first generator set went into commercial operation in 2012 while the second and 

third went into operation in 2013. The plant operates under a subcritical Rankine cycle originally designed 
for high rank coal burning1. Figure 3.1 presents an overview of the power plant located in São Gonçalo do 

Amarante, Ceará. 

Figure 3.1 - Pecém Thermal Power Plant and its location. 

 

Source: The author. 

Pecém mostly operates in two basic generation ranges, around 240 MW and 360 MW, the 

maximum rated power.  Power demand is dispatched as requested by the National System Operator (ONS) 

that can be viewed in the data clouds circled in Figure 3.2. Intermediate measurements represent transient 

operation between the two power levels.  

Figure 3.2 - Pecém electrical power as a function of condensation vapor pressure. 

 

Source: The author. 

The main object of this study is the Superheated Steam Generator (SHSG) of PECEM, capable of 

producing 1200 t/h of superheated steam flow at 540 ° C and 18 MPa. Pulverized fuel is introduced to the 
furnace via twenty-four Low NOx Axial Swirl Burners, completed by twelve after-air ports (Over Fired 

Air – OFA) to reach complete combustion. The burners are arranged in two rows of six each on the furnace 

 
1 Rank is the term for the degree of evolution/carbonification of the process of transformation of plant matter. 
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front and rear walls. The OFA ports are arranged in two single rows of six each above the top rows of 

pulverized fuel burners. Each of the pulverized fuel burners is equipped with co-axial light fuel oil burners 
which provide for the boiler light up and flame stabilization. The oil burners are able to fire the boiler up 

to a load of 30% load boiler maximum continuous rating. 

Figure 3.3 shows a scheme of the steam generator, mills and chimney, followed by the selected 
parameters considered in this work. 

Figure 3.3 - Scheme of steam generator, mills and chimney along with the studied parameters. 

 

Source: The author. 

 
Descriptions of each input parameter of the system is presented in Table 3.1  

Table 3.1 – Input parameters ranges and units 

Input parameters Minimum Average Maximum Unit 

Primary Air Flow 63.43 78.40 115.71 kg/s 

Secondary Air Flow 192.47 246.66 285.45 kg/s 
Coal Flow 124.71 139.10 151.41 t/h 

Velocity of the Dynamic Classifier 49.71 70.16 102.42 rpm 

O2 Excess  0.98 2.732 4.49 % 

Primary Air Temperature 316.08 337.16 371.67 °C 
Flue Gas Outlet Temperature 330.27 354.77 390.61 ºC 

Crossover Primary Air Pressure 74.84 83.17 94.40 mbar 

Crossover Secondary Air Pressure 14.60 18.22 23.97 mbar 
Electric Power Generation 345.00 355.38 364.85 MW 

  Source: The author. 

The primary air flow carries the pulverized coal from the mills into the furnace and is linked to the 

flame stability. Primary air flow and temperature also influence in the coal drying. Secondary air flow 

participates in the combustion process by locally adjusting the stoichiometric relation and, also, enhancing 
the combustion reaction by promoting the air fuel mixture. The amount of fuel fed in the furnace can be 

seen through the coal flow measurement. The dynamic classifier is located at the mill and its velocity is 

responsible for regulating the coal particle size. The O2 excess indicates the global stoichiometry of the 
combustion process of the entire SHSG. The crossover duct gets split up in two: one part goes to the mills 
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controlling the primary air through its pressure; and the other one controls the pressure of the secondary air 

flow. This stream splits itself again in the two wind boxes that will lead to the burners. The flue gas flow 
rate and temperature are measured at the exit of the SHSG. NOx emissions are measured at the chimney and 

corrected for the current O2 concentration. At Pecém powerplant, almost all the NOx is derived from the 

fuel formation mechanism, with very little coming from thermal formation. UG2 usually operates NOx 
emission ranges of 100 to 800 mg/mN³ under normal conditions. The Brazilian National Counsel of the 

Environment (CONAMA) states that the maximum limit of NOx emissions is 1000 mg/mN³  on dry basis 

and 3% excess oxygen (CONAMA, 2006).  
The present work is part of a large project that seeks to develop a tool able to assist the Pecém 

thermoelectric power plant operation by predicting the steam generator operating and combustion process 

behaviors. The work carried out in the next sessions refer to Pecém generating unit 2 (UG2). Analyzes are 

made for the nominal operating range of the plant from 340 to 365 MW at steady state, since Pecém operates 
most of the time in this stable condition. 

4 METHODOLOGY 

The steps followed in this work in order to increase the SHSG efficiency and reduce NOx emissions 

are represented in the flowchart of Figure 4.1. 

Figure 4.1 - Flow chart presenting the steps followed in order to optimize the efficiency of the SHSG and 

NOx emissions. 

 

Source: The author. 
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4.1 Data Processing 

Plant operating data is constantly collected over time through its SCADA system (Supervisory 
Control and Data Acquisition), that enables real-time visualization of the plant as well as the download of 

its data history in spreadsheets. 

It is possible to preselect parameters for the database by knowing the problem and delimiting a 
control volume in the interest object. The input parameters are chosen from a large data set due to two main 

arguments: its controllability by the operators and their ability to reflect the steam generator operating 

conditions. Controllable parameters are those that can be directly manipulated by manual command and 
present an independent behavior among each other. These data are then downloaded as measurement 

averages within the chosen time interval. 

Data preprocessing is an important step for getting accurate results from the model. All 

measurements are subjected to imperfections that reflect into inadequate data. Data must be queried, 
summarized and visualized before and after training the models in search of any special pattern, as well as 

the presence of outliers. The evaluation is made according to three characteristics, which are location 

(central tendency), variation (dispersion) and shape. Negative and null observations were also eliminated 
from the dataset. 

Statistical analyzes can assess the identification of the best parameters to represent the problem in 

question. Pearson correlation is used to investigate the relationship between the pairs of continuous 
variables.  

4.2 ANN Definition   

Two different ANN models are built in this study, one for modeling efficiency and a different one 

for NOx emissions. This approach was chosen to value the freedom of working with different topologies 
for each response. Therefore, enabling more precision to model the two distinct behaviors. This choice also 

facilitates building the optimization algorithm that will sweep each of the responses fields.   

The number of hidden layers, hidden neurons per each hidden layer and activation functions of the 
ANN, also known as hyperparameters, were defined through an interactive approach. Hyperparameters 

configurations were tested by a trial and error method guided by doubling the number of hidden neurons 

on each try. 

In all tested ANN topologies, the input layer has the number of neurons equal to the number of 
ANN input parameters. The first layer topology tested started with two hidden layers and 8 hidden neurons 

at each. As the result of the evaluative network metrics and their outputs, presented in subsection 4.4, the 

network topology is modified in an iterative process until the most appropriate configuration is found within 
the performance sought.  

The evaluation of the developed ANNs is performed using as metrics: MSE, MAE, MPE and R². 

Training and validation plots must be analyzed to prevent overfitting the model.  
 

4.3 Model Refinement 

In this step, the already defined ANNs are used as models of the SHSG where statistical analysis 

through DoE and sensitivity will be applied to study the inputs behaviors.  

4.3.1 DoE 

DoE is applied to study the correlations between the inputs on one specific output parameter 

calculated by the already established ANN models. An input parameter can only be removed from the 
dataset only when it is found to be statically not significant to both models, i.e., for the efficiency and the 

NOx ANNs. Whenever that double behavior is identified, new and simpler ANNs can be developed for 

each output.   
The DoE method chosen was the Box-Behnken. Parameters are selected according to their 

statistical significance, where the high order terms and the interactions between different input parameters 

are eliminated first, within the significance interval of 95%. Terms with p-value greater than 0.05 must be 

eliminated according to the hypothesis testing. Residuals are assumed to be normally and independently 

distributed. Residual plots are checked to assure a precise and unbiased model.  
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4.3.2 Sensitivity analysis 

An ANN sensitivity analysis is performed following a One-Factor-at-a-Time (OFaT) approach. The 
method consists of varying each factor (input parameter) over its range while the other ones are held 

constant at a baseline set level. The major disadvantage of the OFAT strategy is that it fails to consider any 

possible interaction between the factors, justifying the previous use of DoE (MONTGOMERY, 2013). The 
sensitivity analysis assesses whether a heuristic-based approach to optimize the problem in necessary by 

scoping for inflexions in the curves. Monotonic curves point that the problem could be solved by classical 

gradient approach optimization methods.  

4.4 Optimization   

A combined optimization of the ANN outputs is applied by means of a genetic algorithm, looking 

for raising the SHSG efficiency while decreasing NOx emissions. The objective function is applied based 

on the Eq. (2.3) presented in the theoretical background.  

5 RESULTS AND DISCUSSION 

Results were obtained by applying the steps provided in Figure 4.1. The numbering of the result 

sections is consistent with that suggested in the methodology.  

5.1 Database Processing 

It was collected a 9194-sample dataset of the 10 parameters presented earlier on Table 3.1, stored 

every half hour within the period from January 2018 to May 2019. The steam generator efficiency was 
added to the database, calculated with the aid of Eq. (2.12), and NOx emissions were added directly from 

the supervisory.  

According to the Pearson correlation levels presented in Table 2.1, correlations below 0.2 are 
considered to be very weak or nonexistent. Correlation can only be assumed different than 0 for p-values 

lower or equal to the significance interval, in this case 0.05. Parameters that presented a correlation lower 

than 0.2 in respect the efficiency of the steam generator and p-value lower or equal to 0.05 were: O2 excess, 

crossover secondary air pressure and electric power generation. Parameters that presented a correlation 
lower than 0.2 with the NOx emissions and p-value lower or equal to 0.05 were: crossover secondary air 

pressure, crossover primary air pressure and electric power generation. 

A table containing all the parameters Pearson correlations and the p-values can be found at 
APPENDIX A.  

5.2 ANN Definition  

Dataset was randomized and divided into 70% training, 15% test, 10% validation and 5% sample 

to be used to create the two neural networks, for efficiency and NOx emissions Input parameters were 
standardized in respect to each of their standard deviations. 

Dataset was randomized and divided into 70% training, 15% test, 10% validation and 5% sample. 

Two different neural networks were developed separately to predict each of the sought outputs. Input 
parameters were standardized in respect to each of their standard deviations. 

The topology of the ANN hyperparameters followed the approach presented in the methodology. 

Combinations of 8, 16, 32 and 64 hidden neurons with 2 to 3 hidden layers were evaluated. The number of 
neurons in each hidden layer was either kept constant or changed in the second layer by assuming half the 

neurons of the first hidden layer. Tested activation functions were the hyperbolic tangent (tanh) and the 

rectified linear unit (ReLU). 

Figure 5.1 presents an illustrative scheme of the ANN topologies, composed by 10 nodes for the 
input layer, 2 hidden layers with N number of neurons and the output layer, with one single neuron for the 

response (efficiency or NOx).  
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Figure 5.1 - Illustrative topology of the ANNs developed. 

 
Source: The author. 

 

The ANNs were developed using the Python programming language through the Jupyter Notebook2 

compiler. The Keras3 programming interface, made available by the Tensorflow4 machine learning library, 

was used for its construction. 
 

5.2.1 Efficiency 

Different topologies were tested in order to define the best suited to describe the efficiency 
behavior. The chosen topology was built with one input layer containing the 10 input parameters, two 

hidden layers of 32 nodes each and one output layer. In the first hidden layer the hyperbolic tangent 

activation function was used and in the second, ReLU. Training was performed with 100 epochs using as 
loss function MSE. The MSE and MAE of the training were respectively 0.8647 and 0.6033. The MSE and 

MAE of the test were respectively 0.7572 and 0.6206 (Figure 5.2). 

 

Figure 5.2 - Training and validation MAE and MSE for efficiency. 

 
Source: The author. 

 

 
2  https://jupyter.org/try 
3  https://keras.io/ 
4 https://www.tensorflow.org/ 

https://jupyter.org/try
https://keras.io/
https://www.tensorflow.org/
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Both MAE and MSE errors decreased exponentially before completing 40 epochs. Both curves 

were already stable with 100 epochs so training could stop. The proximity of the train and validation errors 
was an important point to observe in order to avoid model overfitting.  

Another model validating procedure was to plot actual values of efficiency from our test database 

against ANN predicted efficiency values, as presented in Figure 5.3. 

Figure 5.3 - Actual efficiency values plotted against ANN predictions. 

 
Source: The author. 

 
The model was able to predict the efficiency behavior with a R² of 0.954, with little data dispersion 

and only few points more distanced from the regression line, that are likely to be outliers.   

Sample set with unseen data was inputted to analyze whether the model was generalizing the 

efficiency behavior. MPE and MSE of the predicted values against the historical ones were respectively 
0.63% and 0.6449. Figure 5.4 shows the data plotted in a line chart to compare the behavior learned by the 

ANN with the one observed in the supervisory.  

Figure 5.4 - Predicted values of efficiency along with data from the supervisory. 

 
Source: The author. 

 

The trend of behavior was very similar, with its inflections coinciding while only at extreme points 
of observations, of very low or very high values, the ANN prediction curve was smoother, indicating an 

adequate generalization of the model.  

A table containing the tested topologies and its performances can be found at the APPENDIX B.   

           Real efficiency values (%)             Predicted efficiency (%) 
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5.2.2 NOx 

Different topologies were also studied to define the best suited to describe NOx behavior. The 
chosen topology was composed with one input layer, 2 hidden layers of 64 nodes each and one output layer. 

Hyperbolic tangent activation function was used in the first hidden layer and ReLU in the second. Training 

was performed with 100 epochs using as loss function MSE. The MSE and MAE of the training were 
respectively 247.04 and 11.25. The MSE and MAE of the test were respectively 312.43 and 12.36. NOx  

model errors are higher when compared to efficiency. That can be explained not only by its more complex 

behavior, but especially due to the errors character that are relative to the range of values the response can 
assume. 

MAE and MSE evolution throughout training and validation can be seen in the graphs below as 

function of the epochs in Figure 5.5.  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

Source: The author. 

 

Both MAE and MSE errors decreased exponentially before completing 40 epochs. Training stopped 
at 100 epochs. The proximity of the train and validation errors indicate that the model is not overfitting.  

Actual NOx emission values from the test are plotted against NOx values predicted by the ANN in 

Figure 5.6. 

Figure 5.6 - Actual NOx emission values plotted against ANN predictions 

 
Source: The author. 

 

Figure 5.5 - Training and validation MAE and MSE for NOx emissions 
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The model was able to predict the NOx behavior with a R² of 0.846, with more data dispersion than 

in the efficiency model. More distanced points are likely to be outliers or points outside normal operation.   
The unseen sample set was inputted in the model to analyze its NOx behavior generalization 

capacity. MPE and MSE of the predicted values compared to the historical ones were respectively 3.49% 

and 207.80. Figure 5.7 shows the data plotted in a line chart to compare the behavior learned by the ANN 

with the one observed.  

Figure 5.7 - Predicted values of NOx emissions along with data from the supervisory. 

 
Source: The author. 

 

The model has more associated error and deviation due to NOx behavior complexity, but is still 
able to learn and generalize it. The trend of both lines is similar, with almost all its inflections coinciding. 

Extreme points with values farther from the average, have smoother curves and more deviation, still 

indicating the generalization of a complex response model.   
The table containing the tested topologies and its performances can be found at the APPENDIX C 

5.3 Model Refinement 

DoE methodology and sensitivity analyzes were performed after the models were established.  

  
5.3.1 DoE 

The main effects of the parameters on efficiency and NOx responses were evaluated separately. 

Main effects for the SHSG efficiency can be seen in Figure 5.8. 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

           Real NOx emission values (mg/ Nm³)               Predicted NOx emission (mg/ Nm³) 
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Source: The author. 

Most parameters showed to be important to the model, with coal flow the one that impacts the most 

on the result with a negative correlation. Gray boxes highlight the parameters that were found as not 
statistically significant to the model, showing that the efficiency was not affected by O2 excess and 

crossover secondary air pressure.  

The same statistical method was applied to verify direct influence of the parameters on the NOx 
emissions behavior. The graphs with the main effects are presented in Figure 5.9.  

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
Source: The author. 
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Figure 5.8 - Main Effects Graphs for Efficiency. 

Figure 5.9 - Main Effects Graphs for NOx. 
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DoE has shown that for the NOx model all the parameters were statistically significant, unlike in 
the efficiency analysis. The most influential input was the secondary air flow with a positive correlation.  

Efficiency and NOx presented different results for the importance of the parameters on their 

behaviors. Therefore, no input parameter could be deleted from the models and the ANNs remained the 
same.  

The analysis was performed using the Minitab5 software. 

 
5.3.2 Sensitivity analysis 

The OFaT sensitivity analysis was performed varying each of the input parameters for 100 different 

steps along its defined range. The efficiency model sensitivity to each parameter is presented in Figure 5.10 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Source: The author. 

 
Several local minimum and maximum points can be observed in the sensitivity graphs. Parameters 

such as the Secondary Air Flow and Velocity of the Dynamic Classifier presented complex curves that are 

ideal for the application of heuristic-based optimization algorithms. O2 excess and crossover secondary air 
pressure presented themselves less sensible, as expected according to their non-significance to the response 

as the DoE has shown. 

Sensitivity analysis of the NOx emissions model is presented in Figure 5.11. 

 
 

 

 
 

 

 

 
5 https://www.minitab.com/ 
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Figure 5.10 - Model sensitivity analysis for efficiency response. 
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Source: The author. 

 

The analysis showed a less sensitive behavior of NOx emissions to disturbances caused by the 
parameters, when compared with the efficiency curves. However, the parameters also presented inflexions 

that justified the use of a genetic algorithm. Primary Air Flow and the Velocity of the Dynamic Classifier 

presented the most complex behaviors among them.   

5.4 Optimization 

The objective function was based on the one proposed in Eq. (2.3) and aimed to find the input 

parameters that minimize the deviations in respect to the target values of efficiency (98%) and NOx 

emissions (220 mg/mN³), as shown at Eq. (5.1).  
 

min 𝑓 = 𝑎(98 − 𝜂𝑝𝑟𝑒𝑑) + 𝑏([𝑁𝑂𝑥]𝑝𝑟𝑒𝑑 − 220) 

 

(5.1) 

with 𝜂𝑝𝑟𝑒𝑑  the predicted efficiency (%), [𝑁𝑂𝑥]𝑝𝑟𝑒𝑑  the predicted emissions (mg/mN³) and 𝑎 and 𝑏 the 

weights to ponder SHSG efficiency and NOx emissions as deemed relevant.  

NOx was normalized from 0 to 100 to assume the same range of the efficiency and facilitate 

weighting their contributions. The boundaries of the input parameters respected their standardized operating 
ranges presented in Table 3.1. Population was initialized according to those boundaries, with random 

integer individuals from -3 to 3. Individuals previously analyzed and known to return low fitness values 

were inserted in the initial population to guarantee good offspring of the next generations. The mutation 
used was the flip bit type with a 10% probability for each individual. A two-point crossover of the input 

sequence was applied with a 50% probability, where the two individuals were modified in place and both 

kept their original length. The selection of the individuals that pass to the next generation was made through 

tournament, where 3 randomly chosen individuals compete against each other comparing their fitness 
values. 
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Figure 5.11 - Model sensitivity analysis for NOx response. 
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Different combinations of population and generation numbers were tested to compare the fitness 

efficiency and NOx values returned by the genetic algorithm. The fitness function was pondered to weight 
both responses equally, with 50% importance each. The three proposed configurations were run 50 times 

in order to generate the next histograms. Different combinations of a and b in Eq. (5.1) were tested 

increasing the efficiency importance.  

• Population of 300 individuals and 1000 generations  
 

The fitness values of each result returned by the genetic algorithm were computed and displayed in 

the form of a histogram presented below in Figure 5.12. 

Figure 5.12 - Frequency histogram of fitness values for a GA with 300 individuals and 1000 generations 

 
Source: The author. 

 

20 over 50 runs returned fitness values that ranged from 0.00002 to 0.00052. Occurrences steadily 
decreased while fitness values increased.  

Efficiency and NOx occurrence frequencies were also collected and are presented in Figure 5.13. 

 

 
 

 

 
 

 

 

 
 

 

Source: The author. 
 

 

Efficiency and NOx values displayed normal distributions centered in the ranges of 86-87%and 

155-160 mg/mN³, respectively. 

• Population of 300 individuals and 500 generations  

The fitness values computed throughout the 50 GA runs for the second individual-generation 

configuration is presented in Figure 5.14. 
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Source: The author. 

 

The fitness values histogram presented a very similar behavior when compared to the first 
configuration (Figure 5.13), with most of the occurrences in the range of 0.00002 to 0.00052. 

Efficiency and NOx occurrence frequency is presented in Figure 5.15.  

 

 

 

 

 
 

 

 
 

 

 

Source: The author. 
 

Though the efficiency and NOx ranges that appeared the most are the same as in the first 

configuration, the histograms presented more scattered occurrences, less concentrated around the main 
value. 

• Population of 500 individuals and 300 generations  

Fitness values returned from the iterations of the GA containing populations of 500 individuals and 

300 generations are shown in the graph on Figure 5.16. 

 

 

 

 
 

 

 
 

 

 

 

 

Source: The author. 
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Figure 5.14 - Frequency histogram of fitness values for a GA with 300 individuals and 500 generations. 

Figure 5.15 - Frequency histogram of efficiency and NOx values returned for a GA with 300 individuals and 500 

generations. 

Figure 5.16 - Frequency histogram of fitness values for a GA with 500 individuals and 300 generations 
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32 over 50 iterations returned values within the range of 0.00002 – 0.00052 and there were no 

occurrences higher than 0.00302 as in the first two analysis with smaller populations. 

Frequency histograms for efficiency and NOx occurrences are presented in Figure 5.17.  

 

 
 

 

 
 

 

 

 
 

 
 

Source: The author. 
 

The histograms of efficiency and NOx values presented scattered data in more frequency bins than 

the first configuration of 1000 generations, but more concentrated when compared to the configuration of 
500 generations. The two former graphs display the majority of occurrences in the ranges of 85-86 of 

efficiency and 155-160 for NOx, as in the other NOx configurations. The running time is directly related to 

the number of generations, and therefore this configuration was the faster one.  

• Different weights for the variables on the objective function 

The first configuration, 300 individuals and 1000 generations, was used for this analysis due to its 

lesser data dispersion. The weights 𝑎 and 𝑏 were adjusted to increase the importance of the efficiency on 

the optimization algorithm. Three different ponderations were tested: the standard one that weights both 

efficiency and NOx equally, 75% ponderation of the efficiency versus 25% NOx and 90% efficiency versus 
10% NOx. Each of these ponderations was run and recorded 10 times. The average of the values returned 

for the fitness function and the efficiency and NOx can be seen in Table 5.1. 

Table 5.1 - Average of fitness, efficiency and NOx values for different weight combinations of a and b 

Efficiency and NOx emission target values of 98% and 220 mg/mN³ 

𝑎 𝑏 Fitness values η (%) NOx (mg/mN³)  

0.50 0.50 4e-4 86.15 155.35 

0.75 0.25 3e-4 95.11 171.09 

0.90 0.10 6e-4 97.95 222.28 

Source: The author. 

 As expected, with the increase of the SHSG efficiency NOx increased as well. The algorithm was 

able to find different operating points according to the weights of each response. The last combination of a 

and b, with more importance to the efficiency, results very close to the targets established of 98% efficiency 
and 220 mg/mN³of NOx emissions were found. 

Three samples of different operation points for 0.90 a and 0.10 b can be seen in Table 5.2. 
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Figure 5.17 - Frequency histogram of efficiency and NOx values returned for a GA with 300 individuals and 500 

generations. 
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Table 5.2 - Operation points for 0.90 a and 0.10 b 

Primary 

Air Flow 

Second

ary Air 

Flow 

Velocity  

Dynamic 

Classifier 

Coal 

Flow 

O2 

Excess 

Flue Gas 

Outlet 

Temperature 

Crossover 

Secondary 

Air Pressure 

Crossover 

Primary Air 

Pressure 

Primary Air 

Temperature 

Electric 

Power 

Generation 

n Nox 

82.66 256.47 78.18 132.34 2.82 332.89 19.59 74.84 316.40 358.61 98.12 225.83 

83.28 265.12 52.22 127.81 2.01 380.08 23.97 79.20 316.99 360.03 97.43 191.80 

82.66 229.78 67.83 127.52 2.72 336.29 23.91 72.22 319.86 350.90 97.88 213.87 

Source: The author. 

Operation point samples for the other combinations of a and b can be found in APPENDIX D. 

The genetic algorithm was developed using the DEAP6 (Distributed Evolutionary Algorithms in 

Python) library available in Python.   

  

 
6 https://deap.readthedocs.io/en/master/ 

https://deap.readthedocs.io/en/master/
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6 CONCLUSION 

The main focus of this work was to model through artificial neural networks the superheated steam 

generator efficiency and the NOx emissions. Afterwards, a genetic algorithm was applied to perform a 

combined optimization that aimed to maximize the efficiency while minimizing NOx emissions. The 

relevance of this study is to work with two different variables of interest that present opposing behaviors. 
Therefore, operating both of them is not a straightforward task.   

The analysis includes as inputs the parameters: primary air flow, secondary air flow, primary air 

temperature, coal flow, velocity of the dynamic classifier, O2 excess, flue gas outlet temperature and 
crossover primary air pressure, crossover secondary air pressure, and electric power generation.  

Two different ANNs were developed, one for each response. The best topology for efficiency 

behavior was found to be an ANN with 2 hidden layers of 32 neurons. MSE and MAE of the training were 
respectively 0.8647 and 0.6033. MSE and MAE of the test were respectively 0.7572 and 0.6206. The second 

ANN model developed to describe NOx emissions behavior was composed of 2 hidden layers of 64 neurons 

each. MSE and MAE of this ANN’s training were respectively 247.07 and 11.25. MSE and MAE of the 

test were respectively 312.43 and 12.36. It is worth to emphasize that the errors resulted from the NOx  

model were higher than the efficiency model mostly due to the character of the errors working at the same 

higher range of values that NOx can assume.  

A DoE approach was applied, through Box-Behnken, to evaluate the importance of the parameters 
chosen to describe each response. While for efficiency O2 excess and crossover secondary air pressure were 

found to be statistically not significant, all input parameters were important to describe the NOx behavior. 

Thus, no parameter could be retrieved from the models. Also, the application of a genetic algorithm to 
search for satisfactory values of efficiency and NOx was validated through a One-Factor-at-a-Time 

approach to analyze the sensitivity of the models.  

Three different combinations of individual and generation numbers were tested for the genetic 

algorithm proposed. After that, different importance ponderations for efficiency and NOx in the fitness 
function were implemented. With 50/50 ponderation for the responses, the genetic algorithm returned an 

efficiency of 86.15% and NOx emissions of 155.35 mg/mN³. For a 75/25 ponderation favoring efficiency 

over NOx, the genetic algorithm returned 95.11% of efficiency and 171.09 mg/mN³ of NOx emissions. 
Lastly, a ponderation of 90/10 of efficiency over NOx was tested, returning 97.95% of efficiency and 222.28 

mg/mN³ of NOx emissions, achieving the proposed target.  

The proposed methodology was able to successfully connect three distinct methods and have them 

work together, each one with its contribution. Through ANN, it was possible to model two completely 
different responses of the steam generator. Design of Experiments assessed the importance of each input 

parameter to the responses being analyzed. Finally, the genetic algorithm was able to work with different 

penalties to find the best configuration of our system within the Brazilian legislation. 
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APPENDIX 

APPENDIX A – Pearson Correlations between parameters 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 



28 

 
 

 

 

APPENDIX B – Different ANNs topologies tested to model the efficiency behavior.  

 

 MPE MSE Test Train 

8t_8r 1,03% 1,3934 Mse: 1.6745 Mse: 1.6849 

      Mae: 0.9667 Mae: 0.9516 

16t_16r 0,81% 1,0377 Mse: 1.0318 Mse: 1.1797 

      Mae: 0.7464 Mae: 0.7287 

32t_32r 0,63% 0,6449 Mse: 0.7572 Mse: 0.8647 

      Mae: 0.6206 Mae: 0.6033 

64t_64r 0,64% 0,6035 Mse: 1.1963 Mse: 1.3643 

      Mae: 0.7255 Mae: 0.6685 

8t_8t_8r 0,70% 0,8295 Mse: 0.9096 Mse: 1.0179 

      Mae: 0.6558 Mae: 0.6333 

16t_16t_16r 2,52% 8,7532 Mse: 11.1484 Mse: 10.1192 

      Mae: 2.3096 Mae: 2.3163 

32t_32t_32r 0,70% 0,7656 Mse: 1.1963 Mse: 1.3643 

      Mae: 0.7255 Mae: 0.6685 

32t_16r 0,72% 0,7854 Mse: 0.9533 Mse: 1.0194 

      Mae: 0.7125 Mae: 0.6806 

16t_16t 0,73% 0,8980 Mse: 0.9585 Mse: 1.0655 

      Mae: 0.6962 Mae: 0.6727 

32t_32t 0,58% 0,5245 Mse: 0.6417 Mse: 0.7134 

   Mae: 0.5690 Mae: 0.5367 

64t_64t 0,49% 0,3653 Mse: 0.6181 Mse: 0.4566 

      Mae: 0.4831 Mae: 0.4406 

32t_16t 0,68% 0,7482 Mse: 0.8464 Mse: 0.9370 

      Mae: 0.6540 Mae: 0.6375 

16r_16r 0,71% 0,9508 Mse: 0.9585 Mse: 1.0655 

      Mae: 0.6962 Mae: 0.6727 

32r_32r 0,65% 0,6450 Mse: 0.7639 Mse: 0.8341 

   Mae: 0.6086 Mae: 0.5859 

64r_64r 0,51% 0,3584 Mse: 0.5287 Mse: 0.5743 

      Mae: 0.5165 Mae: 0.4723 

32r_16r 0,63% 0,6950 Mse: 0.8075 Mse: 0.9192 

   Mae: 0.6108 Mae: 0.5951 

 

   
  

t stands for tanh and r for ReLU 
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APPENDIX C – Different ANNs topologies tested to model the NOx emissions behavior. 

 

 MEP MSE Test Train 

8t_8r 5,32% 467,137 Mse: 541.9567 Mse: 501.0870 

     Mae: 17.3118 Mae: 16.7990 

16t_16r 4,35% 323,837 Mse: 426.8316 Mse: 378.1133 

      Mae: 14.9274 Mae: 14.1961 

32t_32r 4,89% 390,231 Mse: 515.6654 Mse: 454.1765 

      Mae: 16.5319 Mae: 15.5698 

64t_64r 3,49% 207,798 Mse: 312.4339 Mse: 247.0415 

      Mae: 12.3622 Mae: 11.2536 

8t_8t_8r 4,93% 383,862 Mse: 472.9458 Mse: 432.9626 

      Mae: 16.2378 Mae: 15.5535 

16t_16t_16r 3,44% 205,953 Mse: 332.6059 Mse: 256.2370 

      Mae: 12.5953 Mae: 11.4979 

32t_32t_32r 4,38% 384,632 Mse: 331.9112 Mse: 229.0484 

      Mae: 11.7421 Mae: 11.0400 

 

t stands for tanh and r for ReLU 
 

 

APPENDIX D – Operation points of the input parameters that reached desired efficiency and NOx 
emissions. 

 

• a = 0.5;b = 0.5 

Primary 

Air Flow 

Second

ary Air 

Flow 

Velocity  

Dynamic 

Classifier 

Coal 

Flow 

O2 

Excess 

Flue Gas 

Outlet 

Temperature 

Crossover 

Secondary 

Air Pressure 

Crossover 

Primary Air 

Pressure 

Primary Air 

Temperature 

Electric 

Power 

Generation 

n Nox 

66.56 223.02 77.00 139.06 2.71 344.55 23.97 83.47 316.65 355.05 86.52 157.39 

67.22 216.90 62.70 142.95 2.82 354.19 15.12 83.47 316.51 355.05 85.06 149.41 

81.23 214.94 70.46 134.13 2.82 354.20 18.57 82.58 316.64 355.05 86.74 158.56 

 

• a = 0.75;b = 0.25 

Primary 

Air Flow 

Second

ary Air 

Flow 

Velocity  

Dynamic 

Classifier 

Coal 

Flow 

O2 

Excess 

Flue Gas 

Outlet 

Temperature 

Crossover 

Secondary 

Air Pressure 

Crossover 

Primary Air 

Pressure 

Primary Air 

Temperature 

Electric 

Power 

Generation 

n Nox 

78.11 246.60 52.79 128.39 1.58 372.33 20.35 71.54 319.61 358.92 96.24 191.22 

88.33 246.60 54.06 135.94 1.52 368.53 16.52 78.35 316.95 355.05 96.62 197.40 

78.04 242.88 50.34 129.94 2.47 354.20 14.65 83.47 316.07 357.96 94.63 164.86 

 
 


