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ABSTRACT

Virtualization has become the powerhouse for several networking concepts, from vir-

tual local area networks (VLANs) to software switches, software-defined control plane,

etc. Recent proposals like HyPer4, HyperVDP, and P4Visor brought the concept to the

forwarding plane, by enabling emulation of several network contexts and/or composing

several functions through a single program. In spite of the progress achieved, the real po-

tential of forwarding plane virtualization remains untapped. In this work, we present PvS,

a reconfigurable architecture for data plane virtualization. PvS provides parallel execution

and hot-swapping of virtual switch instances, without requiring switch source code (for

either emulation or program composition). We experimented PvS on a NetFPGA-SUME

board with four virtual switches: a layer-2 switch, a simple router, a firewall, and an in-

band telemetry. Area occupation measurements evidence the feasibility of running up

to eight virtual switches in parallel. Compared to existing work, performance data show

an improvement of up to two orders of magnitude for bandwidth and six orders for latency.

Keywords: Programmable forwarding planes. P4. virtualization. NetFPGA SUME.





Switches virtuais Programáveis: Projeto e Implementação do Mecanismo de

Encaminhamento e Recursos de Suporte

RESUMO

A virtualização se tornou a potência de vários conceitos de rede, de redes locais virtu-

ais (VLANs) a switches definidos por software, plano de controle definido por software,

etc. Propostas recentes como HyPer4, HyperVDP e P4Visor levaram o conceito ao plano

de encaminhamento, permitindo emulação de vários contextos de rede e/ou compondo

várias funções através de um único programa. Apesar do progresso alcançado, o ver-

dadeiro potencial da virtualização do plano de encaminhamento permanece inexplorado.

Neste trabalho, apresentamos PvS, uma arquitetura reconfigurável para virtualização do

plano de dados. PvS fornece execução paralela e hot swap de instâncias de switches

virtuais, sem a necessidade de código-fonte do switch (para emulação ou composição

de programa). Experimentou-se PvS em uma placa NetFPGA-SUME com quatro swit-

ches virtuais: um switch de camada 2, um roteador simples, um firewall e um switch

de telemetria de rede(in-band telemetry). As medições de ocupação da área evidenciam

a viabilidade de executar até treze switches virtuais em paralelo. Comparado aos traba-

lhos existentes, os dados de desempenho mostram uma melhoria de até duas ordens de

magnitude para largura de banda e seis ordens para latência.

Palavras-chave: plano de encaminhamento programável, P4, virtualização, NetFPGA

SUME.
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1 INTRODUCTION

The concept of programmable forwarding planes has seen a renewed interest by in-

dustry and academia with the advent of Domain-Specific Languages (DSL) like POF (SONG,

2013a) and P4 (BOSSHART et al., 2014). These languages unleashed innovation in the

data plane (CORDEIRO; MARQUES; GASPARY, 2017), helping break further the “net-

work ossification”.

Resource sharing through virtualization has become commonplace in modern pub-

lic and private clouds, powering virtual abstractions for servers (KOPONEN et al., 2014),

network functions (MARTINS et al., 2014; HWANG; RAMAKRISHNAN; WOOD, 2015;

LI et al., 2016; YI et al., 2018), forwarding devices (DOBRESCU et al., 2009; SHER-

WOOD et al., 2009; PFAFF et al., 2015; SHAHBAZ et al., 2016; KUMAR et al., 2019),

and even entire control planes (JIN et al., 2015; BLENK et al., 2015; AFOLABI et al.,

2018) running atop a shared infrastructure. These virtual abstractions are highly conve-

nient, as they enable efficient resource usage for network providers and resource isolation

for network tenants.

Thus the motivations for virtualization in the data plane are manifold, including

network slicing and snapshotting, network function composition, and switch program

profiling and debugging (HANCOCK; MERWE, 2016). Yet, existing “hypervisors” for

P4-based switches have only enabled switch emulation (HANCOCK; MERWE, 2016;

ZHANG et al., 2019) or composition of P4-based switch functions into a single pro-

gram (ZHENG; BENSON; HU, 2018). As a result, they may pose a severe performance

penalty and a large memory footprint. More importantly, they require access to switch

source code for merging and custom compilation, thus violating the intellectual property

of the programmable switches developers and vendors.

In this work, we argue in favor of a virtualization model for programmable for-

warding elements that offers switch developers (and vendors) the possibility to distribute

switch bytecode while preserving their intellectual property. In such a model, network

operators would deploy on the hypervisor the same switch bytecode that otherwise would

run directly on bare metal. For being a competitive model, the hypervisor should ensure

that each virtual switch delivers the performance similarly, regardless of being run atop

the switch hypervisor or hardware.

Delivering such a model is inherently challenging. The fundamental challenge is

decoupling virtual switch instances from the hypervisor, while providing a virtual switch
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abstraction that offers strict performance and isolation guarantees. Also, deploying a

virtual switch should not interrupt other running virtual instances, and switch develop-

ment/compilation should be agnostic of any particularities of the hypervisor. These re-

quirements should be met while ensuring that virtual switch instances retain the same

capabilities of a traditional programmable forwarding element. The approach taken is

slicing the physical switch into a set of disjoint pipelines of match-action tables for inde-

pendent control by distinct tenants. As a result, we become able to accommodate multiple

switch pipelines running in parallel. One key advantage of this model is that any switch

bytecode for the target architecture could be deployed on top of the switch hypervisor,

regardless of its internal switching pipeline. It means, for example, that one could write

a switch using P4 (BOSSHART et al., 2014), and deploy it in parallel to another switch

written in POF (SONG, 2013a). Even a switch written in Hardware Description Lan-

guage (HDL) could be deployed in the hypervisor, as long as it follows the Reconfigurable

Match-action Tables (RMT) (BOSSHART et al., 2013) architecture.

We realize this model in PvS, a system for running Programmable virtual Switches

in a shared network environment. Figure 1.1 presents an overview of PvS containing two

virtual switches from two different tenants. Each virtual switch has its pipeline of match-

action stages, along with separate control channel for secure management. Each tenant in

the shared infrastructure can deploy its virtual switch and use the most convenient man-

agement interface (e.g., Openflow, P4Runtime, or command-line) for making network

apps in the application plane operate it.

Figure 1.1: PvS Overview
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1.1 Motivation

There are several motivations for bringing virtualization to the forwarding plane,

as exhaustively discussed in prior work (HANCOCK; MERWE, 2016; ZHANG et al.,

2019; KRUDE et al., 2019): networking slicing, multi-tenancy in private and public

clouds, switch debugging, snapshotting, stateful switch migration, etc. Next we discuss

some potential use cases.

Network slicing. Resource slicing is one main motivation for virtualization, and

per se justifies the need for virtualization of programmable forwarding planes (AFOLABI

et al., 2018). Consider for example the roll-out of novel communication technologies like

5G. In order to reduce risks with huge capital expenditure, telecommunication companies

might opt to hire slices of radio-base stations (CABALLERO et al., 2017) on a pay-as-

you-go basis. The radio-base service provider would need to offer not only the abstraction

of a virtual radio-base station, but also abstractions of the networking hardware substrate

– including programmable virtual switches – required for data communication between

the provider and the telecom company network. A programmable virtual switch would

make it easier to interface the provider network with that of the telecom company.

Multi-tenancy in cloud infrastructures. The deployment of a virtual network-

ing infrastructure requires not only abstractions of servers and network functions, but also

forwarding devices that will interconnect the virtual infrastructure. The use of software

switches to materialize virtual forwarding devices might impose in some cases a perfor-

mance penalty that violates defined service level objectives. An approach to overcome

the performance penalty due to software switching is running programmable switches di-

rectly on a hypervisor that offers strict performance guarantees. A public cloud could even

offer the notion of a “programmable switch as a service” (KRUDE et al., 2019), which

could serve for interconnecting networks from different domains or running in various

public cloud infrastructures.

Switch profiling and debugging. A network operator might want to evaluate

a home-brewed switch in a semi-experimental scenario, using production workloads. A

programmable switch hypervisor would enable that operator to instantiate a virtual switch,

and steer (part of) the production traffic to it. The operator could run, for example, A/B ac-

ceptance testing, in which the performance of the home-brewed switch is compared with

that of the production switch. The operator could also take advantage of such scenario

to inspect switches for security vulnerabilities, for example, by replicating input traffic to
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independently developed switch instances and comparing output packets.

Switch snapshotting and migration. A switch hypervisor, having privileged ac-

cess to the virtual switch memory, could snapshot the switch state and configured set of

match-action table entries. The network operator could then create a catalog of switch

configurations, and quickly deploy virtual switch instances capable of handling network

flows during peak and off-peak hours, for example. Switch snapshotting could also be

useful in scenarios in which a switch must be migrated, along with its state and table

configurations, for handling fluctuations in network traffic demands, just like any virtual

network function migration (GEMBER-JACOBSON et al., 2014) as seen in the context

of Network Function Virtualization (NFV).

1.2 Contributions

This work presents PvS, discussing the approaches adopted to conceive a hypervi-

sor capable of running multiple programmable virtual switches in a single hardware sub-

strate with operation performance comparable to a single switch running as standalone.

However, the main focus of this dissertation is the PvS’s forwarding engine architecture,

exposing its design, implementation, and supporting features. The main finding with this

architecture is that it is possible to run virtual switch instances directly from switch byte-

code while ensuring predictable performance and isolation. It does so by slicing physical

switch resources into multiple pipelines and control. As a direct implication of this find-

ing, we make the following contributions:

• The design and implementation of PvS’s forwarding engine: Provides a vir-

tual switch operation performance comparable to that of a single switch running

as standalone directly on top of the physical programmable switch hardware. To

achieve this goal, specific modules were designed and implemented to promote fair

and efficient allocation of physical switch resources to virtual instances, in order

to maximize the number of instances that can run in parallel, and prevent running

instances interfere in the performance of each other;

• High-Level Synthesis (HLS) flow to virtual switch bytecode: Enables deploy-

ment of a switch bytecode in a Field-Programmable Gate Arrays (FPGAs) board

from a program code written in any Domain Specific Language (DSL) for pro-

grammable forwarding planes, like POF and P4. A framework to run the HLS flow
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was developed, allowing generation and deployment of virtual switches described

in P4. The proposed flow facilitates the development of virtualized switches with

features to simulate and manage multiple switches in the hypervisor. Code changes

are not necessary, which provides protection to the Intelectual Property (IP) and

enables the support of the same switch bytecode compiled for the target without the

hypervisor;

• The proposal of a methodology for switch reconfiguration for FPGA architec-

tures: Enable virtual switch hot-swapping. In other words, a tenant should be able

to (un)deploy switch bytecode from/to a programmable virtual switch assigned to

that tenant. A methodology was developed to run partial and full FPGA reconfig-

uration. The partial reconfiguration provides a structure to replace virtual switches

without affecting other running virtual switches, while the full methodology deliv-

ers the best optimization in terms of resource utilization and performance. Each

approach has an optimal utilization case that can be explored to better adapt PvS to

different scenarios;

• A public, open-source, implementation of PvS on GitHub1: PvS was built as

a fork of the canonical NetFPGA reference design (IBANEZ et al., 2019). This

repository contains the forwarding engine modules, the HLS program to build P4-

based virtual switches, the supporting library to test virtual switches execution,

examples of different virtual switches implementations, a demo to run the full and

partial reconfiguration methodology, and tutorials to enable network operators to

use our proposed architecture.

1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 presents the back-

ground knowledge, including basics concepts of domain-specific languages, virtualiza-

tion, and FPGAs. Also, it overviews switch program emulation, composition, and other

reference architectures. Chapter 3 describes PvS, exposing the design principles and the

system overview. Chapter 4 details the forwarding engine design and implementation

with the modules that support switch virtualization. Chapter 5 describes the proposed

HLS flow able to generate virtual switches from P4 descriptions. Chapter 6 explains our

1PvS forwarding engine slicing GitHub repo: <https://github.com/pvs-sigcomm/
pvs-forwarding-engine>

https://github.com/pvs-sigcomm/pvs-forwarding-engine
https://github.com/pvs-sigcomm/pvs-forwarding-engine
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reconfiguration methodology with pros and cons of using full or partial reconfiguration.

Chapter 7 discusses our evaluation in terms of resource usage and performance, measur-

ing reconfiguration times and the impact of virtual switches management, and discussing

the in-band telemetry case-study. Finally, Chapter 8 draws the final remarks and possible

future works that can be done over the presented forwarding engine and features.
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2 BACKGROUND AND STATE OF THE ART

This Chapter discusses background on topics that are fundamental to understand-

ing the work presented in this work, including DSLs, virtualization, Protocol Independent

Switch Architecture (PISA), FPGA architectures, and related work addressing switch vir-

tualization.

2.1 Domain-Specific Language (DSL)

A Domain-Specific Language (DSL) is a computer programming language of lim-

ited expressiveness focused on a particular domain. There are four key elements to this

definition: Computer programming language: A DSL is used by humans to instruct a

computer to do something. As with any modern programming language, its structure is

designed to make it easy for humans to understand, but it should still be something exe-

cutable by a computer. Language nature: A DSL is a programming language, and as such

should have a sense of fluency where the expressiveness comes not just from individual

expressions but also from the way they can be composed together. Limited expressive-

ness: A general-purpose programming language provides lots of capabilities: supporting

varied data, control, and abstraction structures. All of this is useful but makes it harder

to learn and use. A DSL supports a bare minimum of features needed to support its do-

main. You can not build an entire software system in a DSL; rather, you use a DSL for

one particular aspect of a system. Domain focus: A limited language is only useful if it

has a clear focus on a small domain. The domain focus is what makes a limited language

worthwhile (FOWLER, 2010).

The adoption of a DSL involves pros and cons, working with this approach means

finding the balance between these two. The benefits of DSLs include: DSLs allow solu-

tions to be expressed in the idiom and at the level of abstraction of the problem domain.

Consequently, domain experts themselves can understand, validate, modify, and often

even develop DSL programs (DEURSEN; KLINT; VISSER, 2000); Programs are con-

cise, self-documenting to a large extent, and can be reused for different purposes (LADD;

RAMMING, 1994); DSLs enhance productivity, reliability, maintainability (KIEBURTZ

et al., 1996); Allow validation and optimization at the domain level (BRUCE, 1997);

DSLs improve testability following approaches such as (SIRER; BERSHAD, 1999); Still

according to Deursen, Klint e Visser (2000), the disadvantages of the use of a DSL are:
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The costs of designing, implementing and maintaining a DSL; The costs of education for

DSL users; The difficulty of finding the proper scope for a DSL; The difficulty of balanc-

ing between domain-specificity and general-purpose programming language constructs;

The potential loss of efficiency when compared with hand-coded software; And according

Krueger (1992), the limited availability of DSLs ;

Operators can use domain-specific languages to effectively program network be-

havior, from control plane applications to forwarding devices. In the following sections,

we describe two prominent DSLs that enable data plane programmability: POF (SONG,

2013b) and P4 (BOSSHART et al., 2014). POF is designed to inter-operate with Open-

Flow (MCKEOWN et al., 2008a) and enable greater flexibility in packet processing def-

inition, whereas P4 provides higher-level abstractions to define protocol headers, header

parsing logic and packet to achieve the same main goal as POF. Although there are other

DSLs that enable data plane programmability, P4 and POF are the only that are recognized

by the Open Networking Foundation1 (ONF), responsible for fostering open networking

standards.

2.1.1 Protocol-Oblivious Forwarding (POF)

As one of the initial implementations of Software-Defined Networking (SDN),

OpenFlow provides a powerful tool set for network operators to program and manage

their networks adaptively (MCKEOWN et al., 2008b). However, its protocol-dependent

nature still limits the programmability of the forwarding plane. Specifically, OpenFlow

defines the matching fields in flow tables according to existing network protocols (e.g.,

Ethernet and Internet Protocol). Therefore, OpenFlow switches need to understand the

protocol headers to parse packets and perform flow matching, which may cause serious

compatibility issues when new protocols try to add or remove header fields. Hence, it is

desirable that the network programmability can be further enhanced such that the forward-

ing plane is protocol-independent and can be dynamically reprogrammed to support new

protocol stacks seamlessly. Following this idea, Protocol-Oblivious Forwarding (POF)

was proposed, a new SDN technologies to try to decouple network protocols from packet

forwarding and make the forwarding plane reconfigurable, programmable, and future-

proof (LI et al., 2017).

More specifically, POF is an OpenFlow extension that introduces a protocol-inde-

1https://www.opennetworking.org/
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pendent instruction set, which allows a network operator to define the protocol stack and

packet processing procedure in a much more flexible manner than that in the current

OpenFlow specifications. This extension is designed to enable rules to reference arbitrary

packet header fields and to control the table matching behavior. Header fields are refer-

enced within table entries in POF using type, offset, length tuples, where type is set to 0

to indicate a header field or 1 to indicate a meta-data field. Meta-data fields may contain

arbitrary data and serve the purpose of carrying packet information through the process-

ing pipeline. The offset is the field starting position relative to the first bit of the header.

The field length is specified in bits (SONG, 2013b).

Using POF to support new protocols, the operators need to download some flow

rules with associated instructions into the network elements. This instruction set is named

POF-FIS. POF-FIS is an enhancement and extension of the instructions and actions de-

fined in OpenFlow 1.x. In the POF network element, network flows are handled by flow

instructions in the form of POF Flow Instruction Blocks (POF-FIB). POF-FIBs are de-

ployed by a controller through the POF southbound interface. All the flow instructions

in POF-FIBs are defined in POF-FIS. The POF controller can use a Command-Line In-

terface (CLI), a Graphical User Interface (GUI), or a high-level programming language

compiler as the northbound interfaces to users and applications (YU et al., 2014).

The packet parsing process is done through table redirection and specially defined

decision tables. These tables match on header fields that indicate the next protocol type,

for example, Ethernet EtherType, and their entries are populated to redirect the packet

parsing appropriately. For example, suppose two decision tables dedicated to Internet

Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) routing, respectively. A

third table could be defined to match the Ethernet EtherType field, and populated with

two entries. One of them would have a matching value of 0x0800, and redirect the packet

parsing, via Goto-Table instruction, to the IPv4 table. The other entry would have a

matching value of 0x86DD, and redirect the parsing to the IPv6 table. The packet parsing

is thus analogous to OpenFlow, but with the ability to match and modify arbitrary header

fields (CORDEIRO; MARQUES; GASPARY, 2017).

2.1.2 Programming Protocol-Independent Packet Processors (P4)

Programming Protocol-Independent Packet Processors (P4) is a high-level lan-

guage that provides an abstract model suitable for programming the network data plane
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with the definition of its behavior (BOSSHART et al., 2014). Its main aspect goals are

reconfigurability, protocol independence, and target independence. The reconfigurability

proposes that packet parsing and processing may be redefined by the controller. The pro-

tocol independence suggests that the controller should be able to extract header fields by

specifying the packet parser and a collection of header processing match-action tables.

The target independence focuses on not getting irrelevant information about the switch.

A P4 program defines essentially six items: (i) headers, specify the names and

width of the protocol fields which the program operates on; (ii) metadata, structures that

provide specific information of the packet; (iii) parser, group of state machines to analyze

headers and extract data for the metadata structures; (iv) match-action table, identifying

packets fields and metadata that will be compared and the possible actions being executed

in response; (v) execution pipeline, stage actions, determined control flow, to define how

packets are processed; (vi) deparser, process to rebuild packets.

The task flow of the device definition with capacity for P4 starts with the opera-

tors writing and compiling a P4 program through a front-end compiler in a High-Level

Intermediate Representation (HLIR). Then, a back-end compiler will adapt the program

to different targets, including FPGAs. Finally, through an execution time controller, oper-

ators can fill entries in match-action tables in the data plane and make destination devices

process packets like they are preset.

The main difference between these two DSLs is that POF is an extension of Open-

Flow, and P4 is a protocol-independent language created to describe how the packets are

processed. While POF is a more direct evolution of OpenFlow, designed to inter-operate

with it and enable greater flexibility in packet processing definition, P4 provides higher-

level abstractions to define protocol headers, header parsing logic, and packet processing.

Both have the same main goal, to make the data plane programmable and reconfigurable.

2.2 Virtualization

The work presented in (ANDERSON et al., 2005) conceptualizes virtualization

as nothing more than a high-level abstraction that hides the underlying implementation

details, for example, as used in virtual memory, virtual machines, and elsewhere. With

virtualization, nodes can treat an overlay as if it is the native network, and multiple over-

lays can simultaneously use the same underlying infrastructure.

The application of virtualization has become common in modern public and pri-
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vate clouds, powering virtual abstractions for servers. The high costs involved in the

acquisition and maintenance of servers have caused the migration of local servers to re-

motely accessed virtualized servers. In the past fifteen years, server virtualization has be-

come the dominant approach for managing computational infrastructures, with the num-

ber of virtual servers exceeding the number of physical servers globally (BITTMAN et al.,

2013; KOPONEN et al., 2014). This approach shares resources to deliver a multi-tenant

scheme, in which a user receives an individual software abstraction to run its processes.

The idea of a Virtual Internet (VI) presented by (TOUCH et al., 2003) is a net-

work composed of tunneled links among a set of virtual routers and virtual hosts. The

architecture provides an abstraction that hides the complexity of the underlying network

and provides isolation-based protection that encourages resource sharing. The network

virtualization completely decouples its component hosts and routers from the underly-

ing network to support recursive VIs and to allow a node to participate multiple times

in a single overlay, known as re-visitation. This architecture provides a consistent multi-

homing paradigm, including end-to-end overlays, naming and addressing, virtual host

requirements, and virtual gateway requirements.

Network Function Virtualization (NFV) has been recently proposed to turn middle-

boxes into software-based, virtualized entities (MARTINS et al., 2014; HWANG; RA-

MAKRISHNAN; WOOD, 2015); provide high performance and flexible networking us-

ing virtualization on commodity platforms (HWANG; RAMAKRISHNAN; WOOD, 2015)

and reconfigurable hardware (LI et al., 2016); and the comprehensive survey of network

function virtualization (YI et al., 2018). These virtual abstractions are highly convenient,

it provides virtualization, isolation and non-interrupted execution of network functions.

Resource sharing through virtualization in forwarding devices take the VI concept

closer to reality. The research community has been proposing solutions to decouple hosts

and routers from the underlying network. In the work of the authors DOBRESCU et al. is

presented a software router architecture to parallelize router functionality across multiple

cores within a single server. Different approaches using SDN hypervisor architectures,

centralized and distributed also are presented to run on general-purpose computing plat-

forms with special-purpose network elements (SHERWOOD et al., 2009). Forwarding

systems with predictable performance have been proposed in the literature and are able to

share resources efficiently, while rapidly reacting to ensure isolation in public and private

clouds (KUMAR et al., 2019).

This work advocates in favor of network virtualization with the ability to run vir-
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tual instances of routers, switches, links, and network functions on top of a physical net-

work substrate. In addition to enabling experimentation with novel network architectures,

this virtual networking also promotes the sharing of physical resources, powering a whole

new class of networking-on-demand services.

2.3 Protocol Independent Switch Architecture (PISA)

Programmable switches enable the implementation of many complex network

functions directly in the data plane. The Protocol Independent Switch Architecture (PISA)

proposes the Reconfigurable Match Tables (RMT) model, a Reduced Instruction Set Com-

puter (RISC) inspired pipelined architecture for switching chips, through the identification

of the essential minimal set of action primitives to specify how headers are processed in

hardware. RMT allows the forwarding plane to be changed on-the-fly without modify-

ing the hardware. As in OpenFlow, the programmer can specify multiple match tables

of arbitrary width and depth, subject only to an overall resource limit, with each table

configurable for matching on arbitrary fields. (BOSSHART et al., 2013).

The PISA architecture consists of a large number of physical pipeline stages that

a smaller number of logical RMT stages can be mapped to, depending on the resource

needs of each logical stage. After entering a PISA switch, packets first go through an

ingress pipeline, then enter the traffic manager that maintains multiple queues, and are

finally processed by an egress pipeline (POKORNY et al., 2008).

Figure 2.1: The Basic PISA Pipeline

Source: Programming The Network Data Plane (KIM, 2017)

Figure 2.1 shows the processing pipeline stages in more detail. Note that there

are three fundamental elements, the Ingress match-action, Buffer, and the Egress match-

action. The Ingress and Egress match-action stages are composed of memory-implemented

modules, such as lookup tables, counters, meters, and generic hash tables; and processing

modules, such as standard boolean and arithmetic operations, header modification opera-
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tions, hashing operations, etc. The packets are recirculated through these stages up until

the processing is complete.

The implementation of the PISA is frequently prototyped in Application Specific

Integrated Circuits (ASIC) - i.e. Barefoot Tofino ASIC (BAREFOOT, 2019). The ASIC

provide their users the ability to manufacture products having a proprietary design without

having to begin the design at the device level (CHAN; BIRKNER; CHUA, 1992). The

main language used to program these devices is P4, that allows developers to describe how

packets are processed by a programmable data plane, spanning ASICs and processors,

implementing PISA (LUINAUD et al., 2020). However, the hardware implementation is

non-trivial and imposes constraints on the number of bytes that can be examined in the

packet header and on the number of match-action stages in a pipeline (JEPSEN et al.,

2019).

2.4 Field-Programmable Gate Arrays (FPGA)

The use of hardware-accelerated network devices in switches and routers are en-

abling a rapid growth of the Internet. Today, gigabit ethernet switches are widely deployed

to switch traffic within Local Area Networks (LAN) and route Internet Protocol packets

across Wide Area Networks (WANs). Commercial vendors use ASICs and/or FPGAs

to accelerate switching, routing, and processing of network data (LOCKWOOD et al.,

2007). As elucidated in the previous sections, the newer generation of SDN-related solu-

tions introduced the notion of data plane programmability - e.g., P4 and POF. They enable

faster development/provisioning of novel and/or home-brewed protocols, as opposed to

the long wait for the release of fixed-function ASIC switches supporting standardized pro-

tocols (SIVARAMAN et al., 2015). The intrinsic characteristics of Field-Programmable

Gate Arrays (FPGAs) are aligned with the data plane programmability which can be a

powerfully tool to network developers make the forwarding plane reconfigurable, pro-

grammable, and future-proof.

More specifically, the FPGAs are pre-fabricated silicon devices that can be elec-

trically programmed to become almost any kind of digital circuit or system (KUON et

al., 2008). They provide a number of compelling advantages over fixed-function ASICs,

such as standard cells (CHINNERY; KEUTZER, 2002): ASICs typically take months to

fabricate and cost hundreds of thousands to millions of dollars to obtain the first device;

FPGAs are configured in less than a second (and can often be reconfigured if a mistake is
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made) and cost anywhere from a few dollars to a few thousand dollars.

The flexible nature of FPGA comes at a significant cost in area, delay, and power

consumption: an FPGA requires approximately 20 to 35 times more area than a stan-

dard cell ASIC, has a speed performance roughly 3 to 4 times slower than an ASIC, and

consumes roughly 10 times as much dynamic power (KUON; ROSE, 2007). These dis-

advantages arise largely from an FPGA’s programmable routing fabric that trades area,

speed, and power for “instant” fabrication.

To create the circuit to be loaded into a FPGA board, a designer traditionally de-

scribes the circuit using Hardware Description Languages (HDL). HDLs describe the

behavior of physical devices and processes, a task commonly called modeling. Mod-

els written in HDL are used as input to a suitable simulator to analyze the behavior of

the devices before the design implementation (CHRISTEN; BAKALAR, 1999). Verilog

and VHDL are hardware description languages that provide means of specifying a digital

system at a wide range of levels of abstraction. Both languages support the early concep-

tual stages of design with its behavioral level of abstraction, and the later implementation

stages with its structural level of abstraction. The hierarchical modeling of the system

can be achieved with top-down and bottom-up design methodologies, and the system and

its subsystems can be described at any level of abstraction ranging from the architecture

level to gate level (BHASKER, 1999; THOMAS; MOORBY, 2008).

Figure 2.2: Arrangement of Slices within the CLB of the FPGA Xilinx Virtex 7

Source: Xilinx 7-Series Manual (XILINX, 2018)

The FPGA fabric is composed by fundamental building block named Configurable

Logic Blocks (CLBs) that provide the physical support for an implemented and down-
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loaded design. The CLB is the FPGA’s main logic resource for implementing combina-

torial and sequential logic functions. Each CLB is connected to the general routing fabric

through a switch matrix (CHANDRAKAR; GAITONDE; BAUER, 2015). The Figure

2.2 shows how the arrangement of slices form the CLB structure of the Xilinx Virtex 7,

the FPGA embedded in this work’s target board. The slice is built from Basic Elements of

Logic (BELs) such as Look up Tables (LUTs), flip-flops, carry logic, and wide-function

multiplexers (XILINX, 2018).

The configuration data of a FPGA is stored in a file called bitstream (.bit), which

defines the FPGA’s logic functions and circuit connections. This configuration remains

active in the FPGA until it is erased or overwritten. For the NetFPGA SUME board,

erasing can be accomplished by resetting the board and overwriting can be accomplished

by writing a new configuration file to the Joint Test Action Group (JTAG) port or by

triggering the on-board Complex Programmable Logic Device (CPLD) to load a new

bitstream from the parallel flash memory (Digilent Inc., Accessed: July 2019).

The use of FPGAs allows us not only to rapidly prototype PvS, but also to take

advantage of its flexibility, high performance, and module reconfiguration. The main dif-

ference in the use of FPGAs, when compared to the use of microprocessors, is the ability

to make substantial changes to the hardware, including modifications to the data and con-

trol flows (YANG et al., 2014), in addition of better efficiency in terms of performance

and power consumption, since it implements a dedicated circuit. When compared to using

a custom ASIC, the advantage of using FPGAs is the possibility of changing the hardware

at run time by loading a different circuit in the reconfigurable matrix.

2.5 Related Work

This work posit that a data plane hypervisor must allow network operators to de-

ploy and hot-swap truly independent virtual P4-based switch instances, deliver a per-

formance similar as if the virtual instances were running directly on hardware, and al-

low vendors to distribute switch byte-code while protecting their intellectual property.

Although previous investigations partially fulfill some of these requirements, satisfying

them simultaneously poses the following research challenges: (i) decouple virtual switch

instances from the virtualization environment, (ii) provide network flow isolation, (iii) en-

sure hardware resource isolation, (iv) support virtual networking within the hypervisor,

and (v) deliver an implementation with feasible performance and memory footprint. In
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the following section, we discuss the state-of-the-art related works to elucidate our pro-

posed approach.

2.5.1 Switch Program Emulation

Hancock and van der Merwe (HANCOCK; MERWE, 2016) were the first to pro-

pose the idea of a general purpose P4 switch program (called Hyper4) that exposes a set

of match-action tables that can be configured in a way to emulate other P4 programs. The

Hyper4 compiler is responsible for parsing switch programs and generating the necessary

Hyper4 match-action table entries required to emulate them. Hyper4 makes extensive

use of P4 packet recirculate primitive, which imposes high performance penalty to

emulated switches. Zhang et al. (ZHANG et al., 2017; ZHANG et al., 2019) followed

with HyperVDP, a solution that also emulates multiple P4 program switches using a single

general purpose program. Similarly to Hyper4, HyperVDP also suffers from performance

penalty due to emulation. In addition, both require several match-action stages to emulate

a single match-action stage, thereby incurring in high memory footprint.

SR-PVX (LI et al., 2017) follows a similar approach to Hyper4, but focuses on

POF (SONG, 2013a). SR-PVX enables instantiating virtual POF switches over desig-

nated substrate switches, and uses source routing to realize virtual links in virtual SDN

slicing. The deployment flow of virtual switches involves (i) deployment of tenant-defined

flow-table(s) in the substrate switch pipeline, and (ii) configuration of match tables in the

substrate switch so that packets belonging to a specific SDN are processed by the corre-

sponding tenant-defined flow-tables. In a follow-up work PVFlow (LI et al., 2018), the

authors unify flow-tables that contain arbitrary matching fields with various lengths, en-

abling them to share the Ternary Content Addressable Memory (TCAM) of a matching

stage in a substrate switch.

2.5.2 Switch Program Composition and Parallel Execution

P4Visor (ZHENG; BENSON; HU, 2018), Dejavu (WU et al., 2019), and P4SC

(CHEN et al., 2019) are solutions that compose multiple switch codes into a single pro-

gram, and that optimize resource usage through merging of similar switch program func-

tionalities. The composed programs can then be configured in a way that emulates various



35

switch functions running in the substrate switch. However, they do not support switch iso-

lation and interruption-free deployment of new switch instances.

Krude et al. (KRUDE et al., 2019) discussed research avenues towards providing

Programmable Switches as a Service, including switch hot-pluggability in the data plane,

which have been partially addressed in prior work like P4Visor (ZHENG; BENSON; HU,

2018), VirtP4 (SAQUETTI et al., 2019), and P4VBox (Saquetti et al., 2020). VirtP4 (SA-

QUETTI et al., 2019) and P4VBox (Saquetti et al., 2020) propose running multiple switch

instances on a NetFPGA board, but lack management abstractions for controlling virtual

switch instances. In our work, we show how the architectural requirements discussed

in (KRUDE et al., 2019) are realized to deliver a hypervisor for programmable virtual

switches running on a NetFPGA board.

2.5.3 Software Switches

PISCES (SHAHBAZ et al., 2016) follows a best-of-breed approach for enabling

customization of software switches through a high-level domain-specific language for

programming packet parsing and processing logic. Derived from Open vSwitch (PFAFF

et al., 2015), it provides a protocol-independent virtual switch whose behavior can be

modified at will. Although multiple software switch instances could run in parallel, it is

unclear whether each virtual switch instance would perform under intense competition for

shared resources like CPU and physical switch ports. Still, such approach would require a

supervisor program to steer packets between virtual switch instances and ensure network

isolation.

2.5.4 Canonical NetFPGA Reference Design Architecture

The canonical NetFPGA design is based on the Simple Sume Switch (SSS) archi-

tecture, which supports a single switch description, its structure is showed in Figure 2.3.

It consists of four 10Gbps and DMA I/O ports, Input Arbiter (IA), Output Port Lookup

(OPL), and BRAM Output Queues(BOQ). The IA is responsible for serializing the packet

frames received from the input ports and delivering them to the OPL module. The OPL

is a placeholder to accommodate an implementation of an independent P4-based switch

pipeline, which performs packet processing and determines the output port. The BOQ
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buffers packets before they are copied to the output ports. The Control enables system

monitoring and configuration.

Figure 2.3: Canonical NetFPGA reference design

MicroBlaze

AXI
Interconnect

DMA/AXI4
Lite Master

UART

MDIO

Configuration

Input Arbiter

Output Port Lookup

BRAM Output
Queues

10GMAC
RX 0

10GMAC
RX 1

10GMAC
RX 2

10GMAC
RX 3

DMA
RX

10GMAC
TX 0

10GMAC
TX 1

10GMAC
TX 2

10GMAC
TX 3

DMA
TX

Data Path

Control

Source: From the author

Table 2.1 describes the format of the SSS’s sume_metadata bus and the functional-

ity of each field. The architecture could also be extended by more advanced users, or, for

the most adventurous users, it could be completely replaced by writing a new architectural

model (IBANEZ et al., 2019).

Table 2.1: Simple Sume Switch sume_metadata Fields Description
Field Name Size (bits) Description
pkt_len 16 Size of the packet in bytes (not including the Ethernet preamble or FCS)
src_port 8 Port on which the packet arrived (one-hot encoded)
dst_port 8 Set by the P4 program - which port(s) the packet should be sent out of (one-hot encoded)
send_dig_to_cpu 8 Set the least significant bit of this field to send the digest_data to the CPU
*_q_size 16 Size of each output queue at P4 processing start time, measured in of 32-byte words

Source: (IBANEZ et al., 2019)

For generating a switch implementation from a P4 description, the P4-NetFPGA

uses a HLS methodology applied to a SSS architecture creating an OPL. The SSS is simi-

lar to the Very Simple Switch (VSS) reference model and supports switch logic composed

of a single packet parser, match-action pipeline, and packet deparser.
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2.5.5 Summary

Most prior work have focused on emulating programmable switch pipelines through

a single switch program, or composing several switch functions into a single program (see

Table 2.2). Observe that prior work on virtualization of the forwarding plane lack mecha-

nisms for ensuring predictable performance and tenant isolation. A common approach for

virtualization has been using switch program composition, for example, through a merged

packet parser and a set of match-action tables for emulating multiple pipelines.

Table 2.2: Existing work on virtualization of forwarding elements.
Solution Underlying hypervisor Abstraction Model Target DSL Compilation / Merging

Hyper4 (HANCOCK; MERWE, 2016) Software switch Virtual switch Emulation P4 Compilation

HyperVDP (ZHANG et al., 2019) Software switch Virtual switch Emulation P4 Compilation

P4Visor (ZHENG; BENSON; HU, 2018) Single switch program Switch function Emulation P4 Merging

Dejavu (WU et al., 2019) Single switch program Switch function Emulation P4 Merging

P4SC (CHEN et al., 2019) Single switch program Switch function Emulation P4 Merging

SR-PVX (LI et al., 2017) Single switch program Virtual switch Emulation POF Compilation

PV-Flow (LI et al., 2018) Single switch program Virtual switch Emulation POF Compilation

PvS Hard virtualization Virtual switch Virtualization Independent –

Source: From the author

The main drawbacks of these techniques are that: (i) they do not provide true

switch isolation, as switch programs are merged into a single one, and therefore share

physical resources, (ii) any modification to a switch program requires full recompilation,

(iii) updating a single switch program requires full system halt, (iv) incur in performance

degradation in terms of increased latency a decreased bandwidth, or (v) not provide a

virtualization features.
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3 PVS PROPOSAL

This Chapter presents an overview of PvS, a new solution of virtualization for pro-

grammable data planes that aims to fill the existing virtualization gap in the literature, as

depicted in Figure 3.1. This system provides true virtualization running multiple pipelines

of programmable virtual switches on top of the same hardware platform, providing per-

formance comparable as a single switch running as standalone. The support to multiple

DSLs allows the co-existence with legacy solutions and is capable of making the network

infrastructure more extensible and reusable, while the hot-swapping process enables the

easy (un)deploy of new virtual switches to do debugging or migration without interfering

in the already running pipelines. In Section 3.1, we describe the design principles that

a hypervisor should satisfy, which guided the PvS implementation, whereas Section 3.2

provides a PvS overview and define the main properties to programmable switch abstrac-

tion.

Figure 3.1: PvS proposal in the literature

Source: From the author

3.1 Design Principles

As a general goal, any hypervisor for the data plane should offer the network

developer an abstraction of a programmable virtual switch. In other words, the hypervisor

should enable the network developer to program a virtual switch placeholder as if the

physical switch hardware itself were being programmed.

As a direct consequence of the goal above, any suitable hypervisor for the data

plane should offer the following set of features:
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• Promote fair and efficient allocation of physical switch resources to virtual in-

stances, in order to maximize the number of instances that can run in parallel, and

prevent running instances interfere in the performance of each other (Chapter 4);

• Provide virtual networking between virtual switch instances, enabling them to ex-

change flows between each other. This is the case for virtual networking within the

hypervisor, a useful feature in a scenario where multiple switch instances belong to

a same tenant, and are part of a same domain (Chapter 4).

• Ensure that virtual switch instances do not process network flows or read/write

memory blocks or virtual ports beyond their control, e.g., from other virtual switches

running in parallel. Such feature is essential for ensuring that a malicious virtual

switch does not tamper with other running instances (Chapter 4 and 5);

• Enable the deployment of a switch bytecode compiled from a program written in

any Domain Specific Language (DSL) for programmable forwarding planes, like

POF and P4 (Chapter 5);

• Support the same switch bytecode compiled for the target it is running on. For

example, if the hypervisor is running on NetFPGA, then it should run virtual switch

instances from a switch bytecode compiled for a NetFPGA target (Chapter 5);

• Enable virtual switch hot-swapping. In other words, a tenant should be able to

(un)deploy switch bytecode from/to a programmable virtual switch assigned to that

tenant (Chapter 6);

• Provide a virtual switch operation performance comparable to that of a single switch

running standalone directly on top of the physical programmable switch hardware

(Chapter 7);

• Ensure that network apps running in the SDN application plane only gain any access

to virtual switches if they provide valid access credentials. Such feature is critical

for ensuring secure operation of virtual switch instances and tampering from a ma-

licious tenant.

In addition to these features, the deployment of a virtual switch instance must not

require access to switch source code or custom switch program compilation. Such feature

is important for protecting the intellectual property of switch developers and vendors.

In contrast, prior work require custom compilation or switch program composition for

running it as a virtual switch instance.

To satisfy these features, we propose the following design principles for a pro-
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grammable forwarding plane virtualization solution:

P1 Forwarding engine slicing. For predictable performance and tenant isolation, phys-

ical switch resources should be sliced proportionally to the desired performance,

and committed to virtual switch placeholders. In particular, resources like memory

space for holding the switch bytecode, match-action table entries, and counters, as

well as packet queues and buffers, should be allocated per deployed switch instance,

to ensure their feasible operation.

P2 Control engine abstraction. For ensuring secure management and compatibility

with open control-data plane interfaces, the hypervisor should offer an abstraction

of a single control engine and management channel to network apps running in the

application plane.

The forwarding engine slicing (P1) enables accommodating virtual switch in-

stances with predictable performance with regard to packet processing capabilities, and

known storage capacity for handling match-action table entries and packet counters. In

turn, the use of slicing requires accessory modules for ensuring that (i) incoming packets

are steered to correct virtual switch instances, (ii) output packets are forwarded to the cor-

rect physical switch ports, and (iii) match-action table entry and register reading/writing

operations do not overflow. More importantly, such modules should provide virtual port

and ingress/egress buffer and queue abstractions for virtual switch placeholders, so that

these placeholders can accommodate the same switch bytecode one would deploy directly

on the physical switch. While P1 is necessary for predictable performance and enforce

secure virtual switch operation at the forwarding engine, it does not cover control to data

plane management channels, neither is capable of enforcing secure virtual switch man-

agement.

The control engine abstraction (P2) provides a proper abstraction of a virtual

switch control engine and satisfies the last mentioned design principle. Such abstrac-

tion should intercept message requests sent through the control channel, and ensure that

they are accepted and processed by the virtual switch only if proper credentials are sup-

plied beforehand. It should also ensure that tenants do not perform read/write requests

to match-action table entries and counters beyond their control. Observe also that re-

gardless of the control engine abstraction used, the hypervisor must ensure that it is not

reprogrammed by a malicious tenant so that these security properties are subverted, and

a malicious tenant becomes able to access restricted memory regions in the forwarding
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engine.

In this dissertation, we focus on the PvS Fowarding Engine, a programmable for-

warding plane hypervisor that implements the forwarding engine slicing (P1) and all-but-

the-last design principles. It enables compiled switch bytecode to run as virtual switch

instances, with a performance comparable to what would be achieved if the switch byte-

code were running directly on the physical programmable switch hardware. With the use

of this virtualization system, we can have, for example, a layer-2 switch, a simple router,

a firewall switch, and an in-band telemetry running on top of PvS. The control engine

abstraction (P2), which satisfies the last design principle, is left out of the scope of this

dissertation.

3.2 PvS: Programmable virtual Switch Hypervisor for the Data Plane

The PvS design is guided by the notion that a hypervisor for programmable for-

warding planes should offer to network developers a proper abstraction of programmable

virtual switches. Under such notion, and considering a scenario in which the hypervi-

sor runs on top of a NetFPGA board, then the hypervisor should offer to each network

developer the illusion of having their own dedicated NetFPGA board – which is, in prac-

tice, a slice of resources of the physical NetFPGA board. The hypervisor manager should

be able to create as many slices for virtual switches as possible, and network develop-

ers should be able to instantiate any switch program on a slice. The operation of virtual

switch instances should not interfere on switches running in other slices.

A physical switch may be characterized, for example, by (i) amount of memory

available for storing the switch bytecode and table entries, (ii) number of network ports

and their speed, (iii) switch throughput capacity, (iii) packet processing capacity per sec-

ond, (iv) latency, and (v) number of dedicated management interfaces1. In this context, we

define a programmable switch abstraction along properties like memory capacity, virtual

switch ports, and dedicated management interfaces. The goal of PvS, as a programmable

switch hypervisor, is supporting such abstractions while ensuring virtual switch perfor-

mance and isolation.

Figure 3.2 provides an overview of PvS, and its relationship with a software-

1The physical switch characterization discussed in this paper is based on the datasheet of
a STORDIS BF2556X-1T Barefoot Tofino-based programmable switch: <https://www.stordis.com/
wp-content/uploads/2019/12/STORDIS_BF2556X-1T-A1F.pdf>

https://www.stordis.com/wp-content/uploads/2019/12/STORDIS_BF2556X-1T-A1F.pdf
https://www.stordis.com/wp-content/uploads/2019/12/STORDIS_BF2556X-1T-A1F.pdf
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Figure 3.2: An overview of a conceptual architecture of a programmable virtual switch
hypervisor, and its relationship with key elements that compose a high-level Software
Defined Networking (SDN) architecture.
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defined networking architecture. PvS is composed of a forwarding engine and a control

engine. The forwarding engine is responsible for accommodating virtual switch pipelines,

whereas the control engine provisions the functionalities of a Control-Data-Plane Inter-

face (CDPI) agent, as discussed in the SDN technical reference specification (FOUNDA-

TION, 2013). The CDPI agent enables network applications, belonging to different ten-

ants (colored in the figure for illustration purposes), interact with virtual switch instances

through standard management interfaces like OpenFlow and P4Runtime.

3.2.1 Memory slicing

The network manager may define the amount of memory allocated to a virtual

switch instance either considering the specific memory requirements of the switch byte-

code to be deployed, or according to a desired arbitrary amount. The memory space

allocated should consider both the required space to store the switch bytecode and the

match-action table entries plus counters. The memory region belonging to a virtual switch
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instance should be protected from unauthorized access, in order to ensure security and pri-

vacy of processed flows.

3.2.2 Virtual ports

After entering the physical switch input queue, network flows must be delivered

to a virtual switch port. The network manager may define an arbitrary number of virtual

ports for each switch instance, and a mapping of physical to virtual ports. The PvS parser

and ingress management module is responsible for identifying the tenant associated to an

incoming packet, and to which virtual switch pipeline an incoming packet must be steered

to (note that a tenant may own multiple virtual switch instances). Such identification

must be done based on the input physical port and values matched from the incoming

packet header fields. Existing solutions considered custom packet tagging (HANCOCK;

MERWE, 2016; ZHANG et al., 2017) to assist that identification; traditional protocols

for network segmentation, like VLAN and Virtual Extensible LAN (VXLAN) may also

be used to this end.

Once processed by a virtual switch, packet flows must be steered out of the switch

(if not marked for drop). Similarly to input port mapping, the network manager must de-

termine the virtual to physical output port mapping. The PvS egress management module

is responsible for determining to which physical output port the packet must be copied to.

To this end, it considers the virtual switch and port from which the packet is coming from.

For ensuring secure packet steering, the egress management module should also check if

the packet tag identifier (for example, VLAN/VXLAN id) matches the tenant that owns

the virtual switch that forwarded the packet.

3.2.3 Management interfaces

The hypervisor must provide open management interfaces to virtual switches, so

that they can be easily coupled to a software-defined network substrate. At the same

time, the hypervisor must guarantee that the management interface is not subverted so

that a malicious tenant gain unauthorized access to virtual switches. For this reason, PvS

also implements the control engine abstraction, an abstraction of management channel to

tenants, that is materialized through a single Control-Data-Plane Interface (CPDI) agent.
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The agent receives requests from the CPDI driver, identifies the virtual switch target of

the request, and then process it accordingly. Note that providing a management channel

abstraction requires extending management specifications to support tenant authentica-

tion.

As previously mentioned, we focus on the forwarding engine slicing (P1) (Chapter

4), its supporting features (Chapter 5), and its reconfiguration capabilities (Chapter 6).

Thus, we do not directly address the control engine abstraction (P2), only its interactions

with the forwarding engine. The hypervisor seeks to accommodate the switch abstraction

properties above, while ensuring that a network developer remains free to devise switch

programs according to one’s requirements and needs. More importantly, it seeks to deliver

optimal memory occupancy per virtual switch instance and negligible overhead, both in

terms of flow processing and operational management.
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4 FORWARDING ENGINE IMPLEMENTATION

This work proposed a forwarding engine architecture for virtualization multiple

virtual switch (vS) instances in a single hardware subtract. In typical switch system, only

one switch can run on hardware and this system has a specific language supports. To

make a target independent platform, this approach enable the portability to any FPGA-

based architecture with minor adjustments in the Intellectual Property (IP) library. The

real virtualization make the hardware target more flexible and reusable. So its can imple-

ment on FPGA cards or any other Verilog supported architecture, for example the 32-Port

Programmable Switch from New Wave DV (DV, 2017).

The FPGA-based architecture chosen to target the PvS prototype was the NetF-

PGA SUME board. This is an FPGA-based PCI Express board with I/O capabilities for

10 and 100 Gbps operation, an x8 Gen3 PCIe adapter card incorporating Xilinx’s FPGA

with multiple memory and high-speed expansion interfaces (Digilent Inc., Accessed: July

2019). These attributes make SUME the ideal card for high-performance and high-density

networking design.

Figure 4.1: NetFPGA SUME Board Peripherals Subsystems

Source: (Digilent Inc., Accessed: July 2019)

The board is manufactured by Digilent Inc and implemented as a dual slot, full-

size PCIe adapter, that can operate as a stand-alone unit outside of a PCIe host presented.

This operation mode use a microblaze soft-core processor, e.g. (WOODRUFF et al.,

2014) considerable on-chip memory that can serve for onchip cache, the peripheral de-

vices on board as a local RAM of between 8GB and 16GB running at 1866MT/s and two

hard drives connected through SATA enable the card to operate as a powerful stand-alone

computing unit. The Figure 4.1 show the NetFPGA SUME and expose its peripheral.
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The core of the board is powered by Virtex-7 690T FPGA device. There are five

peripheral subsystems that complement. A high speed serial interfaces subsystem com-

posed of 30 serial links running at up to 13.1Gb/s. These connect four 10Gb/s SFP Ether-

net interfaces, two expansion connectors and a PCIe edge connector directly to the FPGA.

The second subsystem, the latest generation 3.0 of PCIe is used to interface between

the card and the host device, allowing both register access and packet transfer between

the platform and the motherboard. The memory subsystem combines both SRAM and

DRAM devices. SRAM memory is devised from three 36-bit QDRII+ devices, running at

500MHz. In contrast, DRAM memory is composed of two 64-bit DDR3 memory mod-

ules running at 933MHz (1866MT/s). Storage subsystems of the design permit both a

MicroSD card and external disks through two SATA interfaces. Finally, the FPGA con-

figuration subsystem is concerned with use of the FLASH devices. A block diagram of

the board is provided in Figure 4.2 (Zilberman et al., 2014).

The documentation support is provided by the NetFPGA project, a collaborative

effort between Digilent, Xilinx, the University of Cambridge, and Stanford University.

Its goal is provides software, hardware and community as a basic infrastructure to sim-

plify design, simulation and testing, all around an open-source high-speed networking

platform.

Figure 4.2: NetFPGA SUME Board Block Desig

Source: (Zilberman et al., 2014)
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4.1 Forwarding Engine Design Overview

The PvS forwarding engine is responsible for hosting virtual switch (vS) instances

and performing flow steering between them. A conceptual view is shown in Figure 4.3.

It contains five main elements: (4.2) Tx/Rx ports, which is the interface between the

architecture and physical input and output layer, (4.3) Input vS Interface (IvSI), which

receives incoming packets from the data plane, (4.4) vS Array, which hosts parallel vS

instances, (4.5) Output vS Interface (OvSI), which outputs outgoing packets back to the

data plane, and (4.6) Control vS Interface (CvSI), which provides access from the vS

Array to the control engine.

Figure 4.3: PvS Forwarding Engine Architecture
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These modules have been developed in Verilog and implemented in the NetFPGA

SUME board at 200 MHz. The communication interface with the control engine (at Host)

occurs through PCI-e and USB interfaces. All design structures are based AXI4, released

by ARM and later refined by Xilinx. The data flow transmission interface can be resumed

as two AXI4 buses:

AXI Lite Control & Status Interface. The AXI Lite protocol is the control signals in-

terface. It’s basically a simple read/write interface, single beat access, with 32bit

address and 32bit data. Implemented through Xilinx standardized AXI4 lite with

5 channels: read data, read address, write data, write address and write response.

Components with AXI lite interface can be connected to each other via AXI inter-

connect module in which all peripherals reside within a slice address space. The

master on this interconnect is both PCIe and microblaze, they can write and read all

peripherals.
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AXI Stream Data path interface. The AXI Stream protocol is the transit bus for SUME

packets and metadata signals. This bus permeates the modules instantiated in the

project sequentially conveying five main signals: tvalid - master to slave flow

control signal, tdata - data signal, tready - slave to master flow control sig-

nal, tlast - indicates end of packet, tuser - carries meta data in the first data

beat of the packet. A data path interface is implemented with Xilinx AXI4 Stream-

ing Protocol compliant stream whereby meta-data is conveyed through the TUSER

field.

4.2 Tx/Rx Ports

The Transmitter and Receiver physical ports are responsible for sending and re-

ceiving data, which can be encapsulated in different protocols, and are interpreted as

data frames. The 10G interface block receives incoming serial data from the optical SFP

transceiver ports and converts it to a 256-bit AXI Stream interface toward the PvS data

path. It is imported from NetFPGA-SUME library and its implementation is based on the

Xilinx’ AXI 10G Ethernet subsystem IP. The IP includes the PMA, PCS, and MAC of the

10G interface, which operates the physical ports on a 156.25 MHz clock. This IP may in-

clude shared logic and, when this happens, this module acts as a fifth module, responsible

for generating clocks and resets to all other 10G interfaces.

Data going out from the Xilinx’s 10G subsystem, enters a 64-b data FIFO, and

from there enters a submodule which adds metadata to every packet. The metadata is

written into the TUSER field and includes the source and (default) destination port of a

packet. Once the metadata is added, the 64b-wide AXI steam bus, is converter to 256b,

matching the NetFPGA internal data path, and the information is forwarded toward the

input arbiter (NetFPGA Project, Accessed: December 2019).

The Direct Memory Access (DMA) module provides the abstraction of extra vir-

tual ports to interface with the Controller, each real port has a virtual port associated,

allowing the architecture to load and store data frames from and into the memory. By

doing so, the Controller is able to send and receive data to and from the network. Virtual

ports enable the architecture to forward packets between vS instances.
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4.3 Input vS Interface (IvSI)

The introduction of multiple vS instances creates the need to steer incoming flows

to their corresponding deployed vS instances. To this end, the IvSI module receives pack-

ets from the RX ports (including the virtual ones) and distributes them to deployed vS

instances. Every data frame that travels into the IvSI must be delivered to its correct

P4 instance, otherwise the packet must be dropped. The IvSI buffers and serializes input

packets through a multiplexer running in a round-robin fashion into a packet parser, which

decides the vS instance to forward the packet to. In order to do so, it has to go through the

frame until it finds an identifier capable of identifying the destination P4 instance, which

should be encapsulated in the packet information.

The identifier can be a VLAN tag, for example, if that is the case the packet parser

reads the data packet until it finds a valid 32-bit 802.1Q VLAN tag (pkt.vlan_id)

and combines it with the packet source port (sume.src_port), extracted from the

sume metadata (sume_metadata_t) in tuser signal, forming a tuple. The tuple is

then matched against an abstraction of an Ingress match-action table, which can be

configured by the network administrator through the control engine.

This table supports two actions: forward the incoming packet to a vS, or drop

it. A Ingress.forward requires as parameter the device_id, indicating the iden-

tifier of the vS that will receive the packet. It also modify the tuser signal from the

data communication channel to include the device_id, for indicating to the subse-

quent modules in the forwarding engine pipeline which vS a packet belongs to (to prevent

packet leakage, for example). Note that, with this approach, vS instances may belong to

the same VLAN, as long as they do not share the same physical ingress ports.

Therefore, this module can behave in the following ways: In case the IvSI is not

able to detect the destination vS instance, it drops the frame. In case the IvSI detects

that the destination vS instance is not implemented, it routes the frame to the Controller.

Finally, if the destination vS instance is implemented, the packet is forwarded through an

independent route that provides true switch isolation.

The IvSI interact with the virtual port abstraction, as it parses input packets before

forwarding them to the corresponding vS instance. Therefore, we take advantage of the

Ingress match-action table, originally created to extract the vS device id, and improve

it to also return the corresponding virtual source port, which updates the original packet

source port (sume.src_port) in the sume metadata (sume_metadata_t).
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4.4 Virtual Switch Array (vS Array)

The forwarding engine provides slicing of resources through an array of place-

holders for virtual switch (vS) instances (vS Array), in other words the vS array is an

abstract module that corresponds to a group of placeholders for vS instances. The vS in-

stances can be the same as the one used by the canonical reference design originated from

a P4 code 2.5.4 or any other Verilog switch implementation. The architecture difference

is that PvS can support as many vS as one can physically fit in the board, instead of only

one.

The vS placeholders are preallocated areas with a set of predefined resources ca-

pable of implementing a single vS instance. Each placeholder contains three communi-

cation channels, to receive data packets from the IvSI, send data packets to the OvSI, and

process control requests from the CvSI. They all have individual logic to implement the

configuration file of a vS instance with an individual set of networking protocols, switch

metadata, variable scope, and control flow. To do so, they also have a private memory

space for storing match-action tables and configuration registers, which can only be ac-

cessed by the deployed vS instance. The (un)deployment of vS instances is performed

through either full or partial reconfiguration (Chapter 6).

For each of the four implemented TX/RX ports, we also implement a virtual

TX/RX port to allow virtual networking between vS instances. Virtual interfaces are

created by connecting a virtual TX port to a virtual RX port through the DMA 4.2. By

implementing virtual ports, a vS instance can create a communication channel and for-

ward packets to other implemented vS instances.

In order to ensure non-interference between vS instances, we also adopt queues

at the input/output of vS instances. By using independent vS queues instead of a single

shared one we prevent, for example, that a switch handling heavy incoming traffic affects

the latency or packet loss at the input of incoming traffic of other switches. Similarly,

having independent queues for vS output prevents a malicious switch from saturating

other switch queues and preventing them from sending packets.

4.5 Output vS Interface (OvSI)

Once the data packet is successfully delivered to its corresponding vS instance and

processed, the forwarding engine must forward it to an output port. It does so through the
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Output vS Interface (OvSI) module, which interfaces all vS instances’ output buffers to

the TX ports (including the virtual ones). The OvSI iterates over all vS instances’ output

buffers in a round-robin fashion, forwarding packets as soon as the corresponding TX port

is available.

The OvSI also implements a memory element named Egress Table that stores a

match-action table. The Egress Table is accessible by the Control Engine and has as the

match input a tuple composed by the packet destination port (sume.dst_port), from

the sume metadata (sume_metadata_t), the device id (tuser.device_id), from

the data communication channel, and the VLAN tag (pkt.vlan_id), from the data

packet. As output action, it returns the PvS physical destination port, which is updated in

the sume metadata as sume.dst_port. The Egress Table allows the implementation

of TX virtual ports on vS instances that enables network slicing.

The interaction with virtual ports abstraction 4.2 of a Egress match-action ta-

ble. This table matches the output virtual port from which the packet is leaving the vS

(from the sume_metadata.dst_port field), the VLAN tag within the packet (e.g.,

from pkt_out.vlan_id), and the device_id from the tuser signal. Possible ac-

tions are forward and drop. Egress.forward receives as parameter the physical

TX port to which the packet must be sent, which is updated in the sume metadata as

sume.dst_port.

Note that Ingress.drop and Egress.drop can be triggered to enforce vS

isolation and to prevent unauthorized traffic steering from/to vS instances. For example,

if a packet leaves a vS with a VLAN ID different from that configured in the Egress

for it, PvS may drop the packet. Note also that maintaining the device_id information

as part of the tuser signal prevents vS instances from modifying it. Otherwise, a vS

could modify that id to that of another switch, and thus output its packets through the

same physical ports assigned to that switch.

4.6 Control vS Interface (CvSI)

Place multiple vS instances in only one architecture result in a challenge to pass

the control signal to each vS. The control signals should initialize the table and register

to an unique switch for time, the delivery information must affect only the specific slice

memory of the pertinent vS. The Control vS Interface (CvSI) is an interface between the

vS Array and the Control Engine. It is responsible for delivering requests from the control
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engine to vS instances implemented on vS placeholders using the AXI lite protocol.

The requests from the control engine are grouped into a memory address, a data

frame, and a read/write flag, the CvSI issues the request into the control communication

channel shared with all vS placeholders. All requests are delivered to a corresponding vS

placeholder, and therefore, the security credentials of the request are checked previously

in the control engine. In this scheme the PCIe is a master in interconnect module and can

send the correspondent data to vS array.

This module implement a buffer multiplexer oriented to address. When the de-

ployment process occurs the vS receive the unique slice of memory, its begin and end

space address of switch is shared with the Control Engine and stored to future access.

When the control engine initialize a entry, the address called belongs to a resource thresh-

old of the vS, so the CvSI module can access directly the pertinent vS instance memory

area. The access takes place through a dedicated bus to prevent any leakage of data from

occurring to any other allocated placeholder.

The board control path is composed by the microblaze system and PCIe system,

both structures is a master in AXI lite protocol, so they are a master in CvSI communica-

tion. When the Control Engine needs replace, delete or check any match-action entry or

register status, this is do which the Command Line Interface (CLI) accessing the switch

module. The CvSI pass the address to the vS instance to request the allocated data, the

answer is delivery to Control Engine using the PCIe communication channel.
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5 HIGH-LEVEL SYNTHESIS FLOW

This Chapter describes our proposed High-Level Synthesis (HLS) framework to

generate a vS for PvS. This framework, which was based on the P4-NetFPGA Flow

(IBANEZ et al., 2019), enables easy development of virtualized switches to be deployed

in PvS, as well as supporting tools to perform simulation and testing.

The forwarding engine runs multiple vS instances in parallel which, together, form

the vS Array. As previously mentioned in Chapter 4, each vS is an individual pipeline

circuit implemented in the FPGA fabric with a dedicated register and memory spaces.

The use of a hardware language to describe vS instances allows the deployment of a

switch bytecode compiled from a program written in any DSL through this process.

The design of a vS requires the generation of two files: the vS HDL and the vS

driver. The vS HDL describes the packet processing of the vS. The vS driver is used by

the Control Engine for accessing the tables and registers of the switch. It is interesting to

notice that the vS HDL is mandatory, but the vS driver is optional, as a vS does not require

a control. Therefore, this implementation flow is able to generate a vS composed of a

single wire as well as a full stack router with multiple tables and configuration registers.

Figure 5.1: High-Level Synthesis flow overview
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To generate the vS HDL and the vS driver, our HLS flow is divided in three sep-

arate internal transformations flows: (i) P4-to-HDL HLS flow, which synthesizes a P4-

described switch into a HDL-described switch, (ii) PvS wrapper generation flow, which
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creates a wrapper that fits the HDL-described switch into PvS, and (iii) the driver gener-

ation flow, which creates drivers and memory allocation used by the Control Engine to

interface with the wrapped vS in PvS. It is important to notice that one could also design

different implementation flows. For example, one could replace the P4-to-HDL HLS flow

by a POF-based one or, alternatively, generate the inputs for the PvS wrapper generation

flow by hand. We chose P4 as our DSL because it is currently the most used language in

the literature, and therefore has a large variety of available documentation and supporting

tools. An example is the Xilinx SDNet, the HLS tool to create HDL modules from P4

programs used in the canonical NetFPGA reference design (Section 2.5.4), and also in the

P4-to-HDL HLS flow.

Figure 5.1 shows an overview of our proposed HLS flow, highlighting the internal

flows (i-iii) in white, blue, and yellow, respectively. As one can notice, the P4-to-HDL

HLS flow is the entry point, generating temporary files for the PvS wrapper and driver

generator flows (ii and iii). In the following sections, each internal flow is described.

5.1 P4-to-HDL HLS flow

Figure 5.2: Xilinx P4-SDNet compilation flow
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The P4-to-HDL HLS flow uses procedures from the P4-NetFPGA toolchain li-

brary to generate the inputs to both vS HDL (switch.hdl) and vS driver (switch.cli

and switch.dat) implementation flows, one for each switch in the vS array. It uses

the HLS tool Xilinx SDNet Packet Processor to first translate P4 to PX and create the
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switch.dat file. It then compiles the PX program into the vS HDL and generates the

switch.cli file.

Figure 5.2 depicts this process. The Xilinx P4 Compiler translates the input

P416 program (switch.p4) into an intermediate language called PX and creates the

switch.dat that contains information about the tables organization in the design for

the Control Engine. The PX program is passed along with configuration parameters

(tables and configuration registers description - tables.cfg and regs.cfg, respec-

tively), to the Xilinx SDNet Compiler, which then produces an encrypted HDL module

that implements the input P416 program switch.hdl and the set of function to manip-

ulate the design registers through a CLI switch.cli. Xilinx SDNet Compiler also produces

the Switch Testbench, a simulation environment that creates an interface able to

communicate with the vS, and the High-level Model of the PX program that, when

executed, produces a verbose output for debugging, capable of describing how the packets

are processed.

At this point, the developer can use the debugging tools to simulate the HDL mod-

ule behaviour and ensure the processing capacity of the design. To do so, a python script

is used to generate custom network flows with varying number of packets to be applied

by simulation. Using the packet manipulator methods of the Scapy library (BIONDI,

2010), the network data generator creates four files: (1) a set of packets to feed the vS

(src.pcap), (2) the expected output of the vS (dst.pcap), (3) the metadata associated

with each packet in src.pcap (Tuple_in.txt), and (4) the metadata associated with

each packet in dst.pcap (Tuple_out.txt). Additionally, one could create simula-

tion files for the board containing multiple vS instances. The next section covers more

details about the SUME simulation.

Once finished, the HLS flow results in an encrypted hardware description, so this

process can be carried out independently of the platform design and the developer guar-

antees the protection of its intellectual property. This feature allows developers to create

vS instances and deliver the bytecode to a third party, which can then integrate it with the

hypervisor design platform. Despite the apparent complexity, all this process is guided by

an online command tool and has transparent steps for the developer to facilitate its usage.

The Appendix A shows an example of commands to execute the HLS flow from P4 to

HDL of a project with three vS instances.
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5.2 PvS Wrapper Generation Flow

The PvS wrapper generation flow consists of wrapping a generic HDL-described

switch (switch.hdl) with data and (optionally) control communication channels. To

do so, the vS HDL wrapper parses the switch.hdl, inserts I/O communication interfaces

compatible with a vS placeholder template, and creates the vS HDL IP file, which can then

be translated into a target board configuration file. The vS placeholder template exposes

an AXI Stream interface for packet data traffic, an AXI Lite interface for communication

with the control. The former takes the headers and payload of the package for processing,

as well as the associated metadata, while the latter is used to initialize and change the

registers associated with the vS tables during processing.

Our generation flow takes advantage of the SSS model, available from the P4-

NetFPGA project, which supports the sume_metadata, extending it to make each vS

unique, to do so, a unique switch identifier (vS_id) is assigned to the Wrapper through

the template file (vS template) during the IP building process. Currently, the iden-

tifier used is a number ranging from 0 to the total number of switches embedded in the

design of the PvS Forwarding Engine, normally associated with the VLAN tag. If the vS

was developed by a third party, it is up to the design that will implement the project to

adjust the vS identifier so that there are no conflicts in the architecture.

Figure 5.3: Building a vS IP
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The construction of the IP is performed through a script in Tool Command Lan-

guage (TCL) that runs on top of the Xilinx Vivado software. It uses the folder resulting

from the switch compilation and simulation process switch.hdl as input, defines the
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unique vS identifier and then calls this script. In turn, the IP builder applies the vS place-

holder template, creates the IP (vS.hdl) and links it to the user library in Vivado, for later

added to projects. Figure 5.3 summarizes this step in the HDL Wrapper flow.

The SUME simulation adds the vS IPs available in the library and builds the ar-

chitecture design around them, including the modules covered in the Chapter 4 to support

virtualization. In addition, the standard I/O port modules and a simple control module are

instantiated to provide communication channels to packet data and control commands.

The embedded control enables simple reading and writing functions in registers to en-

able communication via PCI-e with the vS array through the CvSI, which in turn uses the

communication channel formed by AXI Lite.

Finally, the files applied for each of the four simulated network interfaces gener-

ated during P4-to-HDL flow are applied in the SUME simulation. The register structure

that represents the switch tables is initialized and the architecture is stimulated with all vS

running in parallel. With the end of the execution, the output packages are compared to

the expected packages.

5.3 Driver Generation Flow

The driver generation flow consists of four steps that, together, generate all drivers

for PvS (vs.driver). The first step is to generate the standard NetFPGA SUME board

driver 1. This driver is used for reading and writing board registers via PCI-e at runtime.

The second step is the generation of functions used to access multiple CLIs. This driver

is derived from all individual switch CLIs. The thirty driver is a map to global memory

to guide the implementation flow to place the vS instances address in design. The final

step generates drivers for the board reconfiguration wizard, that enables the initialization

of multiple switch tables and reprogramming capabilities.

The stardard NetFPGA SUME board driver is based on the DMA, which sup-

ports PCI-e Gen.2 x8 as well as packet transactions. It receives incoming transactions

(both packets and registers access) from the PCI-e and converts them to AXI-Stream

transactions towards the data path (for packets) and AXI-Lite transactions toward the

control path (for registers access) (AUDZEVICH, 2015). In other words, in addition

to accessing the registers, it is possible to insert packages directly through the PCI-e.

Such functionality is used to support packet-in and packet-out delivering messages to

1https://github.com/NetFPGA/NetFPGA-SUME-public/wiki
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the Control Engine. To do so, the Forwarding Engine, upon receiving a packet with

sume_metadata.dst_port= 0x10000000, using the OvSI to copy the packet

for the reserved virtual port number three (nf3_dma), realizes the packet-out when send-

ing a data plane packet for the controller. In the packet-in message, a reserved register is

written with the device_id with the virtual port from which the packet was received

and the OvSI routes the packet to its corresponding vS.

The second step creates an individual CLI for each vS. It generates functions to im-

prove the switch.cli using information about the switch structure from switch.dat.

To do so, a new environment variable is declared to define a property relationship between

the vS instance and the respective CLI, which is then passed as a parameter during the CLI

building process to the basic switch.cli. This process extracts the switch structure

pipeline from the switch.dat and generates functions to access data in match-action

tables and registers. It also describes a memory allocation requirement for the CLI’s

memory space, used in the next step.

The third step is responsible for producing the address map drivers, which are

guided by the memory allocation requirements informed in the previous step. The mem-

ory allocation requirements are collected, adjusted with the SUME register structure, and

distributed in slices of memory, forming a global memory allocation structure. The slices

are based on the number of vS tables, so that the memory space allocated to each vS fits

twice the size of its initial tables. This process creates an address map of all vS instances,

containing the start and length of the initialized match-action tables in the global memory.

The fourth and final step generates drivers for the board reconfiguration wizard.

This feature needs a the map of the vS Array, created in the previous step, and the initial

values of the tables from the vS instances to perform the first write in the board register

after the reconfiguration. In addition, the wizard realizes full or partial reconfiguration us-

ing the bitstream generated from the PvS design implementation. Environment variables

define the type of reconfiguration and which bitstream that should be used by the wizard

to reprogram the FPGA.
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6 RECONFIGURATION METHODOLOGY

The current ossified state of the Internet imposes many barriers to meet the con-

stant increase in demand and improvement of services already offered, aiming at a more

sustainable model in the long term, the network system designers are exploiting the pro-

grammability to add new features to the forwarding plane, including telemetry (KIM et al.,

2015), layer-4 load balancing (MIAO et al., 2017), encryption, and in-network caching

(JIN et al., 2017). The new breed of programmable switches and NICs matching the

performance, power, and cost of fixed-function devices (BROADCOM, 2018; CAVIUM,

2018; BAREFOOT, 2019). Among the benefits of using programmable hardware such as

FPGAs is the flexibility and re-usability provided by the reconfiguration.

The reconfiguration of PvS can be achieved by means of full or partial board

reconfiguration. Full reconfiguration downloads a bitstream that replaces whole FPGA

logic with a new one, erasing previous configuration. Partial reconfiguration downloads a

partial bitstream to the FPGA, overwriting only a predefined part of the full logic, with-

out interfering with other parts. Both methodologies have advantages and disadvantages,

which must be tailored to different scenarios. The Forwarding Engine takes advantage of

reconfiguration to enable vS hot-swapping. In other words, this feature allows tenants to

(un)deploy switch bytecode from/to a programmable vS.

Both full and partial reconfiguration methodologies start the procedure by pro-

gramming the board with a standard full configuration bitstream. However, while the full

reconfiguration methodology already programs the board with the final design, the partial

one programs the board with a blank template, capable of later receiving partial modules.

The following sections explain our proposed methodologies and present an evaluation of

the best scenarios for applying each of them.

6.1 Full Reconfiguration Methodology

The full reconfiguration process downloads a full bitstream file, overwriting the

current FPGA board configuration. The bitstream download can be done directly from

an internal PROM memory or from an external general-purpose memory. This process

is carried on by a microprocessor, which configures the FPGA board. A full bitstream is

a file that contains all the information necessary to reset and configure the FPGA fabric

with a complete design.
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Our full reconfiguration methodology implementation includes three steps, which

happen after the HLS Flow, described in Chapter 5, is performed: (i) full bitstream gen-

eration, (ii) full bitstream download to the FPGA board, and (iii) initialization.

The first step is responsible for grouping all vS instances, which are already wrapped

to the PvS architecture and generating the full bitstream, describing the whole FPGA fab-

ric. This is done in Xilinx Vivado through a set TCL scripts that build the virtualized

design. This process is transparent for the user, as shown in appendix A.3. At the end

of this step, the full bitstream file is ready to be downloaded to the board using the set of

features provided by driver generator flow (5.3).

The second step, which downloads the full bitstream to the FPGA, is illustrated

in Figure 6.1. It waits for a stable Vcc and then issues a global reset that erases all

contexts across the FPGA board, including PvS and vS configurations, such as tables and

configuration registers. After, a microprocessor downloads the bitstream from the source

memory to the target FPGA board. The download process is then verified by performing

a bitstream readback from the FPGA and, if the verification passes, a DONE signal is

asserted, changing the configuration mode to user mode.

Figure 6.1: FPGA Configuration with Full Bitstream
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Source: Author adaptation from (XILINX, 2019)

The third and final step starts in the user mode, where the FPGA is correctly pro-

grammed with the full bitstream. It then loads the drivers generated by the driver genera-

tion flow into each vS instance. In other words, this step initializes all vS instances with
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their respective registers and memory spaces and restarts the whole vS array.

This approach synthesizes and implements the vS instances embedded in the vS

array. Consequently, the synthesis tools are able to better optimize the design, achieving

better area occupation (more vS instances can fit in the board) and improved operating

frequency (improved latency and throughput). On the other hand, the full reconfiguration

takes longer to perform because reconfiguration times are dependant on configuration file

sizes, and full bitstream files are as larger than partial ones.

6.2 Partial Reconfiguration Methodology

The partial reconfiguration process is supported by the newer FPGA devices, it

allows the modification of a fraction of the FPGA fabric, instead of the whole FPGA. This

process also commonly applied dynamically, being able to reconfigure the FPGA partially

while the design is running in user mode. As mentioned previously, partial reconfiguration

starts by programming the FPGA with a full bitstream containing a template for dynamic

partial reconfiguration, following all steps from the full reconfiguration methodology.

After a full bitstream file configures the FPGA, partial bitstream files can be down-

loaded to modify reconfigurable regions in the FPGA, without compromising the integrity

of the applications running on those parts of the device that are not being reconfigured.

To do so, the logic in the FPGA design is divided into two different types: reconfigurable

logic and static logic. The static logic is the fixed part of the design which remains func-

tioning and is unaffected by the loading of a partial bitstream file. The reconfigurable

logic is the dynamic part of the design, which can be replaced by different partial bit-

stream files.

The static logic is generated following the full reconfiguration methodology with

two adaptations: (i) a set of reconfigurable areas are defined and statically allocated in

the FPGA fabric, and (ii) vS instances are marked as reconfigurable modules, enabling

multiple vS instances that can be replaced in a single existing reconfigurable area. At the

end of these steps, the static full configuration bitstream is generated and downloaded to

the target FPGA board. It is interesting to notice that step (ii) from the full reconfiguration

methodology is not necessary, as there are no vS instances to be initialized.

Following the download of the static logic in to the target FPGA, the partial re-

configuration methodology has three more steps to follow for each new vS: (i) partial

bitstream generation, (ii) partial bitstream download to a reconfigurable area, and (iii)
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initialization.

The first step is responsible for creating partial bitstreams files for all vS instances.

As reconfigurable areas might have different sizes and available resources, a single vS

must have a specific partial bitstream file for each target reconfigurable area. Therefore, a

fixed design with four reconfigurable areas can have up to four different partial bitstreams

for each vS. It is also important to notice that a vS might not fit in a specific reconfigurable

area, and this information must be taken into account during this step. Partial bitstream

files are created in the same process as the full bitstream, but with area constraints. At the

end of this step, a set of partial bitstream files is generated for each vS.

The second step downloads partial bitstream files to the FPGA during user mode.

This process is illustrated in Figure 6.2. The partial bitstream file no has a startup se-

quence, because partial reconfiguration can only be performed in user mode. Therefore,

the bitstream file contains a simplified header, frame address of the reconfigurable area,

and configuration data of the vS. After downloading the partial bitstream file to the FPGA

board, it remains in user mode, only returning to configuration mode when a new full

reconfiguration is performed.

Figure 6.2: FPGA Reconfiguration with Partial Bit File
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As soon as the partial bitstream file is downloaded and checked for consistency,

the final step can be performed, where the hot-swap is adjusted - i.e. the replacement

of one vS instance with another through the dynamic partial reconfiguration. To do so,
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the initialization process first clears the memory range used by undeployed vS, and then

load the table values. The memory clear is performed to avoid security breaches. The vS

driver of the reprogrammed vS is then loaded, initializing its memory space (registers and

tables).

Partial reconfiguration methodology improves full reconfiguration by allowing the

dynamic change of vS instances on the hypervisor, without affecting the remaining mod-

ules on the board. In addition, as partial bitstreams are smaller than full ones, it is also

faster to be performed. On the other hand, the restrictions in sizing of reconfigurable areas

constraints the synthesis tool to place and route vS instances in a reduced area, with fewer

resources, and therefore fewer optimization options across reconfigurable areas bound-

aries. These constrainings lead to waste of resources, as the unused resources from a

reconfigurable area cannot be used by other instances, that means that the overall den-

sity and performance is lower for a partial reconfiguration design than for the equivalent

design generated with the full reconfiguration methodology.
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7 EVALUATION

This section substantiates our implementation claims by: (i) evaluating resource

usage and performance, (ii) analyzing the proposed reconfiguration methodologies through

resource allocation and reconfiguration time, (iii) measuring the impact of vS manage-

ment, and (iv) discussing the in-band telemetry case-study. We prototyped PvS in the

NetFPGA SUME board at 200 MHz operating frequency and, to serve as baseline, we

also synthesized the P4-NetFPGA canonical reference design (IBANEZ et al., 2019)

atop our FPGA, simulated the native P4 behavioral model version 2 (bmv2) (P4LANG-

CONSORTIUM et al., 2019), HyPer4 (HANCOCK; MERWE, 2016), and HyperVDP1 (ZHANG

et al., 2019), and used data obtained from P4Visor (ZHENG; BENSON; HU, 2018).

Our experiments run PvS with four vS instances in parallel: a layer-2 switch (L2),

a router, a firewall, and an in-band telemetry (INT). All case-study switches are from the

state-of-the-art and have been generated with the complete High-Level Synthesis Flow

(Chapter 5). We separate traffic between vS instances using VLAN tagging.

7.1 Resource Utilization and Performance

Here we discuss FPGA resource utilization and operating frequency, as well as

three scenarios to evaluate performance in terms of throughput and latency: (i) simulated

performance, where we simulate PvS, (ii) port saturation performance, where we deploy

PvS and generate a packet flow that saturates one 10 Gbps RX port through multiple TCP

connections, and (iii) FPGA saturation performance, where we deploy PvS and generate

a loopback packet flow capable of saturating all PvS 10 Gbps ports.

7.1.1 Resource Utilization and Operating Frequency

Our implementations resulted in a maximum operating frequency of 547.6 MHz

for both PvS and P4-NetFPGA. This value is directly related to the outgoing buffers of

the vS instances, where the critical path resides. We confirmed these measurements by

analyzing timing reports and testing a network hub described in HDL and implemented

1HyperVDP source code was not fully available by the time this dissertation was written. As a result,
we could not run the benchmarks with HyperVDP for a fair comparison. For this reason, we omitted it from
part of our analysis.
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through the PvS wrapper generation flow (Section 5.2). Modifications to these structures

could increase operating frequency, therefore improving overall throughput and latency.

In terms of area occupation, Table 7.1 shows Look-Up Table (LUTs) and Registers

usage by PvS and P4-NetFPGA architectures without switch pipelines, as well resources

used to implement the case-study switch pipelines individually. As one can see, both

PvS and P4-NetFPGA architectures have resource usage comparable to a single switch

instance, where PvS requires around 1.1% more resources than P4-NetFPGA, at 11.4%

of the available board LUTs to provide the virtualization modules. Comparisons to the

related work was not possible due to the lack of area occupation data.

Table 7.1: NetFPGA SUME resource usage
Module LUTs Registers
PvS 48471 (11.4%) 74338 (8.6%)
P4-NetFPGA 44447 (10.3%) 67926 (7.8%)
L2 switch 28096 (6.5%) 40506 (4.7%)
Router 57704 (13.3%) 84149 (9.7%)
Firewall 45683 (10.5%) 74344 (8.6%)
INT 70011 (16.2%) 147851 (17.1%)

Source: From the author

PvS uses memory to store data packets in the I/O buffers and for storing vS match-

action tables. As the number size of I/O buffers can be tailored to different scenarios,

we present Table 7.2, which shows the number of match+action tables required for each

case-study switch. Observe that PvS requires the same number of tables per switch as in

bmv2, whereas HyPer4 and HyperVDP decouple match-action stages into a combination

of several tables.

Table 7.2: Match-action table usage
Switch instance bmv2 HyPer4 HyperVDP P4-NetFPGA PvS
L2 switch 2 13 5 2 2
Router 4 28 16 4 4
Firewall 3 22 8 3 3
INT 5 35 23 5 5
L2+Router – – – – 6
L2+Router+Firewall – – – – 9

Source: From the author
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7.1.2 Scenario 1: Simulated Performance

In this scenario, we simulated PvS running at the theoretical maximum operating

frequency of 547.6 MHz, rather than the clock available in NetFPGA SUME, which is

200 MHz. We measured throughput and latency by injecting packet loads emulating a

datagram packet flow (512x 256-byte packets) and an ICMP request (2x 64-byte packets),

respectively. For both packet flows, we measured the number of clock cycles between the

arrival of the first packet and the completion of the last. We also simulated P4-NetFPGA

and considered results from P4Visor.

Table 7.3 presents achieved throughput and latency. When considering through-

put, PvS achieved around 100 Gbps, which translates to 37 Gbps at the deployed 200

MHz operating frequency. This value is enough for feeding four 10 Gbps ports and could

be increased if needed. When compared to P4Visor and P4-NetFPGA, it is around 25

times higher than P4Visor and around 20% smaller than P4-NetFPGA. Latency showed

around 0.8 µs, an increase in 8% when compared to P4-NetFPGA. Such results show that

PvS is able to deliver enough latency and throughput to up 10x 10 Gbps ports at maxi-

mum operating frequency, but still performs slightly worse than P4-NetFPGA, showing

the performance cost of implementing virtual parallel switch instances.

Table 7.3: Simulated throughput and Latency
Switch instance Throughput (Gbps) Latency (µs)

P4Visor P4-NetFPGA PvS P4Visor P4-NetFPGA PvS
L2 switch – 121.8 101.1 – 0.52 0.56
Router 4.6 119.6 100.2 109.1 0.79 0.84
Firewall – 114.8 99.8 – 0.76 0.81
INT – 113.7 98.8 – 0.86 0.92
L2+Router 4.4 – 118.3 – – –
L2+Router+Firewall 4.4 – 115.2 – – –

Source: From the author

7.1.3 Scenario 2: Port Saturation Performance

To saturate a single PvS port with multiple connections, we deployed sixteen vir-

tual machines, each with a 1 Gbps network interface generating packet flows to an Open-

Flow switch. The OpenFlow switch then either loopbacks or forwards to PvS the added

bandwidth. In case of PvS forwarding, PvS processes the packet flow in a given vS in-

stance and forwards it back to the OpenFlow switch, which then distribute the packet flow
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back to the paired virtual machines. The communication between the OpenFlow switch

and PvS goes over a 10 Gbps Optical Ethernet port, and each 10 Gbps port in the Open-

Flow switch is mirrored to a 1 Gbps port connected to the host computer. We generated

packet flows and measured throughput with iperf3 through up to sixteen TCP connections.

Figure 7.1 shows throughput for the loopback, PvS, and P4-NetFPGA. Evaluated

data shows that applications’ throughput increased for each new TCP connection with less

than a 2% difference up until saturation point, where they slightly differed due to TCP

congestion control converging to a fair bandwidth share between flows. All applications

stabilized throughput at 9.5 Gbps.

Figure 7.1: Port saturation throughput measurement
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7.1.4 Scenario 3: FPGA Saturation Performance

To measure FPGA saturation performance, we developed a HDL packet counter

module and deployed it with PvS. The module was implemented to count all packets

passing through the OvSI module of PvS spaced one second. At the end of each second,

results were stored in an internal OvSI register and the counter reset. We also imple-

mented internal register access through the CLI.

Having PvS deployed with four vS instances (two l2 switches and two routers)

and the packet counter, we connected all four 10 Gbps I/O ports forming four looped

pairs (TX0/RX1, TX1/RX0, TX2/RX3, and TX3/RX2), and configured all packets to

undergo a single vS instance, forming four loopback packet flows.

To evaluate throughput and latency, we performed the following experiment: (i)
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inject a single 256-byte packet in all ports, (ii) read the packet counter, and (iii) repeat

until FPGA saturation. Throughput is constantly measured by the packet counter by mul-

tiplying the number of packets per its size (2048 bits), and latency can be measured until

port saturation by dividing the number of inserted packets by the throughput. It is im-

portant to notice that we disabled packet TTL verification in order to keep packets in the

loopback.

Measured FPGA saturation performance can be seen in Figure 7.2 for PvS and

P4-NetFPGA. It shows that PvS saturates throughput at 34.1 Gbps, 6.7% less than P4-

NetFPGA. When considering latency, PvS showed an average of 1.8 ns more latency

than P4-NetFPGA. PvS cannot achieve the same throughput and latency mainly because

it implements four virtualized modules, but steers traffic to a single one. Therefore, the

OvSI keeps iterating over four output buffers, whereas only one has data.

Figure 7.2: FPGA saturation throughput and latency
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7.2 Reconfiguration Analysis

This section describes an analysis on the two proposed reconfiguration method-

ologies, considering the maximum resource allocation for designs with no performance

degradation, and its reconfiguration times.
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7.2.1 Resource Allocation

Figure 7.3 shows the maximum resource allocation for full and partial FPGA re-

configuration examples for the same SUME NetFPGA. Figure 7.3a shows a snapshot of a

full reconfiguration example containing eight layer-2 switch instances, while Figure 7.3b

shows the same layer-2 switch instances, constrained to 4 reconfigurable areas (high-

lighted in red). More vS instances could be allocated by porting PvS to a larger FPGA,

such as the Programmable Network Switch FPGA-based 32-Port (2017), which embeds

a Xilinx Ultrascale+ FPGA.

Figure 7.3: (a) Full reconfiguration. (b) Partial Reconfiguration.

(a) (b)

Source: From the author

In our experiments, the full reconfiguration setup showed no decrease in perfor-

mance, while the partial reconfiguration showed decreases of 65% and 71% for three and

four reconfigurable areas, respectively. In terms of occupation, the full reconfiguration

was limited by the available onboard memory, which could be tailored to fit more layer-2
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switch instances. The partial reconfiguration was limited by the sizing and placement of

the reconfigurable areas, which could not occupy global resources, such as the PCI-e pins.

7.2.2 Reconfiguration Times

Reconfiguration speed is directly related to the size of the configuration file and the

bandwidth of the configuration port (XILINX, 2019). Our generated bitstreams, which

have been compressed by the synthesis tool, size around 14.6 MB (full) and 4.3 MB

(partial). Our measurements have been performed through the USB-JTAG configuration

port operating at 66 Mbps, on the host, and resulted in around 8 and 4 seconds for full and

partial configuration files, respectively.

It is important to notice that, as our measurements have been performed on the

host, there are hidden overheads related to the system and, therefore, one could optimize

reconfiguration times on the same JTAG-USB down to 1.8 and 0.5 seconds. Additionally,

one could store the configuration files in the onboard parallel flash memory and use the

SelectMap interface (3.2 Gbps) to achieve configuration times around 36 and 11 millisec-

onds. Finally, newer boards support MCAP configuration ports operating at 6.4 Gbps

over the PCI-e, which could further halve reconfiguration times to 18 and 6 milliseconds.

The full reconfiguration enables better resource allocation, but it takes longer to

download the bitstream. Hence, it is recommended for scenarios where all vS instances fit

on target board or few changes are made during operation, since packet loss and context

loss impact other running vS instances. Context loss can be mitigated by the Control

Engine through context snapshotting, but packet loss cannot. For all the other scenarios,

partial reconfiguration is recommended due to the flexibility offered by the hot-swap and

the low reconfiguration times.

7.3 Impact of vS Management

To measure the impact of vS management, we deployed PvS and started three vir-

tual machines. The first one (VM1) generated a bandwidth of 100 Mbps to PvS. Initially

we configured PvS to steer all incoming traffic to the second virtual machine (VM2).

Then, after 10 seconds, we issued a CLI to update the match-action table and forward the

incoming traffic to the third virtual machine (VM3). Finally, after another 10 seconds, we
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issued a second CLI to update the match-action table again, steering traffic back to VM1.

Figure 7.4 shows the throughput on the virtual machines, as well as the issue of

the CLI. As one can see, throughput remained stable during the table update, and the CLI

interaction with FPGA required around 0.2 seconds to take effect. We measured around

909 packets lost during traffic steering.

Figure 7.4: vS management impact
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7.4 Use Case: In-Band Telemetry

We also used PvS to run a vS implementation that performs in-band telemetry. The

main takeaway from this experiment is that we are able to deploy and run vS instances that

perform in-band telemetry with a performance comparable to that of the switch running

directly on the NetFPGA board, with the existing vS constructors.

Observe from Table 7.1 that our implementation of in-band telemetry uses 16.2%

of LUTs and 17.1% of registers available. These results are around 21% and 75% higher

than those observed for the router deployment (second more costly observed). With re-

gard to match-action stages used, Table 7.2 evidences that running an instance of in-band

telemetry on top of PvS is significantly more efficient than doing it over Hyper4 or Hy-

perVDP.
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8 CONCLUSION

The possibility of programming the forwarding plane has opened up several inter-

esting possibilities for in-network computing (TOKUSASHI et al., 2019). As virtualiza-

tion of programmable forwarding plane takes off, we may soon witness the emergence

of Programmable Switches as a Service (KRUDE et al., 2019). However, realizing that

vision requires decoupling the programmable virtual switch (vS) from the hypervisor,

as well as enabling switch vendors and developers to distribute switch bytecode while

preserving their intellectual property. In this work we presented PvS forwarding engine

slicing, a architecture that provides the abstraction of programmable vS instances that

satisfies those requirements while ensuring tenant isolation and delivering a performance

similar as if the vS were running directly on bare-metal.

This work proposed a hypervisor for data plane capable of running multiple vS

instances in a single hardware substrate with performance comparable as a single switch

running. This solution enables the network operators to deploy vS instances directly

from compiled switch bytecode protecting the intellectual property. The methodology

for full and partial reconfiguration allows two distinct hardware utilization: a more static

or dynamic model, with the switch hot-swapping feature without causing interference to

other running instances.

A proof-of-concept was implemented based on the SSS model for a NetFPGA

SUME target environment. The experiments run PvS with four virtual vS instances in

parallel: a layer-2 switch, a router, a firewall, and an in-band telemetry. All case-study

switches have been generated with the complete P4-to-HDL implementation flow (5). We

segment vS packet flows using VLAN tagging.

The results provided evidence of the possibility to achieve near line-rate perfor-

mance for switch instances running on top of a hypervisor, while satisfying typical virtu-

alization requirements like hot-swapping and context and resource isolation. Implemen-

tation were able to advance the state-of-the-art in terms of bandwidth and latency and

provide performance comparable as a single switch running on hardware.

8.1 Future Work

For future work, it is intended to achieve the following goals:



76

8.1.1 Network Segmentation

We currently support VLAN tagging as a mechanism to isolate traffic flows be-

tween switches. Extending PvS to support VXLAN or another user-defined tagging mech-

anism requires making the Forward Engine Ingress and Egress programmable. It is

intended to investigate how to make their structure defined by a custom parser and match-

action stage written in a DSL like P4, so that the network developer can specify its own

match-action tables to separate traffic flows between vS instances, and therefore accom-

modate an arbitrary and user-defined flow tagging scheme.

8.1.2 Performance Guarantees

There is a trade-off to be considered when designing the switch queues. A de-

sign based on shared queues optimizes memory resource usage and opens up space for

deploying more vS instances. However, such may cause a vS to impact the operation of

other switches. In the case of a shared ingress queue, a switch handling elephant flows

may increase the latency of traffic forwarded to other vS instances. In the case of a shared

egress queue, suppose a malicious switch flooding the queue with fake output packets.

That switch would quickly occupy the shared queue, and prevent other vS instances from

forwarding traffic. An alternative design is allocating a dedicated egress queue for each

vS. Although such design requires extra memory space for implementing the queue, it

enables providing more strict performance and isolation guarantees to vS instances.

8.1.3 Security Implications

The forwarding engine slicing guarantees that vS instances only have access to

their individual memory spaces. The control engine, on the other hand, has one single

entry point: the Platform API. The platform API access the forwarding engine through

the SUME driver and vS drive. The first has access to all tables and configuration reg-

isters on the board, while the second is limited to its deployed vS instance, through the

CvSI module. The forwarding engine does not perform any security checking of control

requests, always delivering the request to the addressed memory space. Therefore, the

control engine is responsible for checking security credentials of all control requests.
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Currently, the control engine only has the start address of each table from a vS,

as contained in the switch.cli module generated by the P4-NetFPGA toolchain. The

cam_add_entry does not have a way to know when a table is full, for example. There-

fore, we need an external mechanism to prevent match-action table overflow.

8.1.4 Community Development

While this prototype demonstrated the feasibility of a programmable vS hypervi-

sor, it opens up several research avenues for future investigation. Is it possible run multi-

ple programmable vS instances in an array of NetFPGAs and support their management

through a single control engine abstraction? Is it viable we use Remote Direct Memory

Access (RDMA) to enable vS instances running in different NetFPGAs to share context

for stateful packet processing and fine-grained in-band telemetry (KIM et al., 2016)? Is

it possible offer the abstraction of predictable virtualized ports to vS instances (KUMAR

et al., 2019), with distinct performance guarantees per tenant and per vS port? How can

future hardware switches support programmable vS hypervisors? As a public and open

source implementation, it is intended to develop a community of researchers and prac-

titioners around PvS to understand the implications of these questions (and others that

follow) on the design of a fully-fledged hypervisor for programmable forwarding planes.
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APPENDIX A — PVS FORWARDING ENGINE TUTORIAL

This Appendix presents instructions to deploy the example project l2_router_firewall,

available in repository 1 of PvS Forwarding Engine. This project implements three vS in-

stances: a Layer-2 switch, simple Router, and a Firewall. The following Sections show

how to prepare the environment, execute the HLS flow, and download the example to the

FPGA board.

A.1 Preparing the Environment

Clone the repository from github:

git clone https://github.com/p4vbox

git pull --tags

Add the following lines to the file /username/.bashrc:

export PVS = /username/projects/pvs-forwarding-engine/src/

scripts/settings.sh

source $PVS

Update environment variables:

source /username/.bashrc

Run the following script to install dependencies:

sudo $PVS_SCRIPTS/tools/setup_SUME.sh

Build the library and install the SUME driver:

$PVS_MAKE_LIBRARY

$PVS_INSTALL_DRIVER

A.2 Executing the HLS Flow

Update the environt variable P4_PROJECT_NAME to l2_router_firewall in file

$PVS_SCRIPTS/settings.sh:

export P4_PROJECT_NAMEl̄2_router_firewall

Update the environment variables:

source $PVS

1PvS forwarding engine example projects on GitHub repo <https://github.com/pvs-sigcomm/
pvs-forwarding-engine/tree/master/src/contrib-projects/sume-sdnet-switch/projects>

https://github.com/pvs-sigcomm/pvs-forwarding-engine/tree/master/src/contrib-projects/sume-sdnet-switch/projects
https://github.com/pvs-sigcomm/pvs-forwarding-engine/tree/master/src/contrib-projects/sume-sdnet-switch/projects
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In the project folder, generate test data:

cd $PVS_SCRIPTS

./pvs.py l2 router firewall -name l2_router_firewall -t

Verify and compile P4 (P4-to-HDL HLS flow, Chapter 5.1):

./pvs.py l2 router firewall -name l2_router_firewall -c

Verify and generate vS hdl and vS driver (vS and driver generation flows, Chapters

5.1 and 5.2):

./pvs.py l2 router firewall -name l2_router_firewall -s

Run simulation environment to test the generated platform:

./pvs.py l2 router firewall -name l2_router_firewall

A.3 Downloading the Example to the FPGA Board

Generate bitstream for the full reconfiguration methodology (Chapter 6.1):

./pvs.py l2 router firewall -name l2_router_firewall -imp

Program the FPGA board:

sudo $PVS_PROGSUME
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