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Abstract

Various marine fungi have been shown to produce interesting, bioactive compounds, but

scaling up the production of these compounds can be challenging, particularly because little

is generally known about how the producing organisms grow. Here we assessed the suit-

ability of using 100-well BioScreen plates or 96-well plates incubated in a robot hotel to culti-

vate eight filamentous marine fungi, six sporulating and two non-sporulating, to obtain data

on growth and substrate (glucose, xylose, galactose or glycerol) utilisation in a high through-

put manner. All eight fungi grew in both cultivation systems, but growth was more variable

and with more noise in the data in the Cytomat plate hotel than in the BioScreen. Specific

growth rates between 0.01 (no added substrate) and 0.07 h-1 were measured for strains

growing in the BioScreen and between 0.01 and 0.27 h-1 for strains in the plate hotel. Three

strains, Dendryphiella salina LF304, Penicillium chrysogenum KF657 and Penicillium pino-

philum LF458, consistently had higher specific growth rates on glucose and xylose in the

plate hotel than in the BioScreen, but otherwise results were similar in the two systems.

However, because of the noise in data from the plate hotel, the data obtained from it could

only be used to distinguish between substrates which did or did not support growth, whereas

data from BioScreen also provided information on substrate preference. Glucose was the

preferred substrate for all strains, followed by xylose and galactose. Five strains also grew

on glycerol. Therefore it was important to minimise the amount of glycerol introduced with

the inoculum to avoid misinterpreting the results for growth on poor substrates. We con-

cluded that both systems could provide physiological data with filamentous fungi, provided

sufficient replicates are included in the measurements.

Introduction

The marine environment is a source of organisms which produce novel bioactive compounds

and interesting proteins [1, 2]. Much attention has been focused on marine bacteria, but inter-

est in marine fungi has grown in recent years as isolation and collection of these has increased

[3–5]. These fungi are diverse and many isolates may be opportunistic, rather than obligate

marine organisms [5–8]. None-the-less, several unique bio-active compounds [7, 9, 10] and
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enzymes with unique properties [11–13] have been isolated from marine isolates, which had

not been found in their terrestrial cousins.

Screening for novel compounds often involves a large selection of organisms cultivated in a

limited range of conditions or a few organisms cultivated in a wider variety of conditions

including stress; it may also include genome sequencing and analysis [14–16]. The focus of

biodiscovery is on the metabolites or proteins of interest, rather than on the producing organ-

ism. As a result, when an interesting compound is identified and a large amount of the com-

pound is needed to enable further testing or development, there may be no information about

the growth of the strain, beyond the conditions used in the initial screening [9]. These screen-

ing conditions may be unsuitable for large scale production [17, 18]. Information about spe-

cific growth rate on specific substrates and the extent to which the substrate is utilised would

be helpful in the development of scalable production conditions. This is particularly the case

with products which are associated with the cell biomass, rather than secreted into the culture

supernatant, since good biomass production may be a requirement for achieving high levels of

product [19, 20]. Good growth does not guarantee high product amounts, but is necessary to

provide sufficient bio-catalyst to initiate production.

Obtaining data on growth kinetics for unicellular yeast and bacteria has been greatly facili-

tated by the development of microtiter plates and associated tools for automation. Growth in

microtiter plates is generally measured as optical density. Microtiter plates have less frequently

been used to obtain kinetic data for filamentous fungi, which may not grow uniformly in the

wells. Filamentous fungi grow as branched mycelia, without cell separation at division. In liq-

uid, mycelia may remain dispersed or form pellets [21, 22]. In addition, fungal hyphae are

adept at attaching to surfaces; in a small volume, such as in a 96-well microtiter plate, the ratio

of attached biomass to submerged biomass may be high. If agitation is inadequate, filamentous

fungi may also grow as mats on the surface of the liquid. Heterogeneity is inherent to all forms

of mycelial growth and heterogeneity impacts the suitability of optical density as a tool for

measurement of growth, which is sensitive to particle size [23]. None-the-less, Trinci and col-

leagues [24–28] demonstrated that optical density provides a meaningful measure of fungal

growth for strains growing as dispersed mycelia. Banerjee et al. [29] expanded the use of opti-

cal density to monitor the growth of filamentous fungi by adding a homogenisation step to the

measurement, noting that the extent of fragmentation would impact the relationship between

optical density and cell dry biomass. Fuentes et al [30] found optical density measurements

more practical than microscopic methods when assessing the growth of a number of marine

fungi.

Microtiter plates are used with filamentous fungi as well as with unicellular microbes, but

their use has often been limited to isolation [31] or monitoring plus/minus growth (e.g. [32]),

rather than providing kinetic data which could be used to scale up a process. The 24-well plate

is starting to replace flasks for fungal cultivation and is reported to be equivalent to or better

than flasks for generating reproducible data on intracellular [33, 34] and extracellular [35–38]

metabolites and proteins [39, 40]. 24-well plates typically require removal from the incubator

to obtain measurements of growth, e.g. once or twice per day, but may be used to assess prod-

ucts only, without providing information on biomass production and growth. The BioLector

48-well plate, which provides growth information in situ, has also been used effectively with

the filamentous fungi Aspergillus terreus [41] and Penicillium chrysogenum [42], but is limited

to single plate incubation.

The 96-well format has been used to study fungal biofilms [43, 44], fungicide sensitivity

[44–50], metabolite production [51–53] enzyme secretion [54] and comparison of strains

based on sporadic OD measurements [50, 55]. More detailed growth curves have also been

obtained [56]. In addition, BioLog 96-well plates, which provide a range of predefined
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substrates (carbohydrates, nitrogen sources, potential inhibitors, depending on the plate

selected), have been used to characterise or compare various fungi including Trichoderma spp.

[57, 58], Oidiodendron fimicola [59], Beauveria brongniartii [60], Petriella setifera [61], and

environmental isolates [62–66]. The BioLog plates have provided some information on growth

characteristics, but have primarily been used to assess the metabolic potential of strains and to

distinguish between isolates. Some marine fungi have been characterised using BioLog FF (fil-

amentous fungi) plates [30, 67].

While 96-well plates are primarily used for basic screening (product, substrate utilisation,

tolerance, etc.), the BioScreen 100-well honeycomb plates are used to assess growth character-

istics [68–71], as well as for screening [72, 73]. BioScreen readers hold only two plates, restrict-

ing simultaneous measurement to 200 wells. This is an improvement compared to the 48-well

BioLector plate, but restrictive compared to the potential of most 96-well plate incubators.

Some fungi grow filamentously in the 96 and 100-well plates, but aids may be added to

improve the nature of growth and quality of the growth curve; these include Tween 80 [56]

and agar [68], with the recommendation that appropriate conditions be determined for each

strain to be evaluated [68].

Here we present a comparison of the use of 100-well BioScreen plates and 96-well plates

incubated in a Cytomat plate hotel to assess the growth of several filamentous fungi isolated

from marine environments on four potential carbon sources: glucose, xylose, galactose and

glycerol. Growth was assessed without addition of additives to avoid potential competing car-

bon sources, even if poorly utilised, and to minimise the preparation time. The aim was to

determine whether a simple procedure, with no optimisation for individual strains (cf. [68])

would provide consistent kinetic growth data for strain assessment that could be used to guide

process scale-up for strains of interest. The fungi characterised in this study were isolated from

marine environments, since there are now numerous compounds of interest identified from

marine isolates [74–77], but little information on their growth kinetics. The methods are also

applicable to fungi isolated from other environments.

Materials and methods

Strains

Penicillium pinophilum LF458, Microascus brevicaulis (formerly Scopulariopsis brevicaulis
[78]) LF580, Tritiracium sp. LF562, Calcarisporium sp. KF525, Penicillium chrysogenum KF657

and KF654, Dendryphiella salina LF304, Asteromyces cruciatus LF680 and Halenospora varia
KF560 were obtained from the culture collection of the Kiel Center for marine natural prod-

ucts at GEOMAR, Helmholtz Centre for Ocean Research Kiel, as a kind gift from A. Labes and

J. F. Imhoff. Stock cultures were maintained as mycelia on agar-solidified medium (potato dex-

trose agar containing 25 g L-1 Tropic Marin1 sea salt) at 6˚C, as conidia or mycelial fragments

suspended in 20% v/v glycerol, 0.8% w/v NaCl with ~0.025% v/v Tween 20 at -80˚C or on

Microbank™ Bacterial and Fungal Preservation System beads (Pro-Lab Diagnostics, UK) at

-80˚C.

Inoculum preparation

Conidia were collected from sporulating (LF304, KF657, KF525, LF562, LF458 and LF580) cul-

tures on agar-solidified medium in 5 mL of a solution containing 200 g L-1 glycerol, 8 g L-1

NaCl and 0.25 g L-1 Tween1 20 and stored at -80˚C, if not used fresh.

Mycelial suspensions (H. varia KF560 and A. cruciatus LF680) were prepared by transfer-

ring small pieces of fungal mycelium (4 or 5 pieces, 4–9 mm2), excised from mycelia growing

on agar-solidified medium, to a 2 mL screw cap microcentrifuge tube containing 600 μl NaCl
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(9 g L-1) and approximately 0.7 g zirconium beads (1 mm diameter). The mycelia were homog-

enized in a Precellys124 homogenizer (Bertin Technologies, France) for 5 seconds at 5000

rpm. The mycelial homogenate of A. cruciatus LF680 was diluted 15-fold in sterile water and

used fresh. To assess a process for storing mycelia at -80˚C for later use, fresh mycelial homog-

enate of H. varia KF560 was inoculated to 10 mL yeast extract (10 g L-1) peptone (20 g L-1) dex-

trose (20 g L-1) medium containing 4 g L-1 agar and 28 g L-1 Tropic Marin1 sea salt in a 50

mL flask, and incubated at 24˚C until dispersed, filamentous growth was observed. Sterile glyc-

erol was added to the culture to a final concentration of 200 g L-1 and the suspension stored at

-80˚C without washing. Inoculum for microtiter plates was prepared from frozen stock by

diluting the mycelial suspension 30-fold in sterile water.

Media

The medium for growth in microtiter plates was adapted from that described by Verduyn et al.

[79], adding 28 g L-1 Tropic Marin1 sea salt and 33 g L-1 PIPPS buffer, with the pH adjusted

to 4.25. The media contained 5.0 g L-1 (NH4)2SO4, 3.0 g L-1 KH2PO4, 0.5 g L-1 MgSO4�7H2O,

15 mg L-1 EDTA, 4.5 mg L-1 ZnSO4�7H2O, 1.0 mg L-1 MnCl2�2H2O, 0.3 mg L-1 CoCl2�6H2O,

0.3 mg L-1 CuSO4�5H2O, 0.4 mg L-1 Na2MoO4�2H2O, 4.5 mg L-1 CaCl2�2H2O, 3.0 mg L-1 FeS-

O4�7H2O, 1.0 mg L-1 H3BO4, 0.1 mg L-1 KI, 0.05 mg L-1 D-biotin, 1.0 mg L-1 CaPantothenate,

5.0 mg L-1 nicotinic acid, 25 mg L-1 myo-inositol, 1.0 mg L-1 thiamine HCl, 1.0 mg L-1 pyridox-

ine HCl, and 0.2 mg L-1 p-aminobenzoic acid. The amount of carbohydrate (glucose, xylose,

galactose or glycerol) was reduced to 2 g L-1 to limit biomass production, so that maximum

OD measurements would reflect substrate use. Some wells contained medium to which no car-

bon source was added, to serve as control for carbon added as glycerol with the inoculum.

Cultivation conditions

BioScreen (Bioscreen C MBR automated turbidometric analyser, Growth Curves Ltd, Finland)

cultivations were carried out in 100-Well Honeycomb 2 plates (Oy Growth Curves Ab Ltd.,

well depth 14 mm, well diameter 7 mm at top) containing 290 μl medium and 10 μl inoculum,

providing final conidium concentrations of 1 to 6 x 104 conidia per mL for sporulating strains.

An exception was P. chrysogenum KF657, which was inoculated with 4 x 105 conidia per mL.

The mycelial homogenate of A. cruciatus LF680 was diluted 15-fold in water and 10 μl used as

inoculum. H. varia KF560 was inoculated as frozen mycelial suspension. Dilution of the frozen

suspension 30 fold prior to inoculation reduced the transferred glycerol to 0.22 g L-1, with glu-

cose and peptone from the inoculum contributing less than 22 mg L-1 to the well cultivation.

100-well plates were incubated at 24˚C with continuous shaking at medium speed and maxi-

mum amplitude (at a frequency of 10 Hz, providing 600 rpm in a linear, rather than orbital

motion). Optical density (OD) was measured at 600 nm at 30 min intervals for up to 10 days.

For growth in 96-well plates, Nunc™ Flat Bottom 96-well Clear Polystyrene Plates (Thermo

Scientific 260860; well depth 11.4 mm, well diameter 7 mm at top) containing 145 μl medium

were inoculated with 7.5 μl conidial or mycelial suspension and incubated at 24˚C with 1100

rpm agitation in a Thermo Scientific Cytomat plate hotel (throw = 1 mm; holding up to 23

plates). Dilution of conidia provided final concentrations of ~5 x 104 mL-1. Mycelial homoge-

nate of LF680 was diluted 22 fold and the frozen mycelia of KF560 were diluted 45 fold.

Growth was measured as increase in OD at 595 nm at 2 or 3 h intervals, using a DTX 880 mul-

timode detector (Beckman Coulter) associated with the Cytomat plate hotel. OD values for P.

chrysogenum KF657, D. salina LF304, H. Varia KF560 and A. cruciatus LF680 were obtained

without removal of the lid from the plates to prevent risks of contamination. OD values for P.

pinophilum LF458, M. brevicaulis LF580, Tritiracium sp. LF562 and Calcarisporium sp. KF525
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were measured with lid removal so that condensation on the lids did not distort the OD values.

In some cultures, water was added to the outer wells of 96-well plates, to compensate for evap-

oration of liquid from wells, particularly at the edges of plates in the Cytomat plate hotel.

Photographs of the 100-well Honeycomb 2 and 96-well plates used in these cultivations are

included in the stored data MicrotiterPlate_photographs file, Data Figs 1 & 2 [80].

Determination of maximum specific growth rate and maximum OD

Specific growth rates and maximum OD were determined by the on-line Specific Growth Rate

Calculation program by S. Castillo and D. Barth (https://scsandravtt.shinyapps.io/SGRapp/),

based on the Grofit package for R [81]. This program is designed for calculation of specific

growth rates from BioScreen output, but can be used with any data in csv format, with time in

the first column and one row of headings. In order to improve the calculation of specific

growth rate from noisy data (e.g. caused by random spikes that result from movement of pel-

lets in and out of the measurement zone), cubic smoothing splines are fit to the input data.

The degree of smoothing is specified by the user through the smoothing factor, which typically

ranges from 0 to 1. Smoothing reduces the noise in the data, eliminating the need for manual,

arbitrary curation. Both the original data and the smoothed curves can be visualised in the pro-

gram. The program determines the maximum specific growth rate from the entire smoothed

data set. Subjective determination of the exponential phase is not necessary. A high smoothing

factor (0.7) was used for data from 96-well plates with poor or no growth, in order to eliminate

the effect of random spikes in the data, whereas a low smoothing factor (0.3) was used for data

from cultures with good growth. The smoothing factor had less impact on the results from

100-well plates and a smoothing factor of 0.7 was used for all.

Statistics

Data are presented as mean ± standard error of the mean. Analysis of variance was used to

compare specific growth rates or maximum OD values for the same strain growing on differ-

ent carbon sources, with significant differences identified using Fisher’s multiple range test.

The student-t test was used to compare specific growth rates obtained in the Bioscreen C

(100-well plates) with those obtained for the same strain and condition in the Cytomat plate

hotel (96-well plates).

Results and discussion

Effect of inoculum and glycerol concentration on growth

Conidial and mycelial suspensions were stored in glycerol at -80˚C. Some strains were able to

grow on glycerol as a carbon source. P. chrysogenum LF654 was used to assess the impact of

glycerol in the inoculum, along with the inoculum size, on subsequent growth in the BioScreen

C. Growth was assessed in the presence and absence of added glucose [80]. P. chrysogenum
LF654 grew on glycerol, although not as well as on glucose (Fig 1, [80]). The glycerol concen-

tration did not affect the specific growth rate when glucose was present in the medium (Fig 1),

but allowed growth in its absence, indicating that glycerol in the inoculum could affect the

interpretation of how well poor carbon sources were consumed. The addition of glycerol with

the inoculum did affect the maximum OD observed when glucose was present as the main car-

bon source (Fig 1).

The inoculum concentration for five of the six sporulating strains included in the compari-

son of growth in the BioScreen C with that in the Cytomat plate hotel was reduced from 5 x

105, as recommended by [68] and [69], to 1–6 x 104 conidia mL-1. However, cultures with P.
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chrysogenum KF657 had already been completed using 4 x 105 conidia mL-1 and it was clear

that glycerol contributed to growth in the medium with no added carbon (Fig 2). Similarly,

cultures of H. varia KF560, which were inoculated with mycelial suspension frozen in glycerol

also contained sufficient glycerol to allow growth in medium to which carbohydrate had not

been added (Fig 2).

Characteristics of mycelial growth in the Bioscreen C and Cytomat plate

hotel

All fungi tested grew in both the Bioscreen C (100-well plates, with moderate shaking) and

Cytomat plate hotel (96-well plates with 1100 rpm) (Fig 2, [80]). Mycelia were more likely to

aggregate into pellets when grown in the Cytomat plate hotel than in the Bioscreen C, whereas

mycelia sometimes attached to the walls of the wells in the Bioscreen C, leaving a clear area in

the centre of the well (see Data Fig 3, MicrotiterPlate_photographs [80]). The presence of one

or more pellets resulted in noise in the OD measurements and variation between replicate

wells. The variation between replicates is seen in the large error bars (relative standard error of

10–30%, sometimes higher) of the Cytomat cultures (Fig 2). In contrast, growth in the Biosc-

reen C plates was mostly dispersed, with good reproducibility between wells (relative standard

error of 4–10%, except LF580; Fig 2). Addition of Tween 80 [56] or agar [68] to the medium

may have reduced attachment and pellet formation, but was not used in order to keep the

assay as simple as possible and to avoid additives that could potentially serve as carbon

sources.

In addition to problems with pellet formation in the wells, the Cytomat plate hotel cultures

suffered from condensation on the lids of the 96-well plates (see Data Fig 4, MicrotiterPlate_-

photographs [80]) and evaporation of liquid from wells at the edges of plates. Condensation

on the lids contributed to the measured OD value when lids were not removed for measure-

ments. When lids were removed, maximum OD values were much lower (Table 1, Tritira-
chium sp., P. pinophilum, M. brevicaulis, Calcarisporium sp.) than when they were not

(Table 1, P. chrysognenum, D. salina, H. varia, A. cruciatus). Evaporation in edge wells of

96-well plates resulted in high OD values, particularly during stationary phase (as observed in

parallel wells of P. chrysogenum KF657 on galactose and glycerol, Fig 3). However, evaporation

Fig 1. Effect of glycerol and conidium concentration in the inoculum on measurement of specific growth rate, maximum OD and approximate duration of lag

phase for P. chrysogenum LF654. Mycelia were grown in defined medium buffered at pH 4.25 with (solid symbols) or without (open symbols) added glucose (2 g L-1)

in 300 μL cultures in 100-well plates in a BioScreen C.

https://doi.org/10.1371/journal.pone.0236822.g001
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effects were not equal in all edge wells, as seen in the P. chrysogenum KF657 examples in Fig 3:

there was almost no evaporation from well 2 (glucose) and poor growth in well 3 (xylose).

Evaporation was not expected to affect the maximum specific growth rate of strains which

reached stationary phase within less than 80 h, but the effect was avoided in cultures of LF562,

LF580, KF525 and LF458 by filling outer wells with water [82]. This reduced the number of

replicates or conditions which were measured in a single plate. Since the Cytomat plate hotel

holds up to 23 plates, the reduction in usable wells per plate would be less restrictive in terms

of screening than being limited to 200 wells in one BioScreen C growth test.

Specific growth rates were determined for cultures incubated in both the Cytomat plate

hotel and the BioScreen C (Table 2), even though some strains grew poorly in the Cytomat

plate hotel. Using a program to automatically apply a smoothing factor and determine the spe-

cific growth rate removed subjective judgement from the calculation. Similar specific growth

rates (p> 0.05) were observed for most cultures growing in the BioScreen C as in the Cytomat

plate hotel (Table 2), with some exceptions. Higher (p< 0.05) specific growth rates were

observed in the Cytomat for P. chrysogenum KF657 and P. pinophilum LF458 than in the

Fig 2. Optical density of A) P. chrysogenum KF657, B) D. salina LF304, C) H. varia KF560, D) A. cruciatus LF680, E) Tritiracium sp. LF562, F) P. pinophilum LF458, G)

M. brevicaulis LF580 and H) Calcarisporium sp. KF525. Mycelia were grown in defined medium buffered at pH 4.25 with glucose (red), xylose (blue), galactose (cyan) or

glycerol (green) as carbon source, or no added carbon source (grey) in 300 μl cultures in 100-well plates in a BioScreen C (1) or 150 μl cultures in 96-well plates in a

Cytomat plate hotel (2). Error bars represent ± standard error of the mean (sem) for 3 to 6 replicates. Note that a short break in the power supply disturbed data

collection after 110 hours for M. breviaculis LF580 and Calcarisporium sp. KF525. Data collection was restored after 160 hours.

https://doi.org/10.1371/journal.pone.0236822.g002
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BioScreen C on all substrates, and for A. cruciatus LF680, Tritirachium LF562, H. varia KF560

and D. salina LF304 growing on xylose (Table 2). D. salina also had high specific growth rates

on glucose and glycerol, but because the replicates in the Cytomat plate hotel differed consid-

erably from each other these did not differ statistically from those in the BioScreen C. On the

other hand, D. salina LF304 grew on galactose and M. breviaulis LF580 on glycerol in the

BioScreen C, but not in the Cytomat (Fig 2). Otherwise general conclusions about growth

(ability to grow and preference for substrates) were similar regardless of the system used.

Growth of marine fungi on glucose, xylose, galactose and glycerol

All eight marine fungi tested grew on glucose, xylose and galactose, whereas only P. chryso-
genum KF657, H. varia KF560, Tritiracium sp. LF562, M. brevicaulis LF580, and Calcarisporium
sp. KF525 grew on glycerol (Table 2, Fig 2). Medium lacking a carbon source was used as a con-

trol for background growth, i.e. growth on glycerol (or yeast extract and peptone) which was

added with the inoculum. The specific growth rate was always significantly lower (p< 0.05)

when no carbon was added to the medium than on glucose (Table 2). Strains (KF657 and

KF560) which received too much glycerol with the inoculum had measureable specific growth

rates with no other added carbon, but produced less biomass (lower OD; Table 1) than with 2 g

L-1 glycerol. Based on the measurements in the BioScreen, specific growth rates were highest

(p< 0.05) on glucose (μ = 0.04 to 0.07 h-1) for all strains except M. brevicaulis LF580. M. brevi-
caulis LF580 grew equally well on glucose, xylose and galactose (Table 2) and produced high

ODs on all three substrates (Table 1). Most strains preferred xylose to galactose and specific

growth rates on glycerol were lower than on either, if glycerol was consumed (Table 2).

Specific growth rates for two of the strains, M. brevicaulis LF580 and Calcarisporium sp.

KF525, have previously been reported. The specific growth rates measured in microtiter plates

Table 1. Maximum OD values for marine fungi cultivated in microtiter plates.

System Glucose Xylose Galactose Glycerol No C

P. chrysogenum KF657 BSC 0.90 ± 0.04 c 0.78 ± 0.06 b 0.67 ± 0.03 b 0.75 ± 0.05 b 0.42 ± 0.01 a

Cph 0.57 ± 0.05ABC 0.60 ± 0.05AB 0.74 ± 0.09 C 0.71 ± 0.09 BC 0.40 ± 0.03 A

D. salina LF304 BSC 0.74 ± 0.01 b 0.69 ± 0.03 b 0.69 ± 0.04 b 0.14 ± 0.01 a 0.17 ± 0.01 a

Cph 0.99 ± 0.15 C 0.91 ± 0.06 C 0.20 ± 0.05 AB 0.32 ± 0.05 B 0.18 ± 0.06 A

H. varia KF560 BSC 1.09 ± 0.01 bc 1.13 ± 0.05 c 1.04 ± 0.03 b 0.36 ± 0.02 a 0.30 ± 0.02 a

Cph 0.80 ± 0.07 A 0.87 ± 0.12 A 1.18 ± 0.20 A 1.14 ± 0.17 A 0.72 ± 0.08 A

A. cruciatus LF680 BSC 0.74 ± 0.10d 0.58 ± 0.02 c 0.38 ± 0.03 b 0.07 ± 0.00 a 0.07 ± 0.00 a

Cph 1.08 ± 0.05 B 1.08 ± 0.12 B 0.99 ± 0.18 B 0.14 ± 0.05 A 0.13 ± 0.03 A

Tritirachium sp. LF562 BSC 0.59 ± 0.01 cd 0.57 ± 0.01 c 0.60 ± 0.01 d 0.39 ± 0.01 b 0.09 ± 0.00 a

Cph 0.14 ± 0.02 B 0.17 ± 0.03 B 0.15 ± 0.02 B 0.18 ± 0.03 B 0.04 ± 0.00 A

P. pinophilum LF458 BSC 0.58 ± 0.06 b 0.59 ± 0.03 b 0.68 ± 0.03 b 0.13 ± 0.00 a 0.12 ± 0.00 a

Cph 0.59 ± 0.08 B 0.52 ± 0.02 B 0.15 ± 0.02 A 0.05 ± 0.00 A 0.05 ± 0.01 A

M. brevicaulis LF580 BSC 0.71 ± 0.10 bc 1.26 ± 0.05 d 0.98 ± 0.21 cd 0.41 ± 0.14 ab 0.12 ± 0.02 a

Cph 0.39 ± 0.06 B 0.28 ± 0.15 AB 0.14 ± 0.11 AB 0.04 ± 0.01 A 0.05 ± 0.01 A

Calcarisporium sp. KF525 BSC 0.44 ± 0.02 c 0.30 ± 0.01 b 0.26 ± 0.04 b 0.29 ± 0.02 b 0.11 ± 0.00 a

Cph 0.17 ± 0.06 AB 0.17 ± 0.02 AB 0.05 ± 0.00 AB 0.18 ± 0.06 b 0.04 ± 0.00 A

Marine fungi were grown in 100-well plates incubated in a BioScreen C (BSC) or 96-well plates incubated in a Cytomat plate hotel (Cph) with 2 g L-1 glucose, xylose,

galactose or glycerol as substrate. No C refers to wells containing medium to which no carbohydrate was added. Data are the average of 3 to 6 replicates from the

Cytomat hotel and 5 replicates from the BioScreen cultures, ± sem. Values in the same row with the same superscript (a to e for BioScreen or A to D for Cytomat) did

not differ significantly (p > 0.05, Fisher’s multiple range test).

https://doi.org/10.1371/journal.pone.0236822.t001
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of the slow growing KF525 (0.02 to 0.04 h-1, Table 2) were comparable to that previously pub-

lished for growth in defined medium on glucose (0.03 h-1, [83]). However, M. brevicaulis
LF580 apparently grew much faster in pH controlled, fully aerated bioreactors (0.17 h-1 on glu-

cose and 0.14 h-1 on xylose, [20]) than in the microtiter plates (0.05 h-1 in the BioScreen C and

0.06 h-1 in the Cytomat hotel), suggesting that fast growing fungi may not show their full

potential in the microtiter plates. It is probable that fast-growing filamentous fungi suffer oxy-

gen limitation in the microtiter plates because of the viscous nature of the hyphae and the limi-

tation would result in low measurements of the maximum specific growth rate. Strains which

Fig 3. Optical density of P. chrysogenum KF657 grown in defined medium buffered at pH 4.25 with glucose, xylose, galactose or glycerol as carbon

source, in 150 μl cultures in 96-well plates in a Cytomat plate hotel (large graphs) or in 300 μl cultures in 100-well plates in a BioScreen C (small graphs).

Edge wells (grey) in the 96-well plates are indicated as P1 S2, P1 S3, P1 S5 and P1 S4 and in the 100-well plates as Well 111, Well 121, Well 141 and Well 131.

https://doi.org/10.1371/journal.pone.0236822.g003
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grow as pellets would be less viscous, but still oxygen limited within the pellets. Slow growing

fungi, such as Calcarisporium sp. KF525 have lower oxygen demand because of their slow

growth and thus the specific growth rate is closer to that measured in optimal conditions than

for the fast growing strain.

The microtiter plate thus provides valuable insight into substrate preference and some per-

spective on the kinetics of growth, but not necessarily for optimal growth. Kinetic data are still

needed from more optimal conditions. None-the-less, as a method for preliminary characteri-

sation of strains for which other data is not available, the microtiter plate provides a way to

obtain kinetic data in a range of conditions for multiple strains within a short time. However,

for a limited number of strains it could be useful to include a second characterisation step, in

which more optimal conditions would be used, e.g. by including a dispersal agent such as

Tween 80 or agar to reduce attachment to walls and promote filamentous growth [56, 68].

Growth was quantified in terms of maximum OD values (Fig 2, Table 1), as well as maxi-

mum specific growth rates. We note, however, that because of differences in the strain mor-

phology (filamentous growth, branch frequency, tendency to make pellets), OD values

between strains may not compare directly [23]. Nor was the correlation in OD values between

the BioScreen C reader and the DTX 880 multimode detector used in combination with the

Cytomat plate hotel determined, so maximum OD values should not be compared between

BioScreen C and Cytomat plate hotel cultures.

Long lag phases (30–100 h) were observed for all strains in all conditions, and were gener-

ally longer for cultures in the Cytomat plate hotel than in the BioScreen C (Fig 2). The lag

phase was affected by the inoculum concentration (Fig 1), which was kept low to minimise

growth on glycerol in strains which were able to utilise it. The lag phase could be reduced by

using a larger inoculum, but conidia (or mycelia) should then first be washed to remove

Table 2. Specific growth rate (h-1) of marine fungi cultivated in microtiter plates.

Strain System Glucose Xylose Galactose Glycerol No C

P. chrysogenum KF657 BSC 0.07 ± 0.00d 0.06 ± 0.01bc 0.06 ± 0.00c 0.05 ± 0.00A 0.05 ± 0.00ab

Cph 0.17 ± 0.01D� 0.15 ± 0.01C� 0.12 ± 0.00B� 0.15 ±0.01CD� 0.06 ± 0.00A�

D. salina LF304 BSC 0.07 ± 0.00d 0.05 ± 0.00c 0.05 ± 0.00c 0.01 ± 0.00a 0.02 ± 0.00bc

Cph 0.27 ± 0.06B 0.20 ± 0.04B� 0.03 ± 0.01A 0.11 ± 0.03B 0.03 ± 0.01A

H. varia KF560 BSC 0.07 ± 0.00e 0.05 ± 0.00d 0.05 ± 0.00c 0.02 ± 0.00b 0.02 ± 0.00a

Cph 0.07 ± 0.01AB 0.06 ± 0.00A� 0.05 ± 0.00A 0.09 ± 0.02B� 0.05 ± 0.00A

A. cruciatus LF680 BSC 0.05 ± 0.01c 0.04 ± 0.00b 0.04 ± 0.00bc 0.00 ± 0.00a 0.01 ± 0.00a

Cph 0.07 ± 0.00C 0.05 ± 0.01B� 0.04 ± 0.01B 0.01 ± 0.00A 0.01 ± 0.01A

Tritirachium sp. LF562 BSC 0.07 ± 0.00e 0.05 ± 0.00c 0.06 ± 0.00d 0.04 ± 0.00b 0.02 ± 0.00a

Cph 0.07 ± 0.01B 0.07 ± 0.00B� 0.07 ± 0.01B 0.09 ± 0.02B� 0.01 ± 0.00A

P. pinophilum LF458 BSC 0.07 ± 0.00d 0.06 ± 0.00c 0.04 ± 0.00b 0.01 ± 0.00a 0.01 ± 0.00a

Cph 0.17 ± 0.01D� 0.13 ± 0.01C� 0.03 ± 0.00B� 0.01 ± 0.00A� 0.01 ± 0.00A

M. brevicaulis LF580 BSC 0.05 ± 0.01c 0.05 ± 0.00c 0.04 ± 0.00bc 0.02 ± 0.00ab 0.01 ± 0.00a

Cph 0.06 ± 0.01B 0.06 ± 0.01B 0.02 ± 0.01A 0.01 ± 0.00A 0.01 ± 0.01A

Calcarisporium sp. KF525 BSC 0.04 ± 0.00c 0.02 ± 0.00b 0.02 ± 0.00a 0.02 ± 0.00a 0.02 ± 0.01a

Cph 0.02 ± 0.01B 0.03 ± 0.01B 0.01 ± 0.00A� 0.025 ±0.01B 0.01 ± 0.00A

Marine fungi were grown in 100-well plates incubated in a BioScreen C (BSC) or 96-well plates incubated in a Cytomat plate hotel (Cph) with glucose, xylose, galactose

or glycerol as substrate. No C refers to wells containing medium to which no carbohydrate was added. Data are the average of 3 to 6 replicates from the Cytomat hotel

and 5 replicates from the BioScreen, ± sem. Values in the same row with the same superscript (a to e, BioScreen; or A to D, Cytomat hotel) did not differ significantly

(p > 0.05, Fisher’s multiple range test).

� indicates that the measurement in the BioScreen C was significantly (p < 0.05) different from that in the Cytomat plate hotel.

https://doi.org/10.1371/journal.pone.0236822.t002
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glycerol, which would increase the preparation time with the microtiter plates, reducing the

throughput.

Conclusion

Eight marine fungi were characterised for their ability to grow on four substrates in either a

BioScreen C or a Cytomat plate hotel. Strains grew better and replicates were more similar in

the BioScreen C than in the Cytomat (Fig 2). The high variability between replicates in the

Cytomat plate hotel meant that it was generally only possible to distinguish (statistically)

between growth and no growth, but not to distinguish whether or not the strain grew better on

xylose, glucose or galactose (Tables 1 and 2). Since the replicates showed less variation in the

BioScreen C than in the Cytomat hotel, it could be seen that most strains preferred glucose to

xylose and xylose to galactose (Tables 1 and 2).

Differences in humidity control and shaking probably contributed to the growth differences

in the BioScreen and Cytomat plate hotel. Development of optimal mixing parameters for the

plate hotel, with water in the edge wells to reduce evaporation, would be useful to obtain

higher screening throughput than is possible in the BioScreen, with its limit of two plates per

screen. However, both systems can provide physiological data with filamentous fungi, includ-

ing strains which produce pellets, as long as sufficient replicates are included, even without

extensive inoculum optimisation. The kinetic data may not reflect optimal growth of some

strains, but provides a starting point for further characterisation.
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