This document is downloaded from the
VTT's Research Information Portal

VTT Technical Research Centre of Finland

Selection of representative slices for generation expansion planning using
regular decomposition

Helistd, Niina; Kiviluoma, Juha; Reittu, Hannu

Published in:
Energy

DOI:
10.1016/j.energy.2020.118585

Published: 15/11/2020

Document Version
Publisher's final version

License
CC BY-NC-ND

Link to publication

Please cite the original version:
Helistd, N., Kiviluoma, J., & Reittu, H. (2020). Selection of representative slices for generation expansion
planning using regular decomposition. Energy, 211, [118585]. https://doi.org/10.1016/j.energy.2020.118585

VTT By using VTT’s Research Information Portal you are bound by the
VTT http://www. vtt.fi following Terms & Conditions.

beyond P.O. box 1000FI-02044 VTT

the obvious Finland | have read and | understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

Download date: 07. Jul. 2022


https://doi.org/10.1016/j.energy.2020.118585
https://cris.vtt.fi/en/publications/35cb1ff8-177a-4f6e-826a-4c2a4a336037
https://doi.org/10.1016/j.energy.2020.118585

Energy 211 (2020) 118585

Contents lists available at ScienceDirect — e :
Energy o
journal homepage: www.elsevier.com/locate/energy e
Selection of representative slices for generation expansion planning N
using regular decomposition =

Niina Helisté * ", Juha Kiviluoma ¢ Hannu Reittu °

@ Smart Energy and Built Environment, VIT Technical Research Centre of Finland Ltd, FI-02044, VTT, Espoo, Finland
b Data-Driven Solutions, VIT Technical Research Centre of Finland Ltd, FI-02044 VTT, Espoo, Finland

ARTICLE INFO

ABSTRACT

Article history:

Received 27 January 2020
Received in revised form

4 June 2020

Accepted 10 August 2020
Available online 22 August 2020

Keywords:

Clustering

Power system planning
Regular decomposition
Representative periods
Time series reduction
Variable renewable energy

In power and energy system planning tools, the temporal detail is often reduced by selecting repre-
sentative slices out of longer time series. Various methods exist for the selection task, but they may prove
slow or otherwise unfavourable in practical applications. Here, a generalized clustering algorithm,
referred to as regular decomposition, is presented and applied to a power system planning study
covering countries in the Northern Europe. The algorithm is compared with other selection methods, and
the comparison is repeated with various number of representative slices and in three carbon price
scenarios in order to provide more robust results. When selecting four weeks or more, regular decom-
position is shown to perform relatively well compared to the other selection methods in terms of the
total costs resulting from the power system model runs. When applied to inter-annual time series,
regular decomposition is demonstrated to scale well. Although random sampling shows the most stable
performance overall, the results indicate the need to test several methods for each system. Moreover, the
results highlight the need to include net load peaks in the selected slices and to carefully estimate their
position in the time series. A two-stage method for including net load peaks is presented.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Planning of power and energy systems through optimization is a
computationally demanding task and it has become more
demanding with the increasing prevalence of variable power gen-
eration (VG) and different storage technologies. VG enforces the
importance of correlated time series between multiple weather
dependent variables including wind, photovoltaic (PV) and hydro
generation as well as electricity and heat demand. Storage tech-
nologies pronounce the need for dynamic programming where
temporal dependencies are fully considered. Meanwhile, uncer-
tainty related to the energy resources, energy demands, technolo-
gies and technology costs further increases the computational
challenge. Consequently, it is important to find ways to simplify the
planning problem while maintaining sufficient accuracy.

Abbreviations: CCGT, combined cycle power plant; CCS, carbon capture and
storage; O&M, operational and maintenance; OCGT, gas turbine; PV, photovoltaic;
RD, regular decomposition; RMSD, root mean square difference; SBM, stochastic
block model; SRL, Szemerédi’'s Regularity Lemma; VG, variable power generation.

* Corresponding author.
E-mail address: niina.helisto@vtt.fi (N. Helisto).

https://doi.org/10.1016/j.energy.2020.118585

Aggregating similar consecutive time steps [1] and selecting
representative slices, such as days or weeks, have been used to
represent possible variations in the time series data using much
less variables than full time series. Several methods for selecting
the representative slices have been evaluated for this purpose.

The benefit of selecting representative slices compared to
aggregating and averaging similar nonconsecutive time steps is
that chronology is maintained between the time steps within each
representative slice. Furthermore, representative slices can main-
tain the high temporal resolution and important variations in the
original time series. The selection of representative slices has to
simultaneously provide an adequate representation of the load
duration curve while including potential correlations between the
load and VG output, as argued by de Sisternes and Webster [2].
They selected a fixed number of weeks from one year of net load
time series by applying a brute force method that calculates all
possible combinations of weeks in order to select the sample with
the smallest root mean square error. Computational issues limited
the number of selected weeks to five even though only one area
was analyzed. It is clear that the brute force method is not a good
solution for multi-area systems if variations in each area are to be
captured.

0360-5442/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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When the number of separate time series profiles increases, a
larger fraction of the full year has to be considered in order to
eliminate biases caused by the chosen slices [3]. Even if model
solutions are close to each other in terms of total system costs, there
may be considerable differences in the technology portfolios,
driven by extreme values. The extreme events of all areas are not
necessarily captured by a smaller number of hours used to repre-
sent the full time scope.

As opposed to brute force methods, there are clustering
methods for partitioning time series into clusters and selecting
prototypes for representing the clusters. One of the most
commonly used clustering method is the k-means algorithm,
where each object is reassigned to the cluster with the nearest
mean in an iterative process. Other similar methods include k-
medians, k-centers, and k-medoids. In the k-centers and k-medoids
methods, cluster members are selected to represent the whole
cluster and, consequently, they maintain the original correlations
between the time series profiles. Meanwhile, k-means and k-me-
dians create a new representative from the cluster members and
consequently achieve a better fit with the original data, but at the
same time create less variable profiles. These four clustering
methods have been compared by Schiitz et al. [4] for building en-
ergy systems while considering heat and electricity demand as well
as solar irradiation. The results showed that the k-centers and k-
medoids methods are better in the sense that they need less
representative days to produce a negligible annual cost error when
compared to a full year reference scenario.

In case studies of three alternative energy supply systems,
Kotzur et al. [5] showed similar results where the k-medoids al-
gorithm outperformed k-means. They also evaluated a hierarchical
clustering method [6], which joined clusters in an iterative process
one by one while minimizing the additional Euclidian distance
from the full year set. The hierarchical method performed
comparatively with the k-medoids algorithm and was computa-
tionally more efficient.

In addition to the aforementioned clustering methods, previous
research has evaluated random sampling, optimization, and heu-
ristic methods for reducing the temporal detail of power system
planning studies. Poncelet et al. [7] compared methods based on
heuristics, hierarchical clustering, random sampling, and optimi-
zation. They also considered ramps of original time series as
separate time series. The optimization-based method showed the
best results, but can become computationally heavy with
increasing number of profiles. Its high computational effort was
also stressed in relatively small-scale energy system studies in the
Spanish [8] and Italian [9] context, where the optimization
approach outperformed k-medoids, k-means, and a simple aver-
aging method. Out of the other approaches in Ref. [7], random
sampling outperformed the hierarchical method and is easy to
implement and computationally light.

Palmintier et al. [10] used stratified sampling for a distribution
network problem. They used repeated resampling in order to
evaluate confidence intervals for the selected samples. This kind of
approach would be valuable also for generation planning problems
especially when using multiple years of profile data, but would
benefit from a computationally efficient sampling method.

Storage technologies that have a longer cycle than the duration
of the representative slice will be misrepresented by the above
methods, as has been highlighted in the case of an island system [5]
and in the Spanish context [11]. In order to consider storage tech-
nologies properly, Tejada-Arango et al. [11] used a system states
approach with a transition matrix between the states and applied a
k-means clustering method to obtain the states and the matrix [12].
However, increasing the number of the states as well as including
additional time series profiles will quickly increase the size of the

problem. The authors also presented a variation of the classical
representative day approach, with cluster indices that enabled
storage continuity and storage level checks at regular intervals.
Representative days were selected using k-medoids.

In the work where different clustering methods were applied to
three alternative energy supply systems, Kotzur et al. [5] concluded
that the clustering method itself is not as important as the system
under study. Similarly, based on a power system planning study of
the Great Britain, Pfenninger [13] concluded that the most suitable
approach to reduce time resolution depends on input data and
model constraint setup, although heuristic approaches appeared
more stable than statistical clustering. The same study also high-
lighted that better methods are needed to deal with inter-annual
variability with high shares of VG.

Table 1 presents a summary of the methods applied in previous
studies. The literature review indicates that there is no convergence
on any particular method and that the best method may depend on
the circumstances. At the same time, the representative slice se-
lection challenge remains central to energy system planning.
Hence, a methodological advance, even if it applies only to a sub-set
of cases, can be of high importance. This paper makes a contribu-
tion by testing a novel selection method and compares it with a
number of existing methods to establish its potential merit. In more
detail, the contributions are as follows:

e The present research proposes an application of a generalized
clustering method, referred to as regular decomposition (RD), to
a power system planning study covering countries in the
Northern Europe. The method is used to select representative
weeks concurrently from load, wind, and PV time series.

e A two-stage approach is employed to include possible extreme
situations in the set of selected weeks. Some extreme situations
in the power system, such as the net load peak, are affected by
the planning decisions, and their position in the time series is
difficult to determine a priori.

e The performance of the RD method is demonstrated against
other selection methods and the comparison is repeated with
various number of selected weeks, in three CO, price scenarios,
as well as in multi-zone and multi-year settings in order to
provide more robust results of the performance of the algo-
rithms. The quality of the selected algorithms is tested with the
Backbone energy systems modelling framework [14], which is
employed to optimize investments in and operations of thermal
power generation, VG, and storage in a greenfield power system.

The hypothesis is that regular decomposition improves upon the
existing methods that select representative slices for generation
expansion planning. The method is explained in Section 2. Section 3
describes the case study including the models employed in the case
study. Section 4 shows the results, followed by a discussion in

Table 1
Summary of the application of representative slice selection methods in
the literature.

Method Previously applied in
brute force [2]
heuristics [7,13]
hierarchical [7,13]
k-centers [4]
k-means [4,5,9,13]
k-medians [4]
k-medoids [4,5,8,9,11]
optimization [7-9]
random sampling [7]
stratified sampling [10]
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Section 5 and conclusion in Section 6.

2. Methods

This section describes the variant of the regular decomposition
method that is employed in this study as well as shortly presents
the other selection methods in the comparison, the procedure for
evaluating the quality of the selected slices and the approach to
including extreme situations in the set of selected slices.

2.1. Regular decomposition of graphs and matrices

There is a vast number of clustering algorithms, the most pop-
ular like k-means are fast and easy to implement. We have devel-
oped a method that can be seen as generalization of clustering. It is
inspired and justified by Szemerédi’s Regularity Lemma (SRL). Ac-
cording to SRL, all large graphs have a structure, regular partition,
that is very useful in understanding properties of large graphs.
Regular partition has a bounded number of parts and—unlike
clusters—has non-trivial connectivity between those parts. The
connectivity patterns are similar to uniformly random, thus
revealing redundancy among members of parts.

The algorithm for finding regular partition, corresponding
exactly to the SRL, is difficult to implement. However, a similar
structure, which replaces regular pairs by random bipartite graphs,
can be found by a short algorithm called regular decomposition
(RD). RD can be extended to matrices and used in data analysis.
Such ingredients like information theory and SRL can make RD a
viable addition to usual clustering methodology in data analysis.

RD was originally developed in works [15—20] for generic
matrices in various use cases. In particular, Ref. [15] studies scal-
ability and tolerance to missing data; Ref. [16] originates the
method and uses it to link prediction; Ref. [17] extends RD to
weighted directed graphs; Ref. [18] suggests to use graph distance
matrix for RD in large and sparse graphs or matrices; Ref. [19] ex-
tends the method to arbitrary matrices with non-negative entries;
finally [20] justifies the use of Minimum Description Length Prin-
ciple as a basis for RD. In papers [19,21], RD was used to aid
modelling and segmenting multiple time series of electric power
consumption in households.

The algorithm for RD can be seen as a new variant of stochastic
block model (SBM), see extensive reviews of SBM field in
Refs. [22,23]. The emphasis here is on a more rigorous foundation of
SBM. Clustering and SBM could significantly benefit from links to
SRL and information theory as is suggested in RD. SRL can indicate
possible new applications of the results of RD, while information
theory can be used to find the right number of components of RD
partition or number of clusters.

Using information theory as a basis of RD, roughly speaking,
means segmenting data into optimal number of classes in such a
way that redundancy in data is maximally revealed. As a result, any
member of a class is similar to the other members in the same class.
Thus, RD can be used to find representative slices of time series, by
selecting representatives from regular group.

The main object in the RD algorithm is an n x m data matrix D
with non-negative entries. For simplicity, we consider a matrix D
with integer elements. Non-integer matrices are treated similarly
and the algorithm for finding RD is identical to the one described
below, as demonstrated in a previous work [19]. The result is the
same cost function in both cases.

In this study, a version of RD is employed that partitions rows of
D into k regular groups, first described in Ref. [19]. The partition is
described by an n x k binary matrix R. Each of its rows corresponds
to a row in matrix D and has value 1 in the position that indicates in

which part or cluster {1,2,---,k} the corresponding row of D be-
longs. All other elements on that row are zero. For instance, if k = 5
and a row i belongs to group number 2, then the ith row of R is
(0,1,0,0,0).

Matrices R and D define the following m x k matrix, P, the rows
of which are the column averages of each part of the partition R of

the matrix D:
<DTR) ‘ n

— =Y R (1)

i=1

(P)j,a P =Dja=

where 1 <j <m,1 < a <k, and super index T is matrix transpose.

The minimum description length (MDL) framework [24] is used
to find the optimal partition R. The coding length of the matrix D is
—logP(D|M) rounded up to the nearest integer, where P(D|M) is the
probability of drawing matrix D from a probabilistic model M. In
RD, the probabilistic model M is the following. Rows of D are par-
titioned in k groups according to some R. If row i belongs to group a,
the circumstance is denoted as «a(i) = «. Each matrix element d;;
withi: a(i) = a is thought as generated from a Poisson distribution,
independently from all other matrix elements, with parameter
(expectation) equal to p; 4;)- As a result, with a fixed D, the proba-
bilistic model is uniquely defined by the R-matrix, according to (1).

Use of Poisson distribution is not an assumption about the
actual distribution of matrix elements. It is used just for modelling
purposes, to have a kind of measure of the proximity of matrix
elements (Kullback-Leibler divergence) in regular groups. This
assumption should be compared with the SBM for binary matrices,
where binomial distribution is used in a similar role.

Using the Poisson distribution, the minus log-likelihood is found
for each matrix element:

—logP(d;;|R) = —log(e*Pf-wpr(i)/n!)
= Dja(i) — d,]log (pj_’a(i)) + log n!.

The corresponding code length for the entire matrix is the sum
of all such elements. After removing terms independent on R, the R-
dependent part of the coding length —logP(D|R) becomes:
L(DR)= > <pj,a(i) —d;jlog (pjiam) ) ,

1<i<n,1<j<m

which is called the cost function. The small difference of integer
valued coding length and L,(D|R) was ignored, insignificant for
large D.

Optimal partition corresponds to minimal coding length:

R" = argrrEnL,&D\R). (2)

In order to find the approximately optimal partition, a greedy
expectation-maximization algorithm was employed, similar to one
in Ref. [19]. It runs in stages s = 0, 1,2, ---. This algorithm starts at
s =0, from a uniformly random partition Ry of rows in k non-empty
groups. The greedy algorithm is defined by the mapping Ry, =
®(Rs). Mapping @ is iterated until a fixed point, Rs, ®(Rs) = Rs is
reached. For each row i at stage s+ 1 the new group is defined
from:

a(i)s,q =arg min
1§a§k1§i§m

(Pials) — dijlog(pja(s)) )

which defines the mapping @( -). This program can be written in a
matrix form by introducing an n x k matrix C(s):
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a(i)s+1 = argmainci,a(s)

Cia(S) == D Djals) — (D-LogP(s));
1<j<m

(LogP(s)); o = logp; a(S).

1<i<nl<j<ml<ac<k

and where the matrix P(s) is computed according to (1) using
matrix Rs. Usually k is much smaller than n. Thus the main
computational burden is in computing P(s), which involves multi-
plication of DT with R or multiplication of an mx n matrix with an
n x k matrix. Usually the number of iterations needed is not high,
typically just few rounds to reach a fixed point of ®. In case of a very
large matrix D, a sampling approach can be used, it is sufficient to
have few samples from each row group in order to be able to
compute the P-matrix. If the number of columns is also very large,
then only a sparse sub-matrix of P is usually enough to find row
groups. Similarly, the method is robust on missing data. The P-
matrix can be estimated despite some missing values of D and
classification is done using existing values, for more details, see
Ref. [15].

Obviously, the global optimum of the program (2) is a fixed
point of ®( ). On the other hand, the greedy algorithm (3) finds a
fixed point that does not necessarily correspond to the global op-
timum of (2). That is why the solution is to run the greedy algo-
rithm several times, starting from different random partitions. The
fixed point corresponding to the minimal cost function value is
taken as an approximate global optimum.

The matrix form of the algorithm is convenient and easily
transferable to various programming environments, allowing cre-
ation of compact codes with only few lines of code. A Python
implementation of the algorithm has been made available [25].

2.2. Selection methods in the comparison

When selecting representative slices, candidate slices are first
extracted from the time series. In this work, we consider 1-week
candidates, i. e, the duration of each candidate slice is 168 h.
Furthermore, a search interval is defined, which denotes the gap
between the starting positions of the candidates (see Fig. 1). A
search interval that is smaller than the duration of the candidates
allows overlapping candidates to be evaluated.

We compare the following selection methods: full year as a base
case, RD, a modified k-means algorithm, random sampling, and a
brute force method. The methods are shortly described in the
following:

e RD has been presented in Section 2.1. Two versions of it, with
different search intervals, were used: one that evaluates

candidates starting every 48 h and another that evaluates can-
didates starting every 168 h.

e The random sample method selects X samples, each with n
randomly selected slices. It then calculates the root mean square
difference (RMSD) to the full year duration curves for each
sample and selects the sample with the lowest value. A value of
X = 1000 was used for the number of samples and the search
interval was 168 h. The calculation of the RMSD is explained in
Section 2.3.

e The modified k-means algorithm is a variation of the k-means

method used by Kotzur et al. [5]. It groups the candidates into n

clusters, and a member closest to the mean of the cluster is

selected to represent the cluster. A search interval of 168 h was
used.

The brute force method evaluates all possible combinations

while minimizing the RMSD to the full year duration curves.

Similarly to the RD method, two versions of the brute force

method were employed: one with a 48-hr search interval and

one with a 168-hr search interval.

The modified k-means algorithm and the RD method do not
always converge to the same solution. Thus, the modified k-mean
algorithm was run 100 times and the best result in terms of the
duration curve RMSD was selected. Similarly, RD was run 1000
times in order to find the best selection.

Most of the algorithms (RD with a 168-hr search interval, the
modified k-means algorithm, and random sampling) were used to
select 2, 3, 4, 6, 9, and 12 slices from the time series, each with a
duration of 168 h. In the brute force method, the calculation be-
comes exponentially larger as a function of the number of the slices
that are to be selected, n. Therefore, the brute force method—as
well as RD with a 48-hr search interval—was employed to select at
maximum 4 or 6 slices from the time series, depending on the
search interval.

In order to analyze the efficiency and scalability of the selection
methods, they were also applied to select representative weeks
from 35-year hourly net load time series.

2.3. Quality evaluation

The quality of the selected slices is evaluated by means of power
systems models based on the Backbone energy systems modelling
framework [14], using a unidirectional soft-linking approach [26].
First, a planning model was run to acquire a portfolio of power
plants for each zone in a multi-zone test system. The planning
model optimized the generation and storage investments based on
the selected slices—or based on the full year time series profiles in
the base case. Second, a scheduling model was run for a full year to
see the variable cost consequences of each portfolio. The most
important criteria for the evaluation is the cost difference to the

candidate 2 4
candidate 1 3 D —— 5
I L] L]
(a) 168-hour search interval
A X X A
1 3 5 7
Ar \Ar \Ar \A( \
r N N N\
C L] ] L L] L[] ]

(b) 96-hour search interval

Fig. 1. Selecting 1-week slices from 5-week time series using different search intervals. Each green square represents a day. Search interval defines the gap between the starting
positions of candidate slices. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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portfolio selected by the planning model based on the full year time
series profiles. Another measure is to calculate the RMSD between
the duration curves formed from the full year time series and the
selected slices.

The RMSD between the duration curves can be calculated using
different approaches. One approach is to treat zones separately and
calculate the RMSD as follows:

1. Expand the selected slices to the same duration as the full year
time series according to the weight of each slice.

2. For both the full year time series and the selected slices,
normalize each time series category (load, wind, PV) separately,
so that the average value across zones and time steps becomes
1:

) A NT
snt=Usnt X == —
2 neND_teTOsnt

V{s,n,t} €SNT

where 0s 5, ¢ is the value in the original time series (category s, zone
n, time step t), and psn: is the corresponding value in the
normalized time series. Due to the normalization, load, wind and
PV will have the same weight in the end, while each zone is
weighted by its relative contribution to the particular time series
category.

3. Sort each time series in descending order.
4. Finally, calculate the RMSD:

2
SsesSnenYeer (PR — p5Ee)
SNT

In another approach, original time series are aggregated over all
zones in each category before calculating the RMSD. Otherwise the
approach follows the same procedure as presented above, with the
exception that now N = 1. In this approach, each zone is still
weighted by its relative contribution to the particular time series
category, but the weighting is embedded in the aggregated time
series. Each category is represented with an equally-weighted time
series profile aggregated over zones.

2.4. Extreme situations

Simply selecting representative slices can lead to missing the
extreme load and weather situations. Consequently, the planning
model may not build enough capacity, and the scheduling model,
which optimizes the operation of the system over the full time
series, may end up in situations with energy not served. This has
been observed in studies presenting a new subsampling approach
[27], demonstrating the importance of storage and ramping dy-
namics [28], and introducing a framework for using clustering
methods [29].

We manually included the week with the peak net load hour in
each set of selected slices. The weight of this week was set to one.
The selection methods were requested to select n— 1 weeks to
represent the remaining 51 weeks of the year. RD and the modified
k-means algorithm were able to give different weights to the n— 1
weeks, while the brute force method and the random sample
method weighted all n — 1 weeks with the same coefficient. In the
end, each set of selected slices included n weeks with a total weight
of 52.

The process for selecting the representative weeks was iterative
in order to find the peak net load hour from the time series. In the

first stage, VG capacity factor time series were multiplied by the
average load of each zone and the time series were normalized such
that the average value equaled one in each category. The zones
were summed in each category and the resulting three time series
were used as input to select five representative weeks using each of
the methods. Next, the power plant capacities were roughly opti-
mized with a planning model that used the five selected weeks as
input. The VG capacity factor time series were multiplied by the
installed capacities from these initial planning model runs in order
to estimate the position of the peak net load hour. The corre-
sponding week was removed from the full year time series that
were given as input to the selection methods in the second stage. A
similar two-stage approach was used by Hilbers et al. [27], who
referred to it as importance subsampling. While they used the
method with random sampling, we applied the iterative approach
to all of the compared selection algorithms.

Using five representative weeks was assumed to be a reasonable
compromise between accuracy and the number of planning model
runs required in the first stage. However, in future applications it
would be natural to use approximately the same number of
representative slices in both stages.

3. Case study

The case study was designed to test the capabilities of the se-
lection algorithms. To have a sufficient, yet manageable, challenge
for all the algorithms, the test system has 12 zones each with
correlated demand, wind power and PV time series based on the
year 2011. The hourly time series data is from Northern Europe,
including Germany, Poland, Estonia, Finland, Norway as three
zones, Sweden as three zones, and Denmark as two zones. The time
series are based on data provided by the transmission system op-
erators, Nord Pool power market, and NASA MERRA reanalysis.
Existing transmission connects the zones with each other.

The study starts from a greenfield system without existing po-
wer plants. In each of the 12 zones, there are five investment op-
tions, as shown in Table 2. Natural gas is the only fuel being
considered and it can be burned in a combined cycle power plant
(CCGT) or in a gas turbine (OCGT). The price of natural gas is
assumed to be EUR 36 per MWh. Carbon capture and storage is
possible in the combined cycle power plant with extra costs
(CCGTCCS). It is assumed that 90% of the CO, can be captured and
the cost of storage is EUR 10 per tonne of CO, stored.

In order to study the performance of the selection algorithms in
low-renewable and high-renewable systems, three equally spaced
levels for the CO, price were used: EUR O per tonne, EUR 50 per
tonne and EUR 100 per tonne. The capacity margin assumption was
20% of the peak load, and it had to be fulfilled at every time step in
the planning model. VG contributed to the available capacity ac-
cording to its instantaneous generation. Instantaneous storage
charging/discharging and power transfers on transmission links
were also considered in the capacity margin constraint.

The quality of the selected algorithms was tested with the
Backbone energy systems modelling framework, described in detail
in Ref. [14]. The framework contains both a planning model and a
scheduling model. The user can choose the level of detail in the
representation of constraints in both Backbone models. Addition-
ally, in the scheduling model, the level of detail can decrease to-
wards the end of the rolling model horizon allowing more detail in
the first hours where the final commitment and dispatch decisions
are made. In this case study, the scheduling model determines the
operations during one year using a rolling horizon with a 24-hr
optimization period and an additional 8712-hr look-ahead period,
where the temporal resolution decreases gradually from 1 h to
168 h. The planning model determines the number of units to build,
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Table 2
Technology characteristics, adapted from Ref. [30,31].

Type unit size investment costs annuity factor fixed O&M costs variable O&M costs start cost efficiency (min.) efficiency (max.) min. load ramp up/down limit
(MW)  (EUR/KW) (/a) (EUR/kW/a) (EUR/MWh) (EUR/MW) (%) (%) (%) (%/min)

OCGT 50 412 0.0858 7.423 4.50 43 40 45 20 10

CCGT 200 800 0.0858 26.000 4.00 43 58 63 40 4

CCGTCCS 178 1784 0.0858 44.720 7.80 43 51 56 40 4

wind 1 960 0.0806 11.340 1.22 0 100 100 0 -

PV 1 490 0.0750 7.810 0 0 100 100 0 —

battery 160? 135° 0.0806 1.620° 1.60 0 92 92 0 —

2 For batteries, the unit of measurement for unit size, investment costs, and fixed O&M costs are MWh, EUR/kWh, and EUR/kWh/a, respectively. A battery with a capacity of
160 MWh is assumed to have a 80-MW charging capability and a 480-MW discharging capability.

but in this case study, the investment variables were continuously
relaxed. Both the planning model and the scheduling model were
formulated as linear programming (LP) models. Table 3 summa-
rizes the implementation of different cost components and con-
straints in the model runs. Storage state as well as the online status
of OCGT and CCGT (CCS) plants were forced to be equal at the
beginning and at the end of each simulated week in the planning
model.

Power and energy system investment decisions are preferably
made based on multiple years of time series data, in which case
having an efficient method for selecting representative slices be-
comes increasingly important. For this reason, another case study
was designed based on 35 years of time series data from Finland.

4. Results

This section presents the results of the multi-zone and multi-
year case studies. The multi-zone case study results are divided
into results focusing on the selection of the representative slices
and results from the power system model runs.

4.1. Selected representative slices

The initial model runs resulted in two estimates of the peak net
load position. Based on most of the planning model runs with initial
week selections, the estimated net load peak occurred in the 8th
week. However, as a result of all planning model runs with the
initial brute force selections and two out of three planning model
runs based on the initial RD selections with a 48-hr search interval,

the net load peak occurred in the 46th week of the year.

Figs. 2 and 3 show the computation times and the RMSD results
of the selection methods in the second stage. The brute force
method with a 48-hr search interval performs well in terms of the
RMSD but proves impractically slow after a few representative
weeks. Random sampling is the fastest of the methods and results
mostly in the smallest RMSD, when excluding the brute force

3000 - BF 168
BF 48
—o— KM 168
@ 25007 —— RD 168
g -&- RD 48
S 2000 —— RS 168
2
S
g 1500 -
3
Q
E 1000 -
O
500
— == $ 3
O I I I I
2 4 6 8 10 12

Number of weeks

Fig. 2. Computation time when selecting representative weeks concurrently from
three one-year time series of Northern Europe (load, wind, PV). The search interval
was either 48 h or 168 h. The number of weeks does not include the estimated peak
net load week. BF: brute force, KM: modified k-means, RD: regular decomposition, RS:
random sampling.

Scheduling

Table 3
Cost components and constraints in the model runs.
Planning
Fuel use no-load fuel use plus heat rate
0&M costs EUR/MWh and EUR/MW/a®
Startup costs EUR/MW
Ramp costs -
Investments costs EUR/MW"
Penalties

Energy balance
Reserve demand
Transmission

single upward reserve
net transfer cap.

Online status linearized

Min. operation linearized

Start-ups linearized

Shutdowns linearized

Run-ups —

Ramp constraints yes

Inertia non-synchronous penetration limit
Capacity margin net load plus margin

Forecasts —

loss of load, lack of reserve, lack of capacity
must be maintained, but has penalty variables

no-load fuel use plus heat rate
EUR/MWh
EUR/MW

loss of load, lack of reserve

must be maintained, but has penalty variables
single upward reserve

net transfer cap.

linearized

linearized

linearized

linearized

yes

non-synchronous penetration limit

2 EUR/MWh/a instead of EUR/MW/a for batteries.
b EUR/MWh instead of EUR/MW for batteries.
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Fig. 3. Duration curve RMSD when selecting representative weeks concurrently
from three one-year time series of Northern Europe (load, wind, PV). The search
interval was either 48 h or 168 h. The number of weeks does not include the estimated
peak net load week. BF: brute force, KM: modified k-means, RD: regular decomposi-
tion, RS: random sampling.

method. RD with a 168-hr search interval is slower than the
modified k-means, especially at a relatively high number of selected
weeks, but on the other hand, it has a comparable or smaller RMSD.
Based on the limited number of tests shown in Figs. 2 and 3, the
performance of RD declines when decreasing the search interval
from 168 h to 48 h.

4.2. Energy system model results

Figs. 4 and 5 show the relative total costs resulting from the final
multi-zone power system model runs. In most of the cases, the total
cost results were 0—4% higher compared to the cost results of the
full year runs, which served as base cases. The figures show many
patterns similar to the RMSD results in Fig. 3, which suggests that
the RMSD results are indicative of the quality of the selected slices.
The relationship between the total costs and the RMSD results is

8
BF 168, 0 RD 168, 0
77 —e— BF168,50  —e— RD 168, 50
5 61 —A— BF 168,100 —— RD 168, 100
°: —=— KM 168, 0 —=— RS 168, 0
2 5 —e— KM 168,50 —e— RS 168, 50
% 4 - —A— KM 168, 100 RS 168, 100
8
c 34
‘v
2 27
e
(@] 1 -
0 -
_1 T T T T T
2 4 6 8 10 12 14

Number of weeks

Fig. 4. Changes in total annual system costs compared to the full year simulations
in the Northern European cases, with a search interval of 168 h. The legend states
the selection method and CO, price (EUR/t), respectively. Total annual system costs in
the full year simulations were EUR 61.24 billion (CO,: EUR O per tonne), EUR 66.83
billion (CO,: EUR 50 per tonne), and EUR 71.37 billion (CO,: EUR 100 per tonne). The
number of weeks includes the estimated peak net load week. BF: brute force, KM:
modified k-means, RD: regular decomposition, RS: random sampling.

8
BF 168, 0
7 —e— BF 168, 50
S 6- —— BF 168, 100
< BF 48,0
2 S -e- BF 48, 50
= 4 -&- BF 48, 100
] RD 168, 0
£ 3A —e— RD 168, 50
Gé, 5 —A— RD 168, 100
s RD 48, 0
O 1A -e- RD 48, 50
-a&- RD 48, 100
0 -
_1 T T T T T
2 3 4 5 6 7 8

Number of weeks

Fig. 5. Changes in total annual system costs compared to the full year simulations
in the Northern European cases, with a search interval of either 48 h or 168 h. The
legend states the selection method and CO, price (EUR/t), respectively. The number of
weeks includes the estimated peak net load week. BF: brute force, RD: regular
decomposition.

further demonstrated in Fig. 6.

Fig. 4 shows that seven cases with a search interval of 168 h
resulted in total costs that were more than 4% higher compared to
the total costs in the corresponding base case. In these cases, the
planning model was based on 3—4 weeks (incl. the estimated peak
net load week). The number of weeks had to be increased to 5 in
order to achieve total cost difference below 2% for all the methods.

In general, random sampling resulted in the lowest total costs
(at maximum 2.2% higher than the corresponding full year case).
One of the cases had even lower costs than the corresponding full
year case. This may be due to certain modelling differences be-
tween the planning model and the scheduling model, such as
having the capacity margin constraint only in the planning model.
Random sampling also shows a small increase in cost results after 7
selected weeks, despite the decreasing RMSD (see Fig. 3). Never-
theless, the changes in the total cost results based on random
sampling are minor after 7 selected weeks.

The total cost results based on the RD selections (with a 168-hr
search interval) are comparable to the cost results based on the
modified k-means algorithm and the random sampling method,

8 -
® Estimated peak net load week
7 @ 8th week
— [ ® 46th week
X 6 -
% ® ‘
S 4 °
S
£ o
3>
g 2 - e L/
s T o
© °
1 -
O -

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
RMSD

Fig. 6. Changes in total costs in relation to the RMSD in the Northern European cases.
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when selecting 4—5 weeks for the planning model. When the
number of weeks is increased to 7, the cost results based on the
modified k-means are surprisingly high, but they start to decrease
again when further increasing the number of selected weeks. At 13
weeks, the total cost differences between the cases based on these
three selection methods are negligible.

Fig. 5 compares cases where the selection algorithms used
different search intervals, but particularly it highlights that esti-
mating the position of the net load peak requires careful attention.
In most of the cases in Fig. 5, the estimated peak net load week was
the 46th week of the year, and likewise, many of these cases
resulted in a large amount of energy not served in the final
scheduling model runs. However, there is also unaccountable
behaviour in the costs of these cases, especially those based on the
brute force method. It can be concluded that the results are likely to
be very unstable if extreme situations are not correctly captured in
the planning model.

These results could not demonstrate benefits from decreasing
the search interval from 168 h when selecting representative
weeks. Including only 3 weeks in the planning model (one of them
being the estimated peak net load week) proved to be insufficient,
as the total cost results varied considerably and were close to the
optimal results most likely only by chance. Including 4—5 weeks in
the planning model gives already more stable results, and after 7
selected weeks, all total cost results started to converge steadily. In
general, the higher the CO, price was set—and the more the in-
vestments in VG grew—the larger the number of weeks had to be in
order to achieve total costs close to the full year case. Optimal
number of representative weeks or days will depend on the system
at hand and the purpose of the study, as well as on the number of
time steps that can reasonably be selected and included in the
planning problem with the available computing power.

Although the total cost results were often quite close to each
other, there were large differences in the cost component division
as well as in the capacity and production results, as can be seen
from Figs. 7—9, respectively. In particular, the investment results
show large variation in the installed capacities of wind power, PV,
and batteries (Fig. 8). The cases based on representative weeks
resulted more often in larger amount of battery investments
compared to the full year cases, whereas in the case of wind power
and PV, full year results and mean results were relatively close to
each other.

Furthermore, a comparison of the total cost differences (Figs. 4

black dots are full year results
purpl.e dots are mean results *@mree
100: + .
- »
z
2 ey
=~ L J
_g 50: o .
3 »
)
(@] @ investment
e e ©® fixed O&M
0: H - variable O&M
b energy not served
T T T T T T
0 10 20 30 40 50 60

Cost (billion EUR/a)

Fig. 7. Division of costs in the Northern European cases based on the planning and
scheduling model runs.
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Fig. 8. Investments into new capacity in the Northern European cases based on the
planning model runs. The unit of measurement is GWh for batteries and GW for other
investment options.
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Fig. 9. Annual production per generation type in the Northern European cases
based on the scheduling model runs.

and 5) and the division of investments (Fig. 8) demonstrates that
there can be a plateau in the optimal total costs which can be
achieved with various generation portfolios.

4.3. Selecting representative slices from multi-year time series

The selection methods were also applied to select representa-
tive weeks from 35-year net load time series of Finland. Figs. 10 and
11 show that RD scales well compared to the modified k-means
method, and it can be used for longer time series. Decreasing the
search interval from 168 h to 48 h increases the computation time
but does not show as significant improvements in the RMSD. The
figure also shows that random sampling with X = 1000 samples is
the fastest of the three methods and results in the smallest RMSD
even when applied to multi-year data. However, although the
analysis in Section 4.2 demonstrated that the RMSD between the
duration curves is a good indication of the quality of the selected
slices, it is not necessarily the best measure as it fails to take into
account important patterns in the time series.

Therefore, Fig. 12 shows the total cost results based on the
planning and scheduling model runs. The investment options were
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Fig. 10. Computation time when selecting representative weeks from the 35-year
net load time series of Finland. The search interval was either 48 h or 168 h. The
number of weeks does not include the estimated peak net load week. KM: modified k-
means, RD: regular decomposition, RS: random sampling.
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Fig. 11. Duration curve RMSD when selecting representative weeks from the 35-
year net load time series of Finland. The search interval was either 48 h or 168 h.
The number of weeks does not include the estimated peak net load week. KM:
modified k-means, RD: regular decomposition, RS: random sampling.

the same as in the Northern European cases, but now Finland was
treated as an island system. In terms of total costs, RD with a 48-hr
search interval and random sampling showed the best perfor-
mance, as they resulted in relatively low and stable costs with all
week selections. RD with a 168-hr search interval resulted in sur-
prisingly high costs in the case of 7 selected weeks, and the costs
resulting from the selections made by the modified k-means algo-
rithm stayed on a high level still when the number of weeks was 10
or 13.

While RD scales well when it is applied to longer time series, the
initial tests did not demonstrate that it would scale well when
applied to multiple concurrent time series.

5. Discussion

In general, the RD method was shown to perform relatively well
compared to the methods in the multi-zone test cases. However, RD
was still outperformed by the random sampling method in terms of
both the computation time and the total costs resulting from the

3.0
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1.5

1.0 +

0.5 4

Change in total cost (%)
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Fig. 12. Total annual system costs in the Finnish cases, relative to the case with the
lowest costs (RD 168, 13 weeks: EUR 6.51 billion). The search interval was either 48 h
or 168 h, and the price of CO, was EUR 50 per tonne. The number of weeks includes
the estimated peak net load week. KM: modified k-means, RD: regular decomposition,
RS: random sampling.

energy system model runs. We had expected that the random
sample method would have difficulties in producing good results
with larger data sets. However, it performed very well. One reason
for this could be that cost effective power system investments, at
least in the example power system, are economically sensitive to an
adequate representation of the load and VG duration curves and
less sensitive to ramps in the time series. The more advanced
methods try to capture the variation as well, but, as a consequence,
lose accuracy on the RMSD of the duration curves.

The results can be heavily affected by case and system depen-
dence and the two-stage approach to estimate the peak net load
period. In order to minimize the potential error resulting from case
and system dependence, the comparison was repeated with various
number of selected weeks, in three CO, price scenarios, as well as in
multi-zone and multi-year settings. Using the two-stage approach
resulted in misestimation of the net load peak position for some of
the methods, but in another system or with more stages in the
iterative approach, the results may have looked different. It should
be noted that different modelling choices could have led to
different relative performance of the methods and especially
different RMSD and total cost difference values.

Moreover, the analysis showed that although there are large
differences in the generation portfolios themselves, the total costs
resulting from these portfolios can all be very close to the optimal
total costs. Therefore, the selection methods should not be ranked
solely based on the resulting generation portfolios. Depending on
the purpose of the study, it may be important to consider various
criteria, sometimes simultaneously, e.g. the total costs, total emis-
sions, share of energy from renewable sources, and share of do-
mestic energy production.

The RD method was demonstrated to scale well when it was
applied to inter-annual time series, and the version that was able to
evaluate overlapping candidates resulted in low and stable costs in
all multi-year test cases. However, the method may not scale as
well when applied to multiple concurrent time series. Further
research is needed to ensure that the method is practical also in
those applications. The sampling approach developed in Ref. [32] is
anticipated to speed up computations for large matrices.

With increased sectoral integration, power system investment
decisions cannot be made separately from other energy sectors
[33]. Apart from batteries, many other storage options, such as
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thermal storage tanks, seem more affordable and are relevant to
consider [34]. This also leads to the need to better capture the
behaviour of long-term storage in the models. Thus, an important
direction for future research is to apply the methodology presented
in this paper to multi-sector energy system studies, including links
to heating and transport. When the method itself is efficient,
applying it to a multi-sector energy system is straightforward.

6. Conclusion

A generalized clustering method has been presented, referred to
as regular decomposition (RD), and its application in selecting
representative weeks for a power system planning study has been
demonstrated. The method was compared with other selection
methods as well as using full year time series in the planning
problem. In many real cases, using full year time series (or more)
becomes computationally impossible, and practical methods are
needed to reduce the time series data while still retaining impor-
tant variations in them. Especially at high volumes of VG, more than
3 weeks should be selected and included in the planning model.

In general, regular decomposition was demonstrated to be an
efficient method for selecting representative slices for generation
expansion planning. However, the performance of the methods
depends on input data and the number of slices to be selected.
Although random sampling showed the most stable performance
overall, the comparison demonstrates the benefits of testing mul-
tiple selection methods and number of slices. Regular decomposi-
tion scales well, and with further improvements, it could become a
valuable method in the energy system planning toolkit.

The results also highlight the need to include net load peaks in
the selected time slices with appropriate weighting and to not miss
the final position of the net load peak that can be changed by the
investment decisions. This may require, for example, an iterative
process. This work employed a two-stage approach, but more
stages could be introduced, where a new estimate of the net load
peak would be included in the set of selected slices, until the
scheduling model does not find situations with energy not served.
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