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Preface 

This report is a deliverable of a project proposal called DEFLECT – machine learning for fault 
identification, however it was scoped as a small study to take a wider view into machine 
learning and its potential use in safety critical domains, especially in nuclear, and to include 
discussions with Finnish nuclear stakeholders about the topic in general. It was funded under 
The Finnish Research Programme on Nuclear Power Plant Safety 2019-2022 (SAFIR2022) as 
ordered by its Steering Group 1. It is meant as an introduction and a discussion opener for the 
SAFIR Programme members towards utilizing more data driven methods for nuclear safety-
related applications. We try to give the readers basic understanding relating to the industrials 
use of machine learning methods. 

The authors would like to thank Fortum, STUK, TVO and Fennovoima for their support and 
their participation to the discussions during the project and for sharing their valuable domain 
experience and feedback.  
 
Tampere 20.10.2020 
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1 Introduction 

Machine learning is a method of data-analysis, which tries to automate the process of learning 
from the past to gain real-time and accurate knowledge to solve problems of today. Businesses 
and engineering sectors all over the world are trying to utilize the benefits from the swift and 
revolutionary progress this field has made in the recent years, to gain advantage in the ever-
increasingly competitive and technical market. Currently, the science of machine learning (or 
artificial intelligence in general) advances even so rapidly that it is impossible to follow the 
latest breakthroughs, and even more challenging to exploit them. Recent studies have shown 
that companies struggle to productize these data-driven methods without strong practical 
knowledge and experience. However, these techniques are here to stay and already disrupting 
many traditional sectors with new, smarter, data-driven ways of making decisions. They have 
the capability to back-up their decisions using databases with dozens of years of data about 
successes, failures and different scenarios encountered through the history, which they can 
often process in a flash compared to their human counterparts. When machine learning based 
system are being deployed into real production, they face new mature problems arising from 
the industrial applications such as explainability, uncertainty, reproducibility, correctness, 
security and privacy to mention just a few.  

1.1 Goals and process of the study 

This report is an introduction and short literature review on the use of artificial intelligence, 
especially machine learning techniques, to implement, guide or supervise critical control 
actions and mission critical decision making. This report should give the reader a better picture 
of the status of machine learning, together with an assessment of the present-day applicability 
of its techniques in the safety critical domains. This short report will not extensively cover the 
details of the methods or the theoretic background of machine learning as a science. Instead, 
it aims to introduce the relevant concepts, identify the challenges and put the applications of 
machine learning in safety critical industrial domains into perspective. 

The rest of this report is structured as follows: The second chapter introduces the reader to the 
fundamental ideas of machine learning and its three basic paradigms. The third chapter 
highlights and discusses properties and challenges related to machine learning that are 
relevant when thinking about using it for safety critical industrial applications. The main findings 
of the stakeholder discussions and short introductions to some selected topics are presented 
in Chapter 4. Finally, Chapter 5 summarizes the conclusions of this small study. 

An important part of this report originates in the informal discussions with Finnish nuclear 
stakeholders (STUK, Fortum, TVO, and Fennovoima) aiming to identify current needs or 
challenges that may benefit from the use of machine learning or other data-driven methods. 

In addition to this small study that focuses on machine learning applications on safety 
engineering over the lifecycle of safety-critical systems, the SAFIR Steering Group 1 has 
ordered another small study focusing on the use of artificial intelligence as a regulator decision 
support technology. These reports will be published at the same time. There is a minor overlap 
between these two reports since machine learning is part of the artificial intelligence family of 
tools and the same basic principles apply to both. However, this report tries to focus more on 
industrial applications of machine learning while the other report will focus more on regulatory 
use of artificial intelligence.    

1.2 Terms and abbreviations 

Table 1. Abbreviations 
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Abbreviation Description 

AI Artificial Intelligence 

DL Deep Learning 

FTA Fault Tree Analysis 

IEEE Institute of Electrical and Electronics Engineers 

ISO International Organization for Standardization 

MBSE Model Based Systems Engineering 

ML Machine Learning 

NLP Natural Language Processing 

NPP Nuclear Power Plant 

RL Reinforcement Learning 

SE Systems Engineering 

V&V Verification & Validation 

2 About machine learning 

“Machine Learning (ML) is the art and science of letting computers learn without being explicitly 
programmed” [1]. The concept of machine learning is based on the development of a model 
by a computer of some abstract principle from data alone and applying this gained “knowledge” 
to another, yet unseen, situation to make predictions. This basic idea of ML has been around 
at least since the 1950s, when the first neural network models were invented. Even before 
that, modelling methods like Bayesian statistics and Markov chains have been used to 
accomplish similar tasks. However, the advent of growth of data availability and computational 
power, combined with the arrival of novel learning methods has increased the scientific activity 
as well as several breakthroughs in many scientific areas, including the use and exploitation 
of different machine learning paradigms [2]. Recent advances are due to deep learning (DL), 
which is a subfield within ML that can deal with complex model architectures trained with large, 
often incomprehensive to human, datasets to learn dependencies and form models, which 
were unattainable in the past because of technical insufficiencies. 

The traditional approach of modelling the problem (or fitting a model to a problem) is to specify 
a model that can describe the observed data, while a more modern, but resource demanding, 
approach specifies no explicit model, but lets the computer be responsible for identifying 
associations in the observed data and create the model independently. This approach has led 
to breakthroughs in many applications where describing a fitting model has been too difficult 
or impossible for a human (maybe because of sheer amount of data or complicated 
correlations in parameters), but leads to another kind of challenge: the complexity of the 
generated model. This so called “black box” problem comes from the high number of free 
parameters, the correlations/associations between them and the complex interactions of a self-
learning model, which tend to make them difficult for humans to interpret logically. However, 
significant progress has been made over the last years in the interpretability of machine 
learning models and today many aspects of the old “black box” models can be interpreted 
using modern tools. [2]. 
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Machine learning is, in its very core, a data analysis tool and selecting correct algorithms is 
critical for the realization of the desired results. Achieving results depends on the used 
paradigm, algorithm and data. Commonly, machine learning has been divided into three main 
domains, or paradigms: 

 Classification and regression belonging to supervised machine learning 

 Clustering and dimensionality reduction belonging to unsupervised machine learning. 

 Additionally, data can be analysed with reinforcement learning, where algorithm 
processes unlabelled data and learns by trial and error using either value- or model-
based learning.  

Figure 1, is one way to show this division of functionalities between supervised, 
unsupervised and reinforcement learning paradigms.  

 

Figure 1. Taxonomy and overview of main ML paradigms and algorithms, modified from [2]. 

There is common unawareness in terms around machine learning topics, mainly with machine 
learning (ML), deep learning (DL) and artificial intelligence (AI). The topmost blue branch of 
Figure 2 tries to convey the hierarchical relation between these terms. Machine learning is only 
a subset of techniques that are considered to form the domain called artificial intelligence, and 
deep learning only a subset of machine learning that uses ‘deep neural networks’ [3]. However, 
machine learning is not an independent application domain within AI, rather a tool for the other 
domains. In fact, machine learning-based algorithms are used as a learning method in almost 
all the other main domains of AI too, for example Natural Language Processing (NLP), speech 
recognition or machine vision.  



 

 

RESEARCH REPORT VTT-R-01124-20 

7 (27) 

 
 

 

 

Figure 2. Example domains within artificial intelligence, modified from [4]. 

Figure 2 also shows how diverse is the field of AI. Usually each domain contains its own field 
of science with its own domain knowledge, research communities and various techniques used 
to accomplish tasks within the category. This report, due to its scope, cannot dive deeply in 
these domains or their domain-specific techniques, there is a wealth of extensive knowledge 
available from formal (universities etc.) and informal/practical sources. Instead, in the following 
subchapters, we will introduce to the reader, three main paradigms of machine learning 
algorithms: namely supervised, unsupervised and reinforcement learning, explaining their key 
aspects and steps. Almost all the modern machine learning techniques have their roots from 
one of these paradigms. Each of them can then use deep learning or other more classical 
algorithms to find their suitable learning information from the training data. 

The core idea of all these current data-driven trends (e.g. machine learning, artificial 
intelligence or big data) is about supporting the user making better, safer and more well-
informed decisions based on the data available. Data itself does not lead to better decisions, 
but it makes possible to analyse the challenge and gain insights that is not easily available 
otherwise. Analytics can be grouped based on the support they can offer, for example, to 
describing, diagnosing, predicting and prescribing levels:  

 Describing level helps to understand what happened.  

 Diagnostic level helps to understand why it happened. 

 Predictive level helps to understand what will happen next. 

 Prescribing level helps to understand what should be done next. 

As the analytic levels mature from simple informative to more advanced and controlling, so 
does the potential value of support offered by these systems. Unfortunately, similarly does also 
the amount of skills, techniques and capabilities needed from the organizations wishing to use 
them. Machine learning system, which are analytical at heart, follow the same scheme. Figure 
3 tries to depict this relation of value versus effort of different analytical levels. 
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Figure 3. Four levels of analytics, modified from [5] 

The higher one moves on the grey arrow, the more value the analytics can offer, but at the 
same time more effort is needed to gain the full benefits of a correctly working analytical 
system. 

2.1 Supervised learning 

Supervised learning in brief 

In supervised learning, a computer is tasked to learn how to predict a class or value of a yet 
unobserved data point based on a concept that has been derived from a training dataset [2]. 
Prediction target can be numeric values or string labels, depending on the required output and 
used supervised learning algorithm. Used training datasets need to be labelled, categorized or 
classified in order to train the algorithm. This is usually one of the most demanding tasks within 
supervised learning, the labelling of training data. Collecting huge amounts of data can be easy 
to do under the right circumstances, but, actually, categorizing this data can be very time 
consuming, it is, however, necessary, if supervised learning is to be used. Many big players in 
the domain have crowdsourced this labelling effort to large groups of individual people over 
the internet [6]. 

Supervised learning is an algorithm, which learns from known datasets and associated target 
responses. The algorithm, consisting of classification or regression, is objected to learn a 
mapping function from the input variable to the output variable. The mapping function is 
approximated to predict as accurately as possible output variables when new input variables 
are presented. Difference between classification and regression is that classification produces 
qualitative or discrete output variable while that for regression is numerical or continuous. 

Classification algorithm in machine learning tries to predict the value of a single or several 
conclusions, for instance, into discrete categories: value is over or less than a fixed benchmark. 
Then again, regression algorithm tries to predict an integer or a floating value, for instance, in 
quantities: predicted value is the continuation of historical values and hence a continuous 
output. 

Main use areas 

Prediction and classification. Supervised learning provides means to determine and predict 
average values and distinguish values according to a specific classification task. Therefore, 
supervised learning helps to produce output data according to previous experience. Previous 
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experience can furthermore be used to optimize the performance of the algorithm. By 
comparison, supervised learning is less complex to apprehend. 

Commonly used classification algorithms include Naive Bayes, decision tree, K Nearest 
Neighbours and logistic regression. Commonly used regression algorithms include regression 
trees, Support Vector regression and linear regression. 

Basic steps of supervised learning 

For the supervised machine learning to be successful, extensive data selection is required. 
The data set can be compiled from historical data and/or synthetic data (e.g. based on 
simulation model results). A data processing step can be taken to extract “features” from the 
data, e.g. calculate statistical values from time series and use these for the further development 
of the AI system. The data set is labelled, meaning that data entries are associated with a 
specific state or class (e.g. a time series of sensor measurements is associated to a specific 
fault in the process). This data set can be split to form a training data set (used for the 
development of the AI tool) and a testing data set (used to test the success rate of the AI tool). 
The selection and development of a supervised learning-based algorithm requires considering 
the structure of the learned function. The algorithm must work accordingly with the given 
training set to produce the expected output later with the test set. Figure 4 describes these 
basics steps. 

 

Figure 4. Supervised learning model [7] 

Challenges in supervised learning 

Supervised learning requires labelled data, which is often either not available or requires 
preparation and pre-processing. If data is not in-line with the required output, irrelevant 
features among training set could produce inaccurate results. Therefore, each class should 
have sufficiently good examples for the classifier to work expectedly. Accuracy problems can 
also manifest if the training set includes incomplete or improbable values. Learning process 
with big data requires a lot of computation time making classification a challenging task.    

Enough training data, relating to all cases the algorithm needs to handle, is needed, and this 
data needs to be labelled. For example, fault prediction algorithms need annotated data of the 
failures it needs to predict, and it would be beneficial, if this data were recorded all the way to 
failure (depending on the expected prediction function of the AI tool). As can be imagined, in 
many cases, this kind of data is not available or there are just a few recorded cases. Safety 
system are designed and built to have a very low frequency of failures, high fidelity simulation 
models can be used to simulate the response of the process when specific events are triggered 
and enhance the data set to be used for the development of the AI system. 
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2.2 Unsupervised learning 

Unsupervised learning in brief 

Labelling of data sets is often very difficult or impossible. In unsupervised learning, a computer 
is tasked to identify yet unknown patterns in data without any pre-existing knowledge/labels 
(like groups or classes) [2]. The training algorithm has the possibility to discover information 
such as unknown patterns in the data. The unsupervised training algorithm is designed to learn 
from a known dataset without corresponding target responses thus utilizing unlabelled data. 
The algorithm restructures this data for the identification of new features that can represent a 
class or a new series of uncorrelated values. Unsupervised machine learning algorithms are 
grouped into clustering and association or dimension reduction problems. 

The clustering algorithms identify relevant sub-groups as structures or patterns in a collection 
of uncategorized data without having predefined understanding of a subgroup’s property 
characteristics. The granularity of these subgroups can be adjusted if the number of clusters 
is known. Clusters are a collection of subgroups of the data, which are similar to one another. 
There are numerous approaches in clustering for grouping data points by similarity: exclusive 
partitioning with K-means, agglomerative with Hierarchical clustering, and density-based 
clustering with Density-Based Spatial clustering. 

Association-based algorithms discover associations between data points and reduce the 
dimensionality of the dataset. Often data includes correlated information, which occurs as 
unnecessary redundancy, potentially harmful for algorithms performance and training. 
Dimension reduction decreases the complexity of the data and provides means for avoiding 
overfitting. Furthermore, uninformative features can be located and removed thus improving 
the algorithm’s performance and convergence time (training time). Dimensionality reduction 
can be accomplished with feature selection and feature extraction. In this case, information is 
either selected from the original dataset or derived to formulate new subspace. Furthermore, 
commonly used dimensionality reduction methods include principle component analysis 
(PCA), t-distributed stochastic neighbour embedding (tSNE) and uniform manifold 
approximation and projection (UMAP). 

Main use areas 

The unsupervised learning algorithms provide insight into the structure and meaning of data. 
Found patterns can be then utilized as inputs to supervised machine learning algorithms. This 
technology also provides means for anomaly detection or outlier analysis, which can discover 
unusual data points from the dataset. Although supervised learning is the most used machine 
learning paradigm, annotating datasets takes resources and as such, unsupervised learning 
can be beneficial with potentially locating useful new features for categorization. Additionally, 
the amount and parameters of classes the data is divided into is not always known, which may 
enable unsupervised algorithm to search for naturally emerging patterns. This can be 
beneficial for instance in data mining since clustering automatically splits the datasets into 
groups of some similar parameters. Unsupervised learning can be also utilized for data pre-
processing by either reducing the number of features in a dataset or by decomposing dataset 
into components. 

Basic steps of unsupervised learning 

For unsupervised learning to be useful, the dataset has to include related observations. 
Furthermore, unsupervised learning relies on the assumption that the dataset includes 
meaningful patterns, which can enlighten new aspects of the data. Collecting diversely relevant 
data and inspecting the quality is crucial for the algorithm to work as intended. With 
unsupervised learning, one tries to find underlying structure of a dataset and group it 
advantageously. Grouping may include reducing dimensions of the data. Whether the dataset 
is compressed with clustering or by reducing dimensionality, the effective way of representing 
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the data needs to be considered. The effectiveness of unsupervised learning is observed with 
metrics that support decision making regarding tuning parameters of the algorithm. However, 
how well a specific unsupervised learning algorithm performs depends on the context of the 
desired goal. Hence, metrics can include performance evaluation of clustering or evaluation of 
probability measures like log-likelihood if the algorithm is probabilistic. Also, by adjusting the 
parameters of the model according to specific metrics, the accuracy of the algorithm can be 
increased. Figure 5 shows these basic steps. 

 

Figure 5. Unsupervised learning model [8] 

Challenges in unsupervised learning 

Unsupervised machine learning can be more difficult to utilize than supervised machine 
learning, since the algorithm itself is trying to come up with patterns from the data. This makes 
the algorithm less accurate as it may or may not find patterns. Because there are no labels to 
compare with the output, it is left to external evaluation to comprehend what results may be 
meaningful. Although, unsupervised learning algorithms allow performing more complex 
processing tasks, the learning process can be unpredictable. Hence, obtaining precise 
information of data sorting is not possible. 

2.3 Reinforcement learning 

Reinforcement learning in brief 

Reinforcement learning utilizes unlabelled datasets like unsupervised learning. On the other 
hand, data includes information about the current state of the operative environment with a 
reward signal, which make reinforcement learning as a field related to supervised learning. 
Difference to other paradigms is that reinforcement learning proposes deep learnings methods 
that concern software agents and produced actions in an environment where the agent 
attempts to achieve maximized cumulative reward through interactions with the environment. 
During numerous steps, the algorithm learns from feedback to achieve complex objectives or 
to maximize some specific dimension. The feedback from environment to the agent is not the 
ground truth label or value, but a measure of how well the action was measured by a reward 
function. Used algorithms vary according to the decision process and used reward function, 
but the principle of exploratory trial-and-error or deliberative planning approach is the same. 

Main use areas 

Reinforcement learning provides the means to locate situations, which require actions. 
Process-wise, reinforcement learning discovers which actions yield highest reward over a 



 

 

RESEARCH REPORT VTT-R-01124-20 

12 (27) 

 
 

 

specific timespan. Algorithms have no supervisor, and they learn according to a specific reward 
function. 

Basic steps of reinforcement learning 

There are numerous algorithms to perform reinforcement learning, but a general idea is that 
the agent tries to maximize the reward by a series of actions in the environment. The reaction 
of an agent is an interactive action with the environment, and the algorithm policy is a method 
of selecting an action given a state in expectation of maximizing the outcome. Each state is 
associated with a positive or a negative reward, which incorporates how the algorithm has 
accomplished from the overall goals' perspective. “State” refers to the current situation of an 
agent in an environment. Figure 6 shows these basic steps. 

 

Figure 6. Reinforced learning model [7] 

Reinforcement learning can be approached at a higher level with values-based, policy-based 
or model-based methodologies. Each method can be either positive or negative oriented, 
depending on how the strengthening of behaviour is defined. As mentioned, there are 
numerous algorithms to perform reinforcement learning, but couple of widely used learning 
models are Markov Decision Process and Q-learning. 

Application areas vary from industrial automation to data processing, robot motion control to 
business strategy planning and aviation control. 

Challenges in reinforcement learning 

Designing a reinforcement learning system requires careful reward function design. The 
environment, states and rewards include many parameters, which may hinder the speed of 
learning if misapplied. In addition, realistic environments are often dynamic, which requires 
additional computational power, and the observability of such environment can be difficult. If 
there exists plenty of data regarding solving the problem, reinforcement learning might not be 
the paradigm to go for. 

3 Machine learning and safety 

Systems are called safety critical, when the failure or malfunction of such system can result in 
serious injuries, death, or severe damage to equipment or environment. The challenge is, how 
can these systems be designed, constructed, operated and maintained to keep all the inherent 
and external risks at an acceptable level, knowing that too excessive focus on safety, will 
quickly render the whole project economically infeasible. The use of safety critical systems is 
regulated and governed with strict design and operation requirements, given by a regulating 
authority or international safety standards. The fulfilment of these requirements needs to be 
ensured and demonstrated in unarguable, unbiased, comprehensive and transparent way by 
the designer. Confidence needs to be built for the regulator, but also the system owners need 
to convince themselves that the system behaviour is as intended. 
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Thus, ‘black box’ type of approaches to safety related applications are rarely acceptable. 
Generally, complex new technologies with inherent dependencies and uncertainties, combined 
with human beings and natural environment, can lead, especially in unexpected cases, to 
situations where there is no final answer to the question about systems safety. The big question 
is, whether machine learning applications are already past this point and if they can they be 
used to increase the safety of a system, instead of introducing new unacceptable failure 
mechanisms. The answer is, unfortunately, difficult to give presently. Research efforts do aim 
for more transparency and verifiability of AI systems operation. 

Conventionally, the creation of new state-of-the-art machine learning models with ever-
increasing performance has been somewhat ad-hoc in scientific communities. However, 
various international efforts have been initiated to standardize artificial intelligence (and 
therefore machine learning to some extent). These efforts include issues related to privacy, 
trustworthiness, safety and public wellbeing [9]. In addition to local and regional efforts, there 
are two big international organizations, which are leading the global standardization effort in 
AI and ML. IEEE has a Global Initiative on Ethics of Autonomous and Intelligent Systems to 
address some of the societal concerns relating to AI, which include areas like data governance, 
privacy, algorithmic bias, transparency, ethically driven robots and autonomous systems, 
failsafe design and wellbeing metrics [9]. In addition, the ISO has created a new technical 
subcommittee (SC) in the area of artificial intelligence, ISO/JTC 1 SC 42, which the scope lies 
into foundational standards and issues related to safety and trustworthiness. 

The next chapter reviews requirements, which would be relevant for ML applications, if they 
were to be used in critical industrial domains. Examples of such domains are nuclear, 
automotive and medical. 

3.1 Challenges 

Fundamentally, ML application are a specialized type of computer software. Thus, their use in 
safety critical domains can be related to the use of highly specialized software. At same level, 
similar kind of software development requirements will apply to machine learning systems as 
to other software-based applications. Machine learning applications will also have their own 
specific properties, which cannot be handled by current safety critical software standards, for 
example testing and validation which will need additional requirements, as well as different 
metrics to assess their validity. More of the these ML specific challenges are presented later 
in this chapter. Currently, developing software complying with safety criteria requires rigorous 
engineering practices enforced by standards. However, problems will arise when the standards 
were not designed for tasks like ML [1]. As stated by a group of nuclear regulator’s and safety 
authorities’ experts in Common Position [10], the assessment of software cannot be limited to 
verification and testing of the end product, the computer code, but also to other factors, such 
as the quality of the processes and methods for specifying, designing and coding will have an 
important factor on the implementation as well as during operation. 

Training and using ML models can be convenient and simple on a theoretical level (where 
training and testing datasets are reconstructed perfectly with very limited complexity). 
However, when combined with the limitations of real world, and especially industrial setting, 
many surprising challenges will need solving before the model is fit for safe operation. 
Unfortunately, how to assure that all the challenges have been sufficiently cleared, and the 
proper behaviour and safety of an advanced ML technique is certain, is in practice still in many 
ways an open question. Next are presented some of these fundamental properties of ML, 
which often will have safety related effects and cause problems in assuring the correct 
behaviour. 

A study about impacts of ML against de facto safety standard ISO 26262 from the automotive 
industry [11] identified five main areas that are affected when using ML approaches. Authors 
believe that similar challenges await other safety critical domains too. Many of the topics below 
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come from the automotive study. However, there are few other practical challenges listed 
which raise safety related question. 

Challenge of identifying new types of hazards 

ML will create new types of hazards that are not due to the malfunctioning of a component to 
be identified with safety analyses. For example, an automated operator might give the real 
human operator false sense of security when they presume that the algorithm is smarter than 
it actually is, or a RL component can try to exploit flaws in the environment in a very unintuitive 
way for a human to gain better results. [11] 

Challenge of new types of faults and failure modes 

There are ML specific faults and failure modes during their development lifecycle, which need 
to be explicitly addressed and require the use of specialized tools and techniques that are 
customized for ML software lifecycle. However, most of them are still closely related to 
conventional software faults, like incorrect output for some input, but can still cause novel 
failure modes. [11] 

Challenge of traceability 

Traditionally, the left side of the V model has the assumption that the component behaviour 
against a certain hazard is fully specified and can be verified and traced back to its 
specification. Instead of such specification, ML algorithms use training sets of data, and since 
these sets are necessarily incomplete, it is not always clear how to create assurance that the 
corresponding hazards are always mitigated. However, high-level requirements for the ML 
component can be expressed, and detailed data requirements (“data specification”) can be 
specified to ensure that an appropriate training, validation and testing data sets are obtained. 
“Curse of dimensionality” is still a problem, and the training set cannot be increased without 
limits to try to take care of all possible events. [11] 

Challenge of abstract system hierarchy 

Typically, complex safety systems implement some hierarchical architecture making it easier 
for a human to understand its functionalities and interactions of its components. It also permits 
the use of compositional analysis techniques such as fault tree analysis (FTA). However, ML 
(especially DL) can be used to implement so called ‘end-to-end’ approach, consisting an entire 
software-based system, including its architecture. For example, making control decisions 
directly from raw sensor data. Thus, a traditional sense of architecture no longer exists in these 
solutions. Salay et. al. suggest that ML should not be used with ‘end-to-end’ level, if the 
assumption is the need of a stable hierarchical architecture of software components. [11] 

Challenge of software development 

Safety-critical software standards (such as part 6 of ISO 26262 or Annex D of 60880) are 
biased towards imperative programming languages (e.g. C, Java), which ML components are 
often not. However, other programming paradigms are already mature and specifying 
requirements based on intent and maturity rather than specific details can help addressing this 
gap. Data scientists make usually the critical decisions relating to development of ML 
components such as selection and preparation of data and the data quality inspection, which 
could be argued to belong to the domain of requirements engineering. A recent questionnaire 
survey on difficulties in engineering of machine-learning systems even notes how requirements 
engineering activities are one of the most difficult activities to cope within ML systems [12]. To 
be more adjusted towards ML-based systems, requirements engineering methodology is 
suggested to be broaden with new types of requirements such as explicability, freedom from 
discrimination or specific legal requirements [13]. A publication on requirements engineering 
for machine learning also highlights how data scientist or requirements engineers need to 
understand the quantitative ML measures to specify good functional requirements [13]. This is 
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an important aspect in order to relate the developed application and results of ML-based 
methods to the customer context. [11] 

Challenge of interpretability 

Interpretability vs. performance of ML algorithms (Figure 7). As stated in [2] the spectrum of 
available ML methods is wide, and they range from simpler and more interpretable to more 
advanced, with potentially higher performance, but with less interpretability. Interpretability can 
depend on number of free parameters, model complexity, data types, etc. When increasing 
the expressive power of the model, it is typically done at the expense of transparency. Non-
transparency is a problem to safety assurance as it makes it more difficult for the assessor to 
gain confidence that the model is operating as intended [11]. 

 

Figure 7. Interpretability vs. Performance [2] 

All ML paradigms (supervised, unsupervised, reinforcement) contain the knowledge about the 
behaviour of the model in an encoded form. However, as can be seen from Figure 7, some 
types are harder to interpret for humans than others [11]. 

Challenge of training data 

Independent of the ML paradigm used, data is the most crucial characteristics for a successful 
ML algorithm. Training data needs to represent the actual properties of the situation the 
algorithm is going to face while in operation. As a rule of thumb, more data equals better 
results. The phrase is especially true when using neural networks. It is crucial to use the 
available domain knowledge and expertise as much as possible to come up with the most 
relevant events and features of the system the data is representing, and at the same time 
identify the events, which will be problematic for the algorithm. Data should be an unbiased 
random subset of the system it is representing, without any single case/event overrepresenting 
over the rest, even rare events. However, as the amount of possible training inputs is only 
finite, it is possible that some input that could be encountered while in operation may not be 
available and thus leading to a critical situation. The amount of data is not the only key to 
success, also the quality of data plays an important role in ML. Unprocessed data can include 
oddities challenging the performance of algorithms, such as extreme values, and outliers or 
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missing data, which need to be handled somehow. How to do this depends on the data itself 
and the algorithms used. 

Challenge of generalization 

Relating to the topic above, if the data selection is not carefully engineered to represent the 
system under consideration, it is possible that the ML model overfits the data presented to it in 
the training phase. In this case, it will lose its ability to predict unseen cases in implementation, 
often because they are too complex for the model (when overfitting the model captures the 
details only incidental to the training set rather than general to all inputs [11]). Figure 8 gives 
an example of under- and overfitting on a time series data. This creates uncertainty about how 
the model will behave once deployed. This problem relates very closely to the 
availability/quality of training and testing data and the accuracy/error rate of the ML model. 

 

Figure 8. Examples of underfitting and overfitting [14] 

Challenge of uncertainty 

ML models are typically trained based on accuracy, which is a measurement of how often the 
correct option is chosen, and loss, i.e. a statistic of how far off the model is. They are both used 
during the training phase, but the results are only an estimate and do not necessarily 
correspond to the actual performance or reliability of the model while it is in operation and 
using full input domain. [1]. The selection of representative training data and the specification 
of operation range of ML model is important to address these uncertainties.  

However, no matter how well the ML model is planned and trained, it typically always contains 
some error rate (e.g. the classification accuracy is 97%). Thus, it must be assumed that the 
model will periodically fail. The accuracy estimate gained during the training and testing 
process is still a statistical guarantee about the reliability of the model based on the finite set 
of inputs used during the training. The true accuracy might be different as it is based in infinite 
set of samples, which might change or drift from those originally shown to the model. [11]. 

Challenge of local optima 

Especially Deep Neural Networks operate using local optimization algorithms, and in many 
cases, there are many local optima. It is not guaranteed, when trained multiple times, that the 
process produces the same optima each time, even if the training set is the same. Thus reusing 
parts of previous models is difficult, especially considering safety assessments. [11]. 

Challenge of spurious correlations 

Machine learning systems are highly dependent on the data, luckily there is usually a lot of 
data (big data) available from the industrial processes being measured, transferred, analysed 
and stored by the instrumentation and control systems of the plant, which can be fed into 
machine learning algorithms to train them. However, the data and correlation found by the 
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algorithms cannot be trusted blindly. If not specified and analysed by someone, who actually 
knows what the data means during the development and training of these algorithms, the 
outcome might be something else than originally wanted. Thus, the development of machine 
learning algorithms needs to include as much as possible the domain expertise from whatever 
domain the algorithms are applied to. They have the knowledge to specify and analyse what 
sort of data will be needed and are the outputs of the algorithms meaningful in any way. Figure 
9 is one funny example of data that seems to be correlating, but probably does not contain any 
meaningful information; it is just something that the algorithm has found while blindly 
processing the data. 

 

Figure 9. Not all correlations in data are actually meaningful for the system in question [15] 

Challenge of security 

Machine learning opens networks and systems for a multitude of new cyber-attacks as 
illustrated in Figure 10. ML systems are vulnerable for adversaries that can input bogus or 
tampered data during the learning time - poisoning - or testing time - evasion [16], [17]. 
Furthermore, ML systems may also leak information [18] and contain backdoors [19]. Within 
industrial domain that is using ML systems these attacks may then yield different 
consequences. Company or customer specific secrets may leak, if an adversary learns 
operational, organizational, or business critical information from data, which is collected or 
inferred, or from ML models. Devices may become broken and services unavailable due to 
fabricated or spoofed configurations, or overload situations. Security incidents and 
misconfiguration may follow, if ML is prevented from detecting and generating signals from 
events, cyber-attacks, or failures. Resources may be stolen, used unfairly, or extra burden may 
be caused to the victims. 
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Figure 10. Security threats against machine learning 

Solutions for hardening ML systems against threats, include traditional perimeter defences, 
which protect the confidentiality, integrity, and availability of ML systems, models, and data 
sources as well as algorithmic and data-oriented defences [20], [21]. For instance, adversarial 
training approaches increase the robustness of algorithms by including the attack data into 
learning data sets. Security assessments and penetration testing may be applied to verify ML 
systems robustness. Reactive defences include detection of adversarial samples from the data 
streams, concept drift (monitoring performance of ML model). Privacy preserving techniques, 
such as e.g. secure aggregation, cryptographic means, and differential privacy may be applied 
to mitigate risk of information leakage. 

4 Machine learning in practice 

4.1 Thoughts of Finnish nuclear stakeholders 

Part the study was about discussing the topic with Finnish nuclear stakeholders from the 
Steering Group. Informal meetings were held with STUK (Finnish nuclear regulator), 
Fennovoima (licence holder in design phase), TVO (licence holder in licencing and 
modernization phase), and Fortum (licence holder in modernization phase). During these 
meetings, a draft of this report was presented to introduce the participants to the topic. They 
were mostly experts in various nuclear engineering domains rather than ML. Participants were 
keen to learn about the topic and delivered interesting conversation about the different 
properties of ML, how it could be applied to various industrial (nuclear) topics and what 
challenges they might raise. As much as possible of the ideas and comments from the 
conversations were integrated as part of this report. During the meetings, the potential use 
cases of machine learning, specifically in nuclear domain, were discussed, and potential 
research and development topics were presented from both sides (researchers and industry). 
The novel main points of the discussions are gathered below, divided in more general 
comments related to the use of ML or AI and to interesting current or potential topics of support 
systems utilizing some AI-based technology: 

General comments: 
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 All the stakeholders agreed that requirement management is a constant challenge and 
would benefit from some sort of automated assistance (e.g. based on machine 
learning); especially NLP methods have high potential in text processing and labelling. 

 How can different ways of doing Systems Engineering be assisted by AI (e.g. 
document-centric vs. SE vs. MBSE)? 

 There were comments on both directions of the issue that humans might start to rely 
too much on AI-based systems. 

 Loss of skills due to AI-based system adoption was not seen as a high risk. 

 When it can be demonstrated that AI improves the overall safety (e.g. it makes less 
errors than humans do in similar situation), then we can give more value to AI’s opinion.  

 While humans are still in charge of decisions, the chance of reducing safety should be 
low. 

 There is always the need for continuous improvement and the AI-based methods might 
be the way forwards, we need to make sure it is applied in a positive way. 

 Machine learning should be acceptable if the algorithms and the data are validated, 
and the development process is good. 

 There are huge amounts of data available or produced in nuclear power plants (process 
data, used history data, operating experiences, manuals etc.) this data should be 
categorized and labelled with metadata where possible to be able to use it properly. 

 There exist initiatives to identify potential data sources in running plants for 
implementing different data-driven methods. 

 Process simulators exists and could be used for generating synthetic data for the rare 
events that would be interesting to identify or possibly act as a training platform for 
different algorithms. 

 The quality of data is important; there are broad spectrum of possible events and data 
sources. Thus, domain expertise is very important for interpreting inputs and outputs. 

 Is there is any useful applications for Watson in nuclear? 

 Discussing and learning the concepts of AI and/or ML in nuclear applications is useful 
for sharing knowledge and discovering novel ideas. 

 EU and BF projects are a good possibility to collaborate on machine learning topics.  

Potential research/development directions for ML based systems: 

 Predictive maintenance/fault identification systems for different applications, some 
systems are already in use with positive experiences. These could include, using 
simulator data, control room information, alarm data to help plant personnel to make 
decisions in operation, maintenance or accident scenarios. 

 During complex projects, the amount of emails, documents and decisions tend to get 
large. Handling references between documents and automatically fetching or 
suggesting information would be handy. 

 Using BIM/PIM (Building/Plant information models) to check or analyse requirements, 
e.g. separation. 
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 Using different sources of data to get indications of possible security related issues, 
either cyber-, site- or personnel. 

 Genetic algorithms have been tried for fuel assembly to find (at least) local optima, but 
there are still optimizations to be done for improving the safety and financial usage. 

 Planning, scheduling and optimizing the order of different tasks, usage of different tools 
and workforce during annual outages. Also, the alarm prioritising. 

 Operator support in various situations. How to identify faults? How to foresee possible 
combined effect of faults? How to find the initial event in case of quickly evolving 
accident scenario? 

4.2 Overview on selected machine learning applications 

Security applications 

Security applications of machine learning provide a promise of more rapid and autonomous 
security responses within operational industrial environments. Further, ML systems can play a 
role in adaptive collection of security information as well as optimization of security services. 
Examples of security applications - threat detection, testing, and honeypots - are illustrated in 
Figure 11. 
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Figure 11. Examples of security applications benefitting from machine learning 

Cyber threat - attack and intrusion - detection and prevention systems are prominent users of 
machine learning [22]. Both signature as well as anomaly-based threat detection approaches 
can benefit from the automation provided by ML. In the first case, ML can have a role in 
modelling the adversarial behaviour and, in the latter case, in modelling the normal behaviour. 
Examples of security applications in the industrial domain include detections of network 
intrusions [23], [24] as well as malware [25]. In one hand, industrial systems can greatly benefit 
from the added security provided by the ML-assisted threat detection. Industrial systems have 
traditionally been for closed environment and are thus poorly secure. Reactive defences can 
partly fill this gap, while also providing additional layers of security. On the other hand, there 
are several challenges limiting the adaptation of ML-based attack detection. Real-time nature 
of systems and existence of legacy technologies limits the possibilities to add new processing 
and data collection features. Within industrial control systems settings, the applications and 
protocols are rarer or customized and thus, there has been less research efforts and 
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commercial tools. Further, for customized industrial settings, realistic adversarial training and 
testing data is especially difficult to acquire. Means to learn to detect new attacks are poor 
when attacks, producing new training data, are relatively rare, and when existing limited public 
data sets [26] are not been easily applied to industrial use cases. 

In addition to run-time security for operational networks, there are also other security 
applications for ML. Honeypots and -nets are environments, which are isolated from the 
operational technologies and which have been deployed to the network to lure and capture 
adversaries [27]. In addition to providing a defence by capturing some attacks, honeypots are 
a mechanism to collect data for learning and building models on adversarial behaviour. ML 
techniques have been proposed [28] for building more intelligent and realistic honeypots that 
adversaries cannot easily distinguish from real operating environments. 

Further, machine learning can be utilized when testing security properties of industrial system 
and devices.  Security scanners can utilize ML to recognize vulnerable software [29] or to adapt 
scanners functionality [30]. In operational environments, scanning is typically restricted to 
prevent production breaks. Instead, industrial organizations test individual products and non-
operational digital twin environments [31]. 

Fault identification / predictive maintenance 

Predictive maintenance applications strive to determine the condition of engineering systems 
to estimate the requirement of maintenance. Machine learning offers a variety of approaches 
for exploiting sensory data that can be utilized in maintenance purposes. These methods are 
often built on existing history datasets of operation of the systems. Now considering ML, the 
algorithm has the possibility to learn efficiently and detect aberrations among the data only, if 
the datasets include and cover all the possible scenarios the system can be exposed to. 
Incorporating the volume of stored and processed data requires a big data framework, which 
the ML algorithm can access for analyzation [26]. Although there are a variety of equipment 
dynamically producing data in an NPP, there are rarely sufficient data of situations where 
specific equipment have failed during plant operation. Additionally, to develop accurate and 
robust predictions, a model requires a combination of domain knowledge and statistical 
expertise.  

Though considered as a black box, deep learning-based techniques have also been utilized 
especially for automatic feature extraction. Yet, traditional machine learning algorithms like 
Support vector machines are still mainly used because of their transparency and simplicity. A 
recent nuclear related research paper [32] presents a fault prediction architecture and presents 
an example case of a turbofan engine. The paper presents several research studies on 
anomaly detection in a NPP environment, such as [33], [34], [35]. However, the paper does 
not have appropriate real data gathered from an NPP, but instead, results from a dataset from 
the National Aeronautics and Space Administration (NASA). The case demonstrates the 
difficult situation of utilizing predictive maintenance in an environment where there is no pre-
collected data of the equipment in its relevant environment (an NPP in this case). Nonetheless, 
the paper displays how a predictive maintenance framework for nuclear infrastructure can be 
utilized. 

A successful demonstration of predictive maintenance in an industry use case can be seen 
from Mathworks with a developed pump health monitoring system for Baker Hughes [36]. In 
order to notice a truck with a pump failure a large dataset was collected and extensively 
analysed from valves and valve seats. For accurate prognosis, Mathworks had compared 
different machine learning models, such as classification and regression-based models from 
supervised learning. Using supervised learning-based models required data to be labelled, 
which can be accomplished, for instance, with unsupervised learning. 

Requirements engineering (processing/categorization) 
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Quality of the requirements is an important factor in the design of any system, especially of 
systems with safety requirements. In complex safety critical designs, the number of these 
requirements can go up to tens of thousands. Requirements engineering is a discipline that 
puts great effort into ensuring that the quality of these requirements is high. Machine learning 
and especially Natural Language Processing (NLP) techniques have been used in this domain 
to help expert review and develop better requirements. The challenge is to create a pattern 
recognition for the given task and manage a classification accordingly. 

An example of requirements quality classification with ML-based methods is displayed on 
paper [37]. The proposed methodology evaluates the quality of requirements written in natural 
language with a decision tree-based classifier. Classification trees are also used for separating 
functional and quality-focused concerns to facilitate further assessment of the system on paper 
[38]. The aforementioned examples display how challenges in requirements engineering can 
be approached with classification techniques whether for validation or categorization purposes 
or even for requirements traceability [39].   

Operator decision support: 

Operating an NPP is a challenging task [40] on its own and when different complex fault 
situations with multiple possible initial sources and quickly evolving situations are introduced 
to the mix, things get increasingly difficult. Human mind can only focus on a limited number of 
stimuli and process only a limited amount information during a certain timespan; when on the 
other hand, a machine can process huge amount of real time data and, at the same time, 
remember decades of history data. Informative, diagnostic and predictive ML-based 
techniques offer a possibility to ease the amount of tasks at hand, for instance, by providing 
predictions of the behaviour of the system or by providing technical information from data to 
help decision makers perform appropriate and timely actions. Prescriptive systems can even 
help controlling plant from a state to another. 

An example of ML usage in behaviour and decision-making is displayed in paper [41]. Applied 
methodology is based on neural networks for predicting how a multi-application small light 
water reactor is performing. The operator who is watching over the sensors provides the 
utilized data. The results display how algorithms were able to learn from complex data the 
average of most of the sensors and thereby give predictions of processes; although most of 
the sensors behaviour was successfully captured, analysing the facility as a whole system 
could not be accurately achieved. However, the paper concludes on methods to potentially 
overcome this issue in the future with additional transients.   

Another example of process industry using ML support for the plant operation is the Napcon 
Advisor [42], which has been successfully used a trained neural network to predict the changes 
in a process (oil refinement) and to control the process in some state changes (changing from 
one oil quality to another). The system is said to be predictive and prescriptive. Similar AI 
assisted or autonomous control trials and research are going on, for example, in paper [43] 
and in chemical [44] industries. Current hot domain for the autonomous control is the 
automotive industry, where several big players are already testing their implementation in 
practice. It is the leading force of standards and legislation concerning the use of ML in safety 
critical decision making. Similarly, in all domains, networks are trained using the history data 
of operations, simulations and observing the running process. Difficulties come from adjusting 
the network to unforeseen changes in the operation environment and diverse incoming 
measurement data, which the algorithm would need to understand without ever encountering 
data of that particular format.  

An example of automatic alarm for fault management in cellular networks is displayed on paper 
[45]. Though not concentrating on the nuclear domain, the paper introduces a ML-based 
technique for automatic prioritization of alarms in a network according to the need of key 
personnel. The novelty of the study lies in the comparison of different classifier algorithms 
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within the cellular network domain. The proposed methodology of supervised learning offers 
possibilities considered also for other domains.  

5 Conclusions 

Based on the study and the discussions with the Finnish nuclear stakeholders, the authors 
conclude that there is an increasing interest in utilizing different machine learning methods to 
offer support for the work of various engineering domains across the wide spectre of plant 
lifecycle phases. The highlighted domains were, for instance, cyber security, requirements 
engineering and plant maintenance, while the most potential topics identified related to 
supporting decision making of operators and utilization of predictive models. However, this 
report and the discussions were only able to scratch the surface of the vast potential of various 
industrial applications, which different algorithms of machine learning and the various domains 
artificial intelligence could offer to nuclear industry. 

Machine learning, and artificial intelligence in general, is a complex and quickly evolving 
domain of different techniques, practices and challenges. It has the capability and the potential 
to offer support to wide and diverse set of problems in versatile sectors of industry, including 
the safety critical ones. However, these methods and techniques still have some fundamental 
challenges that need to be properly addressed when these methods are implemented in 
industrial settings, some of which are presented in this report, such as quality and suitability of 
training data and the interpretability of used models. Many of these challenges are, in a sense, 
part of the maturing process of machine learning methods finally making their big breakthrough 
as a part of daily business life of traditional industry domains. Yet, researchers around the 
globe are actively seeking, and succeeding, to solve these challenges. The study of the 
suitability of different machine learning techniques to Finnish nuclear scene is already going 
inside stakeholder organizations, in national programs, and should be even further extended 
through common research topics utilizing the good current AI knowledge identified in Finland. 

In the end, machine learning is only a data processing tool, which usefulness completely 
depends on the quality and the properties of the used data. To get functional, reliable and safe 
support from the AI system, developers need to first have clear comprehension of the 
operational context themselves to understand what the algorithm is supposed to do. To get 
there, significant domain expertise is required to select and explain the diverse conditions 
needed from the algorithm and data. 

Further work on the topic could consider a more specific application area to concentrate on, 
and to apply there a targeted machine learning paradigm with the help of domain experts. 
Discussions with the nuclear stakeholders brought forward many interesting views and 
questions, which could be more accurately specified with a more thorough study and a possible 
demonstration use case. 
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