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Optimum day-ahead bidding profiles of electrical vehicle charging stations
in FCR markets

Poria Hasanpor Divshali®, Corentin Evens

Smart Grids, VTT Technical Research Centre of Finland, Espoo, Finland

ARTICLE INFO ABSTRACT

This research developed an application for electrical vehicles charging stations (EVCS) to estimate the optimum
day-ahead bidding profiles in frequency containment reserves (FCR) markets and this paper presents the sto-
chastic methodology behind this application. To achieve this, first, deterministic models are developed to cal-
culate the maximum FCR that could be provided by each charging event (cycle) of an electric vehicle (EV). These
models are established based on the technical requirements of FCR in the Nordic flexibility market, namely the
frequency containment reserve for normal operation (FCR-N) and frequency containment reserve for dis-
turbances (FCR-D). In the next step, these deterministic models will be combined with historical data of charging
records in EVCS to calculate the probability density functions of the FCR profiles. Finally, the proposed appli-
cation estimates the optimum FCR profiles, which maximise the expected profit of EVCS from participating in the
day-ahead flexibility market, by performing a stochastic optimisation. The performance of the proposed appli-
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cation is evaluated by using empirical charging data of public EVCS in Helsinki area.

1. Introduction

Electrical vehicles (EVs) are actively growing as a more environ-
ment-friendly and economic alternative to conventional vehicles. In
addition to the higher efficiency of electric motors compared to internal
combustion engines, EVs can be charged with electrical energy pro-
duced by renewable energy sources to further reduce the greenhouse
gas emissions.

This massive deployment of EVs will have a significant impact on
future power grids. On one hand, this large amount of energy required
for EVs coupled with the uncertainty in charging times and durations
may result in serious technical and economic challenges. On the other
hand, the EV chargers can immediately change their consumption (or
production, in case of vehicle to grid), which could provide a unique
opportunity for flexibility support. A comprehensive survey of the main
challenges and opportunities of the presence of EVs in the future power
grids is detailed in [1].

Methods to mitigate the effect of EV charging in power systems are
suggested by several researchers [2-5]: A community energy manage-
ment system using real-time pricing to minimise the cost of each EV is
suggested in [2,3]; a smart charging methodology for optimising the
combined charging profile of a large number of EVs is proposed in [4];
and two-stage energy management for EV charging in an area with
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semi-predictable EV behaviour is proposed in [5].

However, none of the above-mentioned research considers properly
the effect of the driving pattern model and EV charging time and
duration uncertainty on power systems. In this regards, an energy
management system using driving pattern prediction is proposed in [6].
Accordingly, several researchers focus on modelling and forecasting
EVs using the driving behaviour [7-14] to mitigate the adverse influ-
ences of EVs on power systems. A Monte Carlo-based method combined
with the national household travel survey is used in [7,8], while a
modified Monte Carlo is proposed in [9] by removing less likely sce-
narios. A method based on a traffic flow model is presented in [10] to
estimate the EV charging station loads. ARIMA based methods using
historical data of driving pattern for forecasting electrical demand of
parking lots are presented in [11,12]. Similar strategies are proposed in
[13] using fractional ARIMA and in [14] using hybrid kernel density
estimator, in order to improve the forecasting of EVs uncertainty.

However, this research [6-14] uses the driving behaviour of con-
ventional vehicles to estimate the EV driving model, which may lead to
some errors due to differences between EVs and conventional cars. On
the other hand, some researchers use real data of existing EV charging
to model their behaviour [15-18]. Authors in [15] define a risk level of
EVs charging demand based on historical data in the UK to give an
indication of the potential impact of EVs on distribution grids. Electric
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load profile from empirical data in Germany is analysed in [16]. ARIMA
based aggregated forecasting of large amounts of EV load profiles is
proposed in [17], and the autoregressive time series method is com-
pared to reserve transmission neural networks in [18] for the fore-
casting of realistic EV load profiles.

Research [15-18] analyses the empirical charging data of EVs to
predict the uncertainty in EV profiles while none of them developed a
strategy to enable EV flexibility to provide services beyond their local
grids. In order to utilize the EV flexibility potential across all the power
systems, a market-based strategy is necessary. This research, as a part of
the EU-SysFlex project [19], develops an application for electrical ve-
hicles charging stations (EVCS) to estimate the optimum day-ahead
bidding profiles in frequency containment reserves (FCR) markets.

The methodology behind this application develops first the de-
terministic models to calculate the maximum available FCR that an EV
can provide in one specific charging event (cycle). These models are
established based on the technical requirements of the Nordic FCR
market, named FCR-N for normal operation and FCR-D for dis-
turbances. Because the behaviour of EV charging is stochastic by
nature, in the next step, the proposed methodology calculates prob-
ability density functions (PDF) of the FCR profiles using deterministic
models and historical data of charging events for EVCS. Finally, the
optimum FCR profiles, which maximise the expected profit of EVCS
from participating in the day-ahead flexibility markets, is estimated by
performing a stochastic optimisation. The proposed application is tested
using the empirical charging data of public EVCS in Helsinki area from
2015 to 2018. The main contributions of this paper are:

(1) Develop deterministic models for EV flexibility based on technical
requirements of the Nordic FCR (FCR-N and FCR-D),

(2) Propose a stochastic bidding methodology for EVCS in the FCR
markets to maximise the expected profit, without compromising EV
owner privacy,

(3) Evaluate the proposed method using empirical EV charging records
to analyze the potential of EVCS in FCR market.

(4) Develop an application for EVCS to estimate the optimum day-
ahead bidding in FCR markets, freely available in [20].

The remainder of this paper is organized as follows: Section 2 de-
scribes FCR in the Nordic flexibility market; Section 3 forms determi-
nistic FCR models for a single charging event of an EV; and Section 4
develops a stochastic methodology behind the proposed application to
estimate the optimum FCR profiles in the day-ahead market. Section 5
analyses the results of the proposed application using the data gathered
from the EVCS of the Helsinki area. Finally, Section 6 concludes the
papers.

2. Frequency containment reserves market

This paper focuses on developing a stochastic bidding methodology
of EVCS to participate in the flexibility markets. Flexibility markets are
set up for different products (services), such as various frequency
controls, voltage control, and congestion management. These products
are defined in details in the technical requirements for each market. A
summary of flexibility markets in different European countries is de-
scribed in the deliverables of the RealValue [21] and SmartNet [22]
projects.

Using available EV charging data for the Helsinki area, this paper
focuses on the Nordic (Finnish) flexibility markets. Investigating all of
these products lies beyond this paper's scope. Here, the frequency
containment reserves (FCR) is selected based on better remuneration. In
the Nordic flexibility markets, FCR is split into two parts: FCR-N and
FCR-D.

The Finish TSO, Fingrid, determined the technical requirements of
both FCR-N and FCR-D in [23]. The following subsections review the
relevant parts of these requirements necessary to model the ability of
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Fig. 1. The FCR-N and FCR-D control curve

EV to provide FCR.
2.1. FCR-N

The aim of FCR-N is to assist the power system by reacting to fre-
quency deviations within the range from 49.9 to 50.1 Hz. For this
purpose, the FCR-N providers measure continuously the frequency and
change their output power according to the frequency as shown in the
control curve in Fig. 1, where 100% in injected power represents the
total amount of contracted FCR-N service provision.

As shown in Fig. 1, FCR-N is a symmetrical reserve product. This
means that it must be possible to activate the reserve capacity both as
upward balancing and downward balancing. Upward balancing (up-
regulation) means an increase in electricity production or a decrease in
consumption, and downward balancing (down-regulation) means a
decrease in production or an increase in consumption.

In addition, the technical requirement of FCR-N states that the
providers “shall be capable of activating the reserve in full for the entire
delivery period”. However, the unit with limited activation capacity, e.g.
battery storage system or EV, “shall be dimensioned so that the unit is
capable of continuous full activation for at least 30 minutes”.

The FCR-N providers are compensated for providing capacity and
energy. The provided energy is remunerated according to the balancing
market prices, which are determined in real-time. Investigating the
historical data shows that the energy remuneration may create some
profit for flexibility providers, but also that it is heavily outweighed by
the capacity remuneration. The detailed analysis of the energy market
including imbalance settlement for FCR provision is performed in [24],
which shows that it has a negligible effect. In addition, the amount of
energy, the price, and the profit are not clear when flexibility providers
make the bid in the day-ahead market.

The capacity fee is paid based on the provided capacity even when it
doesn't get activated. The capacity fee is determined on a yearly or
hourly basis, based on the chosen market agreement. For a yearly
agreement in 2019, the capacity fee for FCR-N is 13.5 €/MW,h [25]. In
the hourly market, the capacity fee is determined by competition for
each hour in a day-ahead market. It is important to mention that, in
Finland, FCR providers must pay a penalty equal to the capacity fee if
they fail to provide the energy promised on the day-ahead market.

2.2. FCR-D

The aim of FCR-D is to regulate the power system frequency after a
larger disturbance. The FCR-D, in the Finnish market, is procured only
for under-frequency disturbances. Fig. 1 shows the control curve for
FCR-D, which start injecting power when the frequency is under 49.9
Hz.

In a similar way to FCR-N, units with limited activation capacity
shall offer FCR-D so that they have enough energy capacity for 30
minutes. Also, FCR-D products are remunerated based on energy and
capacity. On the yearly market, the capacity fee in 2019 is 2.4 €/MW,h
[25].

Although FCR-D has lower reimbursement level than FCR-N, it has
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Fig. 2. The charging profiles (a) The simple charging profile and average power
charging of an EV, (b) providing F,, kW up-regulation reserve,)c) providing
Faown KW down-regulation reserve for t¢ hours.

the potential to generate more profit for the provider for two reasons,
especially in the case of EVCS. The first reason is that FCR-D is only up-
regulation reserve, while the FCR-N is symmetrical. Providing up-reg-
ulation reserve for demand means a decrease in power consumption,
which is more practical for EVCS than increasing their consumption.
The second reason is that FCR-D reserves are activated less often than
the FCR-N ones, interfering less in the normal operation of EVCS. The
threshold for FCR-D activation is a frequency below 49.9 Hz, while
FCR-N must be activated whenever the frequency is out of the dead
band of 49.99 to 50.01 Hz.

3. Deterministic FCR model for a charging event

Without any incentive to do otherwise, an EV plugged to an elec-
tricity source charges with its maximum possible power until the bat-
tery is fully charged. Fig. 2a shows this simple charging profile for an
EV arriving at t, and departing at t;, with a need for E kWh electrical
energy. This diagram neglects the fix voltage charging phase, which
happen for high SOC level at the end of the charging cycle. In these
circumstances, the required time (t) for charging E kWh energy to the
EV can be calculated by:

fen = s
Brax) (€))
where P, is the maximum power of EV chargers and  is the efficiency
of the charger.

Since the plugged-in time (t, = t; — t;) could be longer than the
required charging time (t.,), the EV may have some flexibility to alter
its charging power. For instance, the EV could follow a flat profile with
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the average power (P,,) as shown in Fig. 2a.
E

b = =t @)

In this case, the EV may adapt itself to the power system dynamics
without making any change in the state of charge at the end of the
plugged-in period. The following subsections model this flexibility in
up-regulation and down-regulation and then transfer these models to
FCR-N and FCR-D definitions, according to the market regulations and
EV constraints.

3.1. Up-regulation reserve

Fig. 2b shows an EV charging profile, which provides F,,(t) kW up-
regulation reserve at time t for t hours, while still charging the EV
battery to the desired level of energy. For this purpose, the profile
compensates the decrease caused by up-regulation, by increasing the
charging power after t+t;, for t. hours.

Providing up-regulation reserve is limited by power and energy
constraints of the EV. The power constraint limits the maximum F, ; (t)
to Py, as can be seen in Fig. 2b; where P ; is the consumption power of
the EV in the moment of providing up-regulation reserve. The energy
requirement of EV makes another constraint in the up-regulation re-
serve. Since the FCR providers must be dimensioned so that having the
ability to continue full activation for half an hour (t; = 0.5), and pro-
viding flexibility should not change the amount of the charging energy
in the EV, the following constraint must be satisfied:

Prax,i 0 (tay — t — 0.5) > E; — Ei(t)

—=0.57; (Poi — Fip,i(1)), 3)

where the subscript i refers to the ith charging event; E(t) is the charged
energy to the EV from t,; until time t in the ith charging event; and E; is
the energy requirement of EV in this charging events. The left term in
(3) states the maximum possible charging energy into the EV after
providing up-regulation reserve, while the right term formulates the
required energy to the EV after providing the up-regulation reserve.

Assuming a flat charging profile for the EV before time t, E; (t) can
be replaced by Py ; «#; «(t -t5;). In these circumstances, the up-regulation
reserve provided by the ith charging event in time t, can be calculated
as:

Epi(t, Pyy)

o ( Brax,i 1 (tg,i — £ — 0.5) + Py 1, (¢ + 0.5 — tg) — Ei)
= min| R, .
@

0.5,

A downside of up-regulation provided by EVCS is that, in order to
offer the capacity, the charging of the EV battery has to be performed at
a power level lower than the maximum. This means if the user to un-
plug their vehicle earlier than the expected departure time, there is a
risk of the car not being fully charged. However, since most of the time
the under frequency events has duration less than 30 minutes, as shown
in [24], the risk of the car not get enough charge is low.

3.2. Down-regulation reserve

Fig. 2c shows an EV charging profile providing down-regulation
reserve at time t (Fgown(t) kW) for t; hours while needing t. hours to
compensate the extra charging in the profile to keep the EV charging in
the desired level.

As shown in Fig. 2¢, the down-regulation power is limited by Py -
Py. Also, the energy requirement of EV (E;), makes another constraint in
down-regulation reserve. Since the charging should be stopped, if the
EV charged to the desired amount of energy, and the FCR should be
available for half an hour; the following constraint must be satisfied:

Ei([) + 0-577z (Eiown,i(t) + PO,i) S Ei . (5)



P. Hasanpor Divshali and C. Evens

The right term in (5) represents the charging energy into the EV
after providing down-regulation reserve and the left term formulates
the required energy of the EV. Assuming the flat charging profile for the
EV before time ¢, the down-regulation reserve in time t can be calcu-
lated as:

. E - Pyuny(t + 0.5 — to)
Edown,i(t, PO,i) = mln(Pmax,i - PO,ia d A & .

0.5 ©)

In practice, the recovery period t. could be shifted to the end of the
charging period to make it more likely for the EV user to have their car
fully charged even when they unplug it earlier than the expected de-
parture time.

3.3. FCR-N model

The FCR-N capacity is remunerated according to times that the
capacity is available. Therefore, the optimum initial charging power of
ith charging event to provide FCR-N (P*;; 5) must be selected to max-
imize the capacity over the plugged-in time, as follows:

Po,i

Max (j;;dt'i min(Fyp,i(t, Fo.0)» Faown,i(t, Po,i))dl),

s.t.
Bw.i S PO,[ S Pmax,i (7)

where F,,; (t Po) and Fgoun,i (t Po) are respectively calculated from (4)
and (6); and the power constraint comes from the fact that the charging
events should provide E; kWh energy regardless of the reserve pro-
duction. The problem (7) is a simple single variable optimization with
an upper and lower bound for the variable. This optimization can be
solved with different methods. This paper used the fminbnd function of
MATLAB. Then, the optimum FCR-N capacity provided by the ith
charging event at time t (Frcr-n,; (t)), can be calculated as follows, while
P*y i n is obtained from (7).

Freg-n,i(6) = min(Fy, i (£, P*o,in), Faown,i(t, P*o,iy))dt, )

3.4. FCR-D model

Since the FCR-D reserve is only in the up-regulation direction, the
optimum initial charging power to provide FCR-D from ith charging
event (P*p;p) should be selected to maximise the up-regulation capa-
city over the EV plugged-in time, as follows:

td,i
Max (/,‘j;ﬂi Eupi(t, Po) dt) :
0,i ’

s.t.
Fu,i £ Byi < Bnaxii 9

where F,,; (t, Po) is calculated from (4). According to Fig. 2b and (3),
the time t will be close to the departure time, the provided up-regula-
tion amount is decreased. Therefore, in order to maximise the FCR-D,
the EV must be charged as much as possible in the beginning part of the
plugged-in time (P*p; p = Ppax,)- In these circumstances, the FCR-D can
be calculated as:

. Pmax,in; (td,i — ta,i)
min| Ppaxi, ————") t < tgi+ teni
F}?CR—D,i(t) — ( max, i 0.57; ) = lai ch,i .

0 t> tqi + teni (10)

4. EV charging stations

A deterministic FCR model for a single charging event of an EV is
developed in Section 3. However, the EV behaviour, such as arriving
time, departure time, desired energy level, is not deterministic. To
model the uncertainty of the EV behaviour and the effect on the FCR
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Fig. 3. Proposed method to calculate the aggregated PDF in EVCS

model, this paper focuses on EV charging stations (EVCS) and develops
a stochastic planning method for EVCS to participate in the FCR market.
In this regards, first, the probability density function (PDF) of FCR
potential of EVCS is calculated using historical data to predict the
available FCR in the day-ahead market. Then, the expected profit of
providing FCR is maximised using a stochastic optimization.

4.1. Stochastic behaviour

This subsection proposes a method to obtain PDF of the FCR pro-
vided by EVCS, using historical data of charging events. For this pur-
pose, the proposed method calculates the FCR model for all historical
charging events, as described in the flowchart of Fig. 3. In this flow-
chart, a cleaning process, as will explained in Section 5, is performed to
remove all meaningless records; Event# and day# are used to point
respectively the event counter and day counter.

Although the FCR models developed in (7) and (9) need the max-
imum charging power for the EV (P4, gv,), the EVCS normally do not
have access to EV information, such as EV type, the maximum charging
power, and the battery size. EVCS can record all charging events data
including:

o The customer ID encrypted for data protection,
® The station ID, and the maximum station power,
e The type of charging, whether AC or DC,

e The arrival and departure time (¢, and ty),

o The total charged energy (E in kWh),

without compromising EV owner privacy. Therefore, the proposed
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method estimates and updates the maximum charging power (Ppqx gv,j)
for jth customer ID (or jth EV), as follows:

b max(Buax,gv;, Fw,i) ACcharging

max.EV; = PBrax £ DCcharging’ an
where P,,; is the average charging power of ith charging event, which
can be calculated using the available data using (2). It is important to
notice that when an EV is charging at a DC charging station, the on-
board charger of the EV is bypassed. In this circumstance, 1) the event
data should not be used for updating the maximum charging power of
the EV, and 2) the amount of Py, gy, for the event should be replaced
by the rate of DC charger.

After finding the maximum power for each EV, the FCR profile re-
sulting from a single charging event can be obtained by solving (8) and
(10), respectively for FCR-N and FCR-D at each time interval. Here,
each day is divided into 96 time-interval to calculate the FCR profiles
with a 15-minute resolution. Then, the EVCS daily FCR profiles will be
formed by aggregating the results of all the charging events occurring in
one day.

These daily FCR profiles will be used to calculate the probability of
having f kW of FCR-N or FCR-D flexibility at time ¢, shown by PDF(f,t) in
general form. These PDF can be calculated by partitioning the FCR
power to several bins in each time interval and counting the members
of each bin over to the total numbers, as follows:

N (1)
2N@® 12)
where Ny is the number of days that FCR power calculated from (8) and

(10) in time t is equal to f (placed in the bins with the centre of f). The
function of histcounts in MATLAB can perform this partitioning process.

PDF(f,t) =

4.2. Optimum FCR profile

Having the PDF, the expected available FCR profile for the following
day can be calculated as follows:

E.) = [ PDF(f, Of (Odf , as

where F,(t) is the expected available FCR in time-interval ¢, and can be
either FCR-N or FCR-D. However, since the flexibility market has a
penalty for providing less FCR than promised, as mentioned in
Section 2, it is not optimum to participate in the market by the expected
available FCR. The optimum profile, which maximises the expected
profit, should account for the uncertainties for the FCR availability.

The profit of the flexibility provider (PR) can be calculated as fol-
lows:

Fr f>F

PR ‘)={fn—<F—f)n— f<F a4

where F is the amount that flexibility provider promised for the time t; f
is the actual amount of FCR that is provided in real-time and can be
estimated using the PDF in (11); m is the remuneration amount in
€/MW,h; and &t ~ is the penalty of not providing the promised FCR.
Therefore, the expected profit (PR,,) of the flexibility provider from
participating in the reserve market will be:

PR (F,t)=PDF(f>F, )F 1
+ [ (fx = (F = f)m)PDF(f, 1) df 15)
CDF (f,t)

—_————
F
PDF(f>F,t)=1-— ./0' PDF(f, H)df , 16)
where CDF is the cumulative density function. In order to maximise the
expected income, F must be selected so that oPR,,/0F = 0. Therefore,
the optimum FCR value (F,,) can be calculated from (14) and (15) using
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Leibniz's rule as follows:

OPRex (Fop:t) _
0Fp
=71 — 7 CDF(E,,, t) — 7~ CDF(E,, t) =0, a7
T
CDF(F,),, t) = .
(Fopr 1) T+ (18)

In other words, the flexibility provider should participate in the
reserve flexibility market with a power of F,,, which satisfies (18). In
the current Finnish reserve market regulations, t = it ~; therefore, the
maximum expected income is achieved by bidding the median of the
FCR distribution. At this stage, the flexibility providers could decide
which market, e.g. FCR-N, FCR-D, or a combination of them, presents
the highest expected profit by calculating (18) for all the available
markets, using (8) and (10).

The proposed methodology estimates the optimum day-ahead pro-
file for FCR market while assuming no change happens in the total
energy charged into the EV. In addition, the technical requirements of
FCR in the Nordic area consider the duration of frequency events 30
minutes while it lasts much shorter in many cases as discussed in [24].
However, if an EV depart much earlier than schedule time during an
under-frequency event, it gets less charge than the desired value. This
issue can create a false record in historical data, which may lead to a
slight error in future estimation. Therefore, the online control metho-
dology needs to add the effect of flexibility providing in the historical
data. Developing the online control methodology of EVCS, which de-
cides which EV need to change the charging power in case of any fre-
quency events is the subject of future work.

It is worth to mention that the developed methodology will not use
the V2G ability of EV and just alter the charging profile of EV.
Therefore, it will be negligible effects in the degradation model of EV's
battery. Authors studied the degradation behaviour of battery storage
systems in the FCR market in [24], which shows it has not considerable
cost even in case of charging and discharging in the storage system.

5. EVCS in helsinki

This section evaluates the results of the proposed application and
the developed strategy using EVCS charging records in the Helsinki area
and investigates the empirical potential of EVCS in providing FCR-N
and FCR-D. Fig. 4 shows the user interface of the proposed application,
which freely available in [20].

The EV charging data includes the charging records of 60 public
EVCS in the Helsinki area from Oct 2014 until Oct 2018, which contains
about 41,000 charging events of about 2,500 customer IDs, after the
cleaning process.

Before using historical data, a clean-up process is performed to re-
move meaningless records. At this stage, the proposed method removes
an EV charging event if it presents at least one of the following issues:

e Missing items,

® Duration plugged-in less than five minutes,

e Energy charged less than 0.1 kWh or more than 100 kWh,
e Charging power more than the charging station rate.

The stochastic behaviour of these EV charging events, such as ar-
rival time, plugged-in time, and charging energy, are analysed in [26].
It is worth to mention that the EV charging data does not included the
efficiency of the EV. Here, the efficiency of the EV charging process
considered 90%.

5.1. FCR in EVCS

Here, the methodology proposed in Section 2 and 3 is used to cal-
culate the FCR-N and FCR-D potential for EVCS in the Helsinki area.
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4 FCR-Profile-for-EVCS
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Fig. 4. . The user interface of the proposed application for EVCS to estimate the

optimum day-ahead bidding profiles in FCR, freely available in [20].
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Fig. 7. The optimum FCR profiles of EVCS in the Helsinki area.

what remains after the FCR-N provision. That extra potential is named
FCR-Dn in this paper. Fig. 5¢ shows the CDF for FCR-Dn.

Using these CDFs, the expected FCR and the optimum profile can be
estimated using (13) and (18), respectively. Fig 6 shows the expected
FCR profiles, while Fig. 7 shows the optimum profiles. Comparing
Figs. 6 and 7 shows that the optimum profiles, which make the max-
imum expected profit are quite similar to the expected profiles. This
similarity is due to the fact that the current market regulations in
Finland have the penalty equal to the remuneration price (xt = 7 ™).

As shown in Fig. 7, the most expected value for the FCR of EVCS will
be almost zero during the night. This is because of the fact that people
use public charging stations mostly during day times. The data used in
this study excludes private charging stations, where the EV owners
charge their car at home, during nights.

The maximum expected FCR-N of these EVCS is about 12 kW hap-
pening at 2:00 p.m., while the maximum expected FCR-D is about 143
kW happening at the same time. Looking at an expected profile of FCR-
Dn shows that EVs can still provide a considerable amount of FCR-D
after providing FCR-N.

The maximum FCR capacity calculated here for public EVCS in the
Helsinki area is not significant in comparison to the total needs for
Finland (140 MW FCR-N and 260 MW FCR-D [27]). This is due to the
fact that the numbers of vehicles and stations in the Helsinki area are
still very low.

Based on the historical data until Sep. 2018, the available capacity
has been calculated for the month of Oct. 2018. Table 1 presents the
average daily profit which would have been obtained by providing FCR
services, including the incomes for capacity and the penalty at times
when the delivery would not have been possible. The profit is calcu-
lated in three categories: FCR-N, FCR-D, or as a combination of FCR-N
and FCR-Dn. Although FCR-N has a larger remuneration per capacity,
the profit of providing FCR-N is less than FCR-D because EV cannot

Fig. 5 shows the CDF for FCR capacity, which can be provided by EV
connected to public EVCS in the Helsinki area, based on last year re-
cords. Fig. 5a shows the CDF for FCR-N, while Fig. 5b illustrates the
CDF of FCR-D.

Analysing the EV behaviour shows that the EVCS can provide much
larger down- than up-regulation. The reason is that the plugged-in time
of EV is not much longer than the required charging time at full power.
Therefore, in most cases, Pmax — Py < Pgy, and the amount of up-reg-
ulation is much smaller than down-regulation.

In this case, EVCS can still provide some extra up-regulation after
providing FCR-N. This could be used to provide FCR-D services with

Table 1
The average daily profit (euro) of the last month of providing FCR
FCR-N FCR-D D+N~*
Proposed Method Absolute 3.846 9.452 10.99
Per events 0.057 0.148 0.170
Per kWh 0.006 0.017 0.019
Ideal Estimate Absolute 5.608 16.48 17.09
Per events 0.080 0.238 0.247
Per kWh 0.009 0.027 0.028

* The Combination of FCR-N and FCR-Dn.



P. Hasanpor Divshali and C. Evens

provide large down-regulation compared to up-regulation reserves.
Table 1 shows that providing a combination of FCR-N and FCR-Dn is the
most profitable choice.

However, providing just FCR-D may be a wiser choice for public
EVCS. As explained in Section 3.4, in order to achieve the maximum
FCR-D, the EV should start to charge the battery immediately with the
maximum power, which is the most desirable way for a public charging
station. In addition, because the departure time is not deterministic,
charging the EV by P, in order to have some FCR-N capacity will lead
to a lower than expected state of charge in case of an early departure.

Furthermore, in FCR-D the reserve is provided whenever the fre-
quency is less than 49.9 Hz, while the FCR-N must provide reserve
whenever the frequency is out of the dead band of (49.99, 50.01) Hz.
Analysis of the frequency records for the Nordic power system (avail-
able in the open data of Fingrid [28]), shows that FCR-D providers must
active their flexibility less than 1 % of the time while FCR-N providers
need to activate their resources about 80% of the time.

Table 1 compares the profit resulting from the proposed methods
with an ideal estimation where the profile forecasting was assumed
perfect and the measured data was substituted to the estimations. This
comparison shows that the methodology presented here allows ex-
tracting about 62% of the ideal available profits. While a perfect fore-
cast and estimation will remain impossible, the uncertainty would be
reduced if the data included more EV charging events.

In addition, Table 1 shows the average profit for each charging
event and per kWh of energy used for EV charging. This table states that
the income for combined FCR-N and FCR-Dn per kWh of energy is about
2 euro cents (1.9 — 2.8), which is about half of the average energy cost
in Finland (about 4.6 euro cents in Oct 2018 [29]).

Comparing EV charging data of 2014 with 2018, shows a con-
siderable growth in the energy consumption and the potential of FCR
provision by EVCS, as discussed in [30]. However, the current impact of
the EVCS installed in the Helsinki area is still very little compared to the
national needs for frequency control, as shown in Figs. 6 and 7. The
Authors in [30] show that the EV growth continues at the same rate as
in the last three years, they will provide five times more flexibility
while using ten times more energy in 10 years.

However, It is expected that the EV growth will be faster in the
future, due to several reasons, such as more government incentives,
reduction in the battery price, increase in the fuel costs and emission
taxes. In addition, by increasing the charger rate in the future, EV po-
tential to provide FCR will be increased.

6. Conclusion

This research developed an application for EV charging stations to
estimate the optimum day-ahead bidding profiles in FCR markets and
this paper presents the stochastic methodology behind this application.
In this regard, mathematical models for the available FCR of an EV
charging event are developed based on the technical requirements for
the provision of reserves for the two FCR markets in Finland. Then, a
stochastic methodology is implemented, using aggregated probability
density function of EVs flexibility, in order to estimate the day-ahead
potential and maximise the expected profit.

Using the developed models and the proposed methodology, this
paper analyses the behaviour of public charging stations in the Helsinki
area from 2015 till 2018. The results show that although FCR-N has 5
times higher remuneration for available capacity than FCR-D, it will
lead to much lower profit due to the difficulties for charging stations to
provide down-regulation reserve. The most profitable choice of the
electricity reserve market for charging stations is a combination of FCR-
N and FCR-D products. The comparison of the proposed planning
strategy with the ideal estimation shows that the proposed method
gives a little more than 60 % of the maximum possible revenues from
FCR services provision and that it would cover about 50% of their
charging energy costs. It is important to notice that reaching the
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maximum possible revenues from FCR is impossible due to stochastic
behaviour of EV while the uncertainty would be reduced if the data
included more EV charging events.

The study also concludes that, although a combination of FCR-N and
FCR-D products is the most profitable choice, providing only FCR-D
could be more practical. It would decrease the profits by a narrow
percentage but lead to lower effects on EV owners’ preference. The
optimum charging strategy in order to provide FCR-D is to start char-
ging at the maximum power immediately when the vehicle is plugged
in, which is the preferred charging profile for the users of public EVCS
(this would be different for over-night charging at private charging
stations).

It is worth to mention that this paper focuses on determining what
products should be sold in which quantities by EVCS. The im-
plementation and online control of the EVCS in order to activate the
planned FCR requires more research.
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