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Abstrak

Intersection refers to the determination of a point’s position in object space by intersecting the image rays from two
or more images. The standard method is application of the collinearity equations, with two equations for each image
of the point. Approximate coordinates of the point, calculated by collinearity equations. EOPs are obtained by using
space resection.

Initial approximations are required for ground coordinate. In this experiment, we use several data types on flat,
rugged, and incline terrain. The data has random and systematic error. We create a simulated data of ground
coordinate points then we compute the image points using collinearity equations.

Finally, we can conclude that the data with systematic error achieves the best precise than data with random error.
This is occurred in all of terrain types. The RMS error in data with systematic error achieves constantly after the
limitation number 100 control points. Therefore, data with systematic radial lens error can be used in intersection
case. The RMSx is more than RMSy in almost all of data types.

Introduction

If space resection is used to determine the
elements of the exterior orientation for both
photographs of a stereopair, then the object point
coordinates for points that lie in the stereo
overlap area can be calculated. Therefore,
corresponding rays to the same object point from
the two photographs must intersect at the point.
If the images are available, a total of four
equations containing three unknowns, the object
space coordinates of the point, are obtained.
There is one degree of freedom, and the
linearized set of equations can be solved by least
squares methods. Adding more images increases
the number of degrees of freedom and therefore
improves the solution.
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To calculate the ground point A (X,Y,Z) by space
intersection, collinearity equations of the
linearized should be defined. In the space
intersection, however, since that the six elements
of exterior orientation are known, the only
remaining unknowns in these equations are dX,,
dY,, and dZ,. These are corrections to be applied
to initial approximations for object space
coordinates Xa, Ya, and Z,, respectively for ground
point G. The linearized forms of the space
intersection equations for point A are

b14dXA + blSdYA + b16dZA = ] + VXA (1)
b24dXA+b25dYA +b26dZA = K+VYA (2)

Hence, two equations of this form can be written
for point A in the left image, and two more in the
right image. So there are four equations result,
and three unknowns dX,, dY,, and dZ, can be
computed by least squares solution. These
corrections are added to the initial
approximations to obtain revised values for X,,
Ya, and Z,. The solution is then repeated until the
magnitude of the corrections become neglible.
Therefore, because the equations have been
linearized using Taylor's theorem, initial
approximations are required for each point
whose object space coordinates are to be
computed.
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Least-squares solution
Linearization

Since the collinearity equations are nonlinear, and
have been linearized using Taylor’s theorem. In
linearizing them, equation (1) and (2) are written
as follows:

F=x0_f£=xA (3)
G=Yo—f2=Ya (4)
Where

q=mz(Xg —X1) + m3, (Y3 = Y) + m33(Z,y — Z1)
r=my(Xg — X)) + mp (Y = V) + my3(Z, — Z1)
S=my Xy — X)) +mp(Vy = V) + mp3(Zy — Z))

According to Taylor’s theorem, equation (3) and
(4) may be expressed in linearized form by taking
partial derivatives with respect to the unknowns:

Fo + (3—2)0 dw + (Z_Do do + (%)0 di + (;—XFL)O dx,, +
OF

(a_YL)O dy, + (:—ZFL)O dz, + (E)o dX, + (;Ti)o dY, +
(a)0 dZy = x, (5)

Go + (‘;—3)0 dw + (Z—E)O do + (‘;—f)o di + (:—;L)O dx,, +
(:—i)o dy, + (:7(1)0 dz, + (;TGA)O dX, + ((;{—GA)O dy, +

(5) dzs=v, (6)

In equation (5) and (6), Fy and G are functions F
and G of equation (3) and (4) evaluated at the

initial approximations for the nine unknowns. The
OF 4G OF 4G

terms (a)o'(a)o' (a—¢)0,(a—¢)0, etc, are partial
derivatives of functions F and G with respect to
the indicated unknowns evaluated at the initial
approximations; and dw,d¢,dx, etc., are
unknown corrections to be applied to the initial
approximations. The units of dw,d¢, and dx are
radians. Since the photo coordinates x, and y,
are measured values, if the equations are to be
used in a least squares solution, residual terms
must be included to make the equations
consistent. The following simplified forms of the
linearized collinearity equations include these
residuals.
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blldm + b12d¢ + b13dK - b14dXL - blSdYL -
blGdZL + b14dXA + blSdYA + blGdZA = ] + an (7)

b21dw + bzzdd) + b23dK - b24dXL - bZSdYL -
b26dZL + b24dXA + bZSdYA + b26dZA =K+ VYa(g)

In equation (7) and (8), J and K are equal to
X, — Fy and y, — Gy respectively. The b’s are
coefficients equal to the partial derivatives. In
these coefficients AX, AY, and AZ are equal to X,-
X, Ya- Y, and Z,- Z,, respectively. Numerical
values for these coefficient terms are obtained by
using initial approximations for the unknowns.

b14dXA + blSdYA + b16dZA = ] + VXA

b24dXp + bysdYp + byedZy = K+ vy,

Where
f f

by, = ? (rmz; —qmy;) by = ? (rm3; — qmy;)
£ r

by = ?(rm% —qmy3) J=%Xa =% +f-
f f

by, = @(Smm —qmy) by = ¥(sm32 — amy2)

f S
bye = ¥(5m33 — qmy;) K=y,—yo+ fa

The observation error equations can be then
formed as
V=AX-L

Then, we can determine X. That is
X =(ATA)ATL

[b11, b1z, biz,  —biu, —bis,  —bye,]
by, baa, baz,  —bas,  —bas,  —bae,
by, biz, bz, —bi, —bis, —byg,
by, bay, bas,  —bas, —bas, —bge, |;
by, bz, biz, —bis, —bis, —bie,
by, b2z, bas, —bas, —bas, —byg,

I V.. T
g fl e
1 1 dd)
]2 VXz di
L=1Ka s V=V, [ X = gx,
: : ldy, |
I]<2 Van laz, |
LI\ | V
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Iterative Least-Square

Two equations are formed for each control point,
which gives four equations if the minimum of two
control points is used. In the case a unique
solution results for the four unknowns, and the
residual terms on the right sides of equation (1)
and (2) will be zero. If three or more control
points are used, more than four equations can be
performed, allowing a least squares solution.
Initial approximations are required for ground
coordinate. In this experiment, | use several data
types on flat, rugged, and incline terrain. The data
has random and systematic error. We assume the
ground point A based on first experiment. In the
first experiment, we create ground coordinate
points then we compute the image points using
collinearity equations. Therefore, the ground
point A that is intersection point is calculated in
several iterations. The iteration will stop until the
difference become insignificant.

Methodology

Data, We obtain EOPs using space resection.
Then, the initial ground coordinate have been
determined based on simulation using collinearity
equations. The simulation has created on 3 type’s
terrain: flat, rugged, and incline with random and
systematic error.

Solution, The procedure of solution for

determining ground coordinate intersection is

1. Collect a simulation data of ground coordinate
points and exterior orientation parameters.
Ground coordinate points is taken from flat,
incline and rugged terrain. Firstly, we assume
that the coordinates is free error. After
calculating the error free data using
collinearity equations, we add random error
and systematic error. Then, we compute it to
get image coordinate points. Systematic error
used to this data is radial lens distortion. The
form of the polynomial, based on lens design
theory, is
Ar = kqrt + kor3 + karS + kyr? (9)
Where, Ar is the amount of radial lens
distortion, r is the radial distance from the
principal point, and ki, k,, ks, and k; are
coefficients of the polynomial.

2. Compute length of baseline for checking the
simulation data using equation (10)
B=(1-w). p.sf (10)
Where,
B =length of baseline
M =overlapping = 0.6 (in this experiment)
p =length ofimage =23 cm
sf  =scale factor of map = 15000

3. Check the control points in image coordinate
either left or right, using baseline. The
equation for checking is equation (11)

B= \/(XLl —xp,)% + (Y, —y,)? (11)

4. Check the ground coordinate intersection
based on two images in the simulation data.

5. EOPs from previous as defined. Image points
either in left and right, the approximations
ground coordinate as input for initial value.

6. Calculate the ground coordinate based on least
squares adjustment as in section 3.

= Ground Coordinate Points (free error,
random error, systematic error) in flat,
incline,rugged terrain

= Exterior Orientation Parameter

v

Compute image coordinate
points using collinearity Ly|  Compute initial value of
condition equations ground coordinate
Image Coordinate Points +

with free error, random

) Compute ground coordinate
error, systematic error

Using space intersection by
collinearity

\ 4

Analysis |

Ground
coordinate

Standard Error and
RMS Error

v

Analysis

End

Figure 2. Workflow of this experiment
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EOP for data known

Compute the baseline (B)
Based on equation (10)

v

Cek simulation data of image point
In left and right use equation (11)

v

Obtain the approximation of ground
Coordinate point

v

pproximate Ground coordinate poi
AX.Y,Z)o

v

Figure 3. Flowchart of the computational program

for J from 1 to 10

Compute the correction of A
based on equation (1) and (2)

W=ATA
X=( ATWA)-1

Experimental Results

RMS Error

RMS Error

Figure 4.
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Plat of RMS Error
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Figure 10. RMSe (m) of free error data
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Conclusions

Based on the figure 4 to 12, we can conclude that
the data with systematic error achieves the best
precise than data with random error. This is
occurred in all of terrain types. So that, the result
is the same conclusion with the one in space
resection experiment. The RMS error in data with
systematic error achieves constantly after the
limitation number 100 control points. Therefore,
data with systematic radial lens error can be used
either in either space resection or intersection.
The RMSx is more than RMSy in almost all of data
types. However, in data with systematic error on
rugged terrain create the largest range. They
create the worst result by comparing with the
others.

The limitation of this experiment is about
computing the conjugate points between right
and left images. The computation is based on the
baseline. If we create the incorrect simulation, the
result will be poor. Space intersection will fully
depend on the conjugate points. The geometry of
data simulation is important in this experiment.

References

Chen, L.C.,, 2008, Handbook of Photogrammetry
Course, Center for Space and Remote Sensing
Research, National Central University, Taiwan

Wolf, R.P.,, Ghilani, D.C.,, 1996, Adjustment
Computations:statistics and least squares in
surveying and GIS, John Wiley & Sons, New York,
United States Of America

Wolf,R.P., Dewitt, A., B., 2000, Elements of
Photogrammetry With Application in GIS, The
University of Wisconsin, Madison

109



