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Abstract

This work aims to exploit the biological ageing phenomena which affects human blood
vessels. The analysis is performed starting from a database of photoplethysmographic
signals acquired through smartphones. The further step involves a preprocessing phase,
where the signals are detrended using a central moving average filter, demoduled using
the envelope of the analytic signal obtained from the Hilbert transform, denoised using
the central moving average filter over the envelope.

After the preprocessing we compared two different approaches. The first one regards
Statistical Learning, which involves feature extraction and selection through the usage
of statistics and machine learning algorithms. This in order to perform a classification
supervised task over the chronological age of the individual, which is used as a proxy for
healthy/non healthy vascular ageing.

The second one regards Deep Learning, which involves the realisation of a con-
volutional neural network to perform the same task, but avoiding the feature extrac-
tion/selection step and so possible bias introduced by such phases.

Doing so we obtained comparable outcomes in terms of area under the curve metrics
from a 12 layers ResNet convolutional network and a support vector machine using just
covariates together with a couple of extracted features, acquiring clues regarding the
possible usage of such features as biomarkers for the vascular ageing process. The two
mentioned features can be related with increasing arterial stiffness and increasing signal
randomness due to ageing.





Contents

1 Physiological Background 7
1.1 Photoplethysmography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 PPG detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Possible factors affecting PPG recordings . . . . . . . . . . . . . . . . . . 8
1.4 What is ageing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Vascular ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mathematical Background - Statistical Learning 11
2.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Definition of Statistical Learning . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Spectral Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Step 1: Building an Affinity matrix . . . . . . . . . . . . . . . . . 13
2.3.2 Step 2: Build the Laplacian matrix . . . . . . . . . . . . . . . . . 14
2.3.3 Step 3: Eigenvalue Decomposition . . . . . . . . . . . . . . . . . . 15

3 Mathematical Background - Deep Learning 17
3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Kernel dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Number of filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Strides and Padding . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Initializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.6 Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.7 Number of layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.8 Kind of layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.9 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.10 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.11 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.12 Batch Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 The Analysis 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Description of the used dataset . . . . . . . . . . . . . . . . . . . 44

4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5



4.4 Peak detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Prediction of healthy vascular ageing (HVA) . . . . . . . . . . . . 50
4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . 55
4.7.2 Application of ML and DL to predict HVA . . . . . . . . . . . . . 55
4.7.3 Evaluation of prediction performance . . . . . . . . . . . . . . . . 56
4.7.4 Sex-stratified analysis . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusions 61



Chapter 1

Physiological Background:
Photoplethysmography and Vascular
Ageing

1.1 Photoplethysmography

The word plethysmography comes from the union of two ancient Greek words: ‘plethys-
mos’ (increase) and ‘graph’ (write) [1]. A plethysmograph measures the variation of vol-
ume of a given part of the body. It becomes intuitive the fact that a photo-plethysmograph
will use light to accomplish its task.

In particular, the photoplethysmograph measures the variation of arteries volume over
time, and this thanks to the variation of the amount of light that is diffused or absorbed
by the tissues and therefore the variation in the amount of light transmitted/reflected.
So, in the case of a reflectance mode photoplethysmograph, the amount of backscattered
light will correspond to some variation variation of the blood [2].

To understand this mechanism we can start from the Lambert-Beer law applied to
the model of a blood vessel:

A = ελlM (1.1)

where ελ is the molar absorption coefficient for a given wavelength λ, l is the length
of the optical path travelled by light, M is the molarity of the solution in which light
travels and A is the resulting absorbance of light. Of course different tissues (such
as bones, muscles, nerves, skin, arteries, etc.) will have different values for every of
the r.h.s elements of eq. 1.1. The total absorbance will be given by the sum of the
partial absorbance due to each single tissue. The most important consideration regarding
photoplethysmography (PPG) is the fact that we do not measure absorbance by itself,
but absorbance’s variation over time. It seems reasonable to assume that ελ and M
will be constant over time, once we fixed the tissue. Therefore the main variation will
be given by l, which represents a different optical path length due to tissue’s volume
variation. Moreover, most of the tissues have a quite constant volume over time, such
as bones or skin. The most appreciable variations will be due to blood vessels, as heart
beat generates a blood pressure pulse that travels inside them, causing an increase in
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8 CHAPTER 1. PHYSIOLOGICAL BACKGROUND

volume. Since arteries walls are highly more elastic than veins walls, they will experience
a much higher variation of volume as the blood pressure raises due to each heart beat.
Considering what we just said, we end up having:

dA

dt
≈ dlarteries

dt
(1.2)

1.2 PPG detection

PPG measuring device are made of a light source and a photodetector. The light source
shall emit light of a precise λ, which usually is in the near infrared range, but also visible
light can be used. The most important factor is that other tissues, and mostly skin,
have a small enough absorption coefficient for that given λ. In order to have good PPG
acquisition we also need a highly vascolarized region with a thin layer of skin, such as the
wrists, the forehead, the earlobes or the fingertips. Based on the device structure (and
on the body part) we can measure transmitted light (with tissue between source and
detector) or reflected light (with source and detector on the same side of the monitored
tissue) to acquire PPG signals, each of these two modes having its own advantages.

1.3 Possible factors affecting PPG recordings

As long as the assumption 1.2 is not holding, we cannot rely on the recorded PPG signals.
This is the case when the sensor is affected by not negligible movements. Movements

of the light source, of patient, or photodetector can all rapidly affect the length of optical
path. Moreover, sensor’s displacement from its original location changes the point where
measurement is happening, with possible consequent variation of tissue (affecting εlambda
and M) and/or thickness (affecting l).

Another important consideration is the pressure that the sensor is applying on the
skin. Again, a not negligible variation of pressure can increase/reduce the amplitude of
the recorded signal by varying the ∆larteries due to heart beats.

Apart from rapid variations, also a constant pressure can cause an improper PPG
record, if the mentioned pressure would result in being too high. An excessive pressure
(e.g. sensor too tight) can cause veins’ pulses to become measurable too, resulting in a
wrong variation of optical path ∆ltot = ∆larteries + ∆lveins.

1.4 What is ageing?

Before even starting our analysis we need to define our goals, and since our goal regards
vascular ageing we need to define ageing. Our common idea of ageing is usually referred
to some sort of uniform and constant process, which “ruins” in some way most of the
aspects and properties of biological systems.

Here we must create an important distinction:

• the chronological age is what we use to define the time past since birth;
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• the biological age is the term we use to refer to the average health state of a
biological system.

It is important to notice that this distinction generates a sort of duality in the word
ageing. In fact we can think to it as the natural flow of time or as the amount of
measurable effects that we accumulated over such time. Therefore, it is possible for the
two ageing to differ, having a more or less healthier system than what we would expect
given the chronological age. Since the first definition carries only a trivial, objective, and
clear information, it has no big interests to dig deep into it over this work. Therefore,
we will focus on the biological age .

Last but not least, it is important to underline that, since the biological ageing is the
amount of measurable effects on a given system, we can talk of biological ageing not just
for a whole human being, but also for organ systems, organs or even tissues, as long as
we can clearly define the biological system we are referring to.

It seems therefore reasonable to realize the fact that different parts of our body
can have different biological ages, since the amount of measurable effects will never be
uniformly distributed over all the different organs, tissues, and so on.

Now we will delve into the definition of biological ageing, focusing then on the main
objective of our study: vascular ageing .

1.5 Vascular ageing
Since PPG can properly measure some properties of arteries, such as their elasticity,
we will now focus on the effects that ageing has on these organs. We mentioned that
biological ageing is the sum of measurable effects due to age, we need some important
effects regarding arteries.

The arteries are the efferent blood vessels with respect to the heart, which means
that they carry blood from the heart towards the rest of the body. Large arteries are
rich in elastin and collagen, while small muscular arteries are rich in vascular smooth
muscle [3].

Then it appears quite clear that one of the most important properties of the arteries
is walls’ elasticity, which is reported to decrease with age [3], due to reduction of elastin
content, increase in collagen content, and calcification, causing a higher arterial stiffness.
This condition is exaggerated in some states such as hypertension and diabetes, increasing
the risk of cardiovascular diseases [4]. With increasing stiffness, the vessels walls get
thicker and the inner diameter smaller. This causes the cardiovascular system much
more difficulty in moving the same amount of blood towards the arteries.

Moreover, some studies investigated the effects of long term smoking on arterial wall
properties, obtaining contradictory results depending on the used methods. It is however
known that smoking is a risk factor for atherosclerosis and therefore may contribute to
arterial stiffness [5].
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Chapter 2

Mathematical Background - Statistical
Learning

2.1 Introduction to Machine Learning

Machine Learning (ML) can be broadly defined as computational methods using expe-
rience to improve performances or to make more accurate predictions [6]. Here “expe-
rience” shall be read as “previously available amount of information”, in the sense that
these computational methods try in different ways (and this “different” is what divides
ML into sub-fields) to use information previously obtained from data to modify their
outcomes. For this reason the first thing we have to underline is that outcomes’ quality
hugely depends on available data (and their quality).

As we mentioned, it is possible to divide ML into sub-fields, depending on the task, the
group of used algorithms, the availability of desired outcomes, and much more. Whenever
we use some sort of ground truth for our outcomes we are dealing with supervised
learning , otherwise we will have an unsupervised learning .

In the first case we could have a label on our data, and our task could consists in
assigning the correct label to each data sample, which is named a classification task.
Some classification examples could be: recognizing hand-written digits, recognizing the
presence of a given tissue in some medical images, differentiating a noisy electrical signal
from a clear one, and so on.

Another supervised learning task could be the regression task, where we are in-
terested in modelling a function able to map input into ground truth. Some examples
could be: guessing the price of a dress given some of its properties (e.g. material, brand,
year), predicting the age of a person given some information regarding his biomarkers,
and so on. It appears that classification tasks are just a discretization of regression
tasks, and for some reason it is, but the main difference resides in their purpose. During
classification the key point is guessing the correct label, during regression we are more
interested in correctly approximating the function. In the second case we can accept
more frequently errors regarding the exact label as long as we get closer and closer to
the mapping function. Moreover, there is an unbridgeable difference in certain cases.
In regression tasks we can define a sort of “distance” from the ground truth, while in
many of the classification tasks, this distance is quite impossible to define. Think about
classifying a fruit, would it be worse to classify an apple as a peach or as an apricot?

11
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Therefore we put under the classification task all those problems where we miss a clear
way to compute the measure of “how wrong are we?”, but keep in mind that we could
always introduce it in a custom way if it can pursue our purpose.

Examples of unsupervised learning are represented by whenever we cannot use a
ground truth (because it does not exist or it is too difficult/expensive to acquire). The
main techniques here are clustering and dimensionality reduction .

The clustering case consists in grouping the data by some similarity that they show
among the available attributes.

The dimensionality reduction case is sometimes also called manifold learning. It
consists of using mathematical and statistical steps in order to try to map a high number
of dimension into a lower one, with as low information loss as possible. This is mostly
used to reduce the number of attributes or to simply exploit data distribution with human
eye, trying to plot data into a 2D/3D sub-spaces that are more as much representative
of the whole attributes set as possible.

In certain scenarios, when we use a mixed approach, we can talk of semi-supervised
learning . This is the case when we sometimes use the available ground truth and
sometimes not. This last case can be a good approach when there is a big difference
between data availability and label availability. For example the labelling process can
be very expensive or time-demanding, or on the other hand we can have many easily
accessible databases of unlabelled data and just a few ones of labelled data. In both cases,
semi-supervised learning tries to get out the best by combining the two approaches.

Another interesting case is the reinforcement learning , which is usually treated as
a different sub-field because of its particular optimization strategy. This last approach
usually consists in creating many agents able to interact with an environment. Such
agents will be rewarded based on their actions. After some iterations, only some of the
most rewarded agents will be used to create new agents.

The optimization follows a trial-error procedure instead of following a sort of gradient
descent. Therefore, in reinforcement learning, instead of a continuous improvement we
observe outcomes to progress in a stepped trend, with flat periods alternated to noticeable
improvements. This because the space of possible solutions is exploited in an almost
random way, but every time we encounter a better solution we save it and never lose it.

The main example of this sector is represented by genetic algorithms.

2.2 Definition of Statistical Learning

One of the main targets of Machine Learning, as described so far, is to mimic some
function which maps available inputs into desired outputs, may it be the main goal, as
for regression tasks, or just an important consequence of the main goal, as for all other
mentioned procedures.

Usually we define a fragmentation of the machine learning field based on the nature
of the process we are using to mimic such function. We will call Statistical Learning
(SL) a particular framework for machine learning where we use functional analysis and
statistics to achieve that process in an explainable way. On the other hand, one of
the properties which characterizes the Deep Learning field is the fact that operations
which converts inputs into outputs are performed in a complex way, resulting in humans
incapability of completely understand, track and explain the happening process, giving
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to DL its peculiarity of being known as a “black box” approach.
SL is therefore preferable whenever we are able to design a workflow of feature acqui-

sition/extraction and feature selection. In this way we can understand in a much clearer
way why are the inputs mapped into the outputs. On the opposite, we will use DL if
features/data are hard to select or manage, paying a price in terms of explainability of
the mapping process and hence also in terms of generalizability of the found solution.

2.3 Spectral Embedding

We will now describe the Spectral Embedding (SE) algorithm from the Scikit-learn
python library, since we will use this non trivial function in our further analysis for
exploratory purposes.

First let us define that a mathematical embedding is an injective and “structure
preserving” map f : A −→ B, where the structure preserving meaning depends on the
mathematical context. For simplicity, since in our further use cases it will hold that
A,B ⊆ Rn we will identify f as an embedding if f(A) ⊆ B.

The algorithm has the aim to find a low dimensional representation of the data, by
looking for a non-linear embedding.

To do so, the first thing the algorithm needs is a way to compute a distance. Usually
the typical euclidean distance is employed by default, but any properly defined distance
would be fine as well.

We will now analyze the Laplacian Eigenmaps algorithm which is performed to
achieve SE outcomes.

2.3.1 Step 1: Building an Affinity matrix

The computed distance among data points is used to create an affinity matrix. An
affinity matrix is defined as follows:

Aij =

{
1 if j is a neighbour of i
0 otherwise

(2.1)

First of all, let us clarify that A has all 0s along the main diagonal, because the
definition of neighbor never has the data point itself as a candidate.

In general, it can happen that j is a neighbour of i but the vice versa does not hold.
In such cases we will talk of directed affinity matrix (since it is originated from a directed
graph). Usually, if not differently specified, the matrix A will be symmetric (and it will
be originated from an undirected graph, where j neighbour of i implies the vice versa).

Now we need to properly define when j is a neighbour of i. Most common options to
determine such relation are the followings:

• k nearest neighbours, where we simply define a parameter k and for every pos-
sible i we take as neighbours the k data points which are closer to it.

• thresholding, where instead of fixing the number of neighbours we fix a threshold
value t and we define i and j neighbours if dist(x, y) = ||x− y|| ≤ t.
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Please notice that the second option always gives a symmetric affinity matrix, while the
first option is not originating a commutative definition of neighbours, therefore (especially
for large dataset) it is almost always going to originate a non symmetric affinity matrix.

There is an exception for the second case, where instead of using a threshold value
and assign only 1s and 0s we use a different definition of affinity matrix:

Aij = g(xi, xj) = g(||xi − xj||) (2.2)

Therefore our matrix is going to be symmetric, since the dependence from xi and xj
is only through their norm, and with values different from 1s and 0s.

In this last case, it is common to prefer a function whose value decreases for “far”
elements and increases for “close” elements. This because the algorithm is built to work
in a way such that close elements (read neighbours) are assigned a higher value (read 1)
than more distant elements (whose assigned value is 0) and we need a function able to
mimic this trend.

The most common choice for the function g of equation 2.2 is a radial basis function,
defined as

g(||xi − xj||) = e−γ||xi−xj ||
2

(2.3)

where γ is a variable parameter, whose default value on scikit-learn is the dimensionality
(read number of features) of the dataset x.

2.3.2 Step 2: Build the Laplacian matrix

The next step of the algorithm consists in building the Laplacian matrix.
To do so we first need to define the degree matrix D

Dij =

{∑
Ai if i = j

0 otherwise
(2.4)

where the matrix A is obtained from either equation 2.1 or equation 2.2. It is immediate
to notice that D is a diagonal matrix by definition. We must underline that if A is not
symmetric, taking the i-th row (Ai) or the j-th column(AT j) will give different result.
Therefore we will have to specify if we want to use the indegree or the outdegree and
change the formula 2.4 accordingly (by using respectively

∑
Ak or

∑
AT k).

Now, having both D and A, we can compute the laplacian matrix, given by

L = D − A (2.5)

which can eventually be normalized through

L = D−
1
2LD−

1
2 (2.6)

In literature it is suggested to use the normalized version [7].
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2.3.3 Step 3: Eigenvalue Decomposition

Now that we have the Laplacian matrix, we will perform a classical eigenvalue decom-
position over it.

Therefore we will compute the eigenvalues of the matrix L and we will order them in
an increasing order. Let us remind that the laplacian matrix is a positive semidefinite
matrix [8], which means that all of its eigenvalues must be ≥ 0. So we have

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn where Lvi = λivi (2.7)

with vi as the eigenvector associated to the i-th eigenvalue.
We will discard the first eigenvector since λ1 will be equal to 0 because of the con-

nected giant component of the graph, and of course 0 can be a multiple eigenvalue if and
only if we have multiple connected components [8].

In real context data, it is plausible for large datasets (after a proper outlier removal)
and properly tuned algorithm parameters to have only 1 connected component. Then
we will take the m successive eigenvectors (v2, . . . ,v2+m), and project our input data
onto them, to finally achieve an m-dimensional plot which should maintain as much as
possible the main mathematical structures present in the higher dimensional input space.
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Chapter 3

Mathematical Background - Deep
Learning

In this chapter we are going to discuss another sub-branch of ML, which is Deep Learning
(DL). The reason it deserves a stand alone section resides in its peculiar difference from
everything we already mentioned. The attribute deep comes from the way deep learning
models “understand”. In these models, concepts are built in a layered fashion: the model
starts with few simple concepts (they can be features or whatever) and then combines
these simpler concepts to build more complex ones. Iterating this procedure we end up
with a hierarchy of concepts, and if we draw a graph of such hierarchy the graph is deep
and layered, that is the reason why we call it deep learning [9].

3.1 Artificial Neural Networks
The main protagonist of DL are Artificial Neural Networks(NNs).

In NN our fundamental units are called neurons. A neuron can be thought as a
human neuron (that is the reason for its name), it can receive multiple inputs, it can
manage those inputs and send one or more outputs. Usually we dispose neurons in stacks
called layers (even if in some topologies, the concept of layer is quite hard to apply, such
as for Boltzmann machines [10]). Usually, Two neurons of the same layer are not directly
connected each other, but a neuron is linked to every neurons of the previous layer and
the successive layer (even these assumptions can vary due to topology [10]. Apart from
the first and the last layers, which are respectively the input and the output of our NN,
all the middle layers are called hidden layers, and they are the ones creating the depth
and the complexity of the concepts we were talking about.

3.2 Convolutional Neural Networks
We will now focus on the main aspect of deep learning that was used for analysis: what
is and how to build and train a Convolutional Neural Network (CNN).

The property that differentiates CNNs from NNs is the usage of the convolution
operation.

We will now describe how convolution works in two dimensions, bearing in mind that
the conversion for lower or higher dimensional spaces is quite straightforward.

17
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Let’s assume we have a matrix S of dimension M × N and a smaller matrix K of
dimension m× n named kernel, with m < M and n < N and both m,n as odd positive
integers. Then the convolution of the matrix S with the kernel K gives a new matrix O,
whose dimension may change based on the selected boundary conditions. In general the
elements of the matrix O are given by:

Ox,y =
m∑
i=1

n∑
j=1

S
x− (m−1)

2
+i,y− (n−1)

2
+j
·Ki,j (3.1)

This is not a perfectly accurate formula, but it helps us understanding what a con-
volution operation is.

The requirement of having both m and n as odd numbers is just to uniquely identify
the indexes in the output matrix, but this is not a restriction, since any even sized kernel
could be zero-padded in order obtain a higher odd sized kernel.

The reason why we did not mention a precise shape for the matrix O resides in the
choice of the boundary conditions to use when x− (m− 1)/2 + i is below 0 or above M
(same for y). This problem will be discussed in the padding section.

In a CNN the presence of multiple hidden layers can be summarized as a chain of
consecutive convolutions with kernels that can be different also in size.

The values inside each kernel are the trainable parameters of the CNN, which means
that during the training process the aim is to change these values in order to improve
the outcomes.

In the following sections we are going to discuss the hyperparameters, those param-
eters whose different value generates a different CNN, and are therefore impossible to
train. In fact the usual procedure is to tune these hyperparameters by training different
CNNs for a long enough amount of iterations and choosing the values that are performing
the best. Not all the below mentioned sections will be about actual hyperparameters,
but since their effect on the model is equivalent we will mention them here anyway.

3.2.1 Kernel dimension

The kernel dimension is one of the main hyperparameters. With its dimension we are
specifying also its shape, since it is not a must to have squared/cubic kernels in 2D/3D.
Increasing the dimension of the kernel is going to affect the total complexity of the model,
since we are going to increase the number of weights that we will have to train.

In common practice kernel is usually shaped as a square/cube, and the side is an odd
positive integer. The reason behind this is to avoid ambiguities in equation 3.1, but as
we previously said, any even sized kernel can be easily converted into an odd sized one
thanks to a zero-padding.

Moreover, during the last decade we observed a decreasing trend in the kernel dimen-
sion. This fact can be explained by a comparison of two consecutive 3× 3 convolutions
with a single 5× 5 convolution.

We call receptive field the number of inputs on which our central output value is
depending from. Recalling equation 3.1, the receptive field is given by all the distinct
possible combinations of i and j values, which are exactly equal to the kernel dimension
m×n. Of course, it is possible to define the receptive field after composed convolutions,
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Figure 3.1: Comparison between two consecutive convolutions with kernel sizes of 3× 3
(from layer 1 to layer 2 in green, and then from layer 2 to layer 3 in yellow), and a single
convolution with kernel size of 5× 5 (straight from layer 1 to layer 3 in yellow). Please
notice that the central square of layer 3 has the same field of view in layer 1 (all the 25
squares) independently from which of the convolutions we consider.

with the consequence that we will have to keep into account overlaps. The reason why
we are comparing these two cases is because they are two different way to obtain the
same receptive field, as it can be seen in figure 3.1 [11].

Basically, we are comparing a deeper structure (more layers) with a wider structure
(more parameters) The first case will need to train 2 × (3 × 3) = 18 parameters, while
the second one will need to train 5× 5 = 25 parameters.

Therefore, even by having the same receptive field, the usage of two smaller kernels
is preferable in terms of computational complexity. Moreover, the presence of two layers
is going to “stratify” in a certain sense the effect of inputs, giving more importance to
those ones which are closer to the center (and so detected and used by the first 3 × 3
convolution).

Apart from these two good effects in using deeper but narrower structures, there is
also a negative downside. The iteration of two consecutive 3 × 3 convolutions cannot
generate any possible 5× 5 kernel, and this is quite logically reflected by the number of
parameters previously compared.

Even given these considerations above, usually it should be preferable to use 3 × 3
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kernels, since they are the smallest odd sized kernel which increases the receptive field.
Anyway, it is common to see also 1× 1 (used to change the number of channels/filters)
and 5× 5 kernels, while it is getting more and more rare to see kernels bigger than 7× 7
among the state of the art performing networks.

3.2.2 Number of filters

The term filter is sometimes used as a synonym for kernel in images convolution. This
hyperparameter is used to perform multiple convolutions in the same layer. The number
of filters can also be thought as the number of channels in image related operations. For
example, if we want to have a colored image as final output of a convolutional layer, we
could need to fix its filters number to 3, which can be interpreted as the RGB channels
in whichever order we may prefer.

More in general, we can think the number of filters as the number of neurons that the
convolutional layer will have. Each neuron will perform a possibly different convolution
changing its kernel’s weights, and learning therefore a different feature that will be used
from successive layers.

For this reason, whenever we are dealing with an n-dimensional kernel, the output
of a convolutional layer will be (n+1)-dimensional due to the presence of the filters
hyperparameter.

3.2.3 Strides and Padding

We will now consider strides and padding together, because they are both related to the
“movement” of the kernel over the input.

The strides of an n-dimensional kernel is an n-dimensional sequence of integers, which
specifies how many positions we need to move along a given direction before performing
again the convolution operation. Recalling the definition we gave of convolution in
equation 3.1, basically strides=1 means “perform the convolution operation for every
possible (x,y) in the input”. Strides=2 will mean “perform the convolution only once every
two consecutive positions”, so we are basically skipping half of the possible combinations
and performing it only when (x,y) are both odd ((1,1), (1,3), (3,1), (3,3), ...).

We said that the strides has the same dimensionality of its kernel, because it is
possible to specify different steps length for every dimension of the kernel. Therefore for
a 2D convolution it can be possible to specify strides=(2,3), which means: “perform the
convolution again only after moving of 2 positions on the first dimension or 3 positions
on the second dimension”.

The strides hyperparameter will affect the dimension and the shape of the output,
the bigger the strides and the smaller the output.

The padding hyperparameter is the one we are using to deal with boundary condi-
tions.

When we presented equation 3.1 we mentioned the presence of some unclear situations
due to the fact that it can be required to access the matrix S in some position that does
not exist (e.g. S−1,−1). This kind of problem arise when a kernel, due to its dimension
being bigger than 1, is centered on a boundary element of the input, and hence it escapes
the input borders. For this reason we call it boundary conditions, and the most popular
options are:
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• padding=valid

• padding=same

The valid padding means that whenever the kernel exits from the input, that single
operation must be skipped, resulting in an output of smaller dimension than the input
(if the kernel is larger than 1 in size).

The same padding ideally stands for “keep the same dimension of the input”. Even if
this conclusion is not guaranteed (since other parameters can still reduce the dimension),
the purpose of the same padding is to avoid skipping position because of ambiguity on
how to treat the borders. Therefore the option padding=same is going to add, in any
position that must be accessed but does not exist in the input, an imaginary position
with the less interference possible in terms of its values. The value inside the imaginary
position is going to depend on the operation, for convolutions it can insert zeros, for min
or max pooling it will insert ± inf. Basically it will try to insert the most neutral value,
just in order to not skip any of the convolution operations.

3.2.4 Activation functions

This section is not about a proper hyperparameter, but exactly as for a hyperparameter,
the choice of the activation function is not trainable and must be tuned based on the
purpose and the overall situation.

By activation function we define a function f : R→ R which takes as input the result
of a convolution for a single neuron and gives as output the final output of the neuron.
This exact location allows these functions to regulate the output of a neuron and, more
in general, its activation. From such behaviour this class of functions receives its name.

One of the main purposes of activation functions is to introduce non-linearity in the
mapping process. In this way the learning process can model more complex features with
fewer neurons and layers. We will now examine some of the most common choices for this
particular class of functions, focusing on the most popular and interesting ones. Last but
not least, we will focus also on activation functions’ first derivative, since the training
process requires its computation. Basically we are looking for the best compromise
between non-linearity of the function and a computable and well defined first derivative.

Sigmoid function

The first activation function we are talking about is the sigmoid function, shown in figure
3.2. It is defined as:

f(x) = σ(x) =
1

1 + e−x
(3.2)

with derivative given by:

f ′(x) = σ′(x) =
e−x

(1 + e−x)2
(3.3)
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This function maps the input range from ]−∞,+∞[ to ]0, 1[ and it is non-linear by
definition. One of its greatest advantages is having a continuous derivative, in fact, it
can be easily seen that the sigmoid is a C∞ class function.

On the other hand, one of its main drawbacks is related to its output range. In deep
structures the presence of many consecutive hidden layers with sigmoid as activation
function lowers the gradient’s magnitude [12], causing the well known gradient vanishing
problem.

Figure 3.2: Sigmoid activation function and its first derivative, plotted for an input range
from -5 to +5.

Hyperbolic tangent

Another C∞ class activation function is given by the hyperbolic tangent, presented in
figure 3.3. It is defined as:

f(x) = tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(3.4)

with first derivative:

f ′(x) = tanh′(x) =
4

(ex + e−x)2
(3.5)

It is important to notice that the hyperbolic tangent can be deduced from the sigmoid
function, in fact:
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tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
=

2

1 + e−2x
− 1 = 2σ(2x)− 1 (3.6)

and

tanh′(x) =
4

(ex + e−x)2
=

4e−2x

(1 + e−2x)2
= 2σ′(2x)− 1 (3.7)

The existence of this relation gives to the hyperbolic tangent some common advan-
tages and disadvantages of the sigmoid.

An important difference is the output range, which is now ] − 1,+1[. The fact that
we have a codomain centered around the 0 gives a higher chance to have output values
closer to 0. Moreover, its derivative is steeper than the sigmoid one. Therefore hyperbolic
tangent is usually preferred to sigmoid because neural network tend to converge faster
[13] and these networks tend to have a lower classification error [14].

Still, this function inherits the gradient vanishing problem from the sigmoid function.

Figure 3.3: Hyperbolic tangent activation function and its first derivative, plotted for an
input range from -5 to +5.

ReLU

The next function is the Rectifier Linear Unit (ReLu) reported in figure 3.4.
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It is defined as:

f(x) = ReLU(x) = max(0, x) =

{
0 if x < 0

x if x ≥ 0
(3.8)

with obvious first derivative

f ′(x) = ReLU ′(x) =

{
0 if x < 0

1 if x ≥ 0
(3.9)

This is the most used activation function in the DL context [12].
One of its biggest advantages is being very simple, computationally speaking, and

therefore faster to compute. This leads to a faster training and therefore a faster learning
and better CNN performances [15].

Moreover, ReLU’s derivative is constantly equal to 1 if the input is positive. This
avoids the fact of gradient getting smaller and smaller among layers during backpropa-
gation, and therefore it solves the gradient vanishing problem.

Some drawbacks are related to the fact that every non positive input is mapped into
0, avoiding the possibility to treat differently any of these values (this problem is also
called “dying ReLU” [12]). If on one side, the possibility to output a true zero leads more
easily to a sparse representation of data layer by layer (thanks to the presence of many
zeros), the same effect can lead to the “death” of some neurons. This means that some
neurons are never going to be updated and used if they end up in a weight configuration
that gives them negative inputs, since the derivative of ReLU(x) is 0 for x ≤ 0 and then
the backpropagation algorithm is going to have null effect on that given neuron. So once
the neuron goes negative it is very unlikely for it to recover from this situation [16] [17].

Another big disadvantage is the fact that average output is identically positive, lead-
ing to a shift in bias for the next layer, process which slows down the training.

ELU

One of the proposal to try to improve ReLU is represented by the Exponential Linear
Unit (ELU), reported in figure 3.5.

The function is defined as [18]:

f(x) = ELU(x) =

{
α(ex − 1) if x ≤ 0

x if x > 0
(3.10)

with first derivative:

f ′(x) = ELU ′(x) =

{
αex if x ≤ 0

1 if x > 0
(3.11)

ELU tries to solve the bias shift problem by moving its average closer to 0. This
is possible since ELU menages to output negative values. This leads also to a faster
training [19].
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Figure 3.4: ReLU activation function and its first derivative, plotted for an input range
from -5 to +5.

The α parameter is the one which controls the lower bounded saturation, and it is
usually set equal to 1 for computational simplicity, but a fine tuning could be operated
also on this parameter.

ELU succeeded in obtaining higher classification scores than ReLU [18], and in being
more robust to input perturbation or noise [19].

SELU

The Scaled Exponential Linear Unit (SELU) is depicted in figure 3.6, and it is a modern
variant of ELU.

It is defined as [20]:

f(x) = SELU(x) =

{
γα(ex − 1) if x ≤ 0

γx if x > 0
(3.12)

with first derivative:

f ′(x) = SELU ′(x) =

{
γαex if x ≤ 0

γ if x > 0
(3.13)

It appears clear that SELU(x) = γ ·ELU(x), but the authors suggest also two very
precise values for the parameters:
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Figure 3.5: ELU activation function with α = 1.0 and its first derivative, plotted for an
input range from -5 to +5.

• α = 1.67326324

• γ = 1.05070098

This because what SELU tries to implement is a way to self-normalize the weights, by
creating a stable and attractive point in the weights space with 0 average and a variance
of 1.

This kind of activation function was thought for feed forward NN, in order to allow
deeper structures.

Even if SELU was successfully used in some cases with CNN [21], its general usage
is still under study.

Softmax function

We will close the activation function discussion with the Softmax function.
Differently from previously discussed functions, Softmax is almost always used only

for the last layer (output layer).
The reason resides in its definition:

f(xi) = Softmax(xi) =
exi∑n
j=1 e

xj
(3.14)

where xi is one of the n elements of the vector x.
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Figure 3.6: SELU activation function for α = 1.67326324 and γ = 1.05070098, together
with its first derivative, plotted for an input range from -5 to +5.

Therefore its main usage is as activation function for the output layer in a classifi-
cation task NN, since in that case it basically returns the probability for a sample to
belong to each class, usually with the one hot encoding among classes used as target.

3.2.5 Initializers

During this and the next section we will talk more in general of functions applied to any
sort of trainable parameter, will it be a kernel weight or a bias (additive constant used
to shift the input of the activation function). Then keep in mind that there will exist
kernel initializers and bias initializers (and the same for the regularizers).

The used initializers can be thought as hyperparameters, but they are more precisely
the initial condition of our path across the parameter space during the training process.
Most of the initializers assign pseudo-random generated values to the parameters, leading
therefore to different and possibly very distant outcomes achieved by the same initializer
over different runs, if the random state is not fixed.

The first choice we have to perform is between:

• constant initializers, where all parameters are chosen equal to a certain constant
value;

• random initializers, where all parameters are pseudo-randomly generated from
a particular distribution;
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• custom initializer, where we are assigning a value to every parameter, or we
define our own new way to assign them a value.

For the biases, the most common choice is the constant zero initializers, since we
usually prefer to start with no bias and then introduce it if the training requires it.

For the kernel weights, the most common choice is among the random initializers. The
most popular ones all made use of one between the uniform distribution and the gaussian
distribution, and this choice is probably the most important of the whole initializers
selection.

Once we have decided which distribution to use, we can take one further decision
which regards the parameter of the distribution and its eventual truncation.

Therefore we can perform our last choice between the followings:

• Standard , where the uniform distribution has a range of [0, 1] and the gaussian
distribution has a standard deviation σ = 1.0.

• Glorot [14], where we introduce a dependence from the number of inputs fIN
and the number of outputs fOUT , giving therefore a uniform distribution over
[−

√
6/(fIN + fOUT ),

√
6/(fIN + fOUT )] or a gaussian distribution with a standard

deviation σ =
√

2/(fIN + fOUT ).

• Lecun [13], where we only introduce the dependence from the number of inputs,
and we will have a uniform distribution over [−

√
3/fIN ,

√
3/fIN ] or a gaussian

distribution with a standard deviation σ =
√

1/fIN .

• He [15], which is exactly as the previous one times
√

2, therefore we will have a
uniform distribution over [−

√
6/fIN ,

√
6/fIN ] or a gaussian distribution with a

standard deviation σ =
√

2/fIN .

All the above mentioned gaussian distribution will clearly have mean µ = 0.

3.2.6 Regularizers

As previously mentioned, we will talk about regularizers which will be equally applicable
to kernel’s weights or biases.

What regularizers try to do is avoiding weights/biases exploding values. To achieve
this result, a penalization parameter can be applied to the norm of the weights/biases
vectors.

The most common options are:

• No regularizer .

• L1 regularizer , where the penalization parameter multiplies the L1-norm of the
mentioned vectors.

• L2 regularizer , where the penalization parameter multiplies the L2-norm of the
mentioned vectors.

• L1-L2 regularizer , where we have two penalization parameters, one that multi-
plies the L1-norm, and one that multiplies the L2-norm of the mentioned vectors.
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Usually the most common choice is to apply no regularization if no problems of
exploding gradient are encountered, since every regularizer introduces some sort of bias
in the values.

The L1 regularizer tends to shrink exactly to 0 all the groups of highly correlated
values except one value per group, which by the way can vary with the run.

The L2 regularizer shrinks closer to 0 every element of a highly correlated group of
values, without cancelling any value at all.

The L1-L2 regularizer is of course a tradeoff between these two effects, where the
balancing is regulated by the ratio of the two penalization parameters.

3.2.7 Number of layers

This is one of the most important hyperparameters.
Its usage is quite intuitive, the more layers, the higher the number of parameters in

the network and hence the bigger the complexity of the CNN.
The usual trade-off is between underfitting (due to a low complexity structure) and

overfitting (caused by a high complexity CNN approaching a simpler problem).
Even fixing the main parameter regarding structure complexity, which is the total

number of neurons, there is another trade off that we have to find. This second one is
between “width” and “depth”.

Let us consider, for simplicity’s sake, total number of neurons in a CNN as a synonym
for CNN’s complexity. Fixing the total number of neurons at N implies that we still
have many possible architectures to choose from.

To count them we need to find how many different ways do exist to sum natural
numbers up to the value N . In fact the total number of neurons in a CNN is obtained
by summing the number of neurons for each layer

N =
l∑

i=1

ni (3.15)

where l is the number of layers in the CNN.
For our counting purpose we will use an ordered tuple as notation:

(a, b, c, . . .) = a+ b+ c+ . . . (3.16)

The reason for the use of an ordered tuple stands in the fact that, for our purpose
(2,1) is different from (1,2), based on the fact that we will have different CNN structures,
respectively of decreasing or increasing width.

Now, to find how many different ordered tuples sum up to N we proceed by thinking
N as a sequence of N ‘+1’ adding factors:

N = (+1 + 1 + 1 . . .+ 1 + 1) (3.17)

now we notice that, between any two of these factors, we can replace the ‘+’ sign with
a sign surrounded by parenthesis ‘)+(’, thus creating a new ordered tuple.
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(+1 + 1) + (1 + 1 . . .+ 1) = (2, N − 2) = N (3.18)

Therefore, if we have N ‘+1’ elements there are exactly N−1 different locations where
we can independently replace ‘+’ with ‘)+(, and any of these replacements generates a
new ordered tuple.

Considering that for N − 1 position we either have a ‘+’ or a ‘)+(’, the number of
different ordered tuples that sum up to N is given by 2(N−1), and that is also the number
of different architectures of a CNN that have the same total number of neurons but a
different structure.

It appears quite clear that, solving the optimization problem by brute force (which
means trying all the different 2(N−1) CNNs, and choose the best one) is prohibitive
already for small numbers such as N = 10.

Usually, fixed N, it is preferable to go deeper than wider. The reason resides in the
definition of Deep Learning, since the features or concepts that the CNN will learn are
built in a deep way. Therefore using a single layer with N neurons is going to create
N simple features, while using 2 layers with N/2 neurons will create N/2 more complex
features combining N/2 simpler features.

For these reasons, the approach is usually to tune most hyperparameters on a couple
of layers, and then increase the number of layers paying attention to overfitting and
reducing the number of neurons per layer if necessary. Of course the number of neurons
per layer is not constant and it is possible to change width along the layers’ depth. The
most common structures are of constant or decreasing number of neurons as the layer’s
depth increases, but it is possible to encounter also the opposite.

3.2.8 Kind of layers

This is the first example of something that is not a hyperparameter but has the same
effect on the model. In fact, it s obviously not possible to change layer type during the
training process, and so it must be fixed each time. But why are we talking of layer
“kinds”? Because it is possible to have layers performing different operation from the
convolution.

Now we will exploit some of these other possibilities, excluding some very peculiar
kinds (such as long-short term memory cells, used almost only in recurrent NN) and
focusing on the mostly used options.

Pooling layers

In CNNs the most common option is to alternate convolutional layers with pooling
layers. A pooling operation consists in selecting a portion of the input and discard some
information from it.

The reason why pooling layers are used is because we may want to reduce the amount
of information stored in successive layers, together with CNN’s complexity.

Most common cases for pooling operation consist of selecting a N-dimensional rect-
angular portion (which in case of global pooling is equivalent to the whole input) of an
N-dimensional input, and then giving as an output a single number, which can be the
maximum, the minimum, the average or other.
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Usually pooling is used to get rid of some superficial information, then its usage must
be accurately studied and placed.

Dropout

This one is not properly a layer kind, but it does behave like one.
The effect of a Dropout is taking as input previous layer neurons’ outputs, and de-

activate some of them by simply multiplying those for 0.
The reason why this should be used is restricted to the training phase, where de-

activating some neurons outputs forces the neurons of the successive layers to do without
some of their possible inputs. Of course the inputs to de-activate are chosen randomly
among all the inputs, and they are possibly different for each iteration. This procedures
generates a training less prone to overfitting and more robust to outliers.

The only parameter of a dropout layer is the fraction of input units to drop r. There
are different versions of dropout, among which we will mention only α-dropout. α-
dropout is a dropout which tries to maintain the mean and the variance input as much
unvaried as possible even after the dropout operation. This last version is better suited
for enhancing the SELU effect of self-normalizing NN [20].

Of course, dropout effects must be removed during the testing phase, otherwise they
will act as a pruning operation on the CNN.

Input managing layers

Another different class of layers consists of those ones which simply manage the input.
There are many possibilities such as reshaping, scaling and/or translating the values,

apply transformations.
In a certain sense, activation function can be seen as input managing layers since

they simply apply a transformation to their inputs.
The most used layers of this kind which are not activation functions are:

• Flatten, which simply converts the input into a 1-dimensional sequence. Generally
used as a bridge between a CNN’s last layer and the first layer of a dense NN.

• Batch Normalization, which standardizes its input based on the minibatch samples,
giving an output with the same shape, but in a way where the minibatch samples
have mean close to 0 and standard deviation close to 1.

In particular the last one is used to “adjust” every minibatch. We will talk more deeply
of minibatch later, but right now you can imagine that with minibatch we indicate the
amount of different data samples used before updating the CNN parameters.

Hence, Batch Normalization is used to “regularize” the behaviour of the network in
order to avoid a drift in the updates due to a small group of some systematically different
input data.

3.2.9 Optimizer

The optimizer is literally the algorithm that we are going to use in order to update our
CNN parameters during training. Moreover, this variable does not regard our CNN,
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but it regards the training process. Therefore this is again, something which is not a
hyperparameter but behaves like one.

All the optimizers will have possibly very different instructions and computations,
leading to a different set of tunable parameters. The only parameter that every optimizer
will have for sure is the learning rate. This particular parameter affects the magnitude of
the updates to the CNN trainable parameters. Basically, after running the CNN over the
training data, we will have some sort of “error” (which will be discussed later in the loss
function section) the higher the learning rate the bigger the magnitude of the updates.
We can think of it, as the training without an optimizer gives use the direction (in the
trainable parameter space) for the best update, then the optimizer tells us how far to
move along that given direction. The length of this step is going to depend in some way
on the chosen learning rate. This does not always happen exactly, some optimizers use
a mathematical tool called momentum which also affects the mentioned direction, but it
gives us the idea of what the learning rate is.

Considering p as the vector of the CNN’s trainable parameters, X as the data, y as
the targets, and f(p;X, y) as the chosen loss function, we will now analyze some of the
most popular optimizers and briefly explain their inner tunable parameters.

Gradient Descent and Stochastic Gradient Descent

Gradient Descent is one of the oldest optimization algorithms still used today (but mostly
through its newer stochastic version).

What this algorithm does is using the slope of a loss function f(p;X, y) to update
the vector of trainable parameters in the following way:

pin+1 = pin − l
d

dpi
f(pn;X, y) (3.19)

where l is the learning rate, and pik refers to the value of the parameter pi for the k-th
iteration.

The formula can obviously be rewritten as follows

pn+1 = pn − l∇pf(pn;X, y) (3.20)

where ∇p(f(pn)) is the gradient of f with respect to the vector pn.
It is clear that, in order to be effective, we need a function f with a clear global

minimum, even better we could require f to be convex. Such case is by the way not very
realistic, most loss functions are not convex and usually they do have many local minima,
where the training can get stuck if l is not big enough. Anyway, a learning rate too big
could stop the training from converging (condition where the update is small enough
to stop the training process), giving the updates an oscillatory trend. It is known that
Gradient Descent can easily get stuck in poor local minima [22].

To tackle this problem, one solution is usually to start with a relatively big learning
rate and apply a decay rate, so that we have a decreasing learning rate along with the
number of iterations.

Another way to solve the local minima problem is the use of momentum.
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Momentum technique consists in a technique for accelerating gradient descent by
accumulating a velocity vector over a direction of persistent descent [23].

The new updates with the introduction of momentum can be written as

vn+1 = µvn − l∇p(f(pn;X, y)) (3.21)
pn+1 = pn + vn+1 (3.22)

where µ is the value of the momentum and vk is the vector of accumulated velocity at
k-th iteration.

One interesting variant for the momentum is the Nesterov momentum.
This version has a different way to compute the velocity vector, trying in a certain

sense to “guess” where the updates are going move the vector pn+1 and using this guess
in the computation of the gradient. This results in the following updates formulae

vn+1 = µvn − l∇p(f(pn + µvn;X, y)) (3.23)
pn+1 = pn + vn+1 (3.24)

The result of Nesterov momentum is an optimizer more able to decelerate when
needed in certain situations [23].

The Stochastic Gradient Descent (SGD) is basically the same algorithm, but it ran-
domly chooses a small subset of (X,y) and performs the updates just based on this
subset.

SGD is a good way to speed up the optimization process, and it is particularly useful
when there is some sort of redundancy in the training data. For example if we have
clear clusters in X, then it is believable that data points from the same cluster will have
similar effect over the gradient computation.

Anyway, the same effect of SGD can be obtained varying the batch dimension (whose
effects will be discussed in a further session) and therefore it is common to use this second
hyperparameter to turn GD into a SGD.

ADAM

One of the most recent and yet vastly used optimizer is the Adaptive Moment Estimation
(ADAM) optimizer.

Firstly formulated by Diederik P. Kingma and Jimmy Lei Ba in 2015 the method is
reported to have little memory requirements, be computationally efficient and well suited
for problems that are large in terms of data and/or parameters [24].

The updates are more complex and with more intermediate steps with respect to
SGD.
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m0 = v0 = 0 (3.25)
mn+1 = β1mn + (1− β1)∇p(f(pn;X, y)) (3.26)
vn+1 = β2vn + (1− β2)(∇p(f(pn;X, y)))2 (3.27)

m̂n+1 =
mn+1

(1− βn+1
1 )

(3.28)

v̂n+1 =
vn+1

(1− βn+1
2 )

(3.29)

pn+1 = pn − l
m̂n+1√
v̂n+1 + ε

(3.30)

where (m,v) are the first moment and the second raw moment vectors, with respectively
their decay rates (β1, β2). What these vectors try to estimate are the first moment (the
mean) and the second raw moment (the un-centered variance) of the gradient function,
through an exponential moving average over past iterations. Moreover, since we want
(β1, β2) to act as decay rates, we have β1, β2 ∈ [0, 1[ The version without hat of the
moment vectors correspond to the biased estimate, since the vectors are initialized as
full of zeros we will have a bias towards 0. The hat version indicates the un-biased
estimate. Finally, ε is used to avoid divisions by 0 (which otherwise would always occur
in the first iteration), and since it has no mathematical meaning it is advisable to use a
very small value for it.

In literature there are some suggested values which are highly recommended [24]:

l = 0.001 (3.31)
β1 = 0.9 (3.32)
β2 = 0.999 (3.33)
ε = 10−8 (3.34)

but it is possible to look for a better tuning of them, with particular reference to the
learning rate.

ADAM has shown many advantages in terms of generalization properties, and it was
found to be robust and well-suited to a wide range of non-convex optimization problems
in the field machine learning [24].

On the other hand, some more results showed that ADAM fails to converge on some
particular simple one-dimensional convex problems [25], proving once again that there
is not a universal optimizer for the ML/DL tasks.

NADAM

The Nesterov Accelerated version of ADAM (NADAM) tries to improve even further the
ADAM results.

The operation of “guessing” the next update and compute the gradient over that
guessing is by the way much more complicated than the one we saw earlier in 3.23.

This operation is obtained by introducing a decay schedule for a new parameter µ
which depends on β1. We report the updates implemented by the NADAM algorithm
(for precise explanations, see the Methods section of [Dozat, 2015] [26])
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m0 = v0 = 0 (3.35)

µn = β1(1− 0.5 · 0.96(n)/250) (3.36)
mn = β1mn−1 + (1− β1)∇p(f(pn−1;X, y)) (3.37)
vn = β2vn−1 + (1− β2)(∇p(f(pn−1;X, y)))2 (3.38)

m̂n =
mn

(1−
∏1=n

i=1 µi)
(3.39)

v̂n =
vn

(1− βn2 )
(3.40)

m̄n =
(1− µn)∇p(f(pn−1;X, y))

(1−
∏1=n

i=1 µi)
+ µn+1m̂n (3.41)

pn = pn−1 − l
m̄n√
v̂n + ε

(3.42)

The implementation of Nesterov version of momentum can be recognized in the step
3.41 for the computation of m̄n, where now the “guess” is no more performed in the
gradient computation, but in adding the “next” momentum µn+1mn.

The author of NADAM suggest a slightly different value for one parameter, which is
β1 = 0.99.

From the comparison of NADAM and ADAM performances, it is common now to
believe that the application Nesterov momentum leads in general to better results than
the plain classic momentum.

3.2.10 Loss function

When we are dealing with CNN training we need a way to express how good are our
results after each iteration.

In supervised learning we have some true targets and we want to reply those targets
through our CNN. Therefore we will have some data samples X, with a true target
vector yt and, by running our CNN over the data samples, we will generate a vector of
predicted targets yp and compare it with the true ones.

Such comparison is evaluated in terms of a function G(yp,yt) which is called loss
function or cost function.

Usually, the main requirement for G(yp,yt) is to have its global minimum when
yp = yt.

Anyway, some other properties can be quite useful, such as being smooth and/or
convex (having only 1 minimum and a non negative second derivative always).

We can distinct two different sub-classes of loss function, depending on the nature of
the target vectors.

The Probabilistic loss functions are used in order to compare two vectors yp

and yt which can be interpreted as probability distribution. The main use case for this
functions are the classification tasks. In this cases usually the vector yt is a vector of
one hot encoded vectors, meaning that

yi,t = (0, 0, . . . , 0, 1, 0, . . . , 0, 0) (3.43)
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where yi,t is the one hot encoded vector for the i-th sample, and its k-th element is 1 if
the sample belongs to the k-th class, 0 otherwise. Then the vector yt can be thought as
a matrix, with one row for each sample and one column for each class, and the element
yik is 1 if the i-th sample belongs to the k-th class, 0 otherwise. Therefore each row of
yt can be thought as a discrete normalized probability distribution.

On the other hand, the rows of yt will be compared with the rows of yp produced by
our CNN. These rows are not going to be one hot encoded (even if we aim for it), since
the values in the output layer of our CNN will rarely be exact integers (unless we force
them to be with a step activation function).

We can overcome the problem of not having a one hot encoded output in terms of
classification, by simply assigning the sample to the class j if the j-th neuron in the
output layer is the one containing the maximum value all over that layer.

But, apart from guessing the correct class, we should do more in terms of comparison,
and so we can interpret also the output layer as a discrete probability distribution (which
will be our yi,p) and compare it with the true target probability distribution (yi,t).

In general, probabilistic loss function tend to treat differently some small variations
that can occur in the predicted probability distribution, their main aim is to align the
two distributions peaks.

On the other hand, the Regression loss functions fits more regression tasks, where
even the smallest difference between yp and yt could be useful given the more continuous
nature of the target, and therefore it will be considered.

By the way, the main difference between these two sub-classes is that the probabilistic
loss functions are expected to work with probability distributions, therefore part of their
efficiency is linked to the fact that the true targets and the CNN outputs are normalized.

In the followings, we will examine some of the most common loss functions and their
expressions assuming we have the true targets yt and the predicted target yp.

Categorical Crossentropy

This probabilistic loss function is by far the most used in classification tasks.
It is called crossentropy because it computes the entropy using the well-known Shan-

non’s formula, but using two different probability distributions. Then its expression is
the following:

CC(yt,yp) = −
∑N

i=1

∑d
j=1 yij,t · ln(yij,p)

N
(3.44)

where d is the dimensionality of each single data sample. Sometimes, since N is the
constant indicating the number of samples, we can multiply by N to move from the
average categorical crossentropy to the total categorical crossentropy.

Please notice that, if all the yi,t are one hot-encoded vectors, the crossentropy ex-
pression can be rewritten in a more compact way

CC(yt,yp) = −
∑N

i=1 ln(yij,p)

N
with j = argmax(yi,t) (3.45)
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and this is clearly a probabilistic loss function since

CC([0, 1, 0], [0.0, 0.7, 0.2]) = CC([0, 1, 0], [0.15, 0.7, 0.15]) (3.46)

therefore ignoring the different composition of yp as long as its element in position
argmax(yt) is unchanged.

Poisson

A probabilistic loss function based on a similar criteria as the crossentropy one.
Its expression is

Poisson(yt,yp) = −
∑N

i=1

∑d
j=1 yij,p − yij,t · ln(yij,p)

N
(3.47)

This loss function is advisable when our samples’ targets could follow a Poisson
distribution. Such distribution is typical for the number of times an event happen on a
specified time interval, assuming:

• events occur independently,

• The average rate at which events occur is independent of any occurrences,

• two events can not occur simultaneously,

• the number of occurrences k is a non-negative integer.

In that case the distribution is given by

P (k;λ) = P (x = k) =
λke−λ

k!
(3.48)

where λ is a parameter proper of the distribution.

Kullback-Leibler Divergence

This probabilistic loss function, (usually mentioned as KLD) is expressed as

KLD(yt,yp) =

∑N
i=1

∑d
j=1 yij,t · ln(

yij,t

yij,p)

N
(3.49)

Please notice that this expression is tightly connected with the categorical crossen-
tropy one

KLD(yt,yp) =

∑N
i=1

∑d
j=1 yij,t · ln(

yij,t

yij,p
)

N

=

∑N
i=1

∑d
j=1 yij,t · ln(yij,t)− yij,t · ln(yij,p)

N

= −H(yt)

N
− CC(yt,yp)

N
(3.50)

and since the average entropy of the true targets is a constant, computing the Kullback-
Leibler Divergence is completely identical to computing the categorical crossentropy with
a bias.
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Mean Squared Error

This loss function is a regression loss function, and by far the most used in this field.
It is defined as:

MSE(yt,yp) =

∑N
i=1

∑d
j=1 |yij,t − yij,p|2

N · d
(3.51)

where we obtain the average MSE. For this (and most of the further regression loss)
function it is also possible to multiply by d to obtain the average total MSE per sample

This particular loss function is often used in regression problems because it is convex
and it “punishes” the most when outputs are far from the target. This aspect implies
also a known drawback of MSE: its strong dependence on outliers. It can be easily seen
that, a huge difference for a single (i, j) value in formula 3.51 can be orders of magnitude
over all the other differences, resulting in MSE(yt,yp) ≈ MSEij(yij,t,yij,p) and losing all
the valuable information regarding other samples contributes

Mean Absolute Error

This regression loss function is very similar to MSE.
Its expression is

MAE(yt,yp) =

∑N
i=1

∑d
j=1 |yij,t − yij,p|
N · d

(3.52)

The only difference with MSE is that this loss “punishes” linearly any error. Therefore
the slope of MAE is constant, while MSE is flattening around when close to its minimum.

The choice between MSE or MAE could be reformulated as: is a very small error
tolerable or not? Even if using MAE does not imply a higher probability of reaching the
minimum, it depends of course on the loss which best fits the problem.

There exist also other variants such as Mean Absolute Percentage Error, or Mean
Squared Logarithmic Error which will not be treated, but their names are quite expressive
of how they should look like and behave.

Huber

This regression loss function can be seen as a trade off between MSE and MAE.
Its expression is

HB(yt,yp) =

∑N
i=1

∑d
j=1 x

N · d
where x =

{
|yij,t−yij,p|2

2
if |yij,t − yij,p| ≤ δ

δ2

2
+ δ(|yij,t − yij,p| − δ) if |yij,t − yij,p| > δ

(3.53)

where δ is a free parameter which acts as a switch from MSE-like behaviour to MAE-like
one. Calling εij the error represented by |yij,t − yij,p|, it is possible to appreciate that
the first derivative of HB with respect to εij is equal to d for εij > δ and to εij itself for
εij ≤ δ, resulting in being continuous for εij = δ.

Therefore HB can be interpreted in the following way: starting from εij = 0 we have
a quadratic behaviour (typical of MSE), when we reach εij = ±δ we lock the slope to



3.2. CONVOLUTIONAL NEURAL NETWORKS 39

its current value ±δ and we have a linear trend (typical of MAE). Doing so we have a
continuous derivative and a tradeoff between MSE and MAE, resulting in a loss function
which is much more robust to outliers (since they will fall in the MAE-like behaviour)
and at the same time gives little importance to little errors (since they will fall in the
MSE-like trend).

Cosine Similarity

This regression loss function is pretty different from all the previous ones. For this
particular loss function we will interpret yi,t and yi,p as two vectors in an inner product
vector space (usually Rn combined with the classic euclidean dot product < · ; · >). The
Cosine Similarity (CS) is simply represented by the cosine of the angle between these
two vectors in such space.

Its expression is:

CS(yt,yp) =
N∑
i=1

cos(θi)

N
=

1

N

N∑
i=1

< yi,t; yi,p >

||yi,t|| · ||yi,p||
=

1

N

N∑
i=1

∑d
j=1 yij,t · yij,p√∑d

j=1 yij,t
2 ·

√∑d
j=1 yij,p

2

(3.54)

By the way, we must notice how CS(yt,yp) ∈ [−1, 1], but it reaches its maximum
value for yt = yp. While all of the other loss functions needed to be minimized, CS need
to be maximized in order to give us the best outcomes. Therefore we have two options:
changing the external algorithms in order to find the maxima of the loss function, or
using -CS instead of CS. Since the second option is much more easier this will be the
one implemented by most of the libraries.

Moreover we must pay a particular attention to null vector, which are orthogonal by
definition to any other vector in the vector space. For such reason, CS will always output
0 if one of its 2 arguments is a null vector. This results in the uselessness of using CS as
loss function if one of the true targets vectors can be a null vector, because it will end
up being untrainable and hence useless, or even counterproductive.

3.2.11 Metric

Most, if not all, of the loss function could be used also as metric function. The difference
between losses and metrics stands in their purpose: losses are used to train the CNN,
while metrics are only used to evaluate CNN’s performances.

Basically, we should choose a metric (or a set of metrics) based only on the trait of
the performances that we wish to evaluate. Then we should decide metrics based on
the problem we are tackling and the CNN’s purpose, and since they do not affect the
training there is no tuning for the metrics section.

Metrics are, by the way, the values we should use in our tuning process. A consider-
ably better metric value (where better can be higher or lower, depending on the metric)
could imply that the last set of hyperparameters could be the more adapt in achieving
the required task. Anyway, in the comparison, many other factors should be considered.
Were the compared CNNs trained for a reasonably number of iterations? Were they
trained for around the same number of iterations? Are the results different enough, or
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could the difference just be due to random fluctuations? Were the two CNNs evaluated
on the same validation dataset?

Many of these questions can never be answered without doubts, here it lies one of
the hardest point of training a whole CNN.

3.2.12 Batch Dimension

The Batch is the portion of training data which is considered before computing the
updates through the optimizer.

It could seem that this number should have no effect on the the training itself, we
always end up using all of the training data, just performing many small steps instead
of one big step should not vary that much.

The importance of batch size is given by the presence of the derivative of the loss
function in the updates computation. In fact, this derivative is evaluated based on the
data we are using, so a small batch will have a lower probability to originate a gradient
which is pointing in the direction of maximum decreasing slope.

To try to make that a little more clear, we could state that

lim
η→0+

f(pn, X, y(η)) = f(pn, X, ytrue) (3.55)

where we use η to indicate noise and so y(η) to indicate the targets we possess, which
are affected by noise.

If we use a large number of samples, the effect of noise should average out, resulting
in a much more reliable estimation of ∇(f(p, X, y)). By the way, in most of the cases
we have an exact number of data samples, and it is impossible (or maybe just very hard
due to cost, time, availability) to obtain more data.

Then, why should we choose to reduce on purpose the amount of data samples used
to compute the loss gradient? The answer is that, doing so, we are more influenced
by noise, and this stochastic effect gives a higher chance to avoid local minima or even
escape from them.

On the other hand, reducing too much the batch dimension can result in a very noisy
path of the updates, slowing down learning or even avoiding its convergence.

Therefore dataset dimension (and its quality) shall always be considered when choos-
ing the batch dimension.

The most common options are the following:

• Full-batch, where the batch size is equal to the train dataset.

• Mini-batch, when the batch size is bigger than 1 data sample but smaller than
the whole train dataset.

• Online learning, when the batch size is equal to 1 data sample.

In the last case, we are updating the vector p after every sample, thus resulting in the
noisiest gradient possible.

Usually the option of the Mini-batch is chosen, since it represents the trade off and
it is slightly tunable depending on the needs. The most common choices for the batch
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size are powers of 2, since most of the runtime accelerators (GPUs and TPUs) split the
data samples in 2k subsets when running in parallel a training algorithm.

The remaining option of Full-batch is useful when the dataset is small, while the
online learning option can be a valid option when we are running our training on a real-
time training, with the possibility to perform training on a single data sample without
even storing it.
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Chapter 4

The Analysis

4.1 Introduction
Now it is time to focus on the main portion of this work. In order to investigate de-
tectable signs of biological ageing we will consider a database of PPG signals, process
such signals in order to clean them and perform feature extraction, identifying the most
useful group of features through a procedure of feature selection. Finally we will compare
the performances of our most useful group of features with the performances of the best
CNN, in order to compare the Statistical Learning approach with the Deep Learning
one.

Please notice that most of this chapter is extracted and elaborated from the BioRχve
paper [27] of which professor Castellani and me are among the co-authors, and which
contains the official outcomes of the reference study.

4.2 The Data

4.2.1 Data Acquisition

It is known that ML and mostly DL approaches often require big data availability. Given
the nature of the study, we could not rely on small clinical trials from local hospitals.
Therefore we obtained our data from the Heart for Heart initiative [28], a project which
aims to become the world’s largest heart health initiative. H4H data are PPG signal
acquired through smartphones by using a specific app. The H4H initiative is powered
by many partners, among which Happitech, the World’s first smartphone CE certified
heart rhythm SDK, for iOS and Android [29], with the aim of detecting heart rhythm
disorders.

The PPG acquisition happens via the smartphone camera. By gently pressing your
fingertip on top of the camera lens and partially covering the flash, the smartphone
will behave like a reflection-mode photoplethysmograph, measuring the amount of light
reflected by the fingertip and deducing the blood vessels’ volume trend over time.

Of course this kind of data acquisition contains many more possible point of failure
with respect to clinical trials. For a proper measurement, the smartphone app requires
the subject to:

• put the hand on a firm surface,

43
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• avoid moving either the hand or the phone (also moving in general, a different
body posture can cause a different blood pressure in the fingertip and therefore a
different blood volume not caused by the heart),

• avoid talking or taking deep breath (because talking, yawning and heavy breathing
can affect PPG measurements, mostly in the low frequencies component [30].)

• wait around 100 seconds for calibration and measurement.

The drawback is that people are not monitored by any expert during the acquisition,
so they could break one of the above suggestions and lower the measurement quality.

On the other hand, by having thousands of long records (∼ 90s each) we will rely on
the possibility to filter data quality and perform outliers detection.

After the measurement, some information is acquired from the subject, such as smoker
status (a boolean parameter), height, sex, weight, etc, and most importantly the mea-
surement, together with its information, is completely anonymized and only then it gets
stored in the database.

4.2.2 Description of the used dataset

The database used for this study counts 4769 individuals. For each subject, one file in the
.csv format is provided, containing the PPG recordings and some additional information.
These additional information consisted of: sex, height, weight, and smoke (a boolean
status for active smokers). The PPG recording is organized in 7 columns: time (around
90 seconds of measurement with a sample frequency of averagely 30 points per second),
simultaneous recordings of red, green and blue reflected light (consisting in the PPG
measurement), and the X, Y, and Z components of a three axis accelerometer.

Even if infrared/red light is more susceptible to motion artifacts with respect to the
green component [31, 32, 33] we considered only the red component because of its higher
amplitude with respect to the green and blue components, always relying on possible
further outlier detection in cases of excessive measured motion artifacts.

4.3 Preprocessing

We first needed to remove the trend from the raw red PPG signal. By “removing the
trend” we mean “removing the frequencies in the signal spectrum which are clearly lower
than the interesting phenomena”. In Figure 4.1 we can appreciate the visible distinction
between higher frequencies (due to blood vessels pulsations) and lower frequencies (slower
vertical shifts over time, which can be due to motion, consistent change in blood pressure,
talking/heavy breathing). The second one is not directly linked to vascular phenomena,
therefore we needed to remove it.

In order to do so we computed a centered moving average (CMA), which will contain
only the frequencies below a certain threshold, and subtracted it from the raw signal, in
order to perform a high-pass filter. The sliding window width w was made equal to the
average sampling frequency of the signal, in this way we had around the same number
of points per second for each of the different signals.
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After that we needed to account for motion and noise artifacts. So we performed
signal demodulation. We used the detrended signal (a real-valued signal s) and its Hilbert
transform (H(s)) to generate the analytic signal (a complex-valued signal s + H(s)).
The module of the analytic signal represents the instantaneous amplitude (also called
the envelope) of the signal. This last one was obtained and then smoothed with another
CMA with w2 = w

2
, which in this case was acting as a low pass filter. Lastly, the detrended

signal was divided by the smoothed envelope, resulting in the detrended, demoduled, and
denoised signal used for further analysis (Fig. 4.2).

Therefore, an accurate representation of the preprocessing python code for a single
signal could be the following:

• We start with a raw signal raw consisting of the acquisition times sequence rawT ime,
and 3 time series (respectively the red rawR, green rawG and blue rawB reflected
light components), with all of the 4 sequences of equal length.

• Since the emitted light came from a white flash, all the 3 light components should
carry approximately the same information, with the only difference in Signal to
noise ratio, due to the fact that some wavelengths are more absorbed by the tissues.
Therefore we keep only the red component (rawR), since it is the one with higher
amplitude and better signal to noise ratio.

• We compute the average sampling frequency sf as

sf =
Nr. points in rawT ime

max(rawT ime)−min(rawT ime)
(4.1)

where the usage of min(rawT ime) is needed, because the acquisitions do not begin
exactly at Time = 0.

• We compute the half-width w of the window that we will further use for the central
moving average as

w = bsf
2
c (4.2)

where b·c is the floor rounding operator, and the division by 2 is in reality a
multiplication times 0.5 (because multiplications are computationally faster than
divisions). Doing so, we will approximately consider 2w+1 points in the computa-
tion of the central moving average, and recalling that w = bsf/2c we obtain that
the number of points considered for the moving average is ≈ sf for sf > 10. In this
way we have a total time width for our moving average of ≈ 1 second, and since
for our data usually sf ≈ 30Hz the approximation can be considered as reliable.

• At this point we compute the CMA by using a “trick”, in fact we achieve such result
by convolving a box of 2w+1 width and unitary area with the red component rawR,
giving us

CMA(rawR, w) = rawR ∗

2w+1 elements︷ ︸︸ ︷
[1, 1, 1, . . . , 1, 1]

2w + 1
. (4.3)
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Thanks to this, we achieve a faster and vectorized way to perform

CMA(rawR)i =

∑+w
i=−w rawR

2w + 1
. (4.4)

Please notice that the total width of the moving average is given by 2w+ 1, which
is always an odd number since w is an integer. This fact allows us to always
have a unique central point for the window, which is what guarantees that we
are performing a central moving average. We want to clarify that the boundary
conditions are treated in a “valid” mode, which means that we will discard any
point that will not have at least w points before and w points after it.

• As above explained, the CMA computation involves the removal of 2w points, the
first w and the last w, from both rawR and rawT ime as this points are ignored in
the computation of the CMA

rawR,cut = rawR[w : −w] (4.5)
rawT ime,cut = rawT ime[w : −w]. (4.6)

• At this point, having the lower frequency components in the computed CMA, to
obtain a high pass filter we simply subtract it from the original raw component.
This gives us the detrended signal

detrendedR = rawR,cut − CMA(rawR, w) (4.7)
detrendedT ime = rawT ime,cut. (4.8)

• now we can compute the analytic signal from the detrended signal using

analytic = detrendedR + iH(detrendedR) (4.9)

where H() indicates the Hilbert transform. Please notice that on the used python
library (scipy) the function scipy.signal.hilbert(x) does not compute the Hilbert
transform, but directly the analytic signal.

• Now we have the analytic signal, this is a complex-valued signal, so each of its ele-
ments will be characterized by an amplitude and a phase. Computing the absolute
value of the analytical signal we recover the instantaneous amplitude, also called
envelope, of the signal

envelope = |analytic| (4.10)

• None of the previous operation has further shortened the arrays, therefore we
compute the new average sampling frequency as

sfcut =
Nr. points in rawT ime,cut

max(rawT ime,cut)−min(rawT ime,cut)
(4.11)

.
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• Now we will smooth the envelope in order to remove very high frequencies (denois-
ing) by computing its CMA with half-width of wenv = bsfcutc as a low pass filter,
hence

CMA(envelope, wenv) = envelope ∗

2wenv+1 elements︷ ︸︸ ︷
[1, 1, 1, . . . , 1, 1]

2wenv + 1
(4.12)

and again this will imply a shortening in the signal of 2wenv points, half at the begin
and half at the end, for both detrendedR and rawT ime,cut (we are not considering
envelope because we will no further use it, but if we needed to use it we would
have to short it too)

detrendedR,second cut = detrendedR[wenv : −wenv] (4.13)
rawT ime,second cut = rawT ime,cut[wenv : −wenv]. (4.14)

• The last step consists in dividing the the detrended shortened signal by the smoothed
envelope to perform demodulation

demoduledR =
detrendedR,second cut

CMA(envelope, wenv)
. (4.15)

• The preprocessing algorithm concludes by returning two arrays: demoduledR (which
has also been detrended and denoised) and rawT ime,second cut. These tow arrays are
exactly 2w + 2wenv + 2 points shorter than the input arrays, and consist the time
series which will be analyzed and which will be used for further features extraction.

Another appreciable reason for which we kept only the red component is that, the
preprocessing algorithm works properly for time series. For this reason, we would have to
repeat it three times (1 for each light component) in order to maintain all the input arrays.
This would result in triplicating the preprocessing runtime, factor that we evaluated as
an avoidable problem considering a database counting thousands of individuals and a
little amount of information carried by the green and blue but not the the red light
component array.

4.4 Peak detection algorithm
To identify the correct peak locations, we slightly modified an existing algorithm [34].
The current algorithm consists in:

• compute the CMA of the processed signal and align it to its signal;

• locate the maximum of any region of the signal which is continuously above its
moving average;

• label the set of identified maxima as partial peaks;

• repeat with the window width wi = (0.5, 1, 1.5, 2, 2.5, 3) ∗ sf (with sf = average
sampling frequency), and consider as possible maxima those points labelled 6 times
as partial peaks;
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Figure 4.1: Example of used PPG signal, the high frequency variation of this kind of
signals are linked to heart beats, while low frequency variations are probably related to
talking/heavy breathing/moving of the patient.

Figure 4.2: Preprocessing of PPG: (from top to bottom) raw, detrended, and demodu-
lated and denoised clean signal.

• if two possible maxima are separated by less than 400ms, discard the smaller of
the two.
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If we assume that the delay from ventricular depolarization (indicated by the R-wave
in the ECG) and the sphygmic wave reaching the fingertip (causing a peak in the PPG
signal) is constant for different heart beats (its fluctuations are negligible with respect
to its mean value), then we can compute from the PPG the time interval between heart
beats. Having found the final peak positions, the array RR can be defined as the sequence
of time intervals (expressed in ms) between consecutive detected peaks.

4.5 Feature extraction

In the following we will discuss the features extracted from the signal, grouping them by
extraction field.

Features extracted from RR

Recalling that RR is a sequence of time intervals between consecutive peaks, from RR
we can extract many information about heart rate variability (HRV) and inter beat time
intervals distribution:

• ibi (average inter beat interval);

• medianRR;

• madRR (median absolute distance of RR);

• sdnn (the standard deviation of RR, also called standard deviation normal to
normal);

• tpr (turning point ratio of RR: computed as number of local extrema divided by
number of points in the signal, ranging from 0 to 1 and used as and index of
randomness for a given signal [35];

• skewnessRR;

• kurtosisRR; entropyRR (the Shannon entropy of the RR signal, considering
pi = RRi∑

RRi
).

Features extracted from RRdiff

Computing the array RRdiff as

RRdiffi = |RRi+1 −RRi| (4.16)

this one turns out being the array of absolute differences between consecutive elements
of RR. The features derived from RRdiff are the following:

• sdsd (standard deviation of successive differences);

• rmssd (root mean square of successive differences);
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• pnn20 (proportion of normal to normal > 20 ms: how many elements of RR
differs from the previous more than 20ms, which can be reformulated as how many
elements of RRdiff are larger than 20 ms);

• pnn50 (same but for 50ms);

• tprdiff (tpr computed on RRdiff ).

SDPPG features

The second derivative of the PPG processed signal (SDPPG) has been linked to chrono-
logical age [36]. During each heart beat cycle the 5 typical points (a - e) can be identified
(Fig. 4.3). To identify these points we computed the FDPPG (fourth derivative of PPG)
for locating the zero crossings, which correspond to the inflection points in the SDPPG.
Once two consecutive inflection points are found, only one local extreme can exist be-
tween them. The first and highest maximum of a beat cycle can be determined as a ,
and the subsequent points, (b, c, d and e) can be detected as next minima or maxima
starting from the previous one (As can be seen in Figure 4.3). After identifying these
points, the features obtained from SDPPG are given by:

• the amplitudes;

• the time distances between any two of these points;

• the slope of the line segments connecting any two of these points.

Quality thresholding

A quality score (Q) of the signal was computed by taking into account bad demodulation
(through the variance of detected peaks height) and noise (expressed as a number of local
extrema that are not detected as peaks or their corresponding valleys):

Q = Variance (detected height of peaks)× Nr. local extrema− Nr. detected local extrema + 2

Nr. points in the signal
.

(4.17)

Please note that ‘+2’ is used to avoid negative numbers in case of a detected peak having
no corresponding valley before/after due to the length of the signal.

The Q score indicates how noisy and bad demodulated the signal is; the higher the
score the poorer the quality, such that 0 is the perfect score. The threshold value of Q
was set to 0.01. By applying quality thresholding after the feature extraction phase, a
flexible choice of Q is possible without repeating the feature extraction step.

4.6 Data Analysis

4.6.1 Prediction of healthy vascular ageing (HVA)

After discarding incomplete data (e.g. missing age label) and quality thresholding with
Q < 0.01, the cleaned database consisted of 3612 subjects: 2205 males and 1407 females,
with an average age of 49 years and a standard deviation of 14.5 years.
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Figure 4.3: Comparison of PPG (top) and SDPPG (bottom) shapes. Red dots identify
the a , b, c, d and e points of SDPPG.

Next, the “continuous” outcome, age, was dichotomized into two classes: young (18 -
38 years, used as proxy for HVA) coded 1 and old (60 - 79 years, a proxy for non-HVA)
coded 0.

By partitioning the data into a train (2709 subjects) and a test (903 subjects) set,
we train and validate the model (both the ML and DL approaches) on a training set.
This workflow is depicted in Figure 4.4.

The final model (ML) and hyperparameters (DL) were validated using the held-out
test set. The age distribution of the training and test set was kept similar to that of the
whole database thanks to a stratified splitting with respect to the target variable.

Ridge regression

Prior to the analysis, the 38 extracted features were robustly standardized by subtracting
the median and dividing by the interquartile range. Since some features were highly
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Figure 4.4: Workflow of PPG analysis to predict healthy vascular ageing (HVA) using
ML and DL approaches.

correlated (dark red or blue colors in Fig. 4.5) and there may be multicollinearity issues,
a penalized regression can be considered as much more useful. Shrinking the coefficient
values towards zero in multiple regressions allows the less contributing variables to have
a coefficient close or equal to zero.

To jointly select the relevant features for HVA, we applied ridge penalized regression;
linear and logistic ridge regressions were employed for continuous and binary age out-
comes, respectively [37, 38]. To obtain the final model, 2/3 of the training dataset were
randomly sampled and used to fit the model; for fine-tuning of the penalty parameters
a 10-fold cross-validation (CV) was applied. This procedure was repeated 100 times for
both continuous age (using linear ridge) and for dichotomized age (using logistic ridge).
The resulting rankings of the coefficients were recorded, and averaged over 100 runs. The
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Figure 4.5: Heatmap of Pearson correlation between 38 features extracted from PPG,
four covariates, and age: the feature a and age shows negative correlation, while tpr
and age are positively correlated.

final score for the ranking was achieved by summing up the two scores. Then we selected
some combinations of the most relevant features and we evaluated their HVA/non-HVA
classification performance using a Support Vector Machine (SVM) classifier (previously
tuned with a 3-fold CV on training set) on the test set.

Convolutional Neural Networks)

For the Deep Learning approach, we built and trained many convolutional neural net-
works (CNNs). For CNNs, the processed signals (not the extracted features) were used
as input, and the dichotomized age as target. The reason behind the input choice was
the will of avoiding the CNN to discover different features. By giving the whole signal as
possible input to our CNNs we are allowing these ones to extrapolate information that
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Hyperparameter Compared options
kind of CNN WaveNet, DenseNet, ResNet

Hidden layers number 4 8 12
dilation rate (only for WaveNets) 1 2 4 8

Batch dimension 4 16 32 64 256
Kernel dimension 3 6 10 30 50 80
Activation function ReLU ELU SELU

Optimizer SGD ADAM NADAM
Start learning rate 10−1 10−2 10−3 10−4 10−5

Patience 5 8 10

Table 4.1: Results from DL approach: different values of hyperparameters for CNNs
(WaveNet, DenseNet, and ResNet). The hyperparameter patience indicates the number
of epochs to wait before early stop if no improvement in the loss function is achieved.
There is no optimal dilation rate value since it is only used for WaveNets, while the best
model was a ResNet CNN.

we did not acquire or selected previously, such choice will be fundamental in the further
comparison between Statistical Learning and Deep Learning approaches.

Among many CNNs possible structures we chose to considerate ResNets, DenseNets
and WaveNets. The first two having the benefits of avoiding many gradient vanishing
problems, by feeding directly any convolutional layer using the sum (ResNet) or the
concatenation (DenseNet) of all the previous layers’ output, respectively. The third
because it was proposed to accommodate the specific nature of time sequences [39], by
using a different kind of time-oriented convolution. Moreover, ResNet was found to be
highly effective with some time series datasets [40], while DenseNet used on PPG signals
has already shown good results [41].

the CNNs were trained, epoch by epoch, using 2/3 of the training dataset. Their
performance was validated using the remaining 1/3 of the training set; for each hyper-
parameter, many different values were tried out and the best was determined (see Table
4.1, where the bold-faced ones show the hyperparameters of the best model based on the
validation set performances).

Evaluation of the performance of ML and DL approaches

The optimized models by ML and DL were validated using the held-out test set. The
prediction performances of five different models were compared using area under the
curve (AUC): four covariates (weight, height, sex, smoking); the best two PPG features
(a and tpr) based on ML; covariates and these two features; the best performing CNN;
covariates and 38 PPG features.

All the algorithms and analysis have been performed using Python 3.7 and its suitable
Anaconda distribution [42]. The code for preprocessing, feature extraction, ML and DL
analysis can be found on GitHub, at https://github.com/Nico-Curti/cardio, and at
https://github.com/LorenzoDallOlio/vascular-ageing.

https://github.com/Nico-Curti/cardio
https://github.com/LorenzoDallOlio/vascular-ageing
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4.7 Results

4.7.1 Exploratory data analysis

Firstly we exploited possible separation among chronological young and old. To do so,
we used the spectral embedding [42] function for non-linear dimensionality reduction.
This function uses the Laplacian Eigenmaps algorithm previously discussed in section
2.3. Figure 4.6 shows a relatively good separation between chronologically young (blue
points, indicating HVA) and old (red points, indicating non-HVA). The same figure also
shows a gradual transition from HVA to non-HVA.

To visualize how strong the correlations are among age, the four covariates (sex,
weight, height, and smoking) and the 38 PPG features (extracted from the PPG signals),
a heatmap based on Pearson correlation coefficient was computed (Figure 4.5). The
strongest correlation between age and PPG features was found with:

• many elements of the SDPPG group, with maximum correlation for features slope-
AC and a (r ≥ 0.40 for both);

• the tpr (r ≥ 0.35).

Since the group of SDPPG related features has a high internal multicollinearity,
we would expect to have a couple of useful parameters in the extracted features, by
combining one of the SDPPG features with the tpr feature.

We then investigated how well the classifier for healthy vascular ageing (HVA) would
perform using all extracted PPG features as a reference point for further comparisons.

Figure 4.6: Dimension reduction of 38 PPG features extracted by spectral embedding:
the left depicts the first two components, while the right depicts the first three compo-
nents.

4.7.2 Application of ML and DL to predict HVA

The final scores achieved by linear and logistic ridge regression are reported in Table 4.2.
The best performing PPG features (excluding the covariates) were a (from SDPPG) and
tpr (from PPG).
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Variable name Linear ridge Logistic ridge Final ranking
smoking 1.89 1.76 3.65

sex 4.81 4.67 9.48
a 6.64 10.06 16.70
tpr 10.61 7.56 18.17
ibi 12.36 8.81 21.17

pnn20 14.72 7.65 22.37

Table 4.2: Results from ML approach: top six ranked variables from four covariates
(smoking, sex, weight, and height) and 38 features extracted from PPG. The scores
of linear and logistic ridge were achieved by ranking the absolute value of regression
coefficients in decreasing order and then those rankings across 100 repetitions. The final
score shows the sum of linear and logistic average rankings.

The expectation of the first exploratory analysis were attended, and therefore we
selected the feature a from the SDPPG group as main candidate for being informative
regarding the biological age.

4.7.3 Evaluation of prediction performance

In order to validate the results, the independent test set was used (Fig.4.4). The AUC
obtained using only one feature (i.e., a , slope-AC , or tpr) was around 0.8 (Table 4.3).
The following models were considered: (i) covariates (weight, height, sex, smoking), (ii)
the best two PPG features (a and tpr) from ML, (iii) covariates and these two features,
(iv) the best performing CNN, and (v) covariates and all PPG features. One should take
note that the model (v) is not recommended due to the many used features. So many
features can slow down estimation procedure and more importantly cause overfitting,
which may not lead to such a good performance on a different dataset. In order to
compare the prediction performance of the five models, the area under the ROC curve
(AUC) was computed, and the results are depicted in Figure 4.7. By adding the PPG
features (tpr and a) to the covariates, AUC increased from 0.742 to 0.947. The 12-
layer ResNet model (AUC=0.953) performed similar to this last model and similar to
the model which was including all the variables (AUC=0.954), showing that most of the
used information could be embedded by just these 2 features and 4 covariates.

4.7.4 Sex-stratified analysis

There are differences in body weight, height, body fat distribution, heart rate, stroke
volume, and arterial compliance between the two sexes. In the very elderly, age related
large artery stiffness is reported to be more pronounced in women [43]. Therefore, based
on the two features obtained by the best performing ML, we investigated whether men
and women age differently regarding HVA. The model, age = a + tpr + covariates +
error, was used to estimate coefficients using the training set. The obtained coefficient
estimates were used to predict vascular ageing using the test set. The results are shown
in Figure 4.8. The points in the figures are the predicted age of each male (blue) and
female (red). To depict the fitted trend line the locally weighted scatterplot smoothing
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Figure 4.7: Receiver operating characteristic (ROC) curves for the competing models in
predicting healthy vascular ageing (HVA): the four covariates include sex, weight, height,
and smoking.

(LOWESS) technique was used. For clear comparison, two fitted lines are presented (in
right panel). In average, females are healthier than males regarding vascular ageing.
Focusing on the individual feature, the a wave from SDPPG showed the considerable
difference between men and women (Figure 4.9).



58 CHAPTER 4. THE ANALYSIS

Figure 4.8: Sex-stratified analysis for predicting vascular age: a locally weighted scat-
terplot smoothing (LOWESS) of the ages predicted by the model a+tpr+covariates for
men and women, separately. The figure in right panel shows that average predicted age
for females is always lower than that for males, indicating females have healthier vascu-
lar ageing. Moreover, for females, a reduction in the trend slope around 50 years old is
shown (in middle panel).

Figure 4.9: Box plots of age quintiles stratified by sex. Please note that tpr (right)
increases with age, while a (left) decreases and is appreciably lower for females.
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Model Sensitivity (%) Specificity (%) AUC (%)
38 features + covariates 87.76 85.42 95.43
CNN: 12-layers-ResNet 90.72 85.83 95.34
a + tpr + covariate 87.34 86.25 94.73

ac_slope + tpr + covariates 87.76 88.33 94.60
a + tpr 83.97 82.50 87.43
ac_slope 78.06 78.75 81.68

a 77.64 78.33 80.79
tpr 73.00 76.25 80.50

covariates 69.62 72.50 74.21
pnn20 66.67 61.67 66.29
ibi 40.93 72.50 55.21

Table 4.3: Sensitivity, Specificity and AUC scores for some of the compared models.
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Chapter 5

Conclusions

We conclude this work with an overall outcome analysis. The aim of the study was to
exploit the biological ageing phenomena which affects the blood vessels, and at the same
time to compare the outcomes of a Statistical Learning approach with a Deep Learning
approach. The first part could be considered as achieved, as soon as the evaluation
of generalization performance led to a good estimation of vascular ageing. The second
aspect can be appreciated in the comparison of deep convolutional neural networks with
a features extraction procedure. Even if the two approaches led to similar performances,
the explainability and higher repeatability of the Statistical Learning make it preferable
to the Deep Learning one, which acts much more as a “black box method” by its nature.

Moreover, our work was motivated by the unique crowd-sourced data from Heart for
Heart initiative. Publicly available PPG data that includes ‘raw’ signals are still highly
rare. Having abundant PPG data from the general population, we aimed to scrutinize
the whole process from data preprocessing of the PPG signals up to the prediction of
HVA using PPG.

Recently deep neural network approaches have grown in popularity [41, 44], there are
several challenges applying DCNN (deep convolutional neural network) to health data.
One needs to choose the right topology of NN: how many hidden layers, how do you trade
off the number of parameters versus the amount of training data, etc. Computational
power is one of the biggest limitation, when the aim is to get instant diagnosis using a
wearable device [45]. Moreover, the algorithms deployed are inscrutable (as we already
said, DL is a “black-box” approach) and it is difficult to interpret their results compared
to other ML approaches. We employed several steps before the application of ML: the
signals was detrended and demodulated, the quality of the signals was assessed and
signals of poor quality removed, peak detection algorithm was performed, and then
relevant features extracted.

Instead of using some aspects extracted from the signal, the whole signal was used as
input for DL; the latter might be advantageous, when certain hidden features were not
extracted and included in the model for ML. Therefore, we have investigated effectiveness
of applying the computer intensive DL methods (ResNet, DenseNet, WaveNet) against
the relatively simple ML method (ridge penalized regression).

The prediction performance indicated the best DL (AUC of 95.3%), 12-layers ResNet,
performed slightly better than the ML (AUC, sensitivity, and specificity of 94.7%, 87.3%,
and 86.3%) with the model, 2 PPG features (a and tpr) + 4 covariates (sex, weight,
height, smoking).

61



62 CHAPTER 5. CONCLUSIONS

Nevertheless, ML had the merit of identifying potential biomarkers. It has been
reported that features derived from the contour of PPG signals showed association with
age, in particular regarding arterial elasticity and the changes in the elastic properties
of the vascular system [46]. The feature a , which is the amplitude of a wave extracted
from SDPPG and tpr from PPG showed negative and positive correlation with age,
respectively.

The SDPPG features derived from the amplitudes of the distinctive waves situated
in the systolic phase of the heart cycle, quantify the acceleration of the arterial blood
vessels’ walls. From a lower acceleration we can deduce lower deformation of such blood
vessels’ walls, and then we can link this to a lower elasticity (or a higher stiffness) due
to the ageing process. tpr (the turning point ratio or the RR array) is based on the
non-parametric ‘Runs Test’ to measure the randomness in a time-series, and it is higher
when series are more random: for instance, patients affected by atrial fibrillation tend to
have higher tpr than healthy patients tpr [35]. This fact is somehow confirming what we
have found. In fact, we would expect to have both unhealthy and older patients, different
from healthy patients, suggesting again that the biological ageing process is some sort of
measurable degradation, with effects comparable to a disease.

Taking age as a proxy for vascular ageing, both larger a and lower tpr predict healthy
vascular ageing (HVA). In addition vascular ageing differs between the sexes. Age-related
changes in vascular function generally include increasing endothelial dysfunction and
arterial stiffness [47]. We have shown that women appeared to be healthier (younger)
than men regarding to vascular ageing (Figure 4.8). Moreover, the clear slope variation
in the females related plot of Figure 4.8 might be interpreted as a slowdown in the
vascular ageing process, ultimately leading to longer life expectancy of women. The best
performing ML model (a + tpr + sex + weight + height + smoking) supports these
findings.

Therefore, for predicting HVA, ML using a few PPG features together with rele-
vant clinical information can be seen as a viable option against computer-intensive DL
approaches [45]. Further, this study might be considered as a proof of concept for pre-
diction of vascular ageing based on chronological age. Extending and fine-tuning of the
best performing ML model may lead to a risk score for vascular ageing. Adding other
relevant variables (the known risk factors) into the current model can be an option to
consider.

Taking PPG measurements by smartphone camera together with a simple algorithm
for feature extraction and prediction of vascular ageing facilitates self-monitoring of in-
dividual risk score, which can be linked to smoking and eating habits.

Note that CNNs investigated here demonstrated good performances obtained by sim-
ple structures (never more than 12 hidden layers, which is feasible for common laptop
to train). When accurate prediction is the main purpose and any distinct features need
to be fully incorporated (as for atrial fibrillation detection), CNNs can be good candi-
dates. Our results with age as a target could be furtherly employed for transfer learning
approaches, such as for a specific target detection like the presence/absence of atrial
fibrillation in PPG signals.

Last but not least, we showed that PPGmeasured by smartphone has the potential for
large scale, non-invasive, patient-led screening. However, current evidence is often biased
due to low quality studies, black-box methods, or small sample sizes. For instance, the
reliability of ultra-short HRV features (PPG measurements less than 5 minutes) remains



unclear and many HRV analyses have been conducted without questioning their validity
[48]. On the other end of spectrum, the systematic review of assessing the balance of
benefits and harms of screening for atrial fibrillation with smartphone acquired PPG is
lacking. This work contributes to establishing generally accepted algorithm based on
open data and software, which is of major importance to reproduce the procedures, and
to further improve and develop methods.
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