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Vaccinating women in pregnancy (i.e., maternal immunization) has emerged as a
promising tool to tackle infant morbidity and mortality worldwide. This approach nurtures
a ‘gift of nature,’ whereby antibody is transferred from mother to fetus transplacentally
during pregnancy, or postnatally in breast milk, thereby providing passive, antigen-
specific protection against infections in the first few months of life, a period of increased
immune vulnerability for the infant. In this review, we briefly summarize the rationale
for maternal immunization programs and the landscape of vaccines currently in use
or in the pipeline. We then direct the focus to the underlying biological phenomena,
including the main mechanisms by which maternally derived antibody is transferred
efficiently to the infant, at the placental interface or in breast milk; important research
models and methodological approaches to interrogate these processes, particularly in
the context of recent advances in systems vaccinology; the potential biological and
clinical impact of high maternal antibody titres on neonatal ontogeny and subsequent
infant vaccine responses; and key vaccine- and host-related factors influencing the
maternal-infant dyad across different environments. Finally, we outline important gaps
in knowledge and suggest future avenues of research on this topic, proposing potential
strategies to ensure optimal testing, delivery and implementation of maternal vaccination
programs worldwide.
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INTRODUCTION

To improve maternal and neonatal health remains a focus of international investment in global
health, given that Millenium Goals 4 and 5 were not achieved (Victora et al., 2016). Despite
the wider roll-out and availability of vaccines through the Expanded Program of Immunization
(EPI) and their significant contribution to the reduction in under-5 morbidity and mortality, there
remains a large gap in protection from infectious diseases in newborns: 40% of all mortality in
children under the age of 5 now falls into the neonatal period, a third is attributable to potentially
preventable infections. This has significant impact on economic development and welfare of the
populations affected, primarily in low- and middle-income countries (LMICs) (Liu et al., 2016).

CAN WE ACHIEVE EVEN MORE WITH VACCINES?

There is increasing momentum to develop and implement vaccination of women during pregnancy
(also called maternal immunization) to prevent specific infections of particular relevance to
pregnancy and the newborn (Zaman et al., 2008; Lindsey et al., 2012; Saso and Kampmann, 2016;
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Switzer et al., 2019). This approach nurtures a ‘gift of nature,’
whereby antibody is transferred from mother to fetus during
pregnancy, via the placenta or postnatally in breast milk, in order
to provide passive protection against pathogens in the first few
months of life. Maternal immunization, therefore, enhances this
passive protection, targeting specific antigens.

Two broad aims can be achieved: (1) Pregnant women
can be protected against a number of infectious diseases with
more severe outcomes in pregnancy (e.g., influenza) and (2)
their newborn babies are protected by high titres of antigen-
specific IgG antibody against diseases of particular importance
in the newborn [e.g., tetanus, pertussis, Group B streptococcus
(GBS), Respiratory Syncytial Virus (RSV)] due to their associated
susceptibility (e.g., GBS, tetanus) or severity (e.g., pertussis, RSV)
and until they develop protective antibody after receiving their
own vaccines or following natural exposure.

Depending on geographical location, maternal immunization
is already routinely recommended to prevent tetanus, pertussis
and influenza with proven safety, immunogenicity and efficacy,
but uptake and coverage vary widely (Lindsey et al., 2012; WHO:
Global Advisory Committee on Vaccine Safety, 2014; Steedman
et al., 2016; Gkentzi et al., 2017; Marchant et al., 2017; Munoz
and Jamieson, 2019; Wales et al., 2020). New vaccines for explicit
use in pregnancy are likely to become available in the next
few years. However, a number of biological and implementation
challenges remain to be addressed to harness the full potential of
this intervention. In this review, we summarize key knowledge
and identify important gaps in our understanding of vaccination
in pregnancy and its impact on the neonatal immune system. We
deliberately focus on biological opportunities and challenges, and
we will briefly address the nevertheless considerable challenges to
implementation of this promising intervention.

WHAT IS MATERNAL IMMUNIZATION?

Every pregnant woman passes on antibody to her unborn child
via the placenta and through this pregnancy-associated natural
phenomenon provides passive protection against a range of
pathogens, simply as a ‘gift of nature.’ In a sense, each pregnant
woman already naturally ‘immunizes’ her unborn child during
the pregnancy, in order to protect it from pathogens during the
first few months of life, as it transitions from the relatively sterile
in utero setting to the new reality of an environment full of germs:
some hostile, some not. The principle of maternal immunization
essentially represents the augmentation of specific antibodies
against organisms of high pathogenicity to the newborn,
throughout this period of significant immune vulnerability;
actively immunizing a mother during her pregnancy capitalizes
on the indirect protection that will already be conferred to
her newborn, thereby combining nature with nurture (Munoz
and Jamieson, 2019; Jarvis et al., 2020). Maternal vaccines also
have the potential to protect against congenital transmission of
pathogens and viral seeding of the placenta, a strategy currently
being explored primarily in the context of cytomegalovirus
(CMV) (Schleiss et al., 2017; Permar et al., 2018) and herpes
simplex virus (HSV) (Okala et al., 2019; Patel et al., 2019a,

2020). Risk of intrauterine viral transmission is generally higher if
primary infection occurs during pregnancy, indicating that fetal
protection is likely achieved through transplacental transfer of
neutralizing maternal antibodies.

Table 1 briefly summarizes the vaccines recommended for (A)
routine use in pregnancy, (B) use in emergencies and outbreak
situations and (C) vaccines in advanced clinical development.

WHAT DO WE KNOW ABOUT VACCINE
RESPONSES IN PREGNANCY AND
MATERNAL ANTIBODY TRANSFER?

Mechanism of Transplacental Transfer
The human feto-maternal interface is complex and unique
but remains incompletely understood. Immune interactions are
tightly controlled in order to establish a favorable immunological
environment for the developing fetus which expresses ‘foreign’
paternal antigens with the potential to activate the maternal
immune system; given this, regulatory mechanisms are induced
that effectively promote immunological tolerance (Jennewein
et al., 2017; Than et al., 2019).

In particular, the placenta acts as an important physical
and biochemical/immunological barrier between maternal and
fetal circulations. It consists of the chorionic villous unit:
multinucleated syncytiotrophoblast (in direct contact with
maternal blood), the villous stroma and the fetal capillary
endothelium. Signaling across the placenta is now considered to
be bidirectional, involving both active and passive mechanisms,
with a potentially significant role played by extracellular vesicles
and seeding of genetically foreign maternal and fetal cells, closely
regulated throughout pregnancy to ensure optimal fetal growth
and development (Holder et al., 2016; Rice et al., 2018).

Maternal immunoglobulin G (IgG) is transported across
the placenta from around 13-weeks’ gestation and provides
passive protection to the infant in the early, most vulnerable
postnatal period, prior to initiation of the primary immunization
schedule (Simister, 2003; Edwards, 2015). It is an active, pH-
dependent process, predominantly mediated through binding
of the IgG Fc portion to the neonatal Fc receptor (FcRn) in
the placental syncytiotrophoblast (van den Berg et al., 2010;
Palmeira and Carneiro-Sampaio, 2016; Pyzik et al., 2019). This
interaction is unique, and its significance has only recently been
established (Roopenian and Akilesh, 2007; Rath et al., 2013;
Jennewein et al., 2017).

Unlike syncytiotrophoblast cells, stroma or fetal endothelium
appears not to express FcRn and, therefore, the mechanisms
underlying the onward transport of IgG beyond the
syncytiotrophoblast require further exploration; alternative
non-canonical Fcγ receptors, such as FcγRI/RII/RIII, are known
to be expressed by these final placental layers and may play a key
role (Simister, 2003; Martinez et al., 2018).

In some cases, however, maternal IgG may facilitate
vertical pathogen transmission, by forming antibody-antigen
complexes which are transported across the syncytiotrophoblast
via FcRn and epidermal growth factor receptor (EGFR)
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TABLE 1 | Summary of vaccines recommended by WHO for (A) routine use by national programs, (B) use in emergencies or outbreak situations, and (C) in advanced
clinical development.

Disease Vaccine type Recommendation

(A) Routinely recommended vaccines for pregnant women

Tetanus Toxoid Tetanus toxoid vaccination is recommended for all pregnant women, depending on previous
tetanus vaccination exposure, to prevent neonatal mortality from tetanus (World Health
Organization, 2018c).

Influenza A Inactivated WHO recommends seasonal influenza vaccination to pregnant women as the highest priority (World
Health Organization, 2020).

Pertussis Subunit adjuvanted Vaccination of pregnant women is likely to be the most cost-effective additional strategy for
preventing pertussis disease in infants too young to be vaccinated (World Health Organization,
2016b).

(B) Vaccines specifically recommended in endemic countries or during outbreaks

Cholera Inactivated Pregnant and lactating women should be included in Oral Cholera Vaccine campaigns. Evidence
indicates high potential benefit and minimal risks (Moro and Sukumaran, 2017; World Health
Organization, 2018a).

Ebola Non-replicating or
replication-deficient

Since the three new candidate vaccines are non-replicating or replication deficient, pregnant and
lactating women should be included into the clinical trial protocols (UN News, 2019; Sage Interim
Recommendations on Vaccination against Ebola Virus Disease, 2019).

Hepatitis E Recombinant,
adjuvanted

The use of the vaccine to reduce or prevent outbreaks of hepatitis E should be considered as well
its use to mitigate consequences in high risk groups such as pregnant women (World Health
Organization, 2016a).

Meningitis A (MenA) Conjugated Pregnant and lactating women residing in the meningitis belt receive the MenA conjugate vaccine
during any stage of pregnancy or lactation (World Health Organization, 2018d).

Rabies Inactivated Rabies vaccines and rabies Immunoglobulin are safe and effective in pregnant and lactating women
(World Health Organization, 2018b).

Tick-borne encephalitis Inactivated The vaccine should be used in pregnant women who live in areas where the incidence of the
disease is high (>5 cases/100,000 population per year) (World Health Organization, 2011).

Yellow Fever (YF) Live attenuated In areas where YF is endemic, or during outbreaks, the benefits of YF vaccination are likely to far
outweigh the risk of potential transmission of vaccine-related virus to the fetus or infant (World
Health Organization, 2015).

(C) Vaccines for specific use in pregnancy and in advanced clinical trials but not yet licensed or pre-qualified

Group B streptococcus (GBS) Conjugated For exclusive use in pregnancy to prevent early and late onset GBS infection in the neonate,
potential impact on premature birth and stillbirths, several candidates under development.
For GBS vaccine research and development technical roadmap and WHO Preferred Product
Characteristics please see
https://www.who.int/immunization/research/development/ppc_groupb_strepvaccines/en/

Respiratory Syncytial Virus (RSV) Subunit +/−
adjuvanted

To prevent severe RSV disease in young infants, several candidates under development. For priority
activities for development, testing, licensure and global use of RSV vaccines, with a specific focus
on the medical need for young children in low- and middle-income countries please see:
https://www.who.int/immunization/research/development/ppc_rsv_vaccines/en/

*Most WHO vaccine position papers are easily accessible via this link: https://www.who.int/immunization/documents/positionpapers/en/.

(Pereira and Maidji, 2008). Congenital CMV risk, for example,
is greatest in the third trimester, potentially correlating with
highest expression of FcRn and EGFR (and hence peak of
transplacental IgG transfer). Further assessment using an ex vivo
human placental model demonstrated that the functionality of
CMV antibody may play a significant role: weakly neutralizing
compared to potently neutralizing monoclonal IgG facilitated
placental CMV infection (Maidji et al., 2006; Permar et al., 2018).

Mechanism of Antibody Transfer
Through Breast Milk
After birth, the placental barrier protection is replaced by
the mammary gland barrier. The specific antibodies generated
are also secreted into breast milk (primarily colostrum) with
secretory IgA (sIgA) as the predominant antibody class, and
transferred orally to infants during lactation (Schlaudecker

et al., 2013; Abu Raya et al., 2014; Maertens et al., 2014; De
Schutter et al., 2015). IgA is transported across alveolar epithelial
cells by the polymeric Ig receptor (pIgR) and released at the
apical surface (Palmeira and Carneiro-Sampaio, 2016; Jennewein
et al., 2017). The extracellular domain of pIgR is the secretory
component which is covalently attached to IgA, protecting it
from degradation by host and microbial proteases. IgA also binds
to Fc alpha receptor on the surface of myeloid cells (Aleyd
et al., 2015). Recent preliminary findings, in the context of 13-
valent pneumococcal conjugate vaccine given during pregnancy,
also suggest that breast milk antibodies, boosted by maternal
immunization, may impact the presence of vaccine antigen-
specific memory B cells in Colostrum (Munoz et al., 2018).

By preventing epithelial adhesion and neutralizing toxins
or virulence factors, sIgA inhibits invasion and damage
from pathogens at mucosal surfaces (Maertens et al., 2014;
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Edwards, 2015). Interestingly, sIgA does not activate the
complement cascade, contributing to anti-inflammatory benefits
of breast feeding. As well as passive protection, breast milk is
now considered to have an active immunomodulatory effect,
promoting gut barrier homeostasis and microbiome maturation,
helping to establish immune tolerance in the early postnatal
period, and potentially shaping systemic infant responses; many
details, however, particularly the contribution of sIgA, are still
poorly understood (Oddy, 2002; Andreas et al., 2015).

Factors Affecting Maternal Antibody
Transfer Across the Placenta
In general, given the usual half-life of immunoglobulins, higher
maternal and cord antigen-specific IgG concentrations are
associated with subsequently longer, more effective protection
in the infant in early life (Palmeira et al., 2012; Niewiesk,
2014; Fouda et al., 2018). The aim of maternal immunization
is, therefore, to boost these levels well above the putative
threshold of protection. Both intrinsic and extrinsic factors play
a role in regulating production of adequate titres of initial
maternal antibody but also its subsequent efficient transfer
across the placenta. Emerging data suggests this may be
selective and differentially mediated (Marchant et al., 2017;
Wilcox et al., 2017). Determining the mechanisms that regulate
IgG Fc-mediated functional activity at the placental interface
will enable optimization of maternal vaccines in the future
(Mahan et al., 2016).

IgG Subclass
IgG characteristics that impact FcRn interactions play a role in
placental IgG transfer efficiency (Palmeira et al., 2012; Lozano
et al., 2018). The IgG subclass distribution across different
antigen-specific IgG populations is distinct and modulates their
placental transfer efficiency, as previously demonstrated for
pertussis, diphtheria, tetanus, Haemophilus influenzae type B
(HiB), Neisseria meningitidis C and varicella zoster virus (VZV)
(van den Berg et al., 2010; Vidarsson et al., 2014; Martinez et al.,
2019). Specifically, IgG1 is most efficiently transferred, followed
by IgG3 and IgG4, in comparison to IgG2 which is significantly
reduced (Einarsdottir et al., 2014; Vidarsson et al., 2014). One
contributing factor to these differences may be the IgG hinge
region, which varies in its length and flexibility across subclasses,
potentially impacting the orientation and movement of the Fab
arms relative to the Fc tail (Vidarsson et al., 2014; Abdiche et al.,
2015). It has also been reported that individual receptor types
(FcRn vs. FcγRII vs. FcγRIII) may vary in their affinity and
specificity for different IgG subclasses (Bruhns et al., 2009).

IgG Antigen-Specificity
Placental transfer is distinctly influenced by different antigen-
specific IgG populations (van den Berg et al., 2010; Palmeira
et al., 2012). Vaccines that contain protein antigens, such as
tetanus toxoid or pertussis toxin, are transferred more efficiently
than polysaccharide vaccines, including HiB and pneumococcus.
The basis for this difference is unknown but may be related,
in part, to subclass, given that protein antigens predominantly
elicit IgG1 and IgG3 secretion, while IgG2 is more critical

for the opsonisation and killing of polysaccharide-encapsulated
pathogens (Vidarsson et al., 2014).

IgG Glycosylation
IgG exists in a number of glycosylated variants, which
have undergone covalent addition of different sugar moieties
and may vary in their kinetics, binding affinity to different
placental Fc receptors, efficiency of transplacental transfer and
functionality (Lofano et al., 2018; Jennewein et al., 2019).
Fc region fucose glycans, for example, have been shown to
mediate binding strength to FcγRIIIa in vitro (Okazaki et al.,
2004; Mahan et al., 2016). Importantly, different vaccines
and/or infective pathogens elicit distinct antigen-specific IgG
Fc region glycan profiles (Mahan et al., 2014, 2016; Vestrheim
et al., 2014). Therefore, while subclass selection alters the Fc
domain irreversibly, modifying antibody glycosylation provides
a more flexible mechanism by which the humoral compartment
streamlines antibody effector function to effectively target a
particular pathogen (Vestrheim et al., 2014; Mahan et al., 2016;
Alter et al., 2018).

A recent study used an unbiased, systems serology approach
(Chung and Alter, 2017) to evaluate differences in qualitative
antigen-specific Fc-profiles between maternal and cord blood:
skewing toward natural killer (NK) cell-activating antibodies
was demonstrated in the latter across multiple antigens. This
selective transfer was linked to digalactosylated Fc-glycans of
antigen-specific IgG1 antibodies that show enhanced binding
to FcRn and FcγR3A on NK cells. This may suggest an
evolution of the placenta to selectively transfer antibodies with
the most functional potential in the neonatal immune context,
boosting protection, particularly anti-viral defense, in early life
(Jennewein et al., 2019).

Therefore, establishing antibody glycosylation patterns
associated with clinically relevant outcomes could inform the
design of the next generation of improved maternal vaccines
(Lofano et al., 2018; Rice et al., 2020). Equally, immunization
itself is an optimal model to interrogate glycosylation patterns,
gestational imprinting as well as in vivo regulation and
persistence of glycosylation mechanisms (Alter et al., 2018).

Infant Gestational Age and Birthweight
The degree of IgG transplacental transfer is dependent on
duration of gestation, with minimal transfer in the first trimester,
increasing exponentially as pregnancy progresses, particularly
in the last 4 weeks. At term, fetal levels vary but usually
exceed maternal levels by 20–30%, indicating active transfer
(van den Berg et al., 2011; Calvert and Jones, 2017). This
change in rate of transplacental transfer may partly occur due
to higher FcRn expression with advancing gestation, although
this is yet to be formally demonstrated; another hypothesis is
that cytotrophoblast may initially obstruct transfer, leading to
improved transfer as this layer degrades (Palmeira et al., 2012;
Calvert and Jones, 2017).

The reduced duration and efficiency of transfer in early
pregnancy has implications for preterm infants; nevertheless this
cohort has been shown to successfully benefit from maternal
immunization programs (Baxter et al., 2010; Omeñaca et al.,
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2018; Nieminen et al., 2019; López-Sanguos et al., 2019).
Interestingly, IgG Fc glycosylation patterns of infants also depend
on their gestational ages; indeed, there is a qualitative shift
toward a pro-inflammatory pattern in preterm infants that might
contribute to their higher risk of chronic inflammatory diseases
(Twisselmann et al., 2018).

Studies have demonstrated reduced transfer of antibodies in
low birthweight infants, even those born at term. This may
be attributed to pathological placental changes associated with
intrauterine growth retardation, such as syncytiotrophoblast
knotting, villous fibrosis and avascular terminal villi, affecting the
antibody-FcRn interactions (Wesumperuma et al., 1999; Okoko
J. B. et al., 2001). Interestingly, Wesumperuma et al. (1999)
also found that iron-deficiency anemia in Sri Lankan mothers
reduced placental antibody transfer. Maternal age, parity, and
type of delivery was not shown to have a significant impact
(Doroudchi et al., 2003).

Maternal Co-morbidities
Maternal co-morbidities may lead to both reduced antibody
production and failure of placental integrity and key tolerance
mechanisms; definitive conclusions, however, are precluded by
the heterogeneity of study methodologies and findings.

It is well established that serological responses to vaccines are
attenuated and wane more quickly in HIV-positive populations;
the impact of viral load, immunological status and anti-retroviral
therapy (ART) is important albeit inconsistent between studies
(Kernéis et al., 2014; Dangor et al., 2017; Falconer et al., 2018).
Comparisons between HIV-infected and -uninfected women in
different settings have also shown that the former group have
lower baseline/pre-vaccination protective maternal antibody
levels to key vaccine pathogens and impaired transplacental
transfer of IgG; this includes tetanus, GBS, VZV, measles,
Hib, pertussis, and pneumococcus antibodies, although it is
not a universal finding (Isabel de Moraes-Pinto et al., 1996;
Cumberland et al., 2007; Jones et al., 2011, 2013; Gupta et al.,
2014; Dangor et al., 2015; Le Doare et al., 2015). This may be
explained by a loss of epitope-specific T- and B-memory cells
secondary to immunosuppressive progression of HIV-infection
(Wheatley et al., 2016; Dangor et al., 2017). Findings from
influenza vaccine immunogenicity studies demonstrated that
HIV-infected pregnant women had decreased vaccine-induced
haemagglutination-inhibition antibody titres and a reduced
likelihood of seroconversion compared to HIV-uninfected
women; better responses were associated with higher CD4+
T-cells but no correlation was found with viral load (Madhi et al.,
2014; Nunes et al., 2015; Dangor et al., 2017). In a separate
study, altered binding to Fc receptors, FcγRIIa, and FcγRIIIa, in
addition to glycan changes in the Fc region, were proposed to
contribute to impaired placental integrity (Martinez et al., 2019).

Moreover, HIV-exposed uninfected (HEU) infants have up to
fourfold higher rates of morbidity and mortality from diarrhoeal
and respiratory infections compared to uninfected unexposed
(HUU) infants, in part explained by lower maternal production
and reduced placental transfer of protective IgG (Richard, 2004;
Jones et al., 2011; Dauby et al., 2016; Evans et al., 2016; Slogrove
et al., 2016; Locks et al., 2017; Weinberg et al., 2018). Vaccination

in pregnancy could be particularly useful in improving immunity
and clinical outcomes of these vulnerable infants, provided that
highly functional, long-lasting antibody can be generated and
transferred by their immunized mothers (Jones et al., 2013).
Optimizing ART in HIV-positive women of child-bearing age
may go some way toward achieving this goal, although it is
unclear if reversal of adverse effects (i.e., lower baseline antibody
levels and poorer booster responses to vaccines) and/or complete
immune reconstitution is possible (Burton et al., 2008; Farquhar
et al., 2009; Jones et al., 2013; Dangor et al., 2017). Indeed, given
that HIV-infected women in LMICs are often only initiated on
ART during pregnancy, loss of antigen-specific T- and B-cell
memory may already have occurred. It has to be assumed that
immune-status may only be preserved by early ART initiation
(Moir et al., 2010).

With several candidate RSV and GBS vaccines currently
in development, an improved understanding of the effects
of maternal HIV infection is needed to inform vaccination
strategies in areas with a high HIV prevalence and irrespective
of ART use. Maternal HIV infection has been associated
with lower anti-GBS surface binding antibody concentration
and antibody-mediated C3b/iC3b deposition onto GBS bacteria
of serotypes Ia, Ib, II, III, and V (Le Doare et al., 2015).
Furthermore, immunogenicity of a CRM197-conjugated trivalent
GBS vaccine was found to be lower in HIV-infected pregnant
women compared to HIV-uninfected women, irrespective of
CD4+ T-cell counts (Heyderman et al., 2016). Similarly, Patel
et al. (2019b) recently showed that maternal HIV infection was
associated with lower mother-to-fetus transfer of serum RSV-
neutralizing antibodies. Among HEU newborns, higher birth
weight and an undetectable maternal antenatal viral load were
significantly associated with more effective placental transfer
of RSV antibodies (Patel et al., 2019b). Nevertheless, validated
assays and correlates of protection are needed to understand the
potential protective value of these vaccines.

Women with other congenital or acquired
immunodeficiencies, such as common variable
immunodeficiency, or taking immunosuppressive medications,
also have impaired serological responses, reducing production
and transplacental transfer of immunoglobulins from those
mothers to their offspring (Palmeira et al., 2012).

Beyond immunodeficiency, previous studies have
demonstrated that placental malaria impairs transplacental
transfer of different antigen-specific IgG populations due to
parasitic damage to the villi architecture described earlier. This
has been shown in the context of tetanus, measles, Streptococcus
pneumoniae, HSV-1, EBV, RSV, and VZV antibodies (Brair
et al., 1994; Isabel de Moraes-Pinto et al., 1996; O’Dempsey
et al., 1996; Okoko B. J. et al., 2001; Cumberland et al., 2007;
Ogolla et al., 2015) although results are conflicting, potentially
due to differences in the study population and laboratory assays
used (Calvert and Jones, 2017). Subsequent data from malaria-
endemic Papua New Guinea proposed that the association
previously reported between malaria and impaired RSV
antibody transfer and/or reduced RSV cord titres, may have
been confounded by prematurity or hypergammaglobulinemia
(IgG > 1,700 mg/dL) (Atwell et al., 2016, 2019). In fact, the
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impact of high total IgG concentrations on placental IgG transfer
efficiency has previously been shown (Gonçalves et al., 1999;
Hartter et al., 2000; Okoko B. J. et al., 2001) in both HIV-
infected and -uninfected populations (Martinez et al., 2019). The
underlying mechanism is unknown but likely due to saturation
of nFcRs (Englund, 2007; Fouda et al., 2018).

Chronic helminth infections during the time of vaccination
are thought to impair the induction and duration of protective
immune responses elicited by vaccines (Dauby et al., 2012;
Gent et al., 2019) potentially contributing to attenuated vaccine
responses observed in pregnant cohorts in developing countries
where helminth infections are endemic (Sabin et al., 1996; Elias
et al., 2005; Riner et al., 2016).

Other infectious or inflammatory conditions, including
hypertension, hyperglycaemia and placental pathologies (e.g.,
preeclampsia), may alter IgG production, damage placental villi,
decrease FcRn expression and/or compromise transplacental
transfer rate (França et al., 2012; Predoi et al., 2015; de Souza
et al., 2016; Fouda et al., 2018). Of note, however, these conditions
are also associated with prematurity and intrauterine growth
retardation (Palmeira et al., 2012). There are no specific studies
relating to maternal vaccination in these risk groups.

Factors Affecting Maternal Antibody
Transfer in Breast Milk
Similar factors may contribute to maternal antibody transfer
in breast milk, although there is paucity of data. One example
is the impact of vaccination timing and gestational age;
significantly more sIgA (and IgG) was measured in the colostrum
and mature breast milk of women who delivered preterm,
waning more gradually than in term women (Araújo et al.,
2005; Ballabio et al., 2007). This may be an immunological
adaptive response boosting protective immunity to vulnerable
preterm infants (Gregory and Walker, 2013). Survival and
stability of milk antibodies is also higher with prematurity
(Demers-Mathieu et al., 2018).

Equally, IgA Fc region characteristics may determine IgA
passive transfer or effector function in breast milk (Goonatilleke
et al., 2019; Langel et al., 2020; Steffen et al., 2020). Of
note, the glycosylation pattern of IgA antibodies is more
complex, extensive and diverse; IgA2 is found at a higher
percentage in mucosal secretions and has a great number
of conserved N-glycans compared to IgA1, which dominates
in serum (Mattu et al., 1998). N-glycan profiles may also
be influenced by delivery mode (Goonatilleke et al., 2019).
Further defining the molecular determinants of antibodies in
breast milk, and whether they complement placentally derived
antibodies, may enable streamlining of breast milk immunity
through maternal vaccination and other postnatal strategies
(Kollmann et al., 2020).

Beyond Maternal Antibody
To date, the goal of immunization in pregnancy has primarily
been to induce robust maternal antibody responses. Nevertheless,
robust vaccine-elicited maternal T-cell responses may also be
required to ensure complete protection, particularly against

transplacental pathogen transmission and subsequent congenital
disease. In the context of CMV, for example, T-cell responses
may contribute to eliminating virus-infected cells and supporting
B-cell responses, with CMV-specific CD4+ T-cell frequency
and/or proliferation playing a critically important role in
preventing transmission during pregnancy (Revello et al., 2006;
Lilleri et al., 2007; Fornara et al., 2016). This may need to be
harnessed if an effective maternal vaccine is to be developed.

In addition, maternal cells are increasingly thought to
migrate transplacentally to offspring at low frequencies (Kinder
et al., 2015). Further pathogen-specific immunity may, therefore,
be conferred to the newborn, enhancing protection already
delivered by maternal antibody (Albrecht and Arck, 2020;
Kollmann et al., 2020). This is based on the principle that
bidirectional transfer can occur during pregnancy, with seeding
of genetically foreign maternal and fetal cells, known as
‘microchimeric cells.’ The biological function and molecular
phenotypes of these rare fetal (FMC) and maternal (MMC)
microchimeric cells is poorly understood. It is hypothesized
that they may help establish immunological tolerance to
an expanded repertoire of familially-relevant ‘extended-self ’
antigens, as well as promote the success of future pregnancies
by conferring cross-generational reproductive benefits. The
underlying principles, immunological implications, potential
advantages and harmful consequences of microchimerism have
been reviewed extensively elsewhere (Kinder et al., 2015, 2017a;
Jennewein et al., 2017).

The MMCs express non-inherited maternal antigens and can
persist in the offspring long-term, detectable even up to 62 years
postnatally. A considerable proportion belong to the immune
compartment, particularly T-cells or tissue-resident memory cells
(Albrecht and Arck, 2020); it is estimated that up to 1 in 5,000
peripheral blood mononuclear cells may be of maternal origin
(Kinder et al., 2017a). In a previous case of a human infant
with severe combined immunodeficiency, activated CD8+ T-cells
and IFN-γ-secretion were detected in response to EBV infection;
these cells displayed a maternal genotype (Touzot et al., 2012).
Furthermore, using a mouse model, a recent study established
that non-inherited maternal antigen-specific regulatory T-cells
are acquired in early life and persist in the genital tract of
female offspring, thereby supporting a role for MMCs in the
immunological development of infants and cross-generational
reproductive fitness (Kinder et al., 2015).

Microchimerism is less well-established in the context of
breast milk; animal experiments and limited human-based
observations suggest that maternal immune cells can be
detected in breast milk and may traffic to infant tissues
through gut mucosae (Palmeira and Carneiro-Sampaio, 2016;
Kinder et al., 2017b; Molès et al., 2017). This phenomenon
most likely occurs during the early stages of lactation,
primarily colostrum, when breast milk cell abundance and
infant gut permeability are highest. These MMCs may include
stem cells, progenitor cells and/or mature immune cells
(such as IgG-producing memory B-cells and memory T-cells),
although this remains poorly understood (Kinder et al.,
2017b; Marchant et al., 2017). Interestingly, a recent murine
study demonstrated that, under the same activation conditions,
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maternally-derived CD8+ T-cells in breast milk are superior
in generating potent mediators compared to the infant’s
endogenous cellular compartment. This may be a compensatory
mechanism for the infant’s unique adaptive immune system
during the vulnerable postnatal phase (Cabinian et al., 2016).
Molès et al. (2017) hypothesize, therefore, that the transfer
of viable maternal immune and stem cells from breast
milk to an infant may contribute to optimizing neonatal
and infant immune system maturation, cross-generational
reproductive fitness, tissue repair and immune tolerance, thereby
complementing pregnancy-associated MMCs (Molès et al., 2017).
However, this hypothesis has been challenged and the exact
mechanisms are yet to be fully elucidated, particularly in
the context of vaccine-induced maternal leukocyte transfer
(Kinder et al., 2017b).

SO, IS THERE A RIGHT TIME TO
VACCINATE?

The optimal timing of vaccination in pregnancy remains debated
and the kinetics will have to be considered when strategically
deploying maternal vaccination to maximize impact in the future
(Calvert and Jones, 2017). A recent review of prevalence and
decay of maternal antibodies from different pneumococcal and
meningococcal vaccine trials demonstrated differences between
serotypes, serogroups, and countries (Voysey et al., 2017).
Moreover, many countries advise to immunize against pertussis
at every pregnancy, since antibodies rapidly wane after an adult
booster dose and decline in the infant after birth, mostly within
2 months (Halperin et al., 2011; Healy et al., 2013).

Vaccination in the first trimester is usually avoided as this
trimester is associated with higher risk of pregnancy loss and
the time of major fetal organogenesis. Approaches that favor
third trimester immunization point to the relatively short half-
life of vaccine-induced antibody, efficiency of placental transfer
as gestation advances and the need to match the highest
antibody levels with the peak of transplacental IgG transport
(Healy et al., 2013; Naidu et al., 2016; Winter et al., 2017).
Vaccinating earlier in pregnancy, however, is likely to provide
better protection for preterm infants. Eberhardt et al. (2016)
proposed that maternal pertussis immunization in the second
trimester maximized antibody transfer and expected infant
seropositivity against pertussis, potentially because antibody
can accumulate over a longer time period following earlier
vaccination. Furthermore, timing may impact antibody avidity
in cord blood, with a recent study demonstrating that newborns
of women receiving pertussis vaccinations between 27 and
30 + 6 weeks gestation had a higher relative avidity index
than those of mothers vaccinated later (Abu Raya et al., 2015).
Nevertheless, a remainder of studies have shown no significant
relationship between timing of maternal vaccination and
subsequent antibody levels in cord/infant blood or proportions
achieving protective thresholds for most antigens (Ladhani
et al., 2015; Vilajeliu et al., 2015), hence these kinetics might
differ between vaccines and the respective antibody levels
they can induce.

ONCE TRANSFERRED, WHAT DO WE
KNOW ABOUT THE EFFECT OF
MATERNAL ANTIBODY ON THE
NEWBORN IMMUNE SYSTEM?

Systemic Infant Humoral Immunity
One of the main controversies in the field of maternal
immunization is whether high maternal vaccine-induced
antibody titres interfere with or ‘blunt’ the infant’s endogenous
antibody response following primary immunization and,
therefore, potentially threaten effective disease protection.
Blunting has been demonstrated previously in the context of
pertussis, influenza, tetanus, diphtheria, measles, and mumps
immunity, hence it is an important consideration for future
maternal vaccine development and implementation (Englund,
2007; Jones et al., 2010, 2014; Ladhani et al., 2015; Maertens et al.,
2017; Zimmerman et al., 2019; Orije et al., 2020).

Several mechanisms have been proposed to explain an
inhibitory effect of maternal antibody on infant B-cell responses:
(1) antigen neutralization of live replicating viral vaccines
(2) epitope masking preventing antigen binding by infant
B-cells, thereby limiting their priming, the most popular
theory (3) inhibition of infant B-cell activation by FcγRIIB-
receptor-mediated signaling, and (4) removal of maternal
antibody-vaccine antigen immune complexes by Fc-dependent
phagocytosis (Siegrist, 2003; Kim et al., 2011; Niewiesk, 2014;
Edwards, 2015).

Although a blunting response has been demonstrated, this
data is generated from immunogenicity studies and, to date,
there is no evidence of relevance to clinical outcomes (disease
incidence or severity) (Kandeil et al., 2020); however, this is
difficult to ascertain, particularly with vaccines that have no
definitive correlate of protection (CoP). Despite the association
between low anti-PT IgG titres and high susceptibility to pertussis
disease, a protective antibody threshold is yet to be established
(Storsaeter et al., 2003). Nevertheless, surveillance data collected
in settings where maternal pertussis immunization programs
have been implemented show a highly successful reduction in
disease morbidity and mortality in early life (Amirthalingam
et al., 2014, 2016; Switzer et al., 2019; Forsyth et al., 2020;
Jarvis et al., 2020).

Furthermore, the blunting effect noted has not been
comprehensively defined, with a gap in our understanding of
the impact of maternal antibody on qualitative or functional
infant humoral immunity. Pre-existing antibodies have been
shown to induce higher affinity humoral responses, possibly
explained by competitive binding in the germinal center (GC)
and/or a boost in uptake and antigen presentation, mediated
by immune complexes in a Fc glycosylation–dependent manner
(Zhang et al., 2013; Lofano et al., 2018; Garg et al., 2019; Langel
et al., 2020). Most recently, a randomized control trial in Thailand
(NCT02408926) studied term infants who were immunized with
either acellular (aP)- or whole cell (wP) pertussis vaccines in
infancy; results showed that infants born to women vaccinated
in pregnancy had reduced pertussis-specific titres. Despite this,
antibody functionality (as determined by B. pertussis growth
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inhibition assay) was overall better in wP-vaccinated infant
sera, and after maternal immunization. These data suggest that
maternal antibodies may boost the production of antibodies with
distinct biophysical features to achieve effective pathogen control
in the infant (Wanlapakorn et al., 2019).

Finally, many have argued that blunting is short-lived and
reversible, especially as maternal antibodies decline over time,
and does not remain significant following booster vaccination
(Munoz et al., 2014; Le Doare et al., 2015; Hoang et al.,
2016). Longitudinal follow-up studies, therefore, are required
to arrive at stronger conclusions on the clinical implications
of blunting, if any, potentially also in the context of different
infant immunization schedules and environmental exposures.
Such studies are hard to do in the absence of meticulous long-
term follow-up of infants born to vaccinated mothers, at the
population level.

Systemic Infant Cellular Immunity
To date, vaccine-induced CoPs are predominantly defined by
the development of serum antibody responses using quantitative
assays, with less focus on cell-mediated immunity (CMI), despite
the significant induction of cellular responses post-vaccination
by some vaccines, such as pertussis, and the important role
CMI plays in disease protection (Ausiello et al., 1999; da
Silva Antunes et al., 2018; Poland et al., 2018; Wilk and
Mills, 2018). This extensive knowledge gap is likely due to the
practical and biological difficulties of accurately and reliably
measuring CMI. Assays are costly, challenging, labor-intensive,
often requiring large amounts of blood and, above all, poorly
standardized, limiting comparisons between different studies
(Wilcox and Jones, 2018).

A lowered antibody titre, caused by the blunting effect,
does not necessarily imply reduced protection; a recent
comprehensive review concluded that in the majority of both
human and animal studies, priming of CMI after infant
vaccination occurred even in the presence of high maternal
antibody titres, with minimal or no blunting effect on cellular
responses reported (Orije et al., 2020). Furthermore, in two
studies, maternal antibodies were even found to stimulate a
more robust CMI response, highlighting a potential secondary
beneficial effect of maternal immunization (Bertley et al., 2004;
Rowe et al., 2005).

In contrast to other blunting theories, a recent study
by Vono et al. (2019) showed that maternal antibodies
do not prevent neonatal B-cell activation but exert their
influence by limiting the expansion of T-follicular helper cells,
thereby shaping GC output, i.e., B-cell differentiation into
effective plasma cells and/or memory cells, and the antigen-
specific B-cell repertoire (Vono et al., 2019). Interestingly,
at low or intermediate titres, maternal antibodies did not
prevent the induction of memory-cells, suggesting a gradient
effect on infant immune responses (Vono et al., 2019;
Langel et al., 2020).

In utero Sensitisation and Priming
There is now a growing body of evidence that the fetal
immune system may be shaped by vaccination through more

than just the passive immunity provided via IgG transfer.
One potential mechanism, discussed previously, is maternal
microchimerism, which is due to transplacental bi-directional
migration of cells and may play a role in neonatal immune
modulation (Kinder et al., 2017a). Furthermore, as demonstrated
already in the context of infectious disease antigens (Bisseye
et al., 2009; Malhotra et al., 2009; Dauby et al., 2012; Zhivaki
and Lo-Man, 2017; Odorizzi et al., 2018) the fetus may also
be sensitized in utero, both qualitatively and quantitively,
to vaccine antigens to which the mother has encountered
during pregnancy, either as free antigens or antigen-antibody
complexes (or, potentially, antigen-loaded vesicles, Tong and
Chamley, 2015). This exposure during fetal development has
previously been shown to imprint immunological tolerance
to non-inherited ‘foreign’ maternal antigens, persisting beyond
early infancy into adulthood (Kinder et al., 2015, 2017a;
Jennewein et al., 2017).

Previous studies of maternal immunization have identified
antigen-specific IgM in cord blood, assumed to be secondary
to activation of fetal B-cells, given that minimal IgM crosses
the placenta; this has been demonstrated following influenza
and tetanus vaccination, although there is little data following
pertussis immunization (Gill et al., 1983). Rastogi et al. (2007)
detected antigen-specific T-cells (more directly, using MHC
Class I tetramers) in the cord blood of infants born to
influenza-vaccinated compared to non-vaccinated mothers; their
phenotype was CD45RO+, indicating an effector memory T-
cell response, usually not demonstrated in cord blood, and
therefore proposed to be secondary to vaccine-induced in
utero priming (Rastogi et al., 2007). Such memory T-cells
display various effector functions, including Th1, Th2, or Th17
profiles (Zhivaki and Lo-Man, 2017). Other studies, however,
have challenged that these proposed antigen-specific fetal T-
cells are conventionally primed memory T-helper cells; instead,
they may represent ‘recent thymic migrants,’ a common cell
population in the neonatal cohort and a transitional subtype
between thymocytes and adult T-cells (Wilcox and Jones,
2018). More research in this area is required and a systems
approach might be needed to better understand the complexities
and interdependencies.

The potential clinical relevance of these findings also
remains unclear. Vaccine-induced in utero generation of T-
cell memory could benefit the neonate by shaping immune
ontogeny and conferring pathogen-specific protection,
beyond antibody-mediated passive immunity (or Th2-
skewed responses). Moreover, it may be relevant in cases
where the pediatric primary immunization course is too late
to prevent severe disease, for example, with GBS or RSV
infections in early life (Zhivaki and Lo-Man, 2017). The
possible impact on responses to childhood vaccines must also
be explored.

Heterologous (Non-specific) Effects
Another recent concept with relevance to the impact of
vaccination in pregnancy on the mother, fetus or newborn
is the notion of heterologous or ‘non-specific effects’ (NSE)
of vaccines, including heterologous lymphocyte effects and
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induction of innate immune memory (‘trained immunity’).
The latter is thought to be mediated by epigenetic and
metabolic reprogramming which elicits long-term functional
upregulation of innate immune cells (Netea and van der
Meer, 2017; de Bree et al., 2018). NSE are hypothesized
to explain findings by some studies that certain vaccines
have a broader impact on health outcomes than previously
appreciated; protection may be conferred against unrelated
pathogens, beyond those specifically targeted by the original
vaccine design (Aaby et al., 2010; Saadatian-Elahi et al., 2016;
Pollard et al., 2017; de Bree et al., 2018; Uthayakumar et al.,
2018). This is currently an under-explored area of research
within the mother/infant dyad, although one recent study did
show that maternal MF59-adjuvanted influenza immunization
was associated with an altered cytokine profile in the nasal
mucosa of 4-week-old infants subsequently, when compared
to those born to unvaccinated mothers (Bischoff et al., 2015).
This may be important when modeling the impact of programs
that harness a dual maternal and infant vaccination strategy
(Munoz et al., 2018).

Infant Mucosal Immunity
In addition to preventing disease, maternal immunization may
be a strategy to protect young infants from early bacterial
carriage at the mucosa, via either breast milk- or transplacentally
derived antibody (Chaithongwongwatthana et al., 2015). This
is being explored particularly in the context of maternal
pneumococcal, GBS and pertussis vaccines, whereby colonization
is a prerequisite to invasive disease, although results are
inconclusive and potentially confounded by maternal carriage
status at birth (Munoz et al., 2001; Le Doare et al., 2017; Ojal
et al., 2017). A vaccine-induced CoP may, therefore, need to be
defined as a composite measure in some cases, addressing impact
on carriage, infection and disease.

Similarly to transplacental antibody, we must consider
whether interference from vaccine-derived antibodies in breast
milk may impede immunogenicity of mucosal vaccines; it has
been speculated that this may contribute to the poor performance
of live oral rotavirus immunizations given to infants in LMICs,
where breastfeeding rates are high (Jiang et al., 2014; Parker et al.,
2018). A recent systematic review evaluating the role of maternal
immunity in rotavirus vaccine immunogenicity concluded that
higher levels of transplacental rotavirus-specific IgG antibody
and, to a smaller extent, breast milk rotavirus-specific IgA
contribute to reduced or failed rotavirus vaccine seroconversion
in infants; however, clinical trials withholding breastfeeding at
the time of vaccination had no significant effect on vaccine
responses (Rongsen-Chandola et al., 2014; Mwila et al., 2017).
Nevertheless, antibodies or other immune factors may persist
in the infant’s gastrointestinal tract for longer periods than the
time spent on withholding feeds. Maternal IgG/IgA antibodies
have also been shown to dampen mucosal cellular responses
against commensal bacteria in mice (Koch et al., 2016). Lack of
a definitive CoP, however, similarly applies to breast milk studies.
Even with vaccines that have a known CoP, it is unclear whether
this can be extrapolated to sIgA titres in breast milk (Plotkin,
2010; Maertens et al., 2014).

THE BIGGER PICTURE: WHAT ELSE
INFLUENCES THE MOTHER/INFANT
DYAD OF INTERACTIONS?

We have already discussed factors that may affect transfer
of maternal antibody to infants, but adequate production
of antibody in the first place is a crucial determinant of
subsequent infant antibody titres. Further maternal, neonatal
and environmental factors also shape the early immunological
milieu and, therefore, the success of maternal immunization
(Kollmann et al., 2017). A detailed discussion of all key factors
impacting vaccine responses in general is beyond the scope
of this article and has been extensively reviewed elsewhere
(Zimmermann and Curtis, 2019).

Host Factors
Intrinsic
It is well established that age and sex affect vaccine-induced
immunity, particularly quantitative antibody responses, relevant
to both the pregnant woman and her developing infant (Baxter
et al., 2010; Omeñaca et al., 2018; Chiappini et al., 2019; López-
Sanguos et al., 2019).

Specifically, females display enhanced immune reactogenicity,
with higher antibody responses and adverse events, than males
(Fischinger et al., 2019). Furthermore, immunogenetic studies
have suggested that host genetic polymorphisms modulate
heterogeneity in vaccine responses in the context of numerous
immunizations, for example, against measles, hepatitis B,
influenza A, BCG, HiB, and certain Neisseria meningitidis
serotypes. This includes variants in the genes regulating both
innate and adaptive compartments, encoding Toll-like receptors,
HLA molecules, cytokines, and cytokine receptors. However,
very few data are available from studies conducted in infants
(Newport, 2015; Linnik and Egli, 2016).

Nutritional Status
The effect of nutritional status and nutritional supplements
is contentious. Many studies in adults show that an elevated
body mass index (BMI) is inversely correlated with long-
term vaccine-induced antibody responses (Sheridan et al.,
2012). By contrast, adequate maternal nourishment, particularly
micronutrient intake, is important to achieve optimal vaccine
responses (Wu et al., 2019); malnutrition may be exacerbated
in pregnancy when nutritional demand is highest. Exposure to
a nutritionally deficient environment during fetal life and early
infancy may further adversely alter the ontogeny of the neonatal
immune system, impacting early growth and development,
including the infant’s ability to mount optimal immune responses
to vaccination. A recent randomized trial in rural Gambia,
the Early Nutrition and Immune Development (ENID) study,
demonstrated that maternal supplementation with multiple
micronutrients combined with protein-energy during pregnancy
enhanced antibody responses to routine DTP vaccination
in early infancy, although there were key methodological
limitations (Okala et al., 2019). The mechanisms underlying these
associations warrant further investigation. EMPHASIS, a study
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based in India and sub-Saharan Africa, aimed to characterize
epigenetic features linking pre-conceptional nutrition and
subsequent health-related outcomes in children, although
specific vaccine responses are yet to be elucidated (Chandak et al.,
2017). Investigations into the immunological benefits of vitamins,
such as vitamins A, B, or D, report conflicting, inconclusive
results (Sadarangani et al., 2015; Zimmermann and Curtis, 2019).

Environmental Factors
Geographical Setting
Geographical setting, both defined by development status or
urban/rural location, is known to play a role in immune
responses at all ages and might also affect responses to
vaccines in pregnancy (Zimmermann and Curtis, 2019). Equally,
season and climate are important factors when considering
disease burden and, therefore, practicalities of implementing
vaccination programs during pregnancy, particularly with
respiratory pathogens RSV and influenza (Moore et al., 2006).

Microbiome
Data is increasingly showing a mutualistic relationship between
the intestinal microbiota and vaccine responses (Ferreira et al.,
2010; Rogier et al., 2015; Gensollen et al., 2016; Nguyen
et al., 2016; Lynn and Pulendran, 2018; Zimmermann and
Curtis, 2018). Higher relative abundance of Actinobacteria
and Firmicutes was consistently correlated with both higher
antibody and cellular responses to several vaccines, including
BCG, Hepatitis B, IPV, OPV, and tetanus immunizations;
an inverse correlation was found for Proteobacteria and
Bacteroidetes (Zimmermann and Curtis, 2018; Huda et al.,
2019). There has been less focus, however, on the impact
of the respiratory microbiome on vaccine responses (Mika
et al., 2015, 2017; Tarabichi et al., 2015; Zimmermann and
Curtis, 2018; Lee K. H. et al., 2019). One important recent
study showed a positive association between nasopharyngeal
colonization with Bacteroides ovatus, Lactobacillus helveticus,
Prevotella melaninogenica, Streptococcus infantis, and Veillonella
dispar and influenza virus-specific H1 and H3 IgA levels in
nasal washings after vaccination with live-attenuated influenza
vaccine (Salk et al., 2016). These findings are relevant when
optimizing vaccine responses during pregnancy as well as
assessing natural and vaccine-induced immune development
of the infant. The underlying immunological mechanisms,
however, have yet to be fully elucidated; changes in the level of
microbially-derived metabolites may activate the innate immune
compartment, thereby modulating development of T-and B-cells
(Janoff et al., 2012; Lynn and Pulendran, 2018). Breast milk
components, including the diverse array of microbiota, may
further shape the neonatal immunological milieu, potentially
mediated through human milk oligosaccharides/glycoconjugates,
milk-derived sIgA/IgG and cytokines (Geuking et al., 2012;
Rogier et al., 2015; Toscano et al., 2017; Kirmiz et al., 2018;
Le Doare et al., 2018).

Although postnatal colonization plays a key role in setting
the immune phenotype of the offspring, the process begins
in early gestation. Using a model of reversible colonization
of germ-free mice during pregnancy, signals derived from

maternal microbiota were shown to influence early infant
immune development and function, for example by maturing
fetal/neonatal intestinal innate immune cells and altering
intestinal gene expression profiles (De Agüero et al., 2016). In
addition, metabolites that originate directly from the maternal
diet, often modulated by the microbiota, can be transferred to
the offspring and may potentially further shape its immunity
(Macpherson et al., 2017). Maternal antibodies are critical in
amplifying this transfer, both across the placenta in utero
and during lactation, by binding and retaining bacterial
products and efficiently delivering them to offspring (Ganal-
Vonarburg et al., 2017). Furthermore, Koch et al. (2016) showed
that mice lacking maternal antibodies display dysregulated
mucosal responses.

At present, this complex interrelationship between maternal
antibody, microbiome signaling, dietary metabolites and
neonatal immunity is poorly understood in humans; notably,
there are no current studies relating it to different maternal
vaccines and/or subsequent infant vaccine responses.

Vaccine Factors
Vaccine antigen content, dosage, adjuvant composition and
route of administration will affect the quality and magnitude
of immune responses both in the mother and, subsequently,
her infant (Zimmermann and Curtis, 2019). In particular,
modifying these factors may alter key antibody properties,
related to both structure and function (Alter et al., 2018). Novel
adjuvants are often added to subunit vaccines to enhance their
immunogenicity, both qualitatively and quantitatively; in the
context of maternal immunization, they may optimize magnitude
and transplacental transfer of antigen-specific antibodies to the
fetus (Francica et al., 2017). However, their potential to induce
pro-inflammatory reactions and, hence, any risk of adverse
reproductive, teratogenic or fetal developmental effects must first
be rigorously interrogated (Herberts et al., 2010; WHO: Global
Advisory Committee on Vaccine Safety, 2014).

The safety of alum-adjuvanted vaccines in pregnancy
has been well established (e.g., tetanus and pertussis) and
increasing evidence is emerging on oil-in-water adjuvants,
such as MF59, which has shown to improve both epitope
breadth and binding affinity of antibody responses if used
in hemagglutinin -based influenza vaccines (Tsai et al., 2010;
Rubinstein et al., 2013). Another promising example is a
next-generation polysaccharide-based adjuvant developed from
microcrystalline particles of delta inulin (AdvaxTM), so far shown
to be safe and effective in seasonal/pandemic influenza vaccines
in non-pregnant human adults, as well as in pregnant animal
models (Honda-Okubo et al., 2014).

Induction of durable vaccine-specific antibodies with a
distinct glycosylation pattern or from a particular subclass may
be an effective strategy to optimize immunogenicity (Saunders,
2019). Modifying vaccine-type, dosing (single vs. multiple),
delivery route and adjuvant formulation (to stimulate different
Toll-like receptors) can selectively modify the Fc domain and
induce glycan combinations which confer desired antibody
effector functions (Selman et al., 2012; Mahan et al., 2014,
2016; Francica et al., 2017; Lofano et al., 2018). For example,
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FIGURE 1 | Potential future strategies to ensure effective maternal immunization programs worldwide, from (A) vaccine design and testing, (B) optimal host
responses at the maternal/fetal/infant levels, and (C) successful implementation at the global scale with consideration of key financial, political, socio-cultural,
logistical influencing factors. LMICs, low- and middle-income countries; CoP, correlate of protection; BM, breast milk; EPI, expanded program of immunization; GBS,
Group B streptococcus; HIC, high-income countries; HIV, human immunodeficiency virus; Ig, immunoglobulin; RSV, respiratory syncytial virus.

removing the glycans from IgG2b has previously eliminated
its immunosuppressive activity both in vitro and in vivo
(Langel et al., 2020).

The antigen composition of the vaccine is of course
also key, particularly the choice of immunogenic epitopes.
Live-attenuated vaccines are generally excluded from use in
pregnancy due to concerns over potential reversion to virulence
and subsequent fetal complications, or the risk of adverse
events in immunocompromised pregnant women. Substantial
literature, however, has reported no concerning effects in the
fetus following monovalent rubella, combined measles-mumps-
rubella, yellow fever and oral poliovirus vaccines (WHO:
Global Advisory Committee on Vaccine Safety, 2014; Laris-
González et al., 2020). Nevertheless, wider conclusive evidence
on safety issues is needed to inform future recommendations,
as this may be an important strategy particularly with less
immunogenic vaccines.

Moreover, many novel types of influenza vaccines are
under development, including those that incorporate alternative
proteins derived from the nucleus or M2 channel, as well as
potential ‘universal’ DNA and RNA vaccines (Krammer et al.,
2018; Lee et al., 2018). In the context of RSV, a recent phase
2 study of a novel RSV fusion (F) protein nanoparticle vaccine
given to a large cohort of third-trimester pregnant women
showed promising results, even if the primary endpoint was not
met (Muňoz et al., 2019).

Increased antigen load or recurrent dosing may also be
important in certain cohorts, such as immunodeficient women
who cannot mount sufficiently high antibody responses to reach
the protective threshold with routine doses.

Finally, future vaccine development should consider the
impact of different delivery systems or immunization routes,
including mucosal strategies, particularly if protection against
colonization is established as an important endpoint.

Above all, pregnant women have been traditionally excluded
from many vaccine trials, which has precluded sufficient
good quality data on long-term maternal/fetal safety and
vaccine-induced efficacy within this cohort. Fortunately, recent
initiatives and multi-stakeholder involvement are beginning
to turn the tide.

APPROACHES TO CLOSE OUR GAPS IN
KNOWLEDGE

Methodology
The advent of systems vaccinology has enabled us to generate
multifaceted datasets using high- throughput technologies
and integrate them with sophisticated computational
analysis, providing detailed insights into the effects of
maternal immunization, associations between materno-fetal
immunological parameters, interactions at the placental barrier
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BOX 1 | Gaps in knowledge and future avenues of research
in pregnant women.
• Changes in placental structure, development and function throughout

gestation, including materno-fetal regulatory mechanisms.
• Factors that determine placental integrity, successful maternal IgG-FcRn

interactions, and subsequent efficacy of (bi-directional) transplacental
transport.
• Impact of maternal antibody avidity on placental transfer and the impact of

timing on avidity.
• Quantitative and qualitative changes in Fc glycosylation throughout

pregnancy and across different antigen-specific populations, as well as the
effect of pregnancy, disease and specific vaccine factors on glycosylation
patterns.
• Biological and clinical implications of distinct glycosylation profiles, including

potential association with Fc-mediated maternal antibody interference.
• Detailed mechanisms underlying breast milk antibody transfer and key

regulating factors.
• Effects of vaccination during pregnancy on the composition of breast milk,

particularly the presence of pathogen-specific sIgA antibodies.
• How vaccine design, delivery, dosing and timing may determine efficacy of

antibody transfer, in the context of different types of vaccines.
• Robust experimental models to interrogate the materno-fetal interface,

specifically utilizing new technologies and imaging techniques.
• Definitive (potentially composite) correlates of vaccine-induced protection for

key maternal vaccines.

and a full characterization of breast milk analytes (Nakaya and
Pulendran, 2015; Poland et al., 2018; Lee A. H. et al., 2019).
To date, however, our lack of standardized tools to quantify
antigen-specific T-cells has hampered our ability to confirm
the evidence of in utero sensitisation and priming of the fetal
immune system following exposure to maternal vaccine antigens,
and to fully characterize the impact of maternal antibody on
subsequent vaccine-specific cellular responses in infants.

Novel approaches include the study of high-dimensional
cell-subset immunophenotyping through CyTOF (Porpiglia
et al., 2017; Lingblom et al., 2018; Reeves et al., 2018)
and vaccine-induced changes at the metabolic (Li et al.,
2017) proteomic (Galassie and Link, 2015) genetic and
transcriptional (Stubbington et al., 2017) levels. This knowledge
is largely being harnessed to establish signatures predictive of
vaccine immunogenicity (Pezeshki et al., 2019), although early
inflammatory transcriptomic profiling has recently been explored
in the context of vaccine safety (Tregoning et al., 2020). Systems
serology has also been used to define Fc features associated with
antibody transfer and effector function, as discussed previously
(Chung and Alter, 2017; Jennewein et al., 2019) including a
detailed characterization of adjuvant effects on antibody quality
(Francica et al., 2017). This could be extended to breast
milk antibodies and interactions, given the lack of a validated
standardized assay for sIgA.

Conversely, a systems vaccinology approach can help to
understand the effect of pregnancy itself on vaccination,
including the specific acute inflammatory pathways induced
and markers of immunogenicity/safety. Using Boostrix vaccine
(combined diphtheria, tetanus, multivalent acellular pertussis),
Tregoning et al. (2020) demonstrated that pregnancy might
have minimal impact on initial vaccine-induced responses;
they observed characteristic patterns of gene expression,

BOX 2 | Gaps in knowledge and future avenues of research in infants.
• Application of novel systems biology tools to investigate placental, maternal,

fetal, and neonatal immune compartments.
• Standardized qualitative and quantitative assays to fully characterize the

short-, intermediate- and long-term effects of maternal immunization on fetal
and neonatal immunity.
• Targeted studies on the maternal, neonatal (both genetic and acquired) and

environmental co-factors shaping early neonatal quantitative and qualitative
immune responses.
• Mechanisms explaining blunting and its potential impact on functional

responses.
• Mechanisms underlying potential maternal vaccine-induced microchimerism

and in utero priming, plus the impact on subsequent infant cell-mediated
responses to primary vaccines, including heterologous effects.
• Interactions between IgG with other Fc receptors, particularly on fetal or

neonatal innate cells.
• The role of vaccine-induced mucosal cellular immunity and its interaction

with mucosal humoral responses and/or microbiota communities.
• Impact of breast milk immune factors induced by maternal immunization on

infant immune responses.
• Biological and clinical relevance of immune phenomena induced by maternal

vaccination in the context of infant infection and immunity.

including upregulation in interferon response and innate
immunity gene modules that were independent of pregnancy,
irrespective of baseline differences and similar in both
women and mice. Given this, they propose that studies
in non-pregnant women can provide information about
maternal vaccine immunogenicity and potentially safety;
using murine models may also be promising in this context
(Tregoning et al., 2020).

Therefore, it is hoped that newer ‘omics’ assays may elucidate
key mechanisms controlling vaccine immunity, particularly
functional responses, define molecular signatures, identify novel
CoP and predict clinical end-points, including safety. It is
time to direct these tools to the maternal/infant dyad during
clinical trials.

Experimental Models
These methods must be applied within a convincing model
of the materno-fetal interface. Paired maternal–cord samples,
specifically the ratio of cord:maternal antibody concentration, are
often used as a surrogate for placental transfer, although this fails
to provide mechanistic insights.

Animal Models
Animal models have provided ‘biologically complete’ insights
into the possible mechanisms of FcRn-mediated IgG transfer,
overcoming ethical and practical limitations of human studies.
Nevertheless, the morphological, developmental, physiological
and immunological characteristics of the placenta often vary
between humans and animals, including the expression of FcRn
and mechanisms of IgG transport (Carter, 2007; Grigsby, 2016).

Similarly, animal models of breast milk production/transfer
are limited; differing from humans, IgG is the primary
immunoglobulin class in milk throughout many animal
species (rodents, bovines, cats, and ferrets), predominantly
transported across the duodeno-jejunal epithelium into the
neonatal circulation (similar FcR-mediated mechanism to
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human transplacental transfer) (Van De Perre, 2003). The
protective effect of breast milk may be proven by performing
foster feeding studies, whereby offspring of immunized
mothers are nursed by non-immunized mothers and vice-versa,
clearly not feasible in human cohorts (Maertens et al., 2014;
Grigsby, 2016).

Human in vitro Models
Freshly isolated primary term cytotrophoblasts can be cultured,
differentiating into multinucleated syncytiotrophoblast
cells, although there may be ethical, biological and practical
constraints (Depoix et al., 2013). Alternatively, immortalized
or choriocarcinoma-derived cell lines are used in directional
transport and metabolic studies (Orendi et al., 2011); when
combined with fluorescence microscopy of FcRn-green
fluorescent protein-transfected live human endothelial cells,
analysis of the intracellular trafficking of IgG is facilitated in
real-time (Ober et al., 2004; Turco and Moffett, 2019). Another
strategy is the placental explant model, prepared from the villous
placenta (usually from early terminations) and adhering to a
plastic or defined matrix. This can be used both ex-vivo or in-
vitro and performed at any stage of gestation, unlike trophoblast
cells or placental perfusion models, enabling interrogation of
early placental function (Miller et al., 2005; Viall et al., 2013).
These models have recently helped to demonstrate bi-directional
extracellular vesicle-mediated transfer of proteins, lipids and
nucleic acids (Tong and Chamley, 2015); exosomes from
activated immune cells were shown to signal to the placental
unit, contributing to materno-fetal communication, in addition
to modulating placental- and possibly fetal- immunity (Holder
et al., 2016; Aengenheister et al., 2018). This warrants further
investigation in the context of maternal disease and vaccine
antigens/immunity. Moreover, to date, application of these
models to antibody investigations has been limited.

Human ex vivo Models
The gold standard for assessing placental transfer is the
placental perfusion model, although it is complex and technically
challenging, requiring very rapid access to fresh placenta samples
(Conings et al., 2017). A placental cotyledon is cannulated and
dually perfused to replicate the independent fetal and maternal
circuits. This technique is simplified, primarily modeling the
term placenta without adjusting for potential maternal/fetal
physiological variables; nevertheless it has enhanced our
understanding of human placental transfer of key substances,
including immune complexes in the context of maternal disease
(May et al., 2009; Hutson et al., 2011; Wilcox et al., 2017). Further
studies following maternal immunization would be timely.

Recently, there have been collaborative efforts (e.g., The
Human Placenta Project) to optimize our existing models and/or
apply novel technologies to more accurately recapitulate the
diverse cell types and complex interactions at the materno-
fetal interface. Key examples include co-cultures cultivating
both trophoblastic and endothelial cells on a membrane; three-
dimensional trophoblast organoids; computational modeling of
tissue dynamics and blood flow; and bio-engineered tissue
constructs (Guttmacher et al., 2014; Huckle, 2017; Aengenheister
et al., 2018; Turco et al., 2018).

BEYOND BIOLOGY

With the considerable international interest in vaccination in
pregnancy by academic researchers, industry and community
stakeholders alike, it has become apparent that in addition
to the multitude of biological challenges summarized above,
considerable implementation challenges also need to be
addressed (Bonhoeffer et al., 2016; Munoz, 2018; Munoz et al.,
2018). These relate to safety, equity of access, acceptability,
prioritization, standardization of clinical diagnoses, use of
not-yet licensed vaccines in emergency situations like Ebola or
Lassa, to name but a few. There is a need for pregnancy registers
to capture long-term outcomes, beyond clinical trials. How to
set this up in LMICs where, ultimately, these vaccines might
have the largest impact on maternal and neonatal health, but
where the background rates of pregnancy and neonatal outcomes
are not as reliably captured as in HICs, remains a considerable
challenge. Many other reviews have comprehensively addressed
these topics.

JOINING FORCES TO ADDRESS BOTH
BIOLOGICAL AND IMPLEMENTATION
CHALLENGES

Over the last 2 years, IMPRINT, the international IMmunising
PRegnant Women and INfant NeTwork has brought together
investigators and stakeholders in 50 countries across the globe
to conduct research into specific biological and implementation
challenges. The Pregnancy Research Ethics for Vaccines,
Epidemics, and New Technologies (PREVENT) team has set
out a framework for ethical consideration of inclusion of
pregnant women in clinical trials of new vaccines (Prevent,
2020); more specific roadmaps for the introduction of vaccines
against GBS (WHO GBS vaccine research development technical
roadmap, 2020) and RSV have also been developed (PATH,
2018). The Bill and Melinda Gates Foundation (BMGF)
and WHO have each committed significant resources to
the subject and supported the academic community, with
industry as a further key stakeholder, in driving forward
the agenda to develop and implement safe and effective
vaccines in pregnancy.

Figure 1 summarizes potential future strategies to optimize
the success of maternal immunization programs worldwide,
addressing both biological (vaccine and host-related) factors and
implementation challenges.

CONCLUSION

In Boxes 1, 2 below, we have outlined key avenues of research,
either targeted to the materno-fetal interface or the infant,
which could enhance our understanding of the underlying
immunobiology and inform design and testing of the next
generation of safe and effective vaccines in pregnancy.

As we have summarized in this review, significant progress
has been achieved to understand how mother and child are
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immunologically linked, thereby optimizing vaccine design to
effectively and safely target this materno/fetal dyad. Much
more remains to be done in this exciting area of vaccinology,
which has already achieved unprecedented and laudable multi-
stakeholder engagement.
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