
Risk of Bias Assessments and Evidence Syntheses for Observational Epidemiologic
Studies of Environmental and Occupational Exposures: Strengths and Limitations
Kyle Steenland,1 M.K. Schubauer-Berigan,2 R. Vermeulen,3 R.M. Lunn,4 K. Straif,5,6 S. Zahm,7 P. Stewart,8 W.D. Arroyave,9
S.S. Mehta,4 and N. Pearce10
1Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
2International Agency for Research on Cancer (IARC), Lyon, France
3Institute for Risk Assessment Science, University of Utrecht, Utrecht, Netherlands
4Division of the National Toxicology Program (NTP), NIEHS, Research Triangle Park, North Carolina, USA
5Global Observatory on Pollution and Health, Boston College, Boston, Massachusetts, USA
6ISGlobal, Barcelona, Spain
7Shelia Zahm Consulting, Hermon, Maine, USA
8Stewart Exposure Assessments, LLC, Arlington, Virginia, USA
9Integrated Laboratory Systems, Morrisville, North Carolina, USA
10London School of Hygiene and Tropical Medicine, London, UK

BACKGROUND: Increasingly, risk of bias tools are used to evaluate epidemiologic studies as part of evidence synthesis (evidence integration), often
involving meta-analyses. Some of these tools consider hypothetical randomized controlled trials (RCTs) as gold standards.
METHODS: We review the strengths and limitations of risk of bias assessments, in particular, for reviews of observational studies of environmental
exposures, and we also comment more generally on methods of evidence synthesis.
RESULTS: Although RCTs may provide a useful starting point to think about bias, they do not provide a gold standard for environmental studies.
Observational studies should not be considered inherently biased vs. a hypothetical RCT. Rather than a checklist approach when evaluating individual
studies using risk of bias tools, we call for identifying and quantifying possible biases, their direction, and their impacts on parameter estimates. As is
recognized in many guidelines, evidence synthesis requires a broader approach than simply evaluating risk of bias in individual studies followed by
synthesis of studies judged unbiased, or with studies given more weight if judged less biased. It should include the use of classical considerations for
judging causality in human studies, as well as triangulation and integration of animal and mechanistic data.

CONCLUSIONS: Bias assessments are important in evidence synthesis, but we argue they can and should be improved to address the concerns we raise
here. Simplistic, mechanical approaches to risk of bias assessments, which may particularly occur when these tools are used by nonexperts, can result
in erroneous conclusions and sometimes may be used to dismiss important evidence. Evidence synthesis requires a broad approach that goes beyond
assessing bias in individual human studies and then including a narrow range of human studies judged to be unbiased in evidence synthesis. https://
doi.org/10.1289/EHP6980

Introduction
Evidence synthesis (or evidence integration) is widely used to
summarize findings of epidemiologic studies of environmental
and occupational exposures. Such syntheses are part of system-
atic reviews of observational epidemiologic study findings.

Systematic reviews are defined by Cochrane guidelines as
reviews that “identify, appraise and synthesize all the empirical
evidence that meets pre-specified eligibility criteria to answer a
specific research question. They use explicit, systematic methods
that are selected with a view aimed at minimizing bias, to produce
more reliable findings to inform decision making” (https://www.
cochranelibrary.com/about/about-cochrane-reviews). Systematic
reviews ideally should include a statement of the goals of the
review and a clear description for a) determining which studies are
relevant to the goals; b) how individual studies are evaluated
regarding potential biases; and c) a method to synthesize evidence
across studies (which sometimes includes a meta-analysis).
Assessments of biases and their impact play a useful role in both b)

and c). Figure 1 shows a schematic of a systematic review. Boxes 4
and 5 of this figure (evaluate evidence, integrate evidence) depict
where risk of bias assessments come into play via evaluations of
individual studies and evidence synthesis across studies, and they
are the subject of this paper.

Systematic reviews play a similar role today as literature
reviews in the past in that both attempt to provide an overview of
the literature on a particular topic, either within a discipline (e.g.,
epidemiology) or across disciplines, and typically assess the evi-
dence for causality for the association between exposure and dis-
ease. Systematic reviews are often done in conjunction with a
meta-analysis. A meta-analysis yields a quantitative effect esti-
mate, such as the strength of the association between an exposure
and an outcome. It also provides an opportunity to explore heter-
ogeneity across studies, e.g., by study design, type of population
under study, or other characteristics. Subjectivity (value-based
judgment) is inevitably present in the assessments of the quality
of the individual studies (including whether they suffer from
biases) and in the decisions to include or exclude studies in evi-
dence syntheses and meta-analyses. It is present in the degree to
which the authors interpret the reported association to be causal.
It is also present in the degree to which the meta-analysis authors
account for other evidence that is not considered in the meta-
analysis itself, such as studies with exposure effect estimates not
compatible with those in the meta-analysis (e.g., prevalence
rather than incidence measures), ecological studies, animal data,
and mechanistic data. The existence of such subjectivity is gener-
ally recognized as inherent to systematic reviews, and the goal is
to make such judgments transparent (Whaley et al. 2016; Savitz
et al. 2019). There is a tension, however, between the need for
expert (necessarily subjective) judgment and consistency and rep-
licability in such reviews.
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Risk of bias tools have been developed with the intention of
increasing transparency and reducing subjectivity. They are now
often used in systematic reviews to evaluate individual studies for
bias and to determine which studies should be given more or less
weight in evidence synthesis, based on ranking systems to evaluate
bias in individual epidemiological studies. Risk of bias tools include
ROBINS-I (Sterne et al. 2016), the Newcastle-Ottawa Scale (http://
www.ohri.ca/programs/clinical_epidemiology/oxford.asp), the
Navigation Guide (Woodruff and Sutton 2014), Office of Health
Assessment and Translation (OHAT) (NTP 2019), and a new tool
to be used with Grading of Recommendations Assessment,
Development and Evaluation (GRADE) (Morgan et al. 2019) (see
below) Another tool, ROBINS-E, is under development and not yet
available (http://www.bristol.ac.uk/population-health-sciences/centres/
cresyda/barr/riskofbias/robins-e/). The risk of bias tool used in the
Navigation Guide comes from a combination of methods described
byViswanathan et al. (2008) andHiggins andGreen (2011).

GRADE (https://www.gradeworkinggroup.org/) is a method
to assess the overall certainty of evidence in a set of studies,
developed in the context of making clinical decisions based on
human studies. GRADE has advocated risk of bias as one part of
this process without, until recently, proposing a specific tool.
There has been some discussion about improving the certainty of
evidence criteria in GRADE (Norris and Bero 2016).

We recognize that not all risk of bias tools in current use are
alike (Losilla et al. 2018; Rooney et al. 2016). Different tools

include different bias domains and/or define the same domains
differently. Typically, all include consideration of exposure or
outcome misclassification/mismeasurement, confounding, and
selection bias. Some are accompanied by guidelines for evidence
synthesis, and others are not. Furthermore, some partly address
the concerns we outline below (see Table 1) for differences
between different risk of bias tools.

Assigning actual scores to individual studies based on risk of
bias is not done in most of these tools, has been shown to not be
effective, and is discouraged in reviews by Jüni et al. (1999) and
Stang (2010) and on the Cochrane website [although scoring was
recently resurrected in a new systematic reviewmethod being imple-
mented for the U.S. Environmental Protection Agency (EPA)’s
Toxic Substances Control Act (TSCA) program; see Singla et al.
(2019)]. All of the above-cited risk of bias tools evaluate individual
studies by level of bias (e.g., low, moderate, serious, and critical) in
different domains (e.g., confounding, selection bias, and information
bias), and the evaluationsmay potentially result in exclusion of stud-
ies deemed too biased across one or more domains from evidence
synthesis. However, they do not consistently assess the direction,
magnitude, or overall importance (on the effect estimate) of the vari-
ous types of bias, and they bring these considerations directly into
risk of bias tools. Note also that risk of bias does not mean the actual
study is biased. The Navigation Guide (Woodruff and Sutton 2014)
and OHAT (NTP 2019) both suggest using the direction of con-
founding and result of control of confounding to upgrade or down-
grade estimates of confounding bias but do not formally build it into
a tool. TheReport onCarcinogensHandbook incorporated direction
and magnitude of bias in their guidelines for study quality assess-
ment guidance and evidence integration steps (NTP 2015). Other
risk of bias tools also mention this issue but do not tackle it directly.
For example, in ROBINS-I, the authors note, “It would be highly de-
sirable to know the magnitude and direction of any potential biases

Figure 1. Schematic for systematic review. Adapted from National Research
Council (2014).

Table 1. Comparing risk of bias tools.

RoB within individual
studies

Study name

ROBINS-Ia
Newcastle Ottawa

scaleb Morgan (GRADE)c Navigation guided OHATe

RCT/target experiment
as ideal study design

Yes No Yes No No

Consider direction or
magnitude of bias,
and importance for
effect estimate

Optional, but not for-
mally incorporated
into tool

No Optionalf Nog Optional, but not for-
mally incorporated
into tool

Assign highest domain
risk of bias to entire
study

Yes No (but commonly done
when used by sum-
ming stars/scores
across domains)

Yes No study-level bias
summary

No, but used to assign
to tiers in study
synthesis

Consider statistical
methodology as a
separate domain

No No No No Optional

Evidence synthesis
Rank observational
studies as inherently
suffering from bias

Not applicable (no for-
mal presentation of
evidence synthesis)

Not applicable (no for-
mal presentation of
evidence synthesis)

Yes, indirectly because
of RCT comparison,
but under
development

Yes, start at moderate
certainty

Yes, start at low to mod-
erate certainty

Possibly reject some
studies based on bias

Not applicable (no for-
mal presentation of
evidence of
synthesis)

Not applicable (no for-
mal presentation of
evidence of
synthesis)

Yes, although may be
allowed in sensitivity
analysis

Yes, although may be
included in sensitiv-
ity analysis

Yes, although may be
included in sensitiv-
ity analyses

Note: Tools included in this table are risk of bias tools for individual studies with an algorithm-based component. GRADE, Grading of Recommendations Assessment, Development
and Evaluation; OHAT, Office of Health Assessment and Translation; RCT, randomized controlled trial; RoB, risk of bias.
aSterne et al. 2016.
bhttp://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
cMorgan et al. 2019.
dWoodruff and Sutton 2014. The risk of bias tool used in Navigation Guide comes from a combination of methods described by Viswanathan et al. (2008) and Higgins and Green (2011).
eNTP 2019.
fDirection of bias considered, but not magnitude or eventual impact on effect estimate.
gNot mentioned in five published case studies (https://prhe.ucsf.edu/navigation-guide), nor in original paper by Woodruff and Sutton 2014.
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identified, but this is considerablymore challenging than judging the
risk of bias” (Sterne et al. 2016).

Assessing individual study quality is an essential part of sys-
tematic review, and risk of bias tools are one way to do this that
may increase transparency and replicability in reviews. These
tools differ between one another, and we do not here discuss in
detail each tool individually but, rather, comment more generally
on the limitations of their current use both in the evaluation of
individual studies and in evidence synthesis. Although we agree
that if risk of bias tools are to be used, they must have a list of
domains and some overall evaluation system regarding potential
bias, we note that there is no consensus on which domains are to
be analyzed and how risk of bias is to be ranked.

In this paper, we first critically review the benefits and pitfalls
when using risk of bias assessments for individual studies. We
argue, along with other authors (Savitz et al. 2019; Stang 2010;
Arroyave et al. 2020), that while the use of risk of bias assessments
in evidence synthesis can be a useful tool to improve transparency
and limit a priori value judgments, they can also potentially be
used as a mechanical exercise that leads to erroneous conclusions
because the assessments may consider individual studies out of
context, may poorly discriminate between studies with minimal
and substantial potential bias (i.e., may not evaluate the magnitude
and direction of bias and its eventual possible impact on a study’s
effects estimates), and may have other potential shortcomings as
detailed below. Second, we consider broad types of evidence syn-
thesis, such as those proposed by Bradford Hill (Hill 1965) and
programs such as the International Agency for Research on Cancer
(IARC) Monographs, and then discuss the use of triangulation
(Lawlor et al. 2016). Finally, we reflect on some recent evidence
syntheses and their risk of bias assessments.

Risk of Bias Assessments for Individual Studies
As previously noted, a risk of bias assessment provides a formal
mechanism to systematically evaluate study quality regarding
potential biases using the same approach across all studies and
hence can add to transparency in systematic reviews. Here, we
discuss risk of bias assessments in more detail and also make
some recommendations to improve them (Table 2).

Randomized controlled trials as the ideal when assessing
bias vs. observational studies. Some currently available risk of
bias tools propose using a hypothetical randomized controlled trial
(RCT) as a thought experiment to help judge potential biases in
individual observational studies (e.g., Sterne et al. 2016; Morgan
et al. 2019).We recognize that the RCTmodel, coupledwith think-
ing about confounding based on counterfactuals and the use of
directed acyclic graphs (DAGs) to depict causal relations, has
helped advance causal inference in many instances in observatio-
nal epidemiology. The relative strengths and weaknesses of RCTs
vs. observational studies have been an ongoing discussion in the
literature (e.g., Eden et al. 2008; Sørensen et al. 2006) but is worth
reemphasizing here with respect to environmental epidemiologic
studies. RCTs, if properly conducted, can, in theory, avoid or mini-
mize some of the main potential limitations of observational stud-
ies (e.g., selection bias, confounding, and differential information
bias). However, comparing studies to an RCT gold standard inevi-
tably begins by classifying observational studies as of lower qual-
ity, as these studies have the potential to suffer from biases
theoretically avoided by RCTs. GRADE, for example, states that
“Evidence from randomized controlled trials starts at high quality
and, because of residual confounding, evidence that includes
observational data starts at low quality” (https://bestpractice.bmj.
com/info/us/toolkit/learn-ebm/what-is-grade/). The Navigation
Guide and OHAT consider observational studies to provide evi-
dence ofmoderate quality (Woodruff and Sutton 2014; NTP 2019).

The RCT gold-standard assumption can lead to extremes in
which observational studies are dismissed in their entirety. For
example, the current chair of the EPACleanAir Scientific External
Advisory Committee had argued that a) all observational studies
quantifying an exposure–response relationship are subject to a crit-
ical level of bias (Cox 2017, 2018); and b) all air pollution epidemi-
ology studies lack adequate control for confounding and are,
therefore, subject to high risk for potential bias [see review by
Goldman and Dominici (2019) and commentary by Balmes
(2019)]. However, the EPA has said they will maintain their tradi-
tional approach of considering all observational studies without
prejudicewhen evaluating scientific evidence for hazard identifica-
tion of criteria air pollutants to meet their mandate for clean air
(Parker 2019).

We argue, in contrast, that RCTs are not the gold standard for
judging observational studies, particularly occupational and envi-
ronmental studies. RCTs of most environmental and occupational
exposures are, by definition, not possible, as one cannot ethically
randomize people to potentially harmful exposures with no per-
ceived benefit. Beyond that, RCTs typically involve limited sample
sizes and short follow-up times, which are often inadequate for
observing chronic disease or rare outcomes. RCTs deliver the expo-
sure (e.g., medication) at the beginning of follow-up, typically in a
limited number of dose levels, which does not mimic the real-life
circumstances of environmental observational studies. The RCT
may involve highly selective study groups meeting particular crite-
ria, whichmay have little generalizability to other populations.

In contrast, in real life, and thus in observational studies, uncon-
trolled exposures are often present before follow-up begins, occur
at many different exposure levels, and may vary by intensity, time
of first exposure, and duration of exposure. Observational studies
often involve outcomes (e.g., cancer and neurodegeneration) with
long latencies following exposure, necessitating long follow-up
periods with evaluation of lagged exposures and latency periods.

Table 2. Some common practices and suggested improvements to risk of
bias assessments for individual environmental epidemiologic studies and
evidence synthesis.

Current practice Suggested improvement

Individual studies
Compare to RCTs as ideal study Do not consider RCTs as ideal study
Evaluate bias in different
domains (e.g., confounding,
selection bias, measurement
error)

Consider the magnitude and direction
of different biases and evaluate the
net likely effect

Rank potential biases (e.g., low,
moderate, high)

Rank biases considering the sugges-
tions in rows above

No evaluation of statistical
methods

Add a domain for statistical methodol-
ogy similar to IARC’s, i.e., assess
the ability to obtain unbiased esti-
mates of exposure–outcome associa-
tions, confidence intervals, and test
statistics. Appropriateness of meth-
ods used to investigate and control
confounding

Evidence synthesis
In some instances, downgrade all
observational studies as weak or
moderate quality

Assume observational studies are high
quality unless important biases are
likely

Reject some studies from evi-
dence synthesis based on rank-
ing of bias across their domains.
Often make overall judgment
based on meta-analyses after
rejection of those studies

Retain most studies in evidence syn-
thesis. Use methods such as sensitiv-
ity analyses and triangulation to
consider net effect of possible
biases. Consider evidence from
other studies that were not included
in meta-analysis because of different
designs or parameters

Note: IARC, International Agency for Research on Cancer; RCT, randomized controlled
trial.
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They often also include long exposure histories (which are impor-
tant for assessing cumulative exposure), require retrospective ex-
posure assessment, and include people who change exposure
categories over time. A proportion of the population is likely to
have other concomitant exposures, some of which may have simi-
lar effects. Observational studies often focus on exposure–response
relationships, rather than simple comparisons of an outcome
among the exposed and nonexposed population. As a result, expo-
sure–response models have been developed that address complex
issues such as control for confounders, consideration of the impor-
tance of measurement error in parameter estimation, model mis-
specification, and the possible use of Bayesian methods to
incorporate prior beliefs.

We believe there should be no a priori assumption that obser-
vational studies are weaker than RCTs for studying occupational
and environmental exposures, and it should be acknowledged that
they generally represent the best available evidence to assess cau-
sality. Others have concluded the same. For example, the Institute
of Medicine (Eden et al. 2008) report concluded, “Randomized
controlled trials can best answer questions about the efficacy of
screening, preventive, and therapeutic interventions while obser-
vational studies are generally the most appropriate for answering
questions related to prognosis, diagnostic accuracy, incidence,
prevalence, and etiology.” Thus, in our view, observational studies
should be considered as the norm and then assigned a lower quality
if significant substantial biases are likely that would affect the pa-
rameter estimates.

Identifying, describing, and ranking biases. Absent an RCT,
reviewers need to ask, “Among observational studies, what are the
possible biases, how likely are they, what direction are they, and how
much are they likely to impact the parameter estimate?” Well-
conducted assessments of biases and their potential impact are essen-
tial in evaluating the contribution of individual studies to evidence
on causality, but their implementation is sometimes problematic. In
some cases, it may be difficult to estimate the magnitude of the bias
or to appropriately assign direction or weights for the various biases
or the impact of the biases on the outcome estimates. Often, the origi-
nal study authors do not providemethods complete enough to evalu-
ate bias issues. Thus, this process necessarily involves subjectivity,
which should be informed by expert judgment.

The quantification and relative importance of possible biases
is a critical emerging field of epidemiology (Lash et al. 2014),
but detailed quantification may be beyond the purview of most
current systematic reviews. However, we believe it is important
to incorporate these methods to the extent possible in risk of bias
tools and specify them (or the lack thereof) in the methods sec-
tion of systematic reviews.

For example, we know historically that many cohort studies
of occupational exposures were criticized for not having smoking
data when considering smoking-related diseases like lung cancer.
However, relatively early in modern epidemiology, Cornfield
et al. (1959) explained how to quantitatively assess the likely im-
portance of confounding factors that differ between exposed and
nonexposed populations. Later, it was shown both theoretically
(Axelson 1980) and empirically (Siemiatycki et al. 1988) that
confounding by smoking is unlikely to explain relative risks
(RRs) for lung cancer that exceed 1.2 to 1.4 in the occupational
setting. This estimation was based on analyses comparing differ-
ences in smoking status between workers and general population
referents (with workers often smoking more) and accounting for
the large RR for smoking and lung cancer. Hence, although
smoking is a very strong lung cancer risk factor and a strong
potential confounder, it is not likely to account for the large RRs
found for classic occupational lung carcinogens. The impact of
lack of control for smoking is expected to be even smaller for

outcomes to which it is more weakly related or, in general, for
any confounder only weakly related to disease.

The work by Cornfield (1959) and others has been followed
by methods to estimate the strength of association that a hypo-
thetical unmeasured confounder, about which the investigator has
no prior knowledge, must have with both the outcome and the
exposure to have an impact equal to the observed effect
(VanderWeele and Ding 2017; Ding and VanderWeele 2016;
Lubin et al. 2018). This estimation enables us to say, for example,
that for an RR of about 2.0 to be explained by an unmeasured
confounder, the unmeasured confounder would have to have a
minimal RR of 3.5 with both the exposure and outcome to reduce
the observed association to the null value of 1.0. For a factor to
have such a strong effect on the outcome and a strong association
with the exposure, but be unknown, is generally unlikely in most
settings. Yet, even today, smoking, other identified confounders,
and other unknown confounders continue to be raised as possible
sources of bias to explain positive findings (VanderWeele and
Ding 2017). Thus, as a minimum, estimating the likely maximum
extent of (unmeasured) confounding and discussing its likely
impact on the observed effect estimate can and should be done.

These same considerations of magnitude and direction of bias
apply to other potential biases beyond confounding, e.g., selec-
tion bias and measurement error. For example, classical nondif-
ferential measurement error will generally bias effect measures to
the null so that if an elevated risk is found, it is not likely because
of this source of error (although other biases might bias against
the null). In contrast, Berkson measurement error generally
affects the precision of the findings but not the actual point esti-
mates (Armstrong 1998). Moreover, mismeasurement may have
little consequence on exposure–response parameters when there
are large exposure contrasts in the population (Avanasi et al.
2016). Sensitivity and specificity of classification of the outcome
may also play a role. Selection bias, occurring during recruit-
ment, can only affect estimates to the degree that the estimated
parameter of interest (i.e., the association between exposure and
outcome) among those people not included in a study differs
substantially from that parameter in the population studied.
Furthermore, in general, if the direction of two sources of bias is
different, they may approximately cancel each other out. A
reviewer needs to consider multiple sources of possible bias and
their relative importance and whether they are likely to have a net
effect of bias away or toward the null in the effect estimate. Thus,
taking such considerations into account requires that we go
beyond some current ranking schemes (Table 2). We note that
these same issues are at the heart of triangulation, which is dis-
cussed in more detail below. We believe it is possible to improve
risk of bias tools to formally incorporate magnitude and direction
of bias, but it will take considerable work.

Other possible domains in risk of bias tools. Another possible
bias domain is conflict of interest, which can create a potential
bias and is not always assessed in risk of bias tools. There is
strong evidence that studies authored by those with vested inter-
est are generally favorable to those interests, hence the need to
disclose potential conflict of interests. The effects of conflicts of
interest are well documented in clinical medicine (Angell 2008;
Krauth et al. 2014; Lundh et al. 2012), and biased results
from similar conflicts of interest have been documented in occu-
pational and environmental epidemiology (Michaels 2009).
Evaluation of risk of bias regarding conflict of interest may also
assess issues of selective reporting of study results (e.g., only
reported results that are significant). In our view, however, a
potential conflict of interest does not define a specific bias in and
of itself, and if specific biases are present, reviewers should be
able to detect them in evaluating studies. Hence, we do not argue
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to include conflict of interest as a separate domain for risk of bias
tools, although such potential conflicts must be clearly acknowl-
edged by authors.

Another domain, generally not included in current risk of bias
tools, is potential bias because of problems in statistical method-
ology. Concerns include choice of an inappropriate and badly fit-
ting model, failure to model exposure–response or to evaluate
different exposure–response models, incorrect use of mixed mod-
els, incorrect use of Bayesian techniques, violation of statistical
assumptions (e.g., normal residuals in linear regression), overad-
justment for covariates related to exposure but not to outcome,
adjusting for causal intermediates, etc. It may be possible to infer
whether the resulting biases can be toward or away from the null;
otherwise, it simply may be necessary to indicate that the effect
estimate is likely to be incorrect without knowing the direction of
bias. We are in favor of adding this domain to risk of bias tools.

Another domain that does not entail bias per se is informa-
tiveness. Consideration in this domain includes whether the study
has a large enough sample size, whether the study has sufficient
latency, whether results have been reported selectively, and
whether the study has sufficient exposure contrast to see an effect
of exposure on outcomes. This domain is sometimes called sensi-
tivity in some evidence syntheses (Cooper et al. 2016). However,
some of these concerns may be addressed in other domains, par-
ticularly the exposure domain or during evidence synthesis, and
we do not argue for including informativeness in risk of bias
tools.

Summary of concerns about current risk of bias tools. Table 2
lists some areas of concern for risk of bias tools in current use
and some suggested improvements. It should be noted that cur-
rent risk of bias tools differ, and we note in Table 1 what we con-
sider the pros and cons of current risk of bias tools with regard to
our areas of concern. We focus on existing risk of bias tools
appropriate for observational studies and that include some kind
of algorithm to rank different study domains (e.g., confounding,
selection bias, and measurement error), i.e., the risk of bias tools
noted above in Table 1. An earlier, somewhat analogous review
of risk of bias tools, including systematic reviews that assess risk
of bias without a formal risk of bias tool, has been published pre-
viously by Rooney et al. (2016).

Broad Types of Evidence Synthesis and Causal Inference
Risk of bias assessments of individual studies are eventually incor-
porated into a broader evidence synthesis (e.g., within systematic
reviews), where they can play an important role (Figure 1). A num-
ber of government and public health agencies have formalized evi-
dence synthesis guidelines using a broad approach, including
IARC (IARC 2019a), the National Toxicology Program (NTP)’s
OHAT (NTP 2019), the EPA (National Research Council 2014),
and theNTP’s “Report on Carcinogens” (NTP 2015).

Here, we discuss such broad syntheses and suggest some ways
that bias assessment might be used in them. Table 2 describes some
current practices for use of risk of bias assessment in evidence syn-
thesis and suggests some improvements. Our concerns about evi-
dence synthesis stem from the same concerns above regarding risk
of bias assessment for individual studies, i.e., the a priori down-
grading of observational studies compared with a randomized trial
and the potential exclusion of useful studies in synthesis because of
being judged overly biased.

Ultimately, every process of causal inference should involve
the synthesis of different types of evidence (Broadbent et al. 2016;
Vandenbroucke et al. 2016), and, in most cases, no single study is
sufficient or definitive, although there are exceptions (Benbrahim-
Tallaa et al. 2014; de Boer et al. 2018). Even when a study or a set
of studies of similar design appears sufficient to establish an

association suggesting causality, other kinds of inference may be
informative for evidence synthesis (Cartwright 2007). The use of
different pieces of interlocking evidence in an argument has sup-
port among philosophers of science, e.g., in the crossword analogy
by Haack (1998). This can be formalized in terms of triangulation
(Lawlor et al. 2016). Below, we present two well-known examples
of a broad synthesis procedure, old and new, followed by a discus-
sion of triangulation.

Bradford Hill, a classic treatise on evidence synthesis. Most
epidemiologists are familiar with the classic considerations for
assessing causality of Bradford Hill (Figure 2), first elaborated
over 50 y ago, e.g., strength of association, consistency, dose–
response (biological gradient), biological plausibility, temporality
(exposure precedes disease), and specificity.

Less well-known are coherence (concordance between epide-
miological and laboratory findings), experiment (e.g., a natural
experiment in which exposure ceases and disease is then dimin-
ished), and analogy (similarities between the observed association
and other associations). These last three considerations go beyond
direct evidence from epidemiologic studies and are consistent with
both the IARC approach and triangulation (Lawlor et al. 2016),
both described below. Hill, who called these considerations merely
viewpoints, did not consider any of them as a necessary or suffi-
cient requirement for causality, nor do most epidemiologists so
consider them today (with the exception of temporality; see
Rothman and Greenland 2005). The spirit with which Bradford
Hill considered his viewpoints, however, remains a cautionary
guide arguing against too mechanical an application of checklists
in risk of bias analyses and their subsequent use in evidence synthe-
sis. On the other hand, bias assessments can and should be used in
the spirit of Hill.

IARC Monographs, a modern variation of Bradford Hill. In
judging whether a given agent is carcinogenic, IARC assesses
three types of evidence: a) animal bioassay evidence; b) human
cancer epidemiologic evidence; and c) animal, human, and in
vitro mechanistic evidence (Samet et al. 2020; IARC 2019a).
Judgments are made as to whether the evidence in each area is
sufficient (or strong in the case of mechanisms), limited, or inad-
equate, with the final assessment about human carcinogenicity
based on integration of these judgments (Figure 3).

There is no formal risk of bias assessment or semiquantitative
ranking scheme in the IARC Monographs, although guidelines
are provided in the IARC Preamble on how to evaluate individual
study quality, synthesize the body of evidence within a single
line of evidence (e.g., epidemiologic studies of cancer), and put
the streams of evidence together (IARC 2019a). Regarding bias
evaluation in individual studies, the Preamble provides a list of
different sources similar to many risk of bias tools (confounding,
measurement error, selection bias, etc.), as well as the criteria for
evaluating each of these domains with regard to bias, and calls
for assessment of their impact. The Preamble adds a domain for
statistical methodology and also evaluates informativeness or

1. Consistency
2. Specificity
3. Temporality
4. Biological gradient
5. Plausibility
6. Coherence
7. Experiment
8. Analogy

“What I do not believe – and this has been 
suggested – is that we can usefully lay down 
some hard-and-fast rules of evidence that must
be obeyed before we can accept cause and 
effect. None of my nine viewpoints can bring 
indisputable evidence for or against the cause-
and-effect hypothesis and none can be required 
as a sine qua non.  What they can do, with 
greater or less strength, is to help us make up 
our minds on the fundamental ques�on – is 
there any other way of explaining the set of facts 
before us, is there any other answer equally, or 
more, likely than cause and effect?”

Figure 2. Bradford Hill’s viewpoints (Hill 1965).
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study sensitivity (i.e., the ability to show a true association),
which are not generally part of other evidence syntheses [the
NTP’s “Report on Carcinogens” (NTP 2015) is an exception].

The Preamble then states, with regard to a list of possible
biases, that “these sources of error do not constitute and should
not be used as a formal checklist of indicators of study quality.
The judgment of experienced experts is critical in determining
how much weight to assign to different issues in considering how
all of these potential sources of error should be integrated and
how to rate the potential for error related to each of these consid-
erations.” Expert judgment comes into play, for example, when
determining how informative individual epidemiological studies
are for assessing the carcinogenic hazard posed by the agent and
the relevance of specific animal and mechanistic studies. For a
judgment that a substance causes a given cancer, IARC requires
that the observed overall association as judged in evidence syn-
thesis cannot be explained by confounding, systematic bias, or
chance. This formulation corresponds to a bias impact assessment
across studies.

Although IARC guidelines for assessing bias are cautionary
notes against checklist approaches, they are not formally applied to
individual studies for specific domains in the IARC Monographs,
although overall strengths and weaknesses of studies are men-
tioned, and bias impact (where assessable) is emphasized. We
argue that bias assessment tools, which reflect the spirit of the
IARC guidelines, can—as noted earlier—increase transparency
and replicability in the evaluation of individual studies.

Triangulation. Recently, there has been increased interest in
the use of triangulation approaches (Lawlor et al. 2016) for assess-
ing causality in evidence synthesis. If different studies are gener-
ally concordant regarding the observed association, especially if
their possible biases point in opposing directions, a causal interpre-
tation is supported. Thus, triangulation specifically chooses popu-
lations and study designs where the bias is likely to be in different
directions. Different types of triangulation include cross-context
comparisons, use of different controls (in a case–control study),
natural experiments, within-sibling comparisons, instrumental
variable analyses, Mendelian randomization, exposure negative
controls, and outcome negative controls. Other non-RCT-based
methods, different from triangulation, include population compari-
sons and regression discontinuity studies (Pearce et al. 2019). A
form of triangulation may be used in meta-analysis in which stud-
ies that have different potential sources of bias are variously
included or excluded from an analysis to determine the impact,
thereby drawing causal inference from the impact of such

inclusions or exclusions (Lee et al. 2009; Honaryar et al. 2019;
Hauptmann et al. 2020). This type of triangulation is often called
sensitivity analysis.

For example, Pearce et al. (1986) conducted a case–control
study of pesticide exposure and non-Hodgkin lymphoma, which
involved two control groups: a) a general population control
group; and b) an “other cancers” control group. It was hypothe-
sized that the former control group would produce an upward
bias in the estimated odds ratio (differential recall bias if healthy
general population controls are less likely to remember previous
exposure than the cancer cases), whereas the “other cancers” con-
trol group could produce a downward bias in the estimated odds
ratio (if any of the other cancers were also caused by the pesticide
exposure under study). Both groups yielded similar findings, indi-
cating that neither bias was occurring to any discernible degree.
This provided strong evidence that little recall bias or selection
bias was occurring. Although a flexible risk of bias tool and
expert judgment might have reached this conclusion, a mechani-
cal risk of bias assessment could have led to the rejection of both
components of the study as being at high risk of bias (albeit in
opposite directions).

Triangulation is also consistent with the approach advocated by
Savitz et al. (2019), who argue that risk of bias assessments should
focus on identifying a small number of the most likely influential
sources of bias, classifying each study on how effectively it has
addressed these potential biases (or was likely to have the bias) and
determining whether results differ across studies in relation to these
hypothesized biases. For example, information bias is unlikely to
explain positive findings of studies with nondifferential exposure
misclassification if stronger findings are found among studies with
better exposure assessments. A good example of triangulation by
assessing exposure quality can be found in Lenters et al. (2011),
who evaluated the association between asbestos and lung cancer. In
this analysis, stratification by exposure assessment characteristics
revealed that studies with a well-documented exposure assessment,
larger contrast in exposures, greater coverage of the exposure his-
tory by the exposure measurement data, and more complete job his-
tories had higher risk estimates per unit dose than did studies
without these characteristics. Observing risk estimates that move in
the direction of expectation of study quality adds to the strength of
evidence. Similar observations have been made for other environ-
mental and occupational exposures (Vlaanderen et al. 2011).

Similarly, if all the likely major sources of confounding have
been adjusted for in some studies, these adjustments made little
difference to the findings, and the results were similar to those

Evidence of cancer 
in humans

Evidence of cancer in 
experimental animals

Mechanis�c evidence Evalua�on

Sufficient Carcinogenic (Group 1)

Sufficient Strong (exposed humans)

Limited Sufficient
Probably carcinogenic 
(Group 2A)

Limited Strong

Sufficient Strong (human cells or 
�ssues)

Strong (mechanis�c class)

Limited Possibly carcinogenic 
(Group 2B)Sufficient

Strong (experimental 
systems)

Sufficient Strong (does not operate in 
humans)

Not classifiable (Group 3)

All other situa�ons not listed here

Figure 3. IARC Monographs criteria for evidence synthesis. Adapted from IARC (2019b).
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studies that were not able to adjust for confounding, confounding
is less likely to explain the findings. For example, in a meta-
analysis of lung cancer and exposure to diesel engine exhaust, 16
of 29 studies controlled for smoking, whereas 13 studies did not.
However, meta-risk estimates for smoking-adjusted [RR=1:35
(95% CI: 1.22–1.49)] and unadjusted [RR=1:33 (95% CI: 1.25–
1.41)] were virtually identical, indicating that not correcting for
smoking did not substantially bias the effect estimates (and sug-
gesting that smoking was not a confounder) (Bhatia et al. 1998).

The approach to assessing risk of bias in individual studies as a
preliminary step to dismissing specific studies from further evi-
dence synthesis does not fit well with these more nuanced
approaches to knowledge synthesis because this approach: a) may
focus on each study individually, making it impossible to conduct
thoughtful triangulation analyses (e.g., cross-context compari-
sons); b) usually does not assess the likely direction and magnitude
of the bias and impact on effect estimates; c) may not account for
important secondary evidence such as exposure or outcome nega-
tive controls (Lipsitch et al. 2010); and d) may downgrade a spe-
cific study based on one flaw while ignoring other strong points.
The danger of simplistic risk of bias approaches is that they may
result in excluding a great deal of relevant and important evidence.
On the other hand, existing risk of bias tools, if flexibly used, can
avoid these flaws and can be strengthened by adding guidelines
that consider triangulation.

A counterexample where triangulation would have been helpful
is provided by a review of diesel exhaust and lung cancer byMöhner
and Wendt (2017). These authors did not use a formal risk of bias
tool; rather, they adopted a study-by-study approach and dismissed
most studies because of their judgment that the studies were biased.
They dismissed all 10 case–control studies (all adjusted for smok-
ing) because of alleged residual confounding by smoking stemming
from the exclusion of controls with smoking-related diseases. They
also argued that the population-based case–control studies suffered
from selection biases because controls were more likely to be more
highly educated and less likely to be exposed to occupational diesel
fumes. However, if this latter point were true, population-based
case–control studies would show a higher risk per unit of diesel
exposure than hospital-based case–control studies. The large
SYNERGY project (http://synergy.iarc.fr), which pooled lung can-
cer case–control studies of occupation, used a standardized exposure
assessment across both population- and hospital-based studies and
found no indication of such bias (Olsson et al. 2011). Möhner and
Wendt also dismissed virtually all the cohort studies. They argued
that the Diesel Exhaust inMiners Study (DEMS) was the only study
that could be used for evaluating lung cancer and diesel exhaust
quantitatively among the 30 or more studies they reviewed
(Silverman et al. 2012; Attfield et al. 2012). They judged that the
DEMS study itself was analyzed incorrectly because of the method
of controlling for smoking separately for surface vs. underground
mining in the same model (smoking strata within each job category
stratum), even though separate analyses of surface and underground
miners, controlling for smoking, showed little evidence of a diesel–
lung cancer effect in the former and a strong largely monotonic
effect in the latter, where exposure contrasts were much stronger.
Overall, Möhner and Wendt concluded that the evidence did not
support a causal link between diesel exhaust and lung cancer. In con-
trast, a pooled exposure–response analysis (a type of triangulation)
of the three prospective studies with quantitative data revealed that
the estimates of these three cohorts were largely consistent, even
though all could potentially have suffered from different shortcom-
ings (Vermeulen et al. 2014). Similarly, an expert committee con-
vened by IARC in 2012 determined that diesel exhaust is a Group 1
human carcinogen based on sufficient evidence of carcinogenicity
fromepidemiological studies on lung cancer (IARC 2014).

Examples of Contrasting Approaches to Systematic Reviews
and Evidence Synthesis
Below, we consider two examples of systematic reviews with
contrasting approaches. The red meat review is an example, in
our view, of how not to do a systematic review, and the second
example, regarding low-dose ionizing radiation, is an example of
how it should be done.

Consumption of red and processed meat. An example of a
problematic risk of bias assessment, embedded within a system-
atic review and meta-analysis, concerns a set of recent papers
evaluating the evidence of an association between red meat and
processed meat consumption and risk of cancer, among other out-
comes (Han et al. 2019; Vernooij et al. 2019; Zeraatkar et al.
2019). Concerns regarding this review include inappropriate use
of risk of bias assessments and downgrading of observational
studies based solely on using RCTs as a gold standard. We focus
here on the paper by Han et al. (2019) regarding cancer, particu-
larly colorectal cancer.

Han et al. (2019) used a risk of bias approach that considered
all sources of bias as equally important and arbitrarily assigned
studies as having a high risk of bias if two or more elements were
rated as having high risk of bias, regardless of the direction or
impact of the likely bias [e.g., dietary information bias usually
biases toward the null (Freedman et al. 2011)]. In addition, the
risk of bias evaluations for exposure downgraded most of the
large cohort studies by requiring repeated dietary assessment
(e.g., with food frequency questionnaires) be administered every
5 y for the study to receive a low risk of bias rating.

In their evidence synthesis for colorectal cancer incidence and
other outcomes, these authors qualitatively weighted evidence
from randomized trials more heavily than observational studies
despite the small exposure contrasts for meat consumption and
short follow-up provided by the trials (Zeraatkar et al. 2019).
They universally downgraded the observational studies, which
they automatically deemed as providing low or very low certainty
despite showing strong and consistent evidence of a dose–
response gradient, based on a presumption of their inherent bias,
using GRADE as their criteria.

Although their meta-RR per unit of meat intake for colorectal
cancer incidence in relation to processed meat was of a similar
magnitude to previously reported meta-analyses, the systematic
review authors described the overall effect of processed meat as
of being of low-to-very low certainty because of the meta-RR’s
origin in inherently low-certainty observational studies, as well
as the small effect observed (which, to some extent, was an arti-
fact of the unit they selected for an RR). They used this interpre-
tation to develop dietary guidelines that red and processed meat
consumption need not be reduced (Johnston et al. 2019; Carroll
and Doherty 2019), generating considerable opposition by lead-
ing subject matter experts. (e.g., Qian et al. 2020; https://www.
hsph.harvard.edu/nutritionsource/2019/09/30/flawed-guidelines-
red-processed-meat/). The World Cancer Research Fund (https://
www.wcrf.org/int/latest/news-updates/red-and-processed-meat-still-
pose-cancer-risk-warn-global-health-experts) recommends limiting
intake of processed and red meat based on their expert systematic
reviews, which concluded that the evidence for an increased risk
of colorectal cancer was convincing for processed meat and prob-
able for red meat. IARC reached similar conclusions for proc-
essed meat and red meat being probably carcinogenic to humans
(IARC 2018).

Low-dose ionizing radiation. A new systematic review of
low-dose ionizing radiation in relation to cancer was recently
published. It involved an assessment of biases in the relevant lit-
erature and evidence synthesis with a meta-analysis. The ration-
ale and framework for the review are described in Berrington de
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Gonzalez et al. (2020). The assessment of biases consisted of a
series of four articles that dealt with different types of biases,
including dose measurement error (Daniels et al. 2020), con-
founding and selection bias (Schubauer-Berigan et al. 2020),
potential outcome misclassification (Linet et al. 2020), and
impacts of different analytical methods (Gilbert et al. 2020).
Here, we focus on the assessment of confounding. The article
goes over each of the relevant studies and assesses whether
potential confounders were controlled and, if they were not, the
likely magnitude and direction of bias and the potential impact in
the effect estimate. This approach included indirect adjustments
for uncontrolled confounders to assess their likely impact on
effect estimates, based on likely distributions of the confounder
by exposure level and the RR of cancer because of the con-
founder. The authors summarized the relevant literature (26 stud-
ies) that had used cumulative radiation exposure as their metric,
had mean cumulative levels <100milligray (mGy), and used a
model that calculated the excess RR per milligray. Their conclu-
sion was that for most studies, substantial confounding was
unlikely. Of the 14 studies that were likely to suffer from some
degree of confounding bias, 7 were judged potentially biased to
the null, 2 away from the null, and in 5, the direction could not be
assessed (in some instances because of two biases operating in
opposite directions). A similar exercise was done for selection
biases.

The subsequent meta-analysis (Hauptmann et al. 2020) con-
tained a number of sensitivity analyses in which studies with likely
confounding away from the null, or in which the direction could
not be ascertained, were excluded. The authors made note of which
studies contributed to heterogeneity and whether the heterogeneity
was likely because of uncontrolled biases. The authors concluded,
“Traditionally, systematic reviews classify the quality of a study
but without formally considering whether the quality of informa-
tion translates into a bias. . . In addition, the direction of the bias,
and, if possible, the magnitude of the potential bias need to be
assessed. Without these further considerations, exclusions based
on quality or potential bias could result in substantial loss of infor-
mation. Such an approach has been recently recommended over
other approaches, such as the use of a ‘risk of bias’ checklist”
(Savitz et al. 2019).

Conclusions
We have outlined some suggested approaches for evidence synthe-
sis in systematic reviews, particularly for reviews focused on envi-
ronmental and occupational exposures in observational studies.
Broad approaches to synthesis include the use of classical consid-
erations for judging causality, consideration of various streams of
evidence including animal andmechanistic data, as well as triangu-
lation. Although we consider that risk of bias assessments can play
an important role in evidence synthesis when used appropriately,
we also note some potential drawbacks, i.e., their potential for mis-
use and some of their current limitations. First, we do not consider
that RCTs provide a gold-standard model for observational studies
such that observational studies should start with an assumption of
bias. Second, we argue against simply producing a list of possible
biases for individual studies, ranking their different domains by
presumed degree of bias, and using these rankings across domains
to judge whether individual studies suffer critical bias and should
be excluded from evidence synthesis. We call, rather, for more
comprehensive identification of the likely direction and magnitude
of possible biases and their impact on the parameter estimates. We
are concerned that misuse of risk of bias assessment can be used to
dismiss important evidence of exposure effects on health, which
can have hazardous public health consequences.
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