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Abstract

Background

Available COVID-19 mortality indices are limited to acute inpatient data. Using nationwide

medical administrative data available prior to SARS-CoV-2 infection from the US Veterans

Health Administration (VA), we developed the VA COVID-19 (VACO) 30-day mortality index

and validated the index in two independent, prospective samples.

Methods and findings

We reviewed SARS-CoV-2 testing results within the VA between February 8 and August 18,

2020. The sample was split into a development cohort (test positive between March 2 and

April 15, 2020), an early validation cohort (test positive between April 16 and May 18, 2020),

and a late validation cohort (test positive between May 19 and July 19, 2020). Our logistic
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regression model in the development cohort considered demographics (age, sex, race/eth-

nicity), and pre-existing medical conditions and the Charlson Comorbidity Index (CCI)

derived from ICD-10 diagnosis codes. Weights were fixed to create the VACO Index that

was then validated by comparing area under receiver operating characteristic curves (AUC)

in the early and late validation cohorts and among important validation cohort subgroups

defined by sex, race/ethnicity, and geographic region. We also evaluated calibration curves

and the range of predictions generated within age categories. 13,323 individuals tested pos-

itive for SARS-CoV-2 (median age: 63 years; 91% male; 42% non-Hispanic Black). We

observed 480/3,681 (13%) deaths in development, 253/2,151 (12%) deaths in the early vali-

dation cohort, and 403/7,491 (5%) deaths in the late validation cohort. Age, multimorbidity

described with CCI, and a history of myocardial infarction or peripheral vascular disease

were independently associated with mortality–no other individual comorbid diagnosis

provided additional information. The VACO Index discriminated mortality in development

(AUC = 0.79, 95% CI: 0.77–0.81), and in early (AUC = 0.81 95% CI: 0.78–0.83) and late

(AUC = 0.84, 95% CI: 0.78–0.86) validation. The VACO Index allows personalized esti-

mates of 30-day mortality after COVID-19 infection. For example, among those aged 60–64

years, overall mortality was estimated at 9% (95% CI: 6–11%). The Index further discrimi-

nated risk in this age stratum from 4% (95% CI: 3–7%) to 21% (95% CI: 12–31%), depend-

ing on sex and comorbid disease.

Conclusion

Prior to infection, demographics and comorbid conditions can discriminate COVID-19 mor-

tality risk overall and within age strata. The VACO Index reproducibly identified individuals

at substantial risk of COVID-19 mortality who might consider continuing social distancing,

despite relaxed state and local guidelines.

Introduction

The highly contagious nature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), the lack of widespread immunity, and the absence of an effective vaccine ensure continued

spread of the virus among the general population [1]. As state and local authorities relax guide-

lines, we need accurate and reliable means of identifying those at greatest risk should they

become infected to inform personal choice and public policy.

Several studies have identified risk factors for mortality associated with coronavirus disease

2019 (COVID-19) in the inpatient setting [2–7]. However, these analyses do not adequately

address the issue of identifying at-risk individuals before infection, for several reasons. First,

these analyses were not exclusively based on data present prior to SARS-CoV-2 infection. Sec-

ond, the models require data not routinely available or directly analyzable from administrative

databases or electronic health records (EHR) making them difficult to apply in real time to

large patient populations. Third, a recent systematic review [4] found that most SARS-CoV-2

infection outcome models were based on limited sample sizes, were likely over-fit, and were

not validated in independent data.

The Veterans Health Administration (VA) is the largest integrated health care system in the

United States, providing care at 1,255 health care facilities, including 170 medical centers and

1,074 outpatient sites, serving 6 million Veterans each year. Using data routinely available and
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directly analyzable in the VA national system, we developed the VA COVID-19 (VACO)

Index estimating 30-day COVID-19 mortality after a positive test based on demographics and

pre-existing conditions, and validated its discrimination and calibration. We explored the

VACO Index performance in two different time intervals of the pandemic, and in important

clinical subgroups by sex, race/ethnicity, geographic region, and within age strata.

Methods

Data source and participants

We obtained individual patient data on August 19, 2020 from the VA Corporate Data Ware-

house, which includes daily updates from over 1,200 facilities across the United States. All Vet-

erans who were alive as of January 1, 2020 and active in care (defined as having at least one

clinical encounter between January 1, 2018 and December 31, 2019, with either a recorded

blood pressure or a routine laboratory test result (complete blood count, serum creatinine, ala-

nine transaminase, or aspartate aminotransferase) were eligible. We included patients who

tested positive for SARS-CoV-2 in inpatient or outpatient settings between March 2 and July

18, 2020 and followed them for 30 days.

We identified tested individuals using text searches of laboratory results containing terms

consistent with SARS-CoV-2 or COVID-19. Nearly all tests utilized nasopharyngeal swabs;

<1% were from other sources, serum tests were excluded. Testing was performed in VA, state

public health, and commercial reference laboratories using emergency use authorization

approved SARS-CoV-2 assays. If an individual had more than one test, we used the date of

their first positive test. Baseline was defined as the date of specimen collection unless testing

occurred during hospitalization, in which case it was defined as date of admission. If admission

began more than 14 days prior to testing, possibly indicating nosocomial infection, we set the

baseline to 14 days prior to testing to delineate health status before SARS-CoV-2 infection.

The data were split into a development cohort (positive test between March 2 and April 15,

2020), an early validation cohort (positive test between April 16 and May 18, 2020), and a late vali-

dation cohort (positive test between May 19 and July 19, 2020). Date of last follow-up was August

18, 2020 to allow 30 days of follow-up after testing for all patients. This study was conducted in

compliance with the Health Insurance Portability and Accountability Act (HIPAA) and was

approved by the Institutional Review Boards of VA Connecticut Healthcare System and Yale Uni-

versity, both of whom granted wavers of consent. This cohort study is reported as per the Strength-

ening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines (S1 Checklist).

VACO Index development: Candidate predictors

We began by performing a literature review to identify candidate demographic and medical con-

dition predictors available in medical administrative records. Demographic variables included

age, sex (male or female), and race and ethnicity (non-Hispanic Black, non-Hispanic White, His-

panic, or other). Medical conditions included individual components of the Charlson Comorbid-

ity Index (CCI) and the CCI without an age adjustment derived from International Classification

of Diseases, 10th edition (ICD-10) codes [8, 9] present between 730 and 15 days before COVID-

19 testing (S1 Table). Using a previously validated grouping of ICD-10 code-defined comorbidi-

ties recorded during at least one inpatient or two outpatient encounters within the past two years

[10, 11], we also considered conditions reported by other investigators as associated with COVID-

19 mortality that were not included in CCI: asthma and hypertension [12–14].

Deaths were determined using inpatient records and the VA death registry to capture

deaths occurring outside hospitalization. Previous research has demonstrated that these com-

bined sources are as accurate and more up to date than the National Death Index [15].
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Statistical analyses

All data analyses were performed using Stata, version 15.1 (StataCorp, College Station, TX).

We assessed the distribution of variables in the development cohort and their association and

functional forms with 30-day mortality using unadjusted and multivariable logistic regression

models. All variables with P<0.1 in unadjusted models were evaluated for inclusion in the

adjusted models and retained in the final adjusted model for a P<0.05. We double checked the

final multivariable model by reinserting and assessing the significance of previously excluded

individual comorbidity and condition variables–none attained significance at P<0.05. Sex was

included in the final multivariable model, regardless of P-value. CCI values with similar mor-

tality rates were collapsed into five categories (0, 1–3, 4–5, 6–9, 10+). We explored interactions

between variables—there was a significant interaction between age and CCI below the age of

85 that was incorporated into the final model.

Model validation and calibration

We report area under the receiver operating characteristic curves (AUC) and calibration

curves as assessments of the VACO Index performance in development and validation sam-

ples. To validate performance, we froze statistical weights from the final development model,

then generated risk prediction scores for individuals in validation. We used the early and late

validation cohorts, and a combined validation cohort, to evaluate Index performance overall

and in important subgroups: sex (male vs female), race/ethnicity (Black vs non-Black), and

VA-defined geographic regions combined to generate two approximately equal population

samples (Northeast and West vs Southeast and Midwest). We assessed Index calibration with

the Hosmer-Lemeshow goodness-of-fit test in the development cohort, and with plots of

observed versus predicted 30-day mortality in 10 strata containing equal numbers of deaths, in

development and validation cohorts and in validation cohort subgroups by sex, race/ethnicity,

and geographic region. We also compared the range of predicted mortality values stratified by

age category.

Results

Participants

Among tests performed from February 8 to July 19, 2020, we identified 13,323 individuals test-

ing positive for SARS-CoV-2 in the VA who met our inclusion criteria. The first VA positive

test was on March 2, 2020. Based on date of their first positive test, we assigned 3,681 patients

to the development cohort, 2,151 patients to the early validation cohort, and 7,491 patients to

the late validation cohort (Fig 1). As of August 18, 2020, we observed 1,136 deaths (9%): 480

(13%) in the development cohort, 253 (12%) in the early validation cohort, and 403 (5%) in the

late validation cohort. The development cohort was older (median age: 64.8 vs 62.3), with a

higher proportion of non-Hispanic Blacks (52% vs 38%), and a lower proportion of males

(93% vs 90%) than the combined validation cohorts (Table 1). The development cohort had

fewer patients with a Charlson Comorbidity Index of zero indicating absence of comorbid dis-

ease (26% vs 35%).

VACO Index development

Univariate analyses demonstrated strong associations between multiple candidate predictors

and 30-day mortality in the development cohort (Table 2). The strongest predictor was age,

with mortality ranging from 0.3% among those under age 50 to 44% among those 90 or more

years of age. Women experienced lower mortality than men. Before adjustment, non-Hispanic
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White patients had higher mortality, although these differences vanished after adjustment with

age and CCI. Many pre-existing conditions were associated with mortality including prior

myocardial infarction (MI), chronic kidney disease (CKD), chronic lung disease, diabetes with

complications, hypertension, and peripheral vascular disease (PVD), both individually and

combined in the CCI.

VACO Index specification and performance

Age alone was strongly associated with mortality (Table 2) with an AUC of 0.77 (95% CI:

0.75–0.79). There was a significant interaction between CCI and age below the age of 85. Dis-

crimination improved in the multivariable model after supplementing age with sex, CCI, and

MI or PVD (AUC: 0.79, 95% CI: 0.77–0.81; Fig 2). When we applied the VACO Index to the

validation cohorts, it maintained good discrimination in the early (AUC: 0.81, 95% CI: 0.78–

0.83) and late (AUC: 0.84, 95% CI: 0.78–0.86) validation cohorts. The AUCs for important

Fig 1. Flow diagram of VACO Index cohort selection. Flow diagram showing selection of VACO Index cohorts from

5,834,543 patients active in VA care as of January 1, 2020. All COVID-19 tests were performed in the VA. Patients with

COVID-19 tests after July 18, 2020 did not have 30 days of follow-up and were excluded from the analysis.

https://doi.org/10.1371/journal.pone.0241825.g001
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Table 1. Characteristics of patients in VACO Index development and validation cohorts.

Cohort

Combined Development &

Validation

Development Validation, Early Validation, Late Validation,

Combined

P value�

Testing dates 3/2/2020–7/18/2020 3/2/2020–4/15/

2020

4/16/2020–5/18/

2020

5/19/2020–7/18/

2020

4/16/2020–7/18/2020

N 13,323 3,681 2,151 7,491 9,642

30-day Deaths, n (%) 1,136 (8.5) 480 (13.0) 253 (11.8) 403 (5.4) 656 (6.8)

Age, median (IQR) 63.1 (50.0–72.8) 64.8 (53.7–73.4) 67.6 (57.5–75.0) 60.6 (46.0–71.7) 62.3 (48.8–72.5) <0.001

Categories, N (%)

20–49 3,326 (25.0) 717 (19.5) 324 (15.1) 2,285 (30.5) 2,609 (27.1) <0.001

50–54 1,072 (8.0) 279 (7.6) 130 (6.0) 663 (8.9) 793 (8.2)

55–59 1,292 (9.7) 375 (10.2) 204 (9.5) 713 (9.5) 917 (9.5)

60–64 1,598 (12.0) 481 (13.1) 282 (13.1) 835 (11.1) 1,117 (11.6)

65–69 1,472 (11.0) 433 (11.8) 256 (11.9) 783 (10.5) 1,039 (10.8)

70–74 2,119 (15.9) 654 (17.8) 415 (19.3) 1,050 (14.0) 1,465 (15.2)

75–79 1,004 (7.5) 293 (8.0) 200 (9.3) 511 (6.8) 711 (7.4)

80–89 1,043 (7.8) 326 (8.9) 237 (11.0) 480 (6.4) 717 (7.4)

�90 397 (3.0) 123 (3.3) 103 (4.8) 171 (2.3) 274 (2.8)

Race/Ethnicity

Non-Hispanic White 5,148 (38.6) 1,194 (32.4) 934 (43.4) 3,020 (40.3) 3,954 (41.0) <0.001

Non-Hispanic Black 5,589 (42.0) 1,896 (51.5) 892 (41.5) 2,801 (37.4) 3,693 (38.3)

Hispanic 1,734 (13.0) 405 (11.0) 203 (9.4) 1,126 (15.0) 1,329 (13.8)

Other/Unknown 852 (6.4) 186 (5.1) 122 (5.7) 544 (7.3) 666 (6.9)

Male sex 12,114 (90.9) 3,410 (92.6) 1,993 (92.7) 6,711 (89.6) 8,704 (90.3) <0.001

Comorbidity
Asthma 663 (5.0) 237 (6.4) 89 (4.1) 337 (4.5) 426 (4.4) <0.001

Hypertension 7,825 (58.7) 2,321 (63.1) 1,424 (66.2) 4,080 (54.5) 5,504 (57.1) <0.001

Charlson Comorbidities

AIDS 223 (1.7) 76 (2.1) 36 (1.7) 111 (1.5) 147 (1.5) 0.033

Cancer 1,585 (11.9) 505 (13.7) 288 (13.4) 792 (10.6) 1,080 (11.2) <0.001

Cancer, metastatic 228 (1.7) 73 (2.0) 45 (2.1) 110 (1.5) 155 (1.6) 0.141

Cerebrovascular accident 1,578 (11.8) 484 (13.1) 370 (17.2) 724 (9.7) 1,094 (11.3) 0.004

Chronic pulmonary

disease

3,022 (22.7) 956 (26.0) 541 (25.2) 1,525 (20.4) 2,066 (21.4) <0.001

Congestive heart failure 1,857 (13.9) 587 (15.9) 396 (18.4) 874 (11.7) 1,270 (13.2) <0.001

Diabetes 4,900 (36.8) 1,485 (40.3) 874 (40.6) 2,541 (33.9) 3,415 (35.4) <0.001

Diabetes with

complications

2,813 (21.1) 884 (24.0) 544 (25.3) 1,385 (18.5) 1,929 (20.0) <0.001

Dementia 1,337 (10.0) 434 (11.8) 368 (17.1) 535 (7.1) 903 (9.4) <0.001

Liver disease, mild 1,387 (10.4) 429 (11.7) 274 (12.7) 684 (9.1) 958 (9.9) 0.004

Liver disease, severe 140 (1.1) 36 (1.0) 30 (1.4) 74 (1.0) 104 (1.1) 0.608

Myocardial infarction 742 (5.6) 219 (5.9) 172 (8.0) 351 (4.7) 523 (5.4) 0.240

Peptic ulcer disease 218 (1.6) 64 (1.7) 47 (2.2) 107 (1.4) 154 (1.6) 0.567

Peripheral vascular disease 1,800 (13.5) 572 (15.5) 385 (17.9) 843 (11.3) 1,228 (12.7) <0.001

Plegia 276 (2.1) 69 (1.9) 81 (3.8) 126 (1.7) 207 (2.1) 0.319

Renal disease 2,365 (17.8) 770 (20.9) 459 (21.3) 1,136 (15.2) 1,595 (16.5) <0.001

Rheumatologic disease 243 (1.8) 79 (2.1) 38 (1.8) 126 (1.7) 164 (1.7) 0.001

Charlson Comorbidity Index

0 4,321 (32.4) 970 (26.4) 527 (24.5) 2,824 (37.7) 3,351 (34.8) <0.001

(Continued)

PLOS ONE 30-day COVID-19 mortality index based on pre-existing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0241825 November 11, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0241825


subgroups in the early, late, and combined validation cohorts suggested good model discrimi-

nation in men vs women, Black vs non-Black individuals, and between those living in VA

Northeast and West regions vs the Southeast and Midwest regions (Table 3).

Calibration and discrimination of the VACO Index beyond age alone

Hosmer-Lemeshow goodness-of-fit testing supported good calibration of the index in devel-

opment (P = 0.847, indicating no significant lack of fit). Calibration curves of predicted versus

observed 30-day mortality illustrated good calibration of the VACO Index in development,

with modest overestimation of mortality in the early and late validation cohorts in which over-

all observed mortality rates progressively decreased (Fig 3). The VACO index demonstrated

stable performance between the development and combined validation cohorts across sex,

race/ethnicity, and geographic region subgroups (Fig 4).

The VACO Index can be used to estimate COVID-19 30-day mortality risk by age strata

and covariates (Fig 5; S1 File). For example, among males 60–64 years of age, overall mortality

was estimated as 9% (95% CI: 6–11%). The VACO Index provided risk estimates ranging from

5% (95% CI: 3–7%) for men with a CCI of zero indicating no comorbidity, to 22% (95% CI:

12–31%) for men with a CCI of 10 or more and a history of MI or PVD. Similar trends were

seen across other age strata.

Discussion

Using information present prior to SARS-CoV-2 infection from a national healthcare system,

we created and validated in two prospective, independent samples a practical index that can

predict 30-day COVID-19 mortality. The VACO Index is based on real world data, routinely

available in medical administrative datasets. Our findings describe the experience of a large,

racially and ethnically diverse, fully integrated healthcare system, encompassing inpatient and

outpatient care. Discrimination of the VACO Index was maintained in both validation sam-

ples, and despite major changes in overall observed mortality over time, the Index only mod-

estly overestimated mortality in the validation samples. The VACO Index identifies

individuals at greatest risk for COVID-19 mortality, enabling patients, providers, healthcare

systems, insurers, and accountable care organizations to make better informed decisions.

We are one of the first groups to use pre-existing information and multivariable modeling

to generate a mortality risk index, and our findings are likely more generalizable than earlier

studies [16]. Our sample was larger than most prior studies and we included patients testing

positive for SARS-CoV-2 in both inpatient and outpatient settings. Most importantly, discrim-

ination and calibration of the VACO index validated well for two different time periods in the

Table 1. (Continued)

Cohort

Combined Development &

Validation

Development Validation, Early Validation, Late Validation,

Combined

P value�

1–3 5,521 (41.4) 1,597 (43.4) 900 (41.8) 3,024 (40.4) 3,924 (40.7)

4–5 1,661 (12.5) 517 (14.0) 336 (15.6) 808 (10.8) 1,144 (11.9)

6–9 1,562 (11.7) 502 (13.6) 330 (15.3) 730 (9.7) 1,060 (11.0)

�10 258 (1.9) 95 (2.6) 58 (2.7) 105 (1.4) 163 (1.7)

�� Development vs Combined validation cohorts

Abbreviations: IQR = interquartile range, AIDS = acquired immunodeficiency syndrome

https://doi.org/10.1371/journal.pone.0241825.t001
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Table 2. VACO Index development cohort unadjusted associations with 30-day mortality (n = 3,681; 480 deaths).

Odds Ratio 95% CI P-value

Demographics
Age, in years

20–49 0.08 (0.02–0.39) 0.002

50–54 Reference - -

55–59 1.60 (0.71–3.59) 0.254

60–64 2.95 (1.41–6.14) 0.004

65–69 4.83 (2.35–9.89) <0.001

70–74 7.02 (3.51–14.03) <0.001

75–79 8.22 (4.00–16.89) <0.001

80–89 14.45 (7.15–29.21) <0.001

�90 23.48 (11.05–49.88) <0.001

Race/Ethnicity

Non-Hispanic White Reference - -

Non-Hispanic Black 0.71 (0.58–0.88) 0.001

Hispanic 0.58 (0.41–0.84) 0.003

Other/Unknown 0.52 (0.31–0.88) 0.015

Male sex 4.67 (2.38–9.13) <0.001

Comorbidity
Asthma 0.85 (0.56–1.28) 0.437

Hypertension 2.65 (2.09–3.35) <0.001

Charlson Comorbidities

AIDS 1.13 (0.59–2.16) 0.708

Cancer 1.63 (1.27–2.09) <0.001

Cancer, metastatic 1.46 (0.79–2.68) 0.224

Cerebrovascular accident 1.96 (1.54–2.50) <0.001

Chronic pulmonary disease 1.53 (1.24–1.88) <0.001

Congestive heart failure 2.32 (1.86–2.90) <0.001

Diabetes 1.73 (1.43–2.10) <0.001

Diabetes with complications 2.02 (1.64–2.47) <0.001

Dementia 3.25 (2.57–4.11) <0.001

Liver disease, mild 0.82 (0.60–1.13) 0.226

Liver disease, severe 3.39 (1.69–6.83) 0.001

Myocardial infarction 2.33 (1.69–3.22) <0.001

Peptic ulcer disease 1.55 (0.82–2.93) 0.175

Peripheral vascular disease 2.74 (2.20–3.42) <0.001

Plegia 1.00 (0.49–2.03) 0.999

Renal Disease 2.51 (2.04–3.09) <0.001

Rheumatologic disease 1.86 (1.08–3.21) 0.026

Charlson Comorbidity Index

0 Reference - -

1–3 3.91 (2.71–5.65) <0.001

4–5 6.33 (4.23–9.46) <0.001

6–9 8.12 (5.46–12.06) <0.001

�10 9.54 (5.41–16.83) <0.001

Charlson Comorbidity Index and Age Interaction Term

Age <85

(Continued)
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pandemic, and among important subgroups including men and women, racial/ethnic minori-

ties, and those living in different geographic regions of the US.

The strong relationship between age and COVID-19 mortality has been a consistent finding

across multiple studies [17–19] and age was the strongest predictor in both unadjusted and

adjusted analyses. The VACO Index allows personalized estimates of 30-day mortality after

COVID-19 infection stratified by age. For example, among those aged 60–64 years, overall

mortality was estimated at 9% (95% CI: 6–11%). The Index further discriminated risk in this

Table 2. (Continued)

Odds Ratio 95% CI P-value

Charlson Comorbidity Index

0 Reference - -

1–3 3.77 (2.48–5.73) <0.001

4–5 7.12 (4.52–11.21) <0.001

6–9 8.63 (5.51–13.52) <0.001

�10 13.65 (7.49–24.90) <0.001

Age 85+, any Charlson Comorbidity Index value 25.38 (16.17–39.82) <0.001

Abbreviations: CI = confidence interval, IQR = interquartile range, AIDS = acquired immunodeficiency syndrome

https://doi.org/10.1371/journal.pone.0241825.t002

Fig 2. Forest plot of VACO Index 30-day mortality multivariable model. Forest plot of odds ratios (OR) and 95%

confidence intervals (CI) of VACO Index variables from multivariable logistic regression model derived from

development cohort (n = 3,681). Abbreviations: MI or PVD = history of myocardial infarction or peripheral vascular

disease.

https://doi.org/10.1371/journal.pone.0241825.g002
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age stratum from 4% (95% CI: 3–7%) to 21% (95% CI: 12–31%), depending on sex and comor-

bid disease. This added discrimination is particularly relevant for patients age 60–74 who are

both at substantial risk and often remain employed. Thirty-nine percent of those age 60–74 in

the US are employed [20], thus accurate personalized risk estimation can better inform per-

sonal and system level decisions regarding returning to work or other group settings.

Most prior studies considered only individual comorbid conditions such as asthma, chronic

lung disease, diabetes, hypertension, and vascular disease [6, 7, 12, 21–23]. Liang et al. found

that comorbidity count predicted critical illness in hospitalized patients in China [3]. We

found that multimorbidity captured by the CCI has a stronger relationship with mortality than

nearly all individual comorbid conditions. After adjustment using the CCI, only a prior MI or

PVD was independently associated with mortality. CCI also has the advantage of straightfor-

ward calculation from ICD-10 diagnosis codes obtained from medical administrative data,

and is widely used across numerous diseases, health care systems, and populations [9]. Our

finding that MI and PVD added independent prognostic information underscores the likely

importance of thrombotic complications in COVID-19 [24, 25]. It stands to reason that those

with pre-existing vascular disease are more susceptible to thrombosis if infected.

The most important limitation of the VACO Index is that it was developed on patients who

presented for COVID-19 testing early in the pandemic, presumably because they had symp-

tomatic disease. COVID-19 testing capacity in the US was limited early in the pandemic, and

testing was reserved for patients with significant symptoms that might represent a more severe

infection. While the discrimination of the VACO Index was maintained in both prospective

independent validations, index predictions modestly over-estimated mortality risk in valida-

tion, particularly in the late validation cohort. Mortality rates among those testing positive for

COVID-19 are decreasing as US testing capacity improves, permitting testing of more mildly

symptomatic and asymptomatic people who are less likely to succumb to the disease. Overall

mortality rate in our development cohort was nearly three times that found in our most recent

Table 3. Validation of VACO Index 30-day COVID-19 mortality estimates using area under the receiver operating characteristic curves.

Cohort

Development Validation, Early Validation, Late Validation, Combined

Testing Dates 3/2/2020–4/15/2020 4/16/2020–5/18/2020 5/19/2020–7/18/2020 4/16/2020–7/18/2020

N 3,681 2,151 7,491 9,642

30-day Deaths, n (%) 480 (13.0) 253 (11.8) 403 (5.4) 656 (6.8)

Model, AUC (95% CI)

Age 0.77 (0.75–0.79) 0.80 (0.77–0.82) 0.83 (0.81–0.84) 0.82 (0.81–0.84)

Charlson 0.73 (0.71–0.75) 0.75 (0.72–0.78) 0.78 (0.76–0.80) 0.78 (0.76–0.80)

Index 0.79 (0.77–0.81) 0.81 (0.78–0.83) 0.84 (0.78–0.86) 0.84 (0.82–0.85)

Index Validation in Subgroups, AUC (95% CI)

Sex

Male n/a 0.80 (0.71–0.83) 0.83 (0.81–0.84) 0.83 (0.81–0.84)

Female n/a 0.79 (0.58–1.00) 0.91 (0.82–0.99) 0.87 (0.76–0.97)

Race/Ethnicity

Black n/a 0.79 (0.74–0.82) 0.81 (0.78–0.84) 0.81 (0.79–0.84)

Other n/a 0.81 (0.78–0.84) 0.84 (0.83–0.86) 0.85 (0.83–0.86)

Geographic region

Northeast & West n/a 0.81 (0.78–0.85) 0.82 (0.80–0.86) 0.84 (0.81–0.86)

Midwest & Southeast n/a 0.79 (0.74–0.83) 0.84 (0.83–0.86) 0.83 (0.82–0.84)

Abbreviations: AUC = Area under receiver operating characteristic curse, CI = confidence interval

https://doi.org/10.1371/journal.pone.0241825.t003
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validation cohort (13% vs 5%). Predictive indices developed in the context of high mortality

rates will almost inevitably overestimate risk in samples with substantially lower mortality.

However, if discrimination of the index is preserved, it is possible to adjust calibration as rates

eventually stabilize.

COVID-19 testing criteria and rates, test positivity rates, and mortality are evolving with

the pandemic. Centers for Disease Control and Prevention (CDC) data estimate that the num-

ber of people with antibody evidence of SARS-CoV-2 infection is many times the number of

reported COVID-19 test-positive cases [26]. The CDC report did not stratify their results by

age, and older people are almost certainly more likely to experience symptoms if infected.

While the CDC report suggested that the overall ratio of asymptomatic to symptomatic infec-

tions was ~10:1, it may be substantially lower for older individuals. Future research should

Fig 3. Calibration plots of VACO Index: Development, early validation, late validation, and combined validation

cohorts. Calibration plots of VACO Index predicted 30-day mortality risk versus observed patient mortality across the

cohorts. Error bars show 95% confidence intervals and dashed lines indicate perfect agreement between predicted

versus observed patient mortality. a. Development cohort: test positive between March 2 and April 15, 2020, n = 3,681,

480 deaths. b. Early validation cohort: test positive between April 16 and May 18, 2020, n = 2,151, 253 deaths. c. Late

validation cohort: test positive between May 19 and July 18, 2020, n = 7,491, 403 deaths. d. Combined early and late

validation cohorts: test positive between April 16 and July 18, 2020, n = 9,642, 656 deaths.

https://doi.org/10.1371/journal.pone.0241825.g003
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Fig 4. Calibration plots of VACO Index: Combined cohort subgroups. Calibration plots of VACO Index 30-day

predicted mortality risk versus observed patient mortality. Error bars show 95% confidence intervals and dashed lines

indicate perfect agreement between predicted versus observed patient mortality. Development cohort: test positive

between March 2 and April 15, 2020, n = 3,681, 480 deaths. Combined early and late validation cohorts: test positive

between April 16 and July 18, 2020, n = 9,642, 656 deaths. Subgroups: Men vs women; Black vs non-Black race;

Northeast (NE) + West (W) regions vs Southeast (SE) + Midwest (MW) regions.

https://doi.org/10.1371/journal.pone.0241825.g004

Fig 5. Range of 30-day mortality predictions from age alone and VACO Index. Bar graphs demonstrating the additional variation in

mortality prediction provided by the VACO Index over age alone across age categories in the combined validation cohort (n = 9,642). The

diamonds indicate predicted 30-day mortality within each age category when only age is used to generate the predicted value. The bars

show the range of predicted 30-day mortality within the same age category provided by the VACO Index, where age is supplemented with

sex and comorbidities.

https://doi.org/10.1371/journal.pone.0241825.g005
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examine this ratio stratified by age as a potential factor in mortality risk estimation. We are

gathering data to adjust risk estimates based on the ratio of asymptomatic to symptomatic

infections stratified by age; however, this is beyond the scope of this analysis.

This study has other limitations. Our study population was limited to Veterans in VA care.

Prior work has demonstrated that while Veterans in VA care are older and have a higher prev-

alence of chronic health conditions and risk behaviors than the general US population [27–

29], after adjusting for age, sex, race/ethnicity, region, and residence location, there are no sig-

nificant differences in total disease burden [29]. VA has excellent mortality assessment [15],

but delays in registering outpatient deaths could result in some under reporting. We only

included Veterans receiving COVID-19 testing in the VA—others may have been tested and

treated outside the VA. In the future, when Center for Medicare and Medicaid Services (CMS)

data are available, this limitation could be addressed in Veterans age 65 and older. Our goal

was to create a predictive model using pre-existing data that is available and readily analyzable

in real time in most medical administrative data. Consequently, we did not consider laboratory

data, vital signs, medications, or information typically residing in text notes, such as symp-

toms, physical exam findings, or imaging. We have demonstrated internal generalizability of

the VACO Index within the VA—we recommend further validation in external datasets before

applying the VACO Index outside of the VA.

In summary, using data from a national healthcare system, we developed and validated the

VACO Index, a short-term mortality risk index based upon directly analyzable data available

prior to infection with SARS-CoV-2. By doing so, we provide timely, quantifiable, and individ-

ualized risk estimates that successfully differentiate risk of 30-day mortality among those of

similar age to better inform personal decision making and public policy as countries begin to

relax lockdown guidelines.
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