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ABSTRACT 

This paper investigated the influence of ground granulated blast furnace slag (GGBS) 

on the setting time and compressive strength of one-part geopolymer binders (OPGB). 

Powdered sodium metasilicate activator was utilized in the range of 8 – 16% by weight 

of the total binder. The central composite design method was used in designing the 

mixtures. Experimental investigation revealed that both the initial and final setting times 

of the OPGB decreased drastically with the increase in the GGBS and the activator 

content. The inclusion of GGBS in the binder influences the setting time of the binders 

thereby resulting in quick setting time. The variance analysis of the established models 

demonstrated that the setting and compressive strength models could be predicted using 

quadratic models with a high R2 coefficient. Optimization results revealed that the 

optimum mixture can be obtained by substituting 95.8 % fly ash with GGBS and 13.4 % 

solid activator.   
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INTRODUCTION  

Sustainable cementing binder systems have been widely discussed and promoted as a 

component of the current and future toolkit (Provis 2018). Geopolymer is regarded as an 

encouraging sustainable and environmentally favorable material substitute to Portland cement 

in construction applications. Portland cement generation increments worldwide greenhouse gas 

emissions outflows through the calcination of clinker in hydrocarbon warmed heaters. 

Generally, a decrease in cement utilization has been accomplished by the utilization of 

industrial by-products, for example, fly ash and ground granulated blast furnace slag (GGBS) 

as partial or complete replacement materials to Portland cement in concrete. Nowadays, various 

regulatory standards of using alkali-activated materials have been proposed in a different part 

of the world, for small and large scale production (Shi et al 2003, Provis and Van Deventer 

2013). The key motivation behind the recognition of alkali activation for more than a century 

of sporadic use was identified with the potential reduction of CO2 emissions when alkali-

activated materials are utilized instead of OPC based materials. Despite the numerous benefits 

possessed by geopolymer materials, the requirement for high temperature curing and dealing 

with a large volume of alkaline solutions makes it an issue for on-site applications. To address 

these problems, dry mixture is needed in such a way that only water will be added to the 

materials similar to that of OPC binders (Duxson & Provis 2008, Nematollahi, Sanjayan, et al. 

2015). Therefore, one-part geopolymers can be well suited for both in-situ and precast 

applications. 

The production of one-part geopolymer consists of a dry mixture of a solid 

aluminosilicate precursor, and a solid alkali activator to which water is added, similar to the 

OPC preparation (Mohammed et al. 2019a, Mohammed et al. 2019b, Haruna et al. 2020). In 
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practice, the setting time behavior of fresh binder is very vital as it determines the time allowed 

to transport, cast, and compact the one-part alkali-activated concrete. Abdel-Gawwad and Abo-

El-Enein (Abdel-Gawwad & Abo-El-Enein 2016), have manufactured dry powder geopolymer 

cement similar to OPC. They have obtained an initial setting time of 23 – 49 minutes and a final 

setting time of 60 – 98 minutes. The setting time is shorter due to the presence of high calcium 

content in both the source material and the pulverized dry activator. Matalkah et al. (Matalkah 

et al  2016) have produced one-part geopolymer cement with an initial and final setting time of 

38 and 210 minutes. The setting time of the developed one-part geopolymer cement for many 

concrete applications. According to Tennakoon et al. (Tennakoon et al 2016), the extra heat 

generated during the dissolution mechanism speeds up the setting time in anhydrous alkali-

activated one-part geopolymers relative to hydrated alkali-activated geopolymers. Their 

findings show that the primary factor contributing to the changes in the characteristics of fresh 

geopolymers produced with anhydrous sodium metasilicate and pentahydrate activators is the 

heat flow which is associated with the dissolution of solid activators. Apart from the obvious 

practical benefits of using solid activators, the type of solid activator allows the properties of 

the fresh binder to be adjusted. 

Because of the heat released from the decomposition of solid activators, such as sodium 

hydroxide, one-part geopolymers have often been documented to quickly set (Suwan et al 

2017). However, they have concluded that the setting times of the developed binders are 

suitable for many concrete applications (Matalkah et al 2016). Luukkonen et al. (Luukkonen et 

al 2018), have reported that the source of silica greatly affects the fresh properties of one-part 

alkali-activated GGBS mortar. The amount of silica composition in the precursor material and 

activator can easily adjust the setting time. The shortest setting times for the sodium metasilicate 

mixtures were observed, followed by the mixtures of RHA + NaOH and micro silica sand + 

NaOH. They have also reported the initial setting time value of 20 to 70 minutes and final 

setting time of 30 to 220 minutes respectively. Depending on the strength class, the initial 

setting time needed for ordinary concrete was specified between 45–75 minutes (EN 2000). 

Although mixtures made with sodium metasilicate activator exhibit the shortest setting time, it 

demonstrated a very higher mechanical strength than the two mixtures. According to (Askarian 

et al 2018), one-part geopolymer concrete manufactured with low calcium fly ash and a small 

amount of slag as the binder did not harden within 24 hours after casting, this is attributed to 

the slow reactivity of the low calcium fly ash. However, incorporating OPC in the binder had 

significantly reduced both the initial and final setting times. They stated that the initial setting 

time varied from 86 – 11 minutes, and the final setting between 139 – 53 minutes for 10 – 70 

% OPC content in the binder. 

Askarian et al. (Askarian et al 2018), have investigated the strength properties of ambient 

cured one-part hybrid OPC-geopolymer concrete. The study revealed that OPC content in the 

binder significantly affects the strength behavior of the one-part geopolymer at ambient curing 

regime. The strength improvement is more pronounced at the early age of 1 and 7 days, beyond 

7 days of ambient curing, the strength continues to increase slowly as the OPC in the binder 

increases from 10 – 60 percent of the total binder. The quick enhancement in strength at an 

early age was attributed to the fast reaction between OPC with the alkali activators. Sturm et al. 

(Sturm et al 2016), have produced a dry mixed geopolymer from rice husk ash (RHA). They 

have obtained a compressive strength of about 30 MPa after 1 day of 80 ºC oven curing. 

Hajimohammadi et al. (Hajimohammadi et al 2017), have also produced a one-part geopolymer 

binder using low calcium fly ash. They have achieved a high compressive strength of 65 MPa 

after 3 weeks of curing at 40 ºC. However, the requirements for oven curing make it unsuitable 

for cast-in-situ applications (Nurruddin et al 2018). Panda et al. (Panda et al 2019), have 

reported an increase in compressive strength of fly ash/ slag based OPG activated with solid 

potassium silicate for 3D concrete printing. The developed binder exhibited orthotropic 



(e)ISSN 2656-8896       (p)ISSN 2656-890X 
   Journal of Infrastructure and Facility Asset Management  – Vol. 2, Issue. 2, September 2020 

 

 

151 

 

mechanical properties. They have concluded that the developed binder can be used for load-

bearing applications. Due to the layer-wise manufacturing strategy used in concrete printing, 

the printed geopolymers showed anisotropic mechanical efficiency relative to the mold cast 

samples. This investigation is aimed to evaluate the combined effect of solid sodium 

metasilicate activator and GGBS slag on the setting time and compressive strength of one-part 

geopolymer binders using response surface methodology (RSM). The research work will be 

useful for infrastructure management. Infrastructure management, among others, is about using 

better material for the economy and the sustainability of the infrastructures. That is why this 

research is important for infrastructure management (Suprayitno & Soemitro 2018). 

MATERIALS AND EXPERIMENTAL METHODS 

Materials 

Class C fly ash GGBS conforming with the requirements of ASTM C618-10 and ASTM 

C 989conforming have been utilized as the source materials in this investigation. Their oxide 

compositions were obtained by X-ray fluorescence (XRF) and presented in Table 1. Granular 

solid activator (50 % of Na2O, 46% of SiO2, and 4 % of H2O) has been utilized as the activator. 

The granular activator has been used at 8 – 16% by weight of the total binder according to 

previous work by (Mohammed 2019).  

Table 1. Oxide Composition of the source materials 

Oxide Fly ash (%) GGBS (%) 

CaO 17.1 36.62 

Al2O3 14.9 14.73 

SiO2 37.3 33.86 

Fe2O3 16.5 0.48 

MgO 3.72 6.33 

P2O5 2.59 - 

SO3 2.56 2.10 

Na2O 1.74 0.16 

K2O 1.66 0.39 

TiO2 1.07 0.73 

Others 0.69 1.13 

LOI 0.17 1.72 

Development of response surface models 

Response surface methodology is a statistical tool typically utilized to model and 

optimizes experimental mixtures in geopolymer and (OPC) production (Mermerdaş 2017, 

Mohammed 2017, Haruna Sani 2018). The RSM analysis includes various designs that can be 

used to generate statistical correlations between responses and independent parameters. The 

most commonly used design methods in the field of civil engineering are Box-Behnken design 

(BBD) and central composite design (CCD). Design expert software has been used for 

experimental designs and optimizations. The optimization process involves three major steps: 

(1) conducting the statistically designed experimental work, (2) predicting the coefficients in a 
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mathematical model, and (3) predicting the model's response and verifying its adequacy 

(Mohammed 2012, Sadhukhan 2016). In this investigation, two independent variables 

consisting of sodium metasilicate activator and GGBS have been used to design the 

experimental mixtures. The details of the experimental work are shown in Table 2. The five 

duplications are the key points the program uses to enhance the accuracy of the experiment 

against any possible errors. 

Table 2. Experimental design parameters 

Run 

Coded level (%) Actual values  

A: sodium 

metasilicate 

 

B: GGBS 

A: sodium 

metasilicate 

(%) 

 

B: GGBS 

(%) 

 

w/s ratio 

1 1 0 16 50 0.25 

2 0 0 12 50 0.25 

3 0 0 12 50 0.25 

4 1 1 16 100 0.25 

5 0 0 12 50 0.25 

6 1 -1 16 0 0.25 

7 0 -1 12 0 0.25 

8 0 1 12 100 0.25 

9 -1 0 8 50 0.25 

10 0 0 12 50 0.25 

11 0 0 12 50 0.25 

12 -1 -1 8 0 0.25 

13 -1 1 8 100 0.25 

Preparation of one-part geopolymer binders and test methods 

The mixing of one-part geopolymer binders has been carried out using a Hobart mortar 

mixer in compliance with the standard procedure of ASTM C305-14. The preparation of one-

part geopolymer binders involves the blending of the precursor materials with granular sodium 

metasilicate activator for about 3 minutes to obtain a uniform dry geopolymer binder. 

Progressively, clean tap water was injected into the dry mixture and stirred for another 3 

minutes until it becomes homogeneous and consistent. The mixing has been carried out in a 

laboratory at approx. 25 ° C. To evaluate the influence of solid activator and GGBS dosage on 

setting time, the Vicat apparatus has been utilized to conduct the setting time measurement of 

one-part geopolymer binders as per ASTM C807. Digital compressive strength testing 

equipment was used in determining the compressive strength of the developed OPGB. 

RESULT AND DISCUSSION 

Effect of GGBS and activator on initial setting time` 

The influence of GGBS and sodium metasilicate activator on the initial setting time of 

one-part geopolymer paste is shown in Figure 1. As illustrated in Figure 1, the 3D response 

surface diagram for initial setting time concerning two independent variables (anhydrous 

sodium metasilicate activator and GGBS) on initial setting time. It can be observed that the 

initial setting time decreases with an increasing dosage of sodium metasilicate activator and 

GGBS content. Incorporating GGBS in the binder plays a vital role in decreasing the setting 

time of the binder. This is attributed to the presence of high calcium oxide in the system and 

high specific surface area of the slag particles. To quantify the relationship between one or more 
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measured responses with the independent variables contour plots was used. Figure 1(b) shows 

that the entire contour lines were semi-elliptical in shape, which suggests a great relationship 

between the GGBS and the solid activator. It can be observed that both the dosage of the 

activator and GGBS significantly affect the initial setting time of the OPGP. Additionally, the 

greenish – bluish portion on the 2D plot indicates a region of optimum initial setting time while 

the bluish region in the contour diagram represents the region with the lowest initial setting 

time. At this region prolonging the mixing time of the binder will make the paste harden in the 

bowl of the mixer which can make it impossible to cast in the respective molds. 

   

Figure 1. Initial setting time response surface plots (a) 3-D surface plot (b) 2-D contour plot 

Effect of GGBS and activator on final setting time 

The 3–dimensional response surface diagram showing the effects of the independent 

variables on the final setting time of the developed OPGP is shown in Figure 2. It has been 

noted that the 3D surface diagram showed that all the variables have affected the final setting 

time significantly. As shown in Figure 2, the final setting time decreased with an increase in 

both the anhydrous sodium metasilicate activator and the GGBS. This could be correlated with 

the heat generated by the dissolution of solid activator resulting in quick setting time of the 

binder. The existence of high calcium in the GGBS coupled with high specific surface area in 

the binder tends to absorb more water in the mixture and consequently decreased the final 

setting time of the mixtures. The 2 – dimensional contour plots for the final setting time model 

for fly ash/GGBS OPGB is shown in Figure 2(b), the entire contour curves were oval, implying 

an optimal relationship between the GGBS and solid activator. The bluish regions on the 

contour plots indicate the region of the shortest final setting time of the OPGB while the 

reddish-yellowish portion indicates a portion of relatively higher final setting time. 
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Figure 2. Final setting time response surface plots (a) 3-D surface plot (b) 2-D contour plot 

Effect of GGBS and activator on compressive strength 

The compressive strength of the developed OPGP enhanced significantly with increased 

in the activator dosage and GGBS content as shown in Figure 3. The 3-D diagram gives more 

detail on the interaction between the independent variables on compressive strength. The 

addition of GGBS in the mixture improved the strength of the developed binders significantly. 

This is attributed to the formation of the dense microstructure of the binder due to the presence 

of calcium aluminosilicate hydrate gel (C-A-S-H). This leads to an enhancement of the 

compressive strength of the binder. activated. However, minor cracks were noticed on the 

surface of the mixtures with high GGBS. The cracks were associated with the heat released 

during the dissolution of the solid activator. 

  

Figure 3. Compressive strength response surface diagrams (a) 3-D surface plot (b) 2-D 

contour plot 

Analysis of variance for the response models developed 

After performing the regression analysis. The fitted quadratic model was developed for 

the prediction of all the response models. The models were chosen based on the highest order 
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polynomial in which the additional terms were significant and not aliased by the software. The 

summary of the analysis of variance for response surface quadratic models for the initial setting, 

final setting time, and compressive strength is shown in Table 3. As presented in Table 3, the 

initial setting time, final setting time and compressive strength response models have a high F-

value of 49.96, 286.32, and 167.29 which implied that the model is statistically significant and 

there is only 0.01% chance that an F-value of that large could occur due to noise. The 

significance of the model and all the model terms were evaluated using a t-test at 5 % 

significance level (P<0.05) (Sani  Haruna 2020). For all the response models, model terms of 

P-Values less than 0.05 implies that the terms are statistically significant, while model terms of 

P-values > 0.05 indicate that the terms were insignificant. For the model to be statistically fit, 

the P-value for the lack of fit must be greater than 0.05. For this response, P-values of 0.0665, 

0.0775, 0.1329 indicate that all the response models have good fitness. 

Table 3. Variance analysis for the models established 

 

Terms 

Initial setting time Final setting time Compressive strength 

F-Value P-Value F-Value P-Value F-Value P-Value 

Model 49.96 < 0.0001 286.32 < 0.0001 167.29 < 0.0001 

A 154.89 < 0.0001 665.45 < 0.0001 183.92 < 0.0001 

B 30.38 0.0009 307.95 < 0.0001 410.48 <0.0001 

AB 0.19 0.6763 2.96 0.1292 8.55 0.0222 

A2 21.55 0.0024 89.24 < 0.0001 170.87 < 0.0001 

B2 18.32 0.0037 198.53 < 0.0001 5.46 0.0521 

Lack of fit 5.50 0.0665 4.98 0.0775 3.42 0.1329 

  Where A: Sodium metasilicate activator, B: GGBS slag 

The quality and adequacy of the developed models were examined based on its correlation 

coefficient R2. Table 4 presents the fit statistic values for all the response models. All the 

responses have high R2 values which are almost 1, thus indicating that the experimental results 

are well correlated by the models. A high R2 value close to 1 is ideal for a good model, with a 

fair agreement with modified R2 (Mohammed (2020). The adjusted R2 is a modified form of R2 

which has been modified for the number of predictors in the model. The predicted R2 values of 

all the response models were in good agreement with their corresponding adjusted R2 values as 

the difference between them is less than 0.2. The signal to noise ratio of the model is estimated 

based on adequate precision (AP). For a model to be adequate, an AP value greater than 4 is 

generally desirable for a good model (Montgomery 2017, Mohammed 2018, Khed 2020). In 

this investigation, the AP values for all the developed models were found to be greater than 4. 

This indicates that all the models are desirable, adequate, and could be used to navigate the 

design space. 
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Table 4. Model validation 

Response models R2 Adj. R2 Pred. R2 AP 

Initial setting time 0.9727 0.9533 0.7764 21.740 

Final setting time 0.9951 0.9917 0.9601 52.763 

Compressive strength 0.9917 0.9858 0.9399 41.925 

 

The final empirical model in terms of the actual variables for the initial setting time, 

final setting time, and compressive strength response models with all the model terms are 

given in Eqn. 1, 2, and 3. 

   Tis = + 119.115 – 12.537 A – 0.340 B + 0.401 A2 + 0.002 B2    …(1) 

    Tfs = +252.701 – 25.461 A – 1.002 B – 0.01 AB + 0.827 A2 + 0.008 B2  …(2) 

     FC = –136.308 + 29.238 A + 0.306 B + 0.017AB – 1.121 A2 – 0.001 B2  …(3) 

Where Tis is the initial setting time in minutes, Tfs final setting time in minutes, Fc 

compressive strength in MPa, A is the sodium metasilicate activator (%), and B is the GGBS 

(%). 

The predicted against actual was used to illustrates the fitness and degree of precision for 

the model developed. The distribution of the points along the straight line in Figure 4 shows a 

reasonable fitting accuracy of the models and the actual result and predicted results agreed with 

each other. To avoid repetition only one response is considered. 

 

Figure 4. Predicted Vs actual plot of the developed models 

Numerical optimization 

The optimization process concentrates on pinpointing the preferred values of the 

independent variables to obtain the optimum composition of the solid activator and GGBS that 

could give the highest strength. Based on the optimization criteria, the optimum desired mixture 

fractions of 95.81% of GGBS with 13.4% of anhydrous sodium metasilicate were suggested by 
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the RSM software with unified desirability of 100%. The optimization outcome of the 

developed models was illustrated by a 3 – D surface graph shown in Figure 5. 

 

Figure 5. 3-D optimum desirability response surface plot. 

CONCLUSION 

The influence of two independent variables (anhydrous sodium metasilicate activator and 

the percentage replacement of fly ash with GGBS) on the setting time, and compressive strength 

of one-part geopolymer binders were evaluated with the help of response surface methodology 

(RSM). Based on the experimental work performed in this study, the following findings could 

be highlighted: 

1. Experimental study shows that both the initial and final setting times of the one-part 

geopolymer paste decreased drastically with the increase in the GGBS and the activator 

content. 

2. The presence of GGBS in the mixtures significantly enhanced the compressive strength 

of the one-part geopolymer binders. Few microcracks appeared when GGBS was used as 

the sole precursor. 

3. The ultimate result of the RSM optimization process proves that the forecasted results are 

well associated with the observational data. 

4. The verification results were very proximate to the experimental outcomes. The 

optimization process revealed that the best mixture proportion could be achieved by 

utilizing 95.8% GGBS in the binder with 13.4% solid activator. 
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