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Heisenberg’s uncertainty principle implies that the quantum vacuum is not empty but fluctuates. These
fluctuations can be converted into radiation through nonadiabatic changes in the Hamiltonian. Here,
we discuss how to control this vacuum radiation, engineering a single-photon emitter out of a two-level
system (2LS) ultrastrongly coupled to a finite-band waveguide in a vacuum state. More precisely, we show
the 2LS nonlinearity shapes the vacuum radiation into a non-Gaussian superposition of even and odd cat
states. When the 2LS bare frequency lays within the band gaps, this emission can be well approximated by
individual photons. This picture is confirmed by a characterization of the ground and bound states, and a
study of the dynamics with matrix-product states and polaron Hamiltonian methods.
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Introduction.—Quantum fluctuations underly many
physical phenomena, e.g., the Lamb shift [1] or a modi-
fication of the atomic decay. They also try to explain [2] the
cosmological-constant problem [3]. Vacuum fluctuations
can be converted into radiation by nonadiabatic changes of
the electromagnetic environment [4], as in the dynamical
Casimir [5–9], and Unruh effects [10], and the Hawking
radiations [11,12]. All these processes are explained with
free-field theories—quadratic Hamiltonians of harmonic
oscillators—that result in Gaussian states [13]. To create
vacuum radiation with nontrivial statistics we need non-
linearities, such as quantum emitters.
In this Letter, we study the conversion of vacuum

fluctuations into single-photon radiation. We focus on
waveguide QED [14], studying a two-level system (2LS)
coupled to a finite-bandwidth environment of one-
dimensional bosonic modes. This low-dimensional reali-
zation of the spin-boson model [15] leads to enhanced
light-matter interactions. We assume these interactions to
be in the ultrastrong coupling regime, where the coupling is
comparable to the excitation energy of the quantum emitter
[16–22]. Under these conditions, we show how to convert
vacuum fluctuations into individual photons. Our protocol
consists of either abruptly switching on and off the light-
matter coupling constant, or moving the qubit gap in and
out of the photonic band (we will show the equivalence of
both protocols in the Supplemental Material [23]). We
demonstrate that this process is mediated by photon bound
states, which we characterize numerically and analytically.
These states, once the emitter excitation energy approaches
the band gap, allow the emission of individual photons
without violating the parity constraints of the model.

Finally, we prove that the two-level system serves also
as a detector of quantum fluctuations.
The main novelty of our work is that it presents the first

example of single-photon Fock states emitted from vac-
uum. This is different from the emission that occurs when
a 2LS is ultrastrongly coupled to a cavity [31,32]. There,
the emission is formed by photon pairs due to parity
conservation [33–37]. In the geometry considered in this
Letter, the existence of qubit-field bound states allows
triggering single photons from vacuum. Our theoretical
proposal can be realized with superconducting circuits [38].
Flux or transmon qubits ultrastrongly coupled to a super-
conducting waveguide [20,21] should allow testing our
results, enlarging the family of quantum-field theory ideas
[7–9] that superconducting circuits can emulate—in par-
ticular, the manifestation of virtual photons, which is of
current interest [39].
Model.—We study the spin-boson model, a continuum of

bosonic modes coupled to a 2LS [40]

H ¼ Δσþσ− þ
X
k

ωka
†
kak þ σx

X
k

gkða†k þ akÞ: ð1Þ

The σ� are ladder operators of the 2LS and Δ is the
excitation energy of the 2LS. The Pauli matrix σx couples
with strengths gk to the bosonic field operators fa†k; akg in
momentum space. We consider a dispersion relation ωk ¼
Ω − 2J cos k [Fig. 1(b)] with N momenta k ∈ ½−π; πÞ and a
band edge that allows us to control the vacuum emission.
This ωk results from a one-dimensional array of cavities
with nearest-neighbors coupling [Fig. 1(a)]
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Harray ¼
XN=2

x¼−N=2

½Ωa†xax − Jða†xaxþ1 þ H:c:Þ�; ð2Þ

with bosonic operators in positions fax; a†xg, resonator
frequency Ω, and hopping J. This choice of photonic
band is not essential, but favors the numerical simulation.
The quantum emitter is coupled to a cavity at x ¼ 0, as in
Hcoupling ¼ gσxða0 þ a†0Þ, leading to gk ¼ g=

ffiffiffiffi
N

p
in Eq. (1).

If the coupling is sufficiently small, g ≪ Δ, the rotating-
wave approximation (RWA) [41] allows us to replace the
interaction term with Hcoupling ≅ gðσþa0 þ H:c:Þ, which
conserves the number of excitations. In this limit, the
ground state has no excitations jGSiRWA ¼ j0; 0i and is the
product of the 2LS ground state j0i (j1i is the excited state)
and the zero-photon state of the waveguide akj0i ¼ 0.
Therefore, under the RWA, the emitter is immune to the
vacuum fluctuations of the bosonic field. However, the
RWA fails in computing the actual vacuum properties
[42,43]. Beyond the RWA, the ground state of (1) contains
excitations: hGSja†xaxjGSi ≠ 0, suggesting that the 2LS
can convert fluctuations into radiated light. We investigate
here the beyond-RWA vacuum emission of the spin-boson
model (1).
Theoretical tools.—The spin-boson model is not solv-

able, except for a particular set of parameters and some
limits, but matrix-product state (MPS) techniques can be
used to obtain numerical results [16,18,44], as explained in
[23]. We contrast the numerical simulations with analytical
approximations based on the polaron transformation
[45–48]. This transformation is a disentangling operation
Up that decouples the 2LS from the field

Up ¼ exp

�
−σx

X
ðfka†k − f�kakÞ

�
: ð3Þ

The parameters fk are obtained by minimizing the ground-
state energy EGS within the polaron ansatz for the ground
state jGSi ¼ Upj0; 0i, giving the equations

fk ¼
gk

Δr þ ωk
; and Δr ¼ Δe−2

P
k
jfkj2 : ð4Þ

The simplified Hamiltonian Hp ¼ U†
pHUp reads

Hp ¼ Δrσ
þσ− þ

X
k

ωka
†
kak − 2Δr

�
σþ

X
k

fkak þ H:c:

�

− 2Δrσz
X
k;p

f�kfpa
†
kap

þ Δ
2
þ
X
k

ðωkjfkj2 − g�kfk − f�kgkÞ þ HOT: ð5Þ

Here, HOT stands for higher-order terms Oðf3Þ. The
transformed Hamiltonian conserves the number of excita-
tions and can be treated analytically [48].
The renormalization of the2LSenergyΔr is a consequence

of the coupling of a discrete quantum system to a continuum
[40] (see [23]). According to the polaron picture, most
correlations are captured by the unitary transformation of a
product state jGSip ¼ j0; 0i ¼ U†

pjGSi. Then, Up plays a
similar role to the Bogoliubov transformations [49] used for
finding the normal modes which account for the radiation in
the Hawking, Unruh, or Casimir effects [4].
Spectrum of the spin-boson model.—The spectrum of the

Hamiltonian (1) is essential to understand the dynamics
of vacuum-induced photon emission. The photonic-band
edge causes the appearance of photon bound states:
localized excitations around the 2LS [16,50–54]. We
classify those states according to their parity Π ¼
exp½iπðσþσ− þP

ka
†
kakÞ�, which is a conserved quantity

(1), ½Π; H� ¼ ½Π; Hp� ¼ 0. More precisely, the ground state
jGSi and the second bound state jE2i are the first and
second eigenstates with even parity Π ¼ þ1. The first
bound state jΨ1i is the lowest eigenstate with odd parity
Π ¼ −1. jE1i and jE2i have a well-defined number of
particles in the RWA limit (1 and 2, respectively).
We compute these states using both MPS and the polaron

Hamiltonian. Parity can be imposed during the MPS
minimization of H; in the second case, we project the
polaron Hamiltonian [Eq. (5)] onto spaces with fixed
number of excitations, where it is numerically diagonal-
ized. Figure 2(a) shows the energy of the ground state EGS
and of the first two bound states, E1 and E2, as a function of
the coupling g. Note the excellent agreement between MPS
(solid line) and the polaron Hamiltonian calculations (dots).
Note also how the first bound state lays just below the one-
photon band (gray band) E1 ≤ ϵkðGSÞ≡ EGS þ ωk, just as
in the RWAmodel [52–56]. The second excited bound state
E2 enters the band of propagating single photons. There
may be other bound states, but the overlap with propagating
photon bands of similar parity turn these bound states
(which within the RWA would be perfectly localized) into
resonances with a finite lifetime [16]. Further comparisons

FIG. 1. (a) Sketch of the system. The 2LS-resonator interaction
is gðtÞ. (b) Dispersion relation ωk ¼ Ω − 2J cos k of the model
given by Eq. (2).
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between results obtained using MPS and the polaron
transformation are given in [23].
We have also analyzed the bound state MPS wave

functions, jE1i and jE2i. These states are localized around
the 2LS, as seen in Fig. 2(b), which renders the number of
photons in real space hnxi ¼ ha†xaxi. Interestingly, since the
MPS produces wave functions in the original frame of
reference—i.e., after applyingUp onto the polaron states—
we find that these states are actual superpositions of
different numbers of photons, as seen in Figs. 2(c)–2(e).
The overall superposition preserves the parity of the state
but, say, a bound state with two excitations can have a
nonzero overlap with a single-photon component.
Emission by quenching the vacuum.—To convert vac-

uum excitations into emitted light, we consider a non-
adiabatic protocol where the light-matter coupling strength
is rapidly switched on and off. An alternative protocol,
probably more amenable to experimental study, is to
abruptly modify the qubit excitation energy Δ from a
value that is strongly detuned from the photonic band
g=½Δðt < 0Þ − ωk� ≪ 1 to a value Δðt > 0Þ ∼ ωk while
keeping a constant coupling g. Both methods are theoreti-
cally equivalent, since both ground states are the same up to
an error exp½−g2=Δ� that can be made arbitrarily small [23].

In what follows, we analyze the coupling quench, which is
simpler to describe both analytically and numerically, since
the decoupled limit corresponds to g ¼ 0, while in the other
case full decoupling occurs for infinite Δ. We begin with
an unexcited 2LS with gðt < 0Þ ¼ 0 and switch on the
coupling strength to a value gðt ¼ 0Þ > 0 beyond the RWA
regime. The 2LS immediately begins to emit light to
accommodate its new ground state. The emitted photons
form a wave packet that travels with speed maxkð∂kωkÞ.
After some time the 2LS is no longer emitting and the wave
packet leaves a cloud around the 2LS. We then suddenly
switch off the coupling at t ¼ toff and a second vacuum
emission takes place.
We simulate the dynamics described in the previous

paragraph with MPS. The initial state is the trivial vacuum
jΨðt ¼ 0Þi ¼ j0; 0i, which corresponds to the uncoupled
case g ¼ 0, and jΨðtÞi evolves under (1) with g within the
ultrastrong. In Fig. 3, we plot the photon number nx ¼
ha†xaxi along the waveguide, as a function of time t and
position x. Note how all perturbations emerge from the 2LS
position. We switch off the coupling once the traveling
photons are far from the emitter. We choose toff ¼ 350τ,
being τ the spontaneous decay rate of the 2LS given by the
Fermi’s golden rule: τ≡ J sinðk0Þ=g2, with k0 such that

FIG. 2. Bound states. (a) Eigenenergies as a function of g for Δ ¼ 0.3. Continuous lines stand for the MPS simulations and the points
for the polaron ansatz. (b) Bound states in position space for g ¼ 0.5 andΔ ¼ 0.3. (c)–(e) Histograms with the weights in the nph-photon
sector for jGSi, jE1i, and jE2i. Same parameters as in panel (b). The parameters defining the photonic waveguide are Ω ¼ 1.0 and
J ¼ 0.4. The lattice length is N ¼ 400.
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ωk0 ¼ Δ. At this point gðtoffÞ ¼ 0 and we witness the
second photon emission event. Notice that photons propa-
gate with different velocities because of the nonlinearity of
the dispersion relation ωk [see below Eq. (1)].
The whole process admits a simple description in the

polaron picture. The state before the quench is

jΨðt ¼ 0Þip ¼ U†
pj0; 0i ¼ 1ffiffiffi

2
p ðj0;αþi þ j1;α−iÞ: ð6Þ

This is a superposition of even and odd cat states

jα�i≡ e
P

ðfka†k−f�kakÞj0i � e−
P

ðfka†k−f�kakÞj0i. In the limit
of weak amplitudes, jα�i tend to one- and two-photon
states, respectively [19], and the wave function can be
written using bound and propagating states. Asymptotically
in time, the state has the form

jΨðtÞip ¼ c0;0ðtÞj0; 0i þ c0;2ðtÞjE2i
þ c1;1ðtÞA†

1γjE1i þ c2;0ðtÞA†
2γj0; 0i þ � � � : ð7Þ

This wave function allows four possible outcomes: the
system goes to (i) the ground state or (ii) to jE2i with no
emission; (iii) it relaxes to the first odd bound state jE1i
emitting a wave packet A†

1γ with one photon, or (iv) it

relaxes to the ground state emitting two photons A†
2γ . Note

that when we write this wave function in the laboratory
basis jΨðtÞi ¼ UpjΨðtÞip, the structure of the state is
preserved, because the polaron transformation is local in
space ½A†

1;2γ; Up� ¼ 0 [23].
We have tested numerically that Eq. (7) captures the

vacuum-triggered emission.
The simulations confirm that the system emits photons

mainly in two channels: (i) one photon on the first excited
odd bound state and (ii) two photons on the ground state, as
predicted by Eq. (7). This is shown in Fig. 4(a), where we
plot the number of photons nx at time t=τ ¼ 250 and the

single-photon nð1Þx ¼ jhΨðtÞja†xjE1ij2 and two-photon con-

tributions nð2Þx ¼ 2
P

x0 jhΨðtÞja†xa†x0 jGSij2. As seen, nx is
well approximated by the sum of both wave packets

nð1Þx þ nð2Þx .
jΨðtÞip also explains the second photon emission event.

In this case, once we switch off the couplings, the bound
states become unstable and decay, releasing their photonic
components in the form of propagating photons. These
come from the three first terms in Eq. (7). Two main
features stand out. First, more power is radiated than in the
first quench. This is because, in this second quench, excited
bound states also radiate. Second, the radiated flying
photons are slower. This is because the bound states are
spectrally close to the photonic-band minimum, so radia-
tion occurs mainly into slow photons. The distribution of
this emitted light for each bound state matches the statistics
in Figs. 2(c)–2(e).
The simulations prove that jΨðtÞip also explains the 2LS

dynamics [23].
We can control the vacuum-induced emission, for

instance selecting the one-photon channel, by playing with
the relative values of the band gap ωk¼0 and the bound state
energy E1 − EGS. The energies of the radiating states with
one and two flying photons are ϵkðE1Þ ¼ E1ðgÞ þ ωk and
ϵk1;k2ðGSÞ ¼ EGS þ ωk1 þ ωk2 , with respective minima

FIG. 3. Number of photons as a function of time and position
for the quenching protocol: the initial state is the trivial vacuum
jΨðt ¼ 0Þi ¼ j0; 0i and the coupling is switched on at t ¼ 0. We
switch g off at toff=τ ¼ 350. The system emits a wave packet at
t ¼ 0. At t ¼ toff it radiates again. g ¼ 0.5 after the initial quench
and Δ ¼ 0.3. The rest of parameters are as in Fig. 2.

FIG. 4. (a) Number of photons at time t=τ ¼ 250 after the
quantum quench described in Fig. 3. We can approximate the
field with one- and two-photon components. All the parameters
are those of the previous figures (see Figs. 2 and 3). (b) Same as
before, increasing the energy of the resonators Ω such that
the band gap is now five times larger: Ω ¼ 1.8 (keeping in mind
that the band gap is Ω − 2J). The system emits a single-photon
packet.
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E1ðgÞ þ ωk¼0 and EGS þ 2ωk¼0. If we place the emitter in
the band gap ωk¼0 ≫ Δ, the energies ϵkðE1Þ become closer
to the 2LS resonance with respect to ϵk1;k2ðGSÞ, so the two-
photon component is strongly suppressed [jc2;0j ≃ 0 in
Eq. (7)]. The selectivity of this process is confirmed in
Fig. 4(b), where the considered band gap is five times larger
than in Fig. 4(a) and all other parameters are equal. The
final state has a negligible overlap with jE2i and the
distribution of photons PEn

contains less than 1% of
components with nph ≥ 2. The state before the second
quench is faithfully reconstructed by just its single-photon
component A†

1γjE1i, and as a result, the second emission is
also well approximated by one photon.
Conclusions.—In this work we have studied the dynam-

ics of vacuum fluctuations in ultrastrong waveguide-QED
setups. More precisely, we have shown that the nonlinearity
of a 2LS, combined with a nonperturbative coupling to a
bosonic field, can be used to create a vacuum-triggered
single-photon emitter. In other words, we discuss the
ultimate limit of quantum nonlinear optics as driven by
vacuum fluctuations [57]. Our proposal is analogous in
spirit to other quantum-field theory inspired proposals,
such as the dynamical Casimir effect, which work with
nonperturbative and nonadiabatic changes of the theory. In
contrast to those experiments, we have shown a minimum
setup which extracts single photons from vacuum, using
bound states as mediators of these processes. It is important
to remark that this whole study can be repeated using a
resonator instead of a 2LS. In this case, all of the features
above disappear, as the emission has a Gaussian statistics
that are not Fock states [58].
Our proposal and the conditions in this work can be

realized in current circuit-QED devices with superconduct-
ingqubits that are ultrastrongly coupled to open transmission
lines [20,21]. In this exciting platform, state-of-the-art
measurement techniques would allow for a detailed
reconstruction of the photon wave packets [59,60].
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