
Diego Martínez Baselga

Detección de anomalías con
Prometheus

Escuela de Ingeniería y Arquitectura (EINA) - Grado en Ingeniería Informática
Trabajo de Fin de Grado - Tutor: Javier Fabra Caro - Director: Davide Taibi

Realizado durante programa Erasmus en la Universidad de Tampere
Junio 2020

Resumen - Detección de anomalías con
Prometheus
En los últimos años, el auge de la informática y el incremento de las prestaciones
de los ordenadores y de las necesidades de los usuarios han potenciado el uso de
sistemas distribuidos. Ofrecen características como fiabilidad, escalabilidad, toler-
ancia a fallos y disponibilidad. En particular, Kubernetes se ha convertido en una
alternativa muy común.

Kubernetes es una plataforma que administra contenedores, normalmente a
través de Docker. Los contenedores son un software de virtualización a nivel de
sistema operativo que permiten desplegar aplicaciones fácil y rápidamente, encap-
sulando la aplicación junto con sus dependencias, sus necesidades y la imagen del
sistema operativo necesaria para su despliegue. Por ello, son comúnmente utilizados
a la hora de encapsular microservicios.

El servicio de monitorización más utilizado en Kubernetes es Prometheus. Es una
plataforma de código abierto que permite recopilar estadísticas de otras aplicaciones
o de los elementos de Kubernetes. Estas métricas se pueden visualizar a través de
gráficos o se pueden solicitar a través de APIs para operar con ellas.

Además, Prometheus ofrece un administrador de alertas: Prometheus Alertman-
ager. Su propósito es encender alarmas o establecer acciones a realizar cuando se
detecta una anomalía en el sistema. Se considera anomalía a un evento que provoca
un comportamiento extraño en el sistema, por lo que detectarlas es muy impor-
tante. Sin embargo, Prometheus Alertmanager solo es capaz de detectar anomalías
utilizando expresiones matemáticas, y en realidad éstas son mucho más complicadas
de detectar.

El objetivo de este trabajo es explicar y desplegar un sistema de Kubernetes
realista similar a un entorno de producción, generar un conjunto etiquetado de
datos obtenido con Prometheus con anomalías producidas por un microservicio; así
como analizar las formas de las que podría implementarse un plug-in de detección de
anomalías. De esta manera, el método podría utilizarse para predecir anomalías en
el propio sistema desarrollado o extrapolarse para utilizarse en otra implementación
completamente distinta con otro tipo de anomalías.

El primer paso seguido en la metodología fue ejecutar los programas a utilizar
localmente, antes de pasar a un entorno distribuido. Además de Prometheus y
Prometheus Alertmanager, se decidió utilizar Kafka para asemejar más el sistema
a uno real y no uno de simulación. Kafka es una aplicación de transmisión de
mensajes basada en la arquitectura ”publish-subscribe”. En esta arquitectura, una
serie de procesos publican mensajes asociados a determinados temas, y los procesos
que se suscriben a esos temas reciben los mensajes. Una vez se hubieron ejecutado

las aplicaciones, se implementaron unos programas que las conectaban, generaban
transmisiones de datos a través de Kafka, solicitaban y examinaban métricas de
Prometheus y generaban alertas. El objetivo de este paso era desplegar el sistema
en un entorno más simple y aprender cómo interaccionar con él. Algunas partes
de los programas implementados fueron más tarde utilizados en propósitos más
complejos.

Posteriormente se crearon 4 máquinas virtuales, con las que se formó un cluster
de Kubernetes, formado por 1 maestro y 3 trabajadores. En el cluster se desplegaron
Prometheus, Kafka y Zookeeper (necesario para ejecutar Kafka) para obtener un
sistema distribuído con las aplicaciones que se habían probado en el entorno local.
Adicionalmente, se utilizaron Kube-state-metrics y Node Exporter, dos aplicaciones
oficiales de Kubernetes para exportar más métricas. Se proveyó al cluster de una
estructura de almacenamiento persistente y fiable.

Una vez el sistema estaba en correcto funcionamiento, se generaron las anoma-
lías. Para ello, se implementó un microservicio como un contenedor de Docker que
generaba un problema de memoria. En primer lugar, se anotaba el momento en
el que el contenedor se ejecutaba en un fichero y se descargaban los binarios para
ejecutar Kafka. Después, se volvía a anotar la hora en otro fichero y se comenzaban
a transmitir datos a través de Kafka. Finalmente, después de un número aleatorio
de segundos, se producía la anomalía, anotando el momento en el que se empezaba
a producir. La anomalía consistía en una combinación de instrucciones que solicitan
una cantidad de memoria cada vez mayor al sistema, hasta que excede los recursos
disponibles para el contenedor y es destruído. La ejecución se configuró a través
de Kubernetes para que los tres ficheros generados se almacenaran y se editaran de
forma persistente siempre en la misma máquina virtual.

El miscroservicio diseñado se introdujo como un Pod a Kubernetes. Una vez se
crea el Pod, genera métricas recopiladas por Prometheus que pueden ser extraídas a
través de su API. Se ejecutó durante dos intervalos de tiempo diferentes, resultando
en un total de 1010 segundos de ejecución. El volumen de datos solicitado provocaba
latencias que resultaban en fallos en Prometheus, por lo que fueron necesarios 3
programas distintos para crear las tablas de datos. Un primer programa recopiló los
datos almacenándolos en ficheros y carpetas según la métrica y el intervalo de tiempo
que fuera, utilizando 10 carpetas para los 10 intervalos en los que se dividieron.
El segundo programa buscaba métricas inconsistentes y borraba todos los ficheros
generados con esas métricas. Por último, el tercer programa generó dos tablas que
contenían todos los datos y la información, utilizando los datos recopilados, así como
los ficheros de horas generados por el microservicio.

Se obtuvieron dos tablas diferentes, una describiendo las anomalías generadas
y la otra el conjunto de datos. Ambas fueron subidas a Gitlab para entrenar un

algoritmo de aprendizaje automático para predecir anomalías. La tabla de anomalías
está formada por las 30 generadas, indicando los momentos en los que se inician y
se terminan, así como otros campos descriptivos. En la tabla del conjunto de datos,
se indica para cada dato el segundo correspondiente a ese dato, si corresponde a una
anomalía o no (1 ó 0), el estado del microservicio en ese instante, y el valor de cada
una de las métricas tomadas. El resultado son 10010 puntos, 600 de los cuales son
anomalías, con 7062 métricas por punto; además de información complementaria y
explicativa sobre los datos.

El propósito conjunto de datos generado es utilizarse para entrenar un algoritmo
de aprendizaje automático e implementar un plug-in que prediga las anomalías. Para
implementar el algoritmo, podría realizarse primero una selección de métricas, ya que
algunas de ellas tienen información más importante en relación con las anomalías,
mientras que otras no guardan relación con el hecho de que el punto sea una anomalía
o no. Por lo tanto, para implementar un algoritmo más eficiente, algunas podrían
combinarse o eliminarse.

Hay una gran variedad de opciones para desarrollar el algoritmo. Una opción
muy común para aprendizaje supervisado son las redes neuronales, que además
pueden ser muy útiles en problemas de una gran comlejidad. La red neuronal se
entrenaría con el conjunto de datos obtenido para clasificar los puntos y determinar si
son anomalías. Adicionalmente, otras técnicas o mecanismos podrían utilizarse para
mejorar su exactitud. Por ejemplo, podría reentrenarse la red con falsos positivos
para evitar clasificar como anomalías puntos que no lo son.

Una vez se ha implementado el clasificador, se puede implementar un plug-in
conectado a Prometheus. El principal problema que superar son las latencias al
recopillar las métricas de Prometheus. Para ello hay distintas opciones, como una
selección de atributos, solicitar las métricas en intervalos de tiempo mayores (en
lugar de cada segundo) o estudiar la producción de anomalías después y no a tiempo
real. La generación de alarmas se puede realizar a través de la API de Prometheus
Alertmanager cuando una anomalía es detectada.

Finalmente, se ha logrado cumplir el objetivo del trabajo ilustrando un proced-
imiento para implementar un plug-in de detección de anomalías. Se ha descrito el
sistema y su despliegue y se ha generado y analizado un conjunto etiquetado de
datos con anomalías. Los resultados sugieren que este conjunto de datos o uno
obtenido de forma similar se pueden utilizar para entrenar satisfactoriamente un
algoritmo de aprendizaje automático que recopile datos de Prometheus y active
alarmas cuando se detecten anomalías; proporcionando una solución aplicable para
mejorar la monitorización en sistemas distribuidos.

Abstract
Diego Martínez Baselga: Anomaly detection with Prometheus
Bachelor’s thesis
Tampere University
Bachelor’s Degree Programme in Computer Science
April 2020

Prometheus is a widely used application to monitor Kubernetes systems. Neverthe-
less, it does not provide a suitable solution to detect complex anomalies. This thesis
discusses the deployment of a Kubernetes system that uses Kafka. Moreover, a mi-
croservice is implemented to generate anomalies and a labeled time-series dataset is
generated.

The produced dataset can be used to develop a machine learning algorithm for
anomaly detection. In addition, the study explains the tools to understand the
dataset and how to use it to develop a plug-in that predicts anomalies and fires
Prometheus Alertmanager alarms.

Keywords: Kubernetes. microservice, anomaly, dataset, Kafka, Prometheus.

The originality of this thesis has been checked using the Turnitin Originality Check
service.

Contents

1 Introduction . 1

2 Theoretical background . 2
2.1 Docker . 2
2.2 Kubernetes . 2
2.3 Kafka . 3
2.4 Prometheus . 4
2.5 Related works . 4

3 Research methodology and materials . 6
3.1 Deploying Kafka and Prometheus locally 6
3.2 Deploying the system in Kubernetes 8
3.3 Anomalies generation . 9
3.4 Dataset generation . 15

4 Results . 19

5 Results analysis . 22

6 Conclusions . 23

References . 26

1

1 Introduction
In the recent years, distributed systems have become more important and are the
main option in production environments. They offer reliability, efficiency and scala-
bility, as well as features to deal properly with big data. Among distributed systems,
containers and particularly Kubernetes, are a usual choice to deploy applications.

The monitoring system most used in Kubernetes is Prometheus. Prometheus is
an open-source platform that is able to scrape metrics from other applications and
Kubernetes elements. Those metrics may be graphed or requested to visualize and
operate with them. In addition, it has an alert manager that is able to fire alarms
and set triggers when any metric is out of some specified values.

Prometheus Alertmanager is only able to fire alarms if metrics do not fulfill
mathematical expressions. However, anomalies are much more complicated than
that. Anomalies are events that provoke a strange behavior of the system. Therefore,
it is important to know when an anomaly has been produced. Unfortunately, what
Prometheus offers may not be enough to do it.

The aim of this thesis is to explain and deploy a real Kubernetes system that
could be used in production, generating a labeled time-series dataset with anomalies
produced by a microservice, as well as it aims to analyse the ways an anomaly
detection plug-in could be implemented to detect those anomalies. Hence, it could
be used to predict anomalies in the system deployed or the approach could be
extrapolated to be used in another different system. Kafka, a distributed streaming
application, runs in that system too, to make it as close as possible to a non-
simulated environment.

This document is structured as follows. Chapter 2 states the background of the
thesis, as well as studies some important definitions and concepts related to it. Ad-
ditionally, it provides some related works so that the approach may be examined and
compared with others. Chapter 3 explains the approach selected for this research,
all the implementations and designs, and the deployment of the system. Chapter 4
shows and illustrates the results. Finally, Chapter 5 analyze the results pointed out
before and their importance for anomaly detection solutions.

2

2 Theoretical background
The background of this thesis describes the different technologies that have been used
and related works that have been considered as inspiration or may be examined as
further research.

2.1 Docker

Docker is an open-source project that allows packaging and deployment of applica-
tions in containers. Containers are virtualization software that differ from virtual
machines in the way they obtain resources from the computer host they are running
on. On one hand, virtual machines use a hypervisor, which sets resources at hard-
ware level, running each virtual machine completely isolated from the others. On
the other hand, containers virtualize at operating system level. Hence, they share
resources without being aware of it.

Docker provides a lightweight way to deploy applications. They only use the
resources they need and they do not need to start and destroy a whole operating
system to work, as they share the host’s operating system kernel. Docker containers
also have a huge number of images to work as the basis of the containers. Thus,
containers are a fast and easy way to deploy applications, defining its dependencies
and its needs. That is why they are commonly used to encapsulate microservices to
be deployed and maintained. [21]

2.2 Kubernetes

Kubernetes is an open-source platform to manage containerized services. It is used
to automate the deployment and scaling of applications, to transform applications
into a complete, reliable and scalable distributed systems.

With Kubernetes, more than one node may be connected to a single cluster to
provide a fully distributed environment. It may be done also using cloud solutions
like Amazon Web Services or Microsoft Azure.[3]

In Kubernetes architecture, there is one master node, which manages the cluster
and its communication, and the worker nodes, which are the ones that execute the
workload. It provides different abstractions to deploy microservices:

• Pods: Groups of containers with different images grouped in the same unit.
They are the smallest deployable unit.[17]

• ReplicaSets: Controllers that ensure that the desired number of replicas of the
pod are working.[18]

3

Publisher

Topic 1

Topic 2

Topic 3

Consumer

Consumer

Consumer

Publisher

Message

Message

Message

Subscribe

Subscribe

Subscribe

Message

Message

Message

Figure 2.1 Publish-subscribe pattern. It is used in Kafka application.

• Deployments: They are declarations that update the state of the cluster to
the one stated. For instance, they create ReplicaSets and ensure that they
work.[16]

• Services: They isolate microservices from one another and provide Pods their
own IP so that they can be externally accessed. They also provide load-
balancing across them.[19]

There are more different concepts, but these are the main ones used in the thesis
and the basic ones to help to understand how Kubernetes work.

2.3 Kafka

Kafka is a streaming application based on the publish-subscribe architecture, where
producers may publish streams of records so that consumers may receive them. This
pattern is illustrated in Figure 2.1. Messages are organized by topics, which are
key-words to group the ones that belong to the same class. Then, brokers store
those messages. Consumers subscribe to topics and then receive from brokers all
the data published to that topic.[15]

Kafka allows a fault tolerance as well as real-time streaming messages. This is
used for two different approaches: Systems that need to share and transfer data
in real-time, and systems that need to act when data is transferred.[12] The most
common Kafka applications are ”messaging, website activity tracking, metrics, log
aggregation, stream processing, event sourcing and commit log”.[14]

4

2.4 Prometheus

Prometheus is an open-source monitoring system. It provides real-time monitoring
data of a system and tools to display the data and operate with it. It is commonly
used in container environments and, particularly, to monitor Kubernetes.

In order to monitor a system, Prometheus gathers metrics from it. Metrics are
measures that different parts of the system are continuously sending to Prometheus.
Some metrics collected are related to Prometheus performance, pods state, nodes
usage or applications output. For example, in Kafka case, metrics as bytes consumed
or outgoing byte rate may be collected.

Moreover, Prometheus offers more options and resources to try to improve sys-
tem’s performance. It has an API where metrics may be exported to use them
outside Prometheus, and it is possible to generate metrics and insert them in
Prometheus. Furthermore, it provides a tool, Alertmanager, that allows to fire
alerts and set triggers if a metric violates a mathematical expression i.e. when a
metric is greater or less than a value. [31]

2.5 Related works

There are several projects related to this thesis. One example is a platform created
by Facebook to generate realistic time-series with anomalies called AnoGen. It was
developed in order to generate anomalies in a deterministic way due to the absence
of labeled datasets and the complicated task of creating one with realistic anomalies.
The result is a way to generate a labeled dataset that can be used to improve machine
learning methods of anomaly detection. [20]

In another work [27], detecting and categorizing anomalies is discussed using
supervised machine learning in a multi-cloud environment with the UNSW dataset.
In [9], an Extended Isolation Forest algorithm is used to detect anomalies in a
Kubernetes environment.

In [30], a study where a system called KubAnomaly of anomaly detection in
Kubernetes is provided. It uses neural network based approaches to detect attacks
and vulnerabilities on three types of datasets.

The thesis [5] is about detecting anomalies of microservices deployed in a cloud
environment. It states that, as microservices are continuously changing and the
changes they undergo are huge, detecting whether they are provoked by anomalies
or not is hard. The approach used is tested in a Kubernetes environment but does
not use machine learning.

There are a great amount of examples of datasets where anomalies have been
generated intentionally. For instance, [28] records a 4998-point dataset of a network
that experimented different types of DoS attacks and a Brute Force attack.

5

In the approach shown in [4], a dataset for NFV (Network Function Virtualiza-
tion) is created. A Kubernetes environment is simulated to make it similar to a
production environment. Then, three types of anomaly datasets are produced using
fault injection, measuring workload, fault-load and performance.

More examples of datasets are the datasets UNSW-NB15 and KDD99, which
are analyzed and evaluated in [22]. In that paper, both datasets are examined to
determine its accuracy and the efficiency of their features.

Finally, as the last example of related work, [2] describes a monitoring system
where Prometheus is used as a time-series database. It analyses the usefulness and
suitability of Prometheus and Prometheus Alertmanager for that task.

6

3 Research methodology and materials
The methods used in this thesis are described in this chapter. Every step taken
is explained and justified in different sections, from testing and understanding the
different technologies, to generating the dataset.

3.1 Deploying Kafka and Prometheus locally

The first step was setting up Kafka locally following the quick-start guide offered
by its official site [13]. To do it, it is necessary to start ZooKeeper first. ZooKeeper
is an open-source software that provides services to coordinate distributed systems.
It helps to provide distributed consensus and other facilities to distributed applica-
tions.[1]

Then, Kafka server is started (this is the broker) and a topic called ’test’ is
created, using the scripts provided by Kafka. Kafka producers and consumers may
be created then. The approach made to test it is to implement a simple program in
C++ that writes continuously bytes at different frequencies.

Prometheus and Prometheus Alertmanager are installed. In order to configure
correctly and easily Prometheus to scrape Kafka elements, a configuration file [26]
is used when it is started, as it is showed by Program 3.1.

1 global:
scrape_interval: 15s # Set the scrape interval to every

3 # 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds.

5 # The default is every 1 minute.

7 # Alertmanager configuration
alerting:

9 alertmanagers:
- static_configs:

11 - targets:
- localhost:9093

13

A scrape configuration containing endpoints to scrape:
15 scrape_configs:

The job name is added as a label `job=<job_name >` to any
17 # timeseries scraped from this config.

- job_name: 'prometheus'
19 static_configs:

- targets: ['localhost:9090']
21 # Kafka added statically for simplicity , instead of using

a service-discovering mechanism

7

23 - job_name: 'kafka-server'
static_configs:

25 - targets: ['127.0.0.1:7071']
- job_name: 'kafka-consumer'

27 static_configs:
- targets: ['127.0.0.1:7072']

29 - job_name: 'kafka-producer'
static_configs:

31 - targets: ['127.0.0.1:7073']

Program 3.1 Configuration file of Prometheus to launch it locally with Kafka and
Prometheus Alertmanager

Prometheus GUI can be accessed by a web browser to check that everything is
working correctly. An example of how to verify it is given in Figure 3.1, where the
metric of bytes consumed by Kafka consumer is set in a graph.

Figure 3.1 Prometheus GUI that shows how Kafka consumer is getting bytes by a
producer. This shows that the system has been deployed correctly.

Prometheus offers a HTTP API to get the metrics stored on ”/api/v1” [24].
This allows to develop external programs that treat and operate with the met-
rics obtained. Metrics may be accessed with two different endpoints. The end-
point ”/api/v1/query” evaluates the query at a single point, whereas the endpoint
”/api/v1/query_range” does it over a range of time.

In addition, there is an endpoint available in the Prometheus Alertmanager that
allows to fire alerts. The endpoint may be accessed at ”/api/v1/alerts”, in the
port opened for the Alertmanager. A few programs in Python were implemented
in order to check the functionalities of these endpoints. Particularly, programs were

8

implemented to store and get from the disk metrics provided by Prometheus, fire an
alert if a specific metric (”jvm_memory_bytes_used”) was above a certain value
for 10 seconds or more and fire an alert if the mean of the last 10 seconds of the
same metric was above that certain value.

The goal of running Kafka and Prometheus locally was deploying the system in
a simple scenario and learn how to interact with it. The Python programs imple-
mented simple aspects that were later used in a more complex purpose.

3.2 Deploying the system in Kubernetes

The approach that was decided to take is deploying Kubernetes in 4 virtual ma-
chines, one as the master and the other three as the workers. The computer that
was used at the beginning was a 4-core CPU and 8GB RAM computer. Different
operating systems for the virtual machines were tried. First, Ubuntu and CentOS
did not work properly because of lack of memory. Then, more lightweight operating
systems were used: K3s and RancherOS. Nevertheless, they were discarded because
they are commonly used in testing environments rather than production environ-
ments [10] [23]; the goal was to deploy a system as close as possible to the reality.
Hence, the solution was using a 8-core CPU and 16GB RAM computer and Ubuntu
server distribution for the virtual machines.

The 4 virtual machines were created. 2 CPUs and 2GiB of RAM were allocated
for every of them. Then Ubuntu 18.04 was installed and all packages were updated.
All machines were added to the same network.

Kubernetes was set up with docker; using kubeadm, kubelet and kubectl. The
machine that had the lowest IP address was set as the master and the other machines
joined it. The CNI Flannel was chosen in order to manage the Kubernetes network.
Flannel is a network plug-in that allocates subnets and addresses to every component
of a Kubernetes cluster. It is used with the Kubernetes API and it is configured at
the beginning of the deployment with the tool kubeadm. [6]

To deploy Kafka, helm charts were used. Helm is a tool used to install, define and
upgrade Kubernetes resources in packages named charts. It may be used to easily
use popular software instead of defining manifests to do it, reducing the errors and
helping to build complex distributions. [7]

The chart used to run Kafka is ”incubator/Kafka” chart, which may be found
in Github or in Helm hub of projects [8]. This is an implementation of Kafka as a
StatefulSet. A StatefulSet maintains identity and uniqueness of the pods used in the
Deployment, ensuring that there is the number of pods specified in the manifest is
always running. Pods are identical, but they have different identity, so any of them
may be used. They are also dynamically scalable, which means that the number
of pods may be increased improving efficiency and performance, as well as fault

9

tolerance.
The implementation of Kafka results in a StatefulSet of 3 Kafka brokers pods and

a StatefulSet of 3 Zookeeper pods. A service is created to expose Kafka endpoints
to a static port, using a NodePort, allowing other applications from the cluster and
outside the cluster to access Kafka brokers. Thus, Kafka producers and consumers
may be easily created and connected to the brokers. Furthermore, the chart provides
options to configure metrics exported that Prometheus collects. In this case, JMX
metrics (metrics provided by Java Virtual Machine, which may be provided by any
Java application) as well as other metrics provided by Kafka are exported.

Prometheus was deployed using and editing some manifests found in Github
repositories [29]. It was defined as a Deployment of 1 replica and exposed as a
NodePort similarly as Kafka. Therefore, Prometheus GUI could be accessed by any
web browser using master’s IP address and the external port provided by NodePort.
Prometheus Alertmanager was set up using the same approach of a Deployment and
a Service. Additionally, other two services were launched to generate more metrics
for Prometheus. Kube-state-metrics is an official metrics exporter that updates
the cluster state [11]. It generates metrics about cluster elements, as Pods and
Deployments, and was defined as a Deployment. Besides, Node Exporter was the
other metrics generator used. This is a Prometheus tool that gathers hardware
information about the nodes in the cluster. This information is, for instance, about
nodes memory and CPU. [25]. Node exporter is defined as a DaemonSet in order to
ensure that there is always one instance in each node.

In order to provide a persistent and reliable structure of storage for all the
system deployed, some manifests were implemented defining new elements. First,
two different Storage Classes were defined, one for Prometheus and another for
Kafka. Then, a Persistent Volume of 40 GB was defined for Prometheus and 3 of 1
GB each were defined for Kafka brokers; each one of them in a different mount path,
so that no information could be overwritten. Finally, a Persistent Volume Claim of
40 GB and another one of 1 GB for each Kafka broker were defined. In that way,
the applications were provided with the storage requirements.

To conclude this section, the main elements present on the cluster are 4 de-
ployments (Kafka brokers, Zookeeper, Prometheus and kube-state-metrics) and 1
DaemonSet (Node Exporter), as it is shown in Figure 3.2. Anomalies will be gen-
erated in this structure and data will be gathered using those elements.

3.3 Anomalies generation

Once the system was correctly started up and running, anomalies needed to be
generated. An anomaly is a strange or unexpected condition that provokes an
unusual situation. In this case, the idea is simulating a bad situation, so that

10

Master

Node 1 Node 2 Node 3

Deployment

Deployment

Deployment

Deployment

DaemonSet

Kafka broker Kafka broker Kafka broker

Zookeeper Zookeeper Zookeeper

Prometheus

Kube-state-metrics

Node Exporter Node Exporter Node Exporter

Figure 3.2 Kubernetes cluster. The figure shows all Deployments and DaemonSets of
the system deployed in Kubernetes.

its recognition triggers an alert. Consequently, a specific and controlled problematic
anomaly is needed.

The decision was to implement a microservice that would provoke a memory
anomaly. The microservice had first to be created and started as a Pod inside
the cluster, then connects with a Kafka broker and sends a bytes stream for a few
seconds and finally requests memory until the requests exceed the maximum allowed
and the container is destroyed. The anomaly was decided to be related to memory
because it is a very common problem faced by every kind of organisations and may
be effectively monitored.

11

1 FROM ubuntu:18.04

3 # Ubuntu operating system and name and email
of maintainer

5 MAINTAINER Diego <diego.martinezbaselga@tuni.fi>

7 # Update tools
RUN apt-get update

9

Copy script that produces the anomaly and
11 # the one that produces the Kafka stream

COPY anomalie_generator.sh /anomalie_generator.sh
13 COPY kafka_produce.sh /kafka_produce.sh

15 # Add permissions to execute the scripts
RUN chmod +x /anomalie_generator.sh

17 RUN chmod +x /kafka_produce.sh

19 # Start the script as the entrypoint , the main
application to be executed by the container.

21 # If the application end, the container is
destroyed.

23 ENTRYPOINT /anomalie_generator.sh

Program 3.2 Dockerfile. This is the Dockerfile used to create the container.

First, the container is implemented. As it is a Docker container, a Dockerfile
needs to be designed. In this case, it has to be just a simple one that runs a script
that produces the anomalies, as is illustrated in Program 3.2. The directives of the
file state the operating system, the maintainer, to copy and change the permissions
of the scripts implemented, and finally, to execute the main script as the executable
of the container.

The script Program 3.3 is the entry point of the Docker container. It writes
in Unix format the moment when the script starts, when the Kafka producer is
executed and when the anomaly is generated. This allows to know which data
points are considered anomalies and which are regular points. Moreover, it lets the
dataset be completed by adding information about the state of the microservice.

In order to run Kafka, it is necessary to install required packages first. The most
important one is the Java Runtime Environment, as Kafka is a Java application
and needs it to run. After having installed it, Kafka binaries are downloaded and
unzipped. When they have been downloaded, they may be executed, as it is done
in the script kafka_produce.sh. The time is written down in a file before the Kafka
producer is started.

The script kafka_produce.sh implemented is an infinite loop. It waits for 0.1

12

seconds and sends 1 byte to a Kafka broker. It uses echo to write a byte and sends
the byte through a pipe to the script kafka_producer_console.sh, which is included
in Kafka binaries. As an argument to the Kafka script, the brokers address is given,
which is the IP address of the master and the port provided by the NodePort.
Therefore, a rate of 10 bytes per second is obtained.

1 #!/bin/bash

3 # Write the time when the container starts
date +%s >> /files/times_start.txt

5

Install equired packages
7 apt-get install wget -y
apt-get update

9 apt-get install default-jre --fix-missing -y

11 # Download and unzip Kafka executables to send the stream
to a Kafka broker

13 wget "https://www.apache.org/dist/kafka/2.1.1/kafka_2.11-2.1.1.tgz"
tar -xzf kafka_2.11-2.1.1.tgz

15

Write the time when Kafka stream starts
17 date +%s >> /files/times_kafka.txt

19 # Run a Kafka producer in the background
./kafka_produce.sh &

21

Sleep for a random number of seconds between 5 and 15
23 sleep $((5 + RANDOM % 10))

25 # Write time when anomaly starts
date +%s >> /files/times_anomalies.txt

27

Produce anomaly
29 yes | tr \\n y | head -c $((1024*1024*5000)) | grep a

31 # Infinite loop. This part of the code never runs.
while true

33 do
sleep 1

35 done

Program 3.3 Script to generate anomalies. This script creates the memory
anomaly as well as runs a Kafka producer. It also writes the time when the script
starts, when the Kafka producer starts and when the anomaly is generated.

The Kafka producer is run in the background, so that it sends bytes while the

13

main script is being executed. In order to let the Kafka stream running for a few
seconds before the anomaly starts, the function sleep is used. It is forced to wait
for a random number of seconds between 5 and 15, so that every execution of the
container is a little different. When the waiting time is finished, the time is written
down.

After that, the anomalies are generated. The idea of the anomaly is an instruc-
tion that incrementally requires memory, until memory requirements exceed the
maximum. This is accomplished using the following tools connected by pipes:

• yes: It outputs the string ’y’ until it is killed. It is used to get bytes indefinitely.

• tr: It removes new lines, replacing them with another ’y’. The tool yes pro-
duces the character ’y’ in different lines. Using tr, a continuous stream of
bytes is obtained.

• head: It is a control tool as it would not be necessary. It outputs the number
of bytes set of the text given. In this case, it sets the limit of bytes generated
to 5000 MB. It is set to ensure that a big number of bytes is generated. If the
limit was set to 200 MB, the container would not be destroyed.

• grep: Grep is a tool that looks for a specified pattern in a text. The reason
why it is used is that it loads the text into memory to search the pattern.

The result of using the tools listed is that grep loads into memory up to 5000
bytes. Nevertheless, when the container reaches the maximum allowed, it is de-
stroyed. The last lines of the script are more instructions to prove that the script
has performed its function correctly. If the container is destroyed, the infinite loop
is not reached and the container restart may be checked. If the container was not
destroyed, the script would not finish and it would never be restarted. This may
be forced, for example, by setting the bytes limit in the head tool to 200 MB. That
would mean that the anomaly would not have been provoked successfully.

The files and scripts were uploaded to the docker repository dmartinezbaselga,
so that they may be used and accessed by Kubernetes manifests and set up in a
Kubernetes cluster. This process of uploading the container to a Docker hub was
performed using docker build and docker push commands.

A Storage Class, a Persistent Volume Claim and a Persistent Volume of 2 GB
were created in order to provide a persistent storage to the files that record the times
of the script. The Persistent Volume manifest (Program 3.4) has a special interest
because it was forced to be always in the same node. This is important because
Kubernetes does not ensure that when the pod is deleted and the Persistent Volume
Claim is rearranged, the files are the ones that were created before in that node
instead of new ones in a different node.

14

apiVersion: v1
2 kind: PersistentVolume
metadata:

4 name: task-pv-volume
labels:

6 type: local
spec:

8 # Name of the Storage Class
storageClassName: anomalies

10 capacity:
storage: 2Gi

12 accessModes:
- ReadWriteOnce

14 hostPath:
Path where is mounted in the physical node

16 path: "/mnt/anomalies"
nodeAffinity:

18 required:
nodeSelectorTerms:

20 - matchExpressions:
Make the volume be mounted in node1

22 - key: kubernetes.io/hostname
operator: In

24 values:
- node1

Program 3.4 Persistent Volume manifest. Manifest that creates a 2 GB persis-
tent volume that is mounted in the node called node1.

The container is set up in the cluster as a single pod, with the manifest Pro-
gram 3.5. In this manifest three aspects are stated. The first one is the container
image. The one which implementation is explained before is referred. The latest
one is pulled. Secondly, resources limits. The most important one is the memory
limits, as the anomaly generated is related to the memory. 400 MB are chosen as
the limit. If the container requests more than 400 MB, it will be destroyed. Finally,
the Persistent Volume Claim.

The name of the PVC created is the one specified in the manifest. In addition,
the volume is mounted in the path where the times files are stored. Consequently,
there is a correspondence between the path inside the Pod and the path inside the
node. Files stored in /files inside the Pod are the same as the ones that are present in
/mnt/anomalies in the node named node1. This approach lets the files be modified
inside the Pod writing the times when the microservice perform each action, reuse
the same files even though the Pod is deleted and created again, and access those
files from outside the Pod implementing an external program.

15

1 apiVersion: v1
kind: Pod

3 metadata:
name: anomalies

5 spec:
volumes:

7 # PVC created
- name: anomalies -pv

9 persistentVolumeClaim:
claimName: task-pv-claim

11 containers:
- name: anomalies

13 # Docker image created
image: dmartinezbaselga/anomalies

15 resources:
limits:

17 # If the pod requires more than this limits ,
it is destroyed

19 memory: "400Mi"
cpu: "500m"

21 volumeMounts:
Mount the PV in the path where the times files

23 # are stored
- mountPath: "/files"

25 name: anomalies -pv

Program 3.5 Pod manifest. Manifest that creates a Pod using the Docker image
designed before. A Persistent Volume Claim is required to run this manifest
successfully.

The microservice designed introduced to Kubernetes as it has been explained al-
lows to generate a time series anomaly dataset that may be extracted from Prometheus
as well as from the times files created.

3.4 Dataset generation

The microservice designed is introduced as a Pod to Prometheus. Once the Pod is
created, it starts to generate metrics. Metrics are stored in Prometheus and may be
extracted using an external program by using Prometheus API.

The Pod was created and continuously being executed in two different time
intervals. For every interval, 5005 data points were obtained. A single data point
was obtained for each second. Therefore, the microservice had to be deployed for at
least 5005 seconds in each time interval.

In order to get the metrics from Prometheus, a Python program that interacted
with its API was implemented. In Program 3.5, the fundamental lines of the code

16

of this program are included. They are explained in the following paragraphs.
The endpoint accessed was /api/v1/query_range. To reach the endpoint, the

program uses the master IP address and the eternal port offered by Prometheus
service.

1 for i in range(5):
time1 is the time when the range starts and time2 when it ends

3 time1 = str(t)
time2 = str(t + 1000)

5 # Open the file that stores metrics names
with open(file_metrics_names) as fp:

7 # Read all metrics names and iterate through them
line = fp.readline()

9 while line:
Request the metric for the interval of time specified

11 obj = {'query': line.strip(), 'start': time1, 'end': time2,
'step': '1s'}

13 x = requests.post (url, data = obj)
Open a file named with the name of the metric inside the

15 # corresponding folder
f = open(save_path + "/metrics" + str(ext) + "/" +

17 line.strip() + ".txt", "w")
Writes the content of the metric

19 f.write(str(x.json()))
f.close()

21 line = fp.readline()
Get the next 1001 points in the next metrics folder

23 ext = ext + 1
t = t + 1001

Program 3.6 Request metrics from Prometheus. Part of the code of a Python
program that requests the metrics from Prometheus as it is explained.

The query range endpoint allows to get the value of a specified metric from one
moment to another. It takes as arguments the name of the metric, the time when
the interval starts, the time when it ends and the step. The step means the times
difference between one data point and the following. It is set to 1 second, so that
1 data point per second is obtained. The times when the time interval is taken are
set manually.

Prometheus API offers and endpoint to get metrics names. However, only local
server metrics are listed. Thus, another approach should be taken to get all metrics
names. In this case, web browser inspector was used. In Prometheus GUI, there is
a form where the metric that is showed may be selected and where all metrics are
listed. The inspector is used to get these values and they were copied to a file. This
file was formatted so that its content was just one file name per line.

Prometheus resolution for queries is 11000 points. Nevertheless, latencies pro-

17

voked errors that made Prometheus fail and queries had to request a smaller amount
of points each time. 5 requests of 1001 points each were made in each of the time
intervals where anomalies were generated.

The data received from Prometheus is in json format. It is stored in the same
format in text files. Ten folders of metrics are created, one for each time range.
Inside each folder, there is one file for each metric, named as the specific metric
name. They contain the json received from Prometheus exactly as it is received.

Then, it was necessary to change the format of the data to make it readable, as
well as adding more information about the anomalies using the times files. Three
Python programs were implemented to do it.

The first program was implemented to delete inconsistent metrics. Metrics ob-
tained from Prometheus may be in two formats: a vector of tuples, being each tuple
the time of the point and the metric value; or a vector of vectors of tuples time-value.
Hence, these second metrics had more than one value for each point. For example,
Kafka metrics had 3 values, one from each broker. Therefore, the aim of the first
program was deleting the metrics that were not present in every point or did not
have the same number of values for every point. These inconsistent metrics would
not have an important role in an algorithm that predicts anomalies, as they appear
just in particular moments.

The second program creates a file that contains a table of the anomalies with
the information related to them, as the time when they started and the time when
they finished. It is not possible to measure when the container is destroyed. As it
is being destroyed externally, the microservice script could not write it down. In
addition, logs are deleted when the Pod starts again. Thus, some anomalies were
empirically measured in different times and the container was destroyed around 20
seconds after the anomaly started (3-tenths of seconds of error). As a consequence,
the end of the anomalies were listed 20 seconds after they started. In order to create
this file, metrics were not needed. The only files that were used were the file that
registered anomalies times and the file that registered Kafka producer times. They
were used to describe the anomalies generated.

The main goal of the last Python script was to get all of the metrics and write
them together in a single file. This file had to be structured as a human and computer
readable table. Each point needed to have its time, if it is an anomaly or not, the
state of the microservice and all its metrics. The table was generated sequentially,
setting up all of the table entrances from one of the 10 folders before working with
the following one. After obtaining the entrances of the folder, they were appended
to the output file.

The first column added was the times of the points; which were taken from a
random metric. The table was then initialized containing just the times. Whether

18

the point is an anomaly or not, and the state of the microservice at that moment is
derived from the 3 times files. Finally, a big loop iterated the anomalies files, getting
all the metrics values and all the vectors of metrics; adding them to the table. When
every file has been read, the output file is edited, appending the information to the
end of the file.

To conclude, two different tables were the result of this approach: The one that
contains anomalies information and the one of the metrics. The data was successfully
extracted from Prometheus and formatted so that it is easy to use to design anomaly
detection applications.

19

4 Results
The result of the deployment is 2 different tables. One table describes anomalies
generated and the other one states data points with their metrics. Both tables were
uploaded to Gitlab so that they were used to train a machine learning algorithm to
predict anomalies.

The first file name is table_anomalies.txt. A few entrances of the table are
represented as an example in the Table 4.1. The first line of the file is the header,
which contains the following fields:

Timestamp_from , Timestamp_to , Anomaly type, Anomaly details

The table is made up of 30 entrances, corresponding to the 30 anomalies gener-
ated. 14 of them were produced in the first interval of time and 16 in the second
one.

Table 4.1 Example of 5 entrances of anomalies dataset.

Timestamp_from Timestamp_to Anomaly type Anomaly details
1579033135 1579033155 Request memory Kafka runs

until container for 11s before
is destroyed anomaly starts

1579033582 1579033602 Request memory Kafka runs
until container for 10s before

is destroyed anomaly starts
1579033997 1579034017 Request memory Kafka runs

until container for 8s before
is destroyed anomaly starts

1579034411 1579034431 Request memory Kafka runs
until container for 7s before

is destroyed anomaly starts
1579034846 1579034866 Request memory Kafka runs

until container for 13s before
is destroyed anomaly starts

Timestamp_from and Timestamp_to are the timestamps when each anomaly
starts and finishes. From these times, it may be seen that the common behavior
is producing the anomalies with a difference of time between 414 and 455 seconds.
Nevertheless, there are 5 cases where anomalies were produced with a difference
of less than 200 seconds, 1 less than 300 seconds (and more than 200) and 1 less
than 400 (and more than 300). In addition, the difference of time between the last
anomaly of the first time range and the first anomaly of the second is 43612 seconds.

20

The Anomaly type field is the same for all the anomalies. It states that is an
anomaly that requests memory until the container is destroyed. Its purpose is to
clarify that aspect and make the possibility of integrating it with other metrics or
anomalies easier.

The last field of the table points out the details of the anomaly. This indicates
the number of seconds that the Kafka producer has been sending messages before
the anomaly starts. There are all between 5 and 15 seconds.

The second file created is table_metrics.txt. An example of a few entrances of
the table are represented in the Table 4.2. Similarly, its content is a table where
all the data points are listed, one data point in each row. The header of the table is
the following:

Time | Anomaly | Instance | Metric 1 | Metric 2 | ... | Metric n

The field Time is the timestamp of the data point. One data point is taken each
second of the intervals. The first point has a timestamp of 1579033025, the last
point off the first interval is at 1579038029; and the second interval range is between
1579081912 and 1579086916. Thus, there is a gap of 43883 seconds between both
intervals.

Table 4.2 Example of 5 entrances of anomalies dataset.

Time Anomaly Instance Node Kafka_server machine_
_load _brokertopic memory_
1_0 metrics_byt bytes_0

esinpersec_c
ount_2

1579033025 0 Waiting for 0.21 207 2089807872
Kafka stream

to start
1579033132 0 Kafka running 1.2 276 2089807872
1579033142 1 Generating 1.47 414 2089807872

anomaly
1579033167 0 Waiting for 0.97 552 2089807872

the script
to start

1579034005 1 Generating 1.36 828 2089807872
anomaly

The second field, Anomaly, is a Boolean attribute that takes the value 1 if
the data point is an anomaly and 0 if it is not. There are 600 points considered
anomalies.

The Instance is the state of the microservice in each point. It may take 4 different
values:

21

• Waiting for the script to start: The Pod is being created after having
been destroyed. The Pod has to be destroyed and associated to the Persistent
Volume; and the system has to check whether the container image stored is
the last one available and start the Pod. It usually takes between 300 and 350
seconds, but there are some outliers.

• Waiting for the Kafka stream to start: Time between the container starts
and the Kafka producer starts to send a bytes stream. The bottleneck of this
phase is downloading Kafka binaries. There are between 87 and 118 points off
this phase each time.

• Kafka running: Kafka producer sends bytes but the anomaly is not being
generated. The microservice is between 5 and 14 seconds in this phase.

• Generating anomaly: The anomaly is being generated. This takes 20 sec-
onds and it is the time during which the anomaly is started and the container
is destroyed.

The next fields are the metrics. There is a single value for every point in every
metric. Some metrics exported from Prometheus had more than one value. For
example, Kafka metrics have a different value from each broker. In those cases,
the metric has been named using its name, a backslash and a number meaning
the number of the instance. Illustrating it, a metric named Metric would have the
following instances : Metric_0 | Metric_1... The number of metrics presented in
the table is 7062.

To sum up, two files are the resulting dataset. One file contains the 30 anomalies
generated and the other one 10010 data points, 600 of which are anomalies. The
metrics dataset has 7062 metrics types, which is a total of 70690620 metrics points.
Moreover, an explanation of the system, how to deploy them and its interest is
provided. Furthermore, the tools to understand the meaning of the elements of the
thesis are offered.

22

5 Results analysis
In this thesis, a time series dataset has been generated. The aim of this dataset
is to be used to train a machine learning algorithm and implement a plug-in that
predicts anomalies.

In order to implement an algorithm, a selection of metrics could be done first.
It is understandable that there are some metrics that would have more critical
information regarding the anomalies than others. Therefore, some metrics could be
combined or deleted to find a more efficient algorithm.

There is a huge variety of options to develop the algorithm. A very common
technique for supervised learning is using neural networks. Neural networks are a set
of perceptrons interconnected in different layers. They have different classification
functions and parameters. The idea of using a neural network is training it with the
metrics dataset to make it classify points in regular points or anomalies. In addition,
some other mechanisms may be used to improve the correctness of the classifier. For
example, it could be retrained with false positives, in order to prevent the classifier
from labeling as anomalies points that are not.

Once the classifier has been implemented, a plug-in connected to Prometheus
may be implemented. A challenge to be faced is the latency of getting the metrics
from Prometheus. If a selection of metrics has been done before implementing the
classifier, the latency would be smaller. However, a real-time plug-in is a hard task,
as getting all the metrics from Prometheus is likely to take more than 1 second.
Another possibility is requesting metrics less often, for instance, each 5 seconds;
or studying the possible anomalies once they have been produced instead of doing
instantly.

After getting the metrics, Prometheus Alertmanager may be used in order to
fire alarms, as it has been seen in Section 3.1. With this proposal, the system is
alerted and triggers might be set. A complete anomaly detection system would be
deployed then.

After all, this dataset is the first step for implementing an anomaly detection
plug-in, a system that deals with anomalies or a solid anomaly study. A wide
range of possibilities is opened that require more research. Nevertheless, the thesis
offers a suitable introduction to a Kubernetes system with Prometheus and anomaly
detection in cloud and distributed systems.

23

6 Conclusions
This thesis has explained an approach to detect anomalies in a Kubernetes system.
The system and its deployment have been described, a labeled dataset of Prometheus
metrics that contains anomalies has been generated by a microservice and everything
has been analyzed.

One of the files created contains information about the anomalies provoked. The
other file is a table of data points labeled with whether or not they are anomalies
and the state of the microservice that generated them. The dataset is made up by
10010 points, 600 of them anomalies, with 7062 metrics each.

The focus of this thesis has been fulfilled illustrating the procedure of imple-
menting an anomaly detection plug-in and the use of the dataset generated in order
to do it. The results suggest that this dataset or a similar one could be used effec-
tively to train a machine learning algorithm that scrapes Prometheus metrics and
fires and alarm in Prometheus Alertmanager if an anomaly is detected, providing
an applicable solution to improve monitoring in distributed systems.

24

References
[1] Apache Zookeeper. Available: https://zookeeper.apache.org/. 2020.

[2] Radu Boncea and Ioan Bacivarov. “A System Architecture for Monitoring the
Reliability of IoT”. In: Proceedings of the 15th International Conference on
Quality and Dependability. 2016, pp. 143–150.

[3] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes. Dpunkt, 2018,
pp. 1–11.

[4] Qingfeng Du et al. “An approach of collecting performance anomaly dataset
for NFV Infrastructure”. In: International Conference on Algorithms and Ar-
chitectures for Parallel Processing. Springer. 2018, pp. 59–71.

[5] Thomas F Düllmann. “Performance anomaly detection in microservice archi-
tectures under continuous change”. Available: https://elib.uni-stuttgart.
de/bitstream/11682/9083/1/MScThesis-TFDuellmann.pdf. MA thesis.
2017.

[6] Flannel. Available: https://github.com/coreos/flannel. 2020.

[7] Cloud Native Computing Fundation. Helm. Available: https://helm.sh/.
2020.

[8] Cloud Native Computing Fundation. Kafka 5.0.1 for Kubernetes. Available:
https://hub.helm.sh/charts/incubator/kafka. 2020.

[9] Sahand Hariri and Matias Carrasco Kind. “Batch and online anomaly de-
tection for scientific applications in a Kubernetes environment”. In: Proceed-
ings of the 9th Workshop on Scientific Cloud Computing. Available: https:
//dl.acm.org/doi/pdf/10.1145/3217880.3217883. 2018, pp. 1–7.

[10] Mehedi Hasan. Best Linux Server Distro. Available: https://www.ubuntupit.
com/best- linux- server- distro- top- 10- compared- recommendation/.
2020.

[11] Elana Hashman. “Operating Within Normal Parameters: Monitoring Kuber-
netes”. In: (2019). Available: https://www.usenix.org/sites/default/
files/conference/protected-files/sre19amer_slides_hashman.pdf,
p. 17.

[12] Kafka Introduction. Available: https://kafka.apache.org/intro. 2020.

[13] Kafka Quickstart. Available: https://kafka.apache.org/quickstart. 2020.

[14] Kafka Use cases. Available: https://kafka.apache.org/uses. 2020.

https://zookeeper.apache.org/
https://elib.uni-stuttgart.de/bitstream/11682/9083/1/MScThesis-TFDuellmann.pdf
https://elib.uni-stuttgart.de/bitstream/11682/9083/1/MScThesis-TFDuellmann.pdf
https://github.com/coreos/flannel
https://helm.sh/
https://hub.helm.sh/charts/incubator/kafka
https://dl.acm.org/doi/pdf/10.1145/3217880.3217883
https://dl.acm.org/doi/pdf/10.1145/3217880.3217883
https://www.ubuntupit.com/best-linux-server-distro-top-10-compared-recommendation/
https://www.ubuntupit.com/best-linux-server-distro-top-10-compared-recommendation/
https://www.usenix.org/sites/default/files/conference/protected-files/sre19amer_slides_hashman.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/sre19amer_slides_hashman.pdf
https://kafka.apache.org/intro
https://kafka.apache.org/quickstart
https://kafka.apache.org/uses

25

[15] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging
system for log processing”. In: Proceedings of the NetDB. Vol. 11. Available:
http://pages.cs.wisc.edu/~akella/CS744/F17/838- CloudPapers/
Kafka.pdf. 2011, p. 2.

[16] Kubernetes Deployment. Available: https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/. 2020.

[17] Kubernetes Pod Overview. Available: https://kubernetes.io/docs/concepts/
workloads/pods/pod-overview/. 2020.

[18] Kubernetes ReplicaSet. Available: https://kubernetes.io/docs/concepts/
workloads/controllers/replicaset/. 2020.

[19] Kubernetes Service. Available: https://kubernetes.io/docs/concepts/
services-networking/service/. 2020.

[20] Nikolay Laptev. AnoGen: Deep Anomaly Generator. Tech. rep. Available:
https://research.fb.com/wp-content/uploads/2018/11/AnoGen-Deep-
Anomaly-Generator.pdf. Technical Report. Facebook. https://research. fb.
com/wp-content/uploads …, 2018, pp. 1–3.

[21] Dirk Merkel. “Docker: lightweight linux containers for consistent development
and deployment”. In: Linux journal 2014.239 (2014). Available: https://www.
seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf, pp. 1–2.

[22] Nour Moustafa and Jill Slay. “The significant features of the UNSW-NB15 and
the KDD99 data sets for network intrusion detection systems”. In: 2015 4th in-
ternational workshop on building analysis datasets and gathering experience re-
turns for security (BADGERS). Available: https://www.researchgate.net/
profile/Nour_Moustafa4/publication/312184006_The_Significant_
Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_
Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-
Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-
for-Network-Intrusion-Detection-Systems.pdf. IEEE. 2015, pp. 25–31.

[23] Brian Turner Nate Drake. Best Linux server distro of 2020. Available: https:
//www.techradar.com/best/best-linux-server-distro. 2020.

[24] Prometheus HTTP API. Available: https://prometheus.io/docs/prometheus/
latest/querying/api/. 2020.

[25] Prometheus Node Exporter. Available: https://github.com/prometheus/
node_exporter. 2020.

[26] Prometheus, Getting Started. Available: https : / / prometheus . io / docs /
prometheus/latest/getting_started/. 2020.

http://pages.cs.wisc.edu/~akella/CS744/F17/838-CloudPapers/Kafka.pdf
http://pages.cs.wisc.edu/~akella/CS744/F17/838-CloudPapers/Kafka.pdf
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://research.fb.com/wp-content/uploads/2018/11/AnoGen-Deep-Anomaly-Generator.pdf
https://research.fb.com/wp-content/uploads/2018/11/AnoGen-Deep-Anomaly-Generator.pdf
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://www.researchgate.net/profile/Nour_Moustafa4/publication/312184006_The_Significant_Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-for-Network-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Nour_Moustafa4/publication/312184006_The_Significant_Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-for-Network-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Nour_Moustafa4/publication/312184006_The_Significant_Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-for-Network-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Nour_Moustafa4/publication/312184006_The_Significant_Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-for-Network-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Nour_Moustafa4/publication/312184006_The_Significant_Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-for-Network-Intrusion-Detection-Systems.pdf
https://www.researchgate.net/profile/Nour_Moustafa4/publication/312184006_The_Significant_Features_of_the_UNSW-NB15_and_the_KDD99_Data_Sets_for_Network_Intrusion_Detection_Systems/links/58a288d045851598babaf088/The-Significant-Features-of-the-UNSW-NB15-and-the-KDD99-Data-Sets-for-Network-Intrusion-Detection-Systems.pdf
https://www.techradar.com/best/best-linux-server-distro
https://www.techradar.com/best/best-linux-server-distro
https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/

26

[27] Tara Salman et al. “Machine learning for anomaly detection and categorization
in multi-cloud environments”. In: 2017 IEEE 4th International Conference on
Cyber Security and Cloud Computing (CSCloud). Available: https://arxiv.
org/pdf/1812.05443.pdf. IEEE. 2017, pp. 97–103.

[28] Salvatore J Stolfo, Ke Wang, and Janak Parekh. Systems, methods, and media
for outputting a dataset based upon anomaly detection. US Patent 8,381,299.
Feb. 2013.

[29] Vaibhav Thakur. K8s monitoring. Available: https://github.com/Thakurvaibhav/
k8s/tree/master/monitoring. 2020.

[30] Chin-Wei Tien et al. “KubAnomaly: Anomaly detection for the Docker orches-
tration platform with neural network approaches”. In: Engineering Reports
(2019). Available: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
eng2.12080, e12080.

[31] James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018, pp. 6–8,
18, 170.

https://arxiv.org/pdf/1812.05443.pdf
https://arxiv.org/pdf/1812.05443.pdf
https://github.com/Thakurvaibhav/k8s/tree/master/monitoring
https://github.com/Thakurvaibhav/k8s/tree/master/monitoring
https://onlinelibrary.wiley.com/doi/pdf/10.1002/eng2.12080
https://onlinelibrary.wiley.com/doi/pdf/10.1002/eng2.12080

	Introduction
	Theoretical background
	Docker
	Kubernetes
	Kafka
	Prometheus
	Related works

	Research methodology and materials
	Deploying Kafka and Prometheus locally
	Deploying the system in Kubernetes
	Anomalies generation
	Dataset generation

	Results
	Results analysis
	Conclusions
	References

