

Trabajo Fin de Grado

Análisis de la operatividad y comportamiento de la tecnología RFID UHF en líquidos

Analysis of the effectiveness and behaviour of UHF RFID technology in liquids

Autor

Cristian Córcoles Villar

Directores

Jesús Royo Sánchez Maria Pilar Lambán Castillo

Área de Ingeniería de los Procesos de Fabricación

Departamento de Ingeniería de Diseño y Fabricación

Escuela de Ingeniería y Arquitectura de la Universidad de Zaragoza

2020

Análisis de la operatividad y comportamiento de la tecnología RFID UHF en líquidos

Resumen

El presente proyecto, enmarcado dentro del campo de las tecnologías de identificación, analiza el comportamiento de la tecnología de identificación por radiofrecuencia, conocida por sus siglas en inglés RFID (*Radio Frequency Identification*), en escenarios líquidos. Este análisis es llevado a cabo en el Laboratorio de Identificación Automática de la Universidad de Zaragoza (LOG.ID LAB), siguiendo las líneas de investigación existentes con respecto a las limitaciones que las aplicaciones líquidas producen en la utilización de esta tecnología.

El objetivo de este análisis consiste en determinar la influencia que diversos líquidos y recipientes, habituales dentro del sector logístico, producen en la identificación mediante ondas radio en la banda frecuencial UHF (300 – 1000 MHz), debido a la problemática que este rango de frecuencias presenta en presencia de líquidos y diversos materiales.

La primera parte del Trabajo Fin de Grado se basa en la recopilación bibliográfica de estudios e investigaciones que contextualizan esta limitación experimentada en la comunicación RFID, y que ahondan en la caracterización e influencia de los líquidos y sus envases en la operatividad de la transmisión de ondas de radiofrecuencia. Dentro de este marco de labor investigativa, se recogen algunas de las soluciones reales desarrolladas para paliar estos efectos negativos.

La segunda parte se centra en el escenario experimental, a través del cual se cuantifica la influencia de líquidos y recipientes mediante la toma de lecturas y se introduce la utilización de materiales separadores como alternativa viable a las limitaciones. Finalmente, con el fin de extraer la mayor cantidad de información posible, se emplea una herramienta de cálculo que permite analizar los datos, extrayendo conclusiones acerca del comportamiento y caracterización del escenario de trabajo configurado y permitiendo generar respuestas de actuación y futuras líneas de investigación.

ÍNDICE

1.	INT	ROD	UCCIÓN	1
	1.1.	OBJ	ETO	1
	1.2.	ALC	ANCE	1
2.	MA	ARCO	TEÓRICO TECNOLOGÍA RFID	3
	2.1.	INT	RODUCCIÓN TECNOLOGÍA RFID	3
	2.2.	FUN	ICIONAMIENTO RFID	4
	2.3.	CON	MPONENTES SISTEMAS RFID	5
	2.3	.1.	Etiquetas RFID	5
	2.3	.2.	Lector	8
	2.3	.3.	Base de datos	10
	2.4.	LIM	ITACIONES EN LA COMUNICACIÓN RFID	11
	2.4	.1.	Limitaciones en aplicaciones líquidas	13
	2.5.	REN	IDIMIENTO RFID EN LÍQUIDOS	15
	2.6.	REN	IDIMIENTO RFID EN CONTENEDORES LÍQUIDOS	19
	2.6	.1.	Posición del tag	20
	2.6	.2.	Nivel del líquido	20
	2.6	.3.	Forma de la botella	21
	2.6	.4.	Grosor de la botella	22
	2.6	.5.	Tag	22
	2.7.	ALT	ERNATIVAS PARA ESCENARIOS LÍQUIDOS EN RFID	25
	2.7	.1.	Modificación tag	25
	2.7	.2.	Separadores	25
	2.7	.3.	RFID frecuencia Dual	26
	2.7	.4.	RFID bajo agua	26
3.	EXI	PERI	MENTACIÓN CON LÍQUIDOS	29
	3.1.	TEO	REMA DEL LÍMITE CENTRAL	29
	3.2.	ME	TODOLOGÍA	31
	3.3.	EQL	JIPOS	34
	3.3	.1.	Antena	34
	3.3	.2.	Soporte antena	34
	3.3	.3.	Lector	35
	3.3	.4.	Software	35
	3 3	5	Transporte	37

3.3.6.	Envases y fluidos	37
3.3.7.	Tags	38
3.3.8.	Separadores	39
3.4. ENS	AYO DE FLUIDOS Y ANÁLISIS DE DATOS	40
3.4.1.	Contenidos	41
3.4.2.	Continentes	45
3.4.3.	Separadores	47
3.4.4.	Múltiples separadores	48
4. CONCLU	ISIONES	50
4.1. CON	ICLUSIONES GENERALES	50
4.2. TRA	BAJO FUTURO	52
BIBLIOGRAFÍ	A	53
ÍNDICE DE FIG	GURAS	56
ÍNDICE DE TA	ABLAS	60
ANEXOS		62
ANEXO 1.	ASPECTOS FÍSICOS COMUNICACIÓN RFID	62
ANEXO 1	1.1. Rango y Frecuencia de trabajo	62
ANEXO 1	1.2. Tipo de comunicación	63
ANEXO 1	1.3. Protocolo de comunicación	64
ANEXO 1	1.4. Polarización	64
ANEXO 2.	CARACTERIZACIÓN DE FLUIDOS	66
ANEXO 3.	TOMA DE DATOS	69
ANEXO 4.	ESTADO DEL ARTE RFID EN LÍQUIDOS	84

1. INTRODUCCIÓN

1.1. OBJETO

Anteproyecto del análisis de la operatividad y el comportamiento de la utilización de la tecnología RFID en banda frecuencial UHF en escenarios líquidos, desde las fases iniciales de estudio y recopilación bibliográfica hasta su comprobación y puesta en operación, justificando su viabilidad técnica y su necesidad.

El primer objetivo a abordar consistirá en analizar el comportamiento que diversos líquidos y envases manifiestan en el campo de las radiofrecuencias con el fin de compararlos, caracterizarlos y proponer soluciones y métodos eficaces que favorezcan la identificación de los líquidos y reduzcan los efectos negativos que causan en la propagación de ondas electromagnéticas.

Paralelamente, en la búsqueda de soluciones que reduzcan estos efectos negativos producidos por fluidos y recipientes, nace un segundo objetivo que consistirá en analizar la utilización de materiales separadores como alternativa factible a la mejora del empleo de la tecnología RFID en la identificación.

Estos objetivos nacen fruto de una necesidad manifestada por el sector logístico en la utilización de tecnología RFID en banda de frecuencia UHF para la identificación de objetos. Se ha detectado que las ondas radio UHF a pesar de ofrecer grandes distancias de lectura y grandes velocidades de transferencia de datos, generan efectos adversos por la presencia de algunos materiales. Entre estas limitaciones se encuentran la absorción de ondas que producen los líquidos o la reflexión de ondas por parte de los metales, por lo que su utilización se ve limitada en presencia de diversos materiales.

Para cumplir con los objetivos que surgen como consecuencia de la necesidad detectada, el presente proyecto se llevará a cabo en laboratorio de identificación automática (LOG.ID LAB) del Área de Ingeniería de los Procesos de Fabricación de la Universidad de Zaragoza, mediante la utilización de tecnologías de identificación por radiofrecuencia.

1.2. ALCANCE

El alcance del proyecto aborda los puntos a seguir para la consecución de los objetivos previamente fijados.

Inicialmente se introducirán breves nociones teóricas de la comunicación RFID y sus principios físicos fundamentales para facilitar la compresión de la tecnología objeto de estudio. A partir de su definición, se estudiarán las limitaciones que presenta y se profundizarán en las relativas a escenarios líquidos, todo ello recopilado en un estado del arte.

Para finalizar el apartado de documentación bibliográfica, se realizará un análisis exhaustivo de la influencia de líquidos y envases en la comunicación RFID UHF y se compararán diversas soluciones adoptadas en escenarios reales para solventar la necesidad detectada.

A continuación, se contextualizará la parte experimental del proyecto mediante la justificación matemática de las medidas a tomar para obtener resultados representativos y extrapolables a un escenario general. Adicionalmente, se enumerarán los equipos RFID, el material y las instalaciones necesarias para llevar a cabo los ensayos pertinentes.

De forma análoga se expondrá la metodología a seguir para realizar la toma de datos de manera ordenada y eficiente de los líquidos, envases y separadores seleccionados, que permita facilitar el análisis de datos a través de la herramienta Microsoft Excel.

En el apartado de análisis de datos se expondrán las medidas y lecturas realizadas y se dividirá por categorías su análisis, diferenciándose en contenedores, contenidos y separadores, permitiendo individualizar las conclusiones que se extraigan para cada uno de esos apartados.

Por último, se elaborarán unas conclusiones que recojan los resultados más relevantes y los aspectos más significativos a los que ha dado lugar la elaboración del Trabajo Fin de Grado. Finalmente se incluirá la bibliografía consultada, los índices de tablas y figuras presentes a lo largo del proyecto y una serie de anexos que complementan el estado del arte y detallan las medidas tomadas en el laboratorio.

2. MARCO TEÓRICO TECNOLOGÍA RFID

2.1. INTRODUCCIÓN TECNOLOGÍA RFID

Las siglas RFID hacen referencia a *Radio Frequency IDentification*, lo que en español se conoce como identificación por radiofrecuencia. Se trata de una tecnología inalámbrica de almacenamiento y recuperación remota de datos, que se utiliza para la identificación sin contacto físico de objetos mediante radiofrecuencias (RF). Sus aplicaciones actuales abarcan desde sistemas industriales automatizados, control de acceso, identificación de animales y pasaportes electrónicos hasta aplicaciones médicas, emisión de billetes y seguimiento de existencias.

Un sistema de comunicación RFID se basa en comunicación bidireccional entre un lector y una etiqueta, por medio de ondas electromagnéticas de radiofrecuencia. La etiqueta dispone de una antena y un chip (más conocido como transponder o tag) con capacidad de memoria para almacenar información acerca de los objetos a identificar a los que está adherido. El sistema de transmisión de información varía según la frecuencia en la que opera, de esta manera, un sistema RFID se basa en sistemas de acoplamiento. El tipo de acoplamiento afecta directamente al rango de lectura entre las etiquetas y los lectores. Entre estos acoplamientos existen acoplamientos electromagnéticos, inductivos, magnéticos y capacitivos [21].

En toda comunicación realizada por medio de ondas electromagnéticas, se requiere de un campo sinusoidal variable o, dicho de otra manera, de una onda portadora. La comunicación se consigue aplicando una variación a este campo, ya sea en amplitud, frecuencia o fase, en función de los datos a transmitir. A este proceso se le conoce como modulación. En los sistemas RFID se aplican diferentes técnicas de modulación: ASK (Amplitude Shift Keying); FSK (Frequency Shift Keying) y PSK (Phase Shift Keying) [20].

Los diferentes métodos de propagación de información son usados en las diferentes frecuencias, de tal modo que el acoplamiento inductivo funciona con frecuencias bajas y el sistema de propagación de ondas a frecuencias altas.

La frecuencia de operación es un aspecto físico fundamental en el uso de la tecnología RFID, ya que determina aspectos de la etiqueta como la capacidad de transmisión de datos, la velocidad y tiempo de lectura, el radio de cobertura o el coste de la etiqueta.

A continuación, se especifican las bandas de frecuencia empleadas comúnmente por la tecnología RFID, el tamaño de longitud de onda y sus características básicas:

Banda	LF (Low Frequency)	HF (High Frequency)	UHF (Ultra High Frequency)	Microondas
Frecuencia	30 - 300 KHz	3 - 30 MHz	300 - 1000 MHz	2.4 - 6 GHz
Longitud onda	10 - 1 Km	100 - 10 m	1 - 0.1 m	0.1 - 0.01 m
Características	Campo magnético bien definido Buen funcionamiento en presencia de metal Buena capacidad para atravesar materiales Comportamiento no afectado por los líquidos Baja velocidad de lectura/escritura Económicos	Campo magnético bien definido Buen comportamiento con la mayoría de materiales. Metales causan atenuación Lectura simultánea de tags (anticolisión) Velocidad de lectura/escritura media Moderadamente caro	Campo magnético bien definido Buen comportamiento con la mayoría de materiales. Metales causan atenuación Lectura simultánea de tags (anticolisión) Velocidad de lectura/escritura media Moderadamente caro	Características similares a UHF Mayor velocidad de lectura/escritura Caros

Tabla 1:Principales frecuencias de trabajo RFID. Fuente: Elaboración propia.

Dentro del marco de elaboración del proyecto, se va a trabajar con la banda de frecuencia UHF, que suscita especial interés debido a la adecuación de sus características en el sector logístico. Su característica más potente es el radio de alcance que ofrece (Entre 10 y 100 metros en función del tag) que, junto con una gran velocidad de transferencia de datos, la convierte en una banda de frecuencia adecuada para la identificación de gran diversidad de ítems.

Existen diversos fundamentos físicos que influencian la comunicación RFID además de la frecuencia de operación, entre los que se encuentra el tipo de comunicación, el protocolo de la misma o la polarización de la antena. Dichos parámetros se detallan en el Anexo 1 del proyecto.

2.2. FUNCIONAMIENTO RFID

La tecnología RFID está basada, por tanto, en la transmisión de datos por campos electromagnéticos. Este sistema está formado por una serie de dispositivos entre los que se encuentra un lector que emite y recibe ondas radio; las denominados etiquetas o tags, formadas por un chip y una antena en las que se almacena información; y una base de datos, que procesa la información.

Su funcionamiento es el siguiente: el lector dispone de una antena que emite por medio del aire señales electromagnéticas a una determinada frecuencia. Cuando una etiqueta recibe esta señal, se activa el microchip y mediante una micro antena responde con otra señal en la que se encuentra, codificada, la información contenida en ella. La señal emitida por la tarjeta es recibida por la antena del lector y es almacenada en la base de datos [13] [23].

Los datos capturados son procesados por un servidor que actualiza, en tiempo real, el sistema de gestión que se posea, quedando almacenados en la base de datos.



Figura 1: Diagrama explicativo funcionamiento RFID. Fuente: Elaboración propia.

2.3. COMPONENTES SISTEMAS RFID

Como se venía anunciando, los sistemas RFID están formados por una serie de componentes básicos, que son: el tag, el lector y un sistema gestor de información. Un sistema RFID no está completo si carece de alguno de estos elementos. El modo de operación de un sistema RFID básico consiste en la identificación localizada y automática de objetos etiquetados. Dentro de este objetivo final, cada uno de os componentes del sistema tiene su función particular que permite que, de forma secuencial, se lleve a cabo el proceso de identificación.

2.3.1. Etiquetas RFID

Las etiquetas RFID son unos pequeños dispositivos compuestos por una antena, un chip y, en ocasiones, algún elemento de almacenamiento de energía. La antena permite que el chip responda a la señal que emite el lector RFID. Dicho chip posee una memoria interna para almacenar el número de identificación y datos adicionales, cuya capacidad depende del modelo.

Los componentes de una etiqueta RFID son:

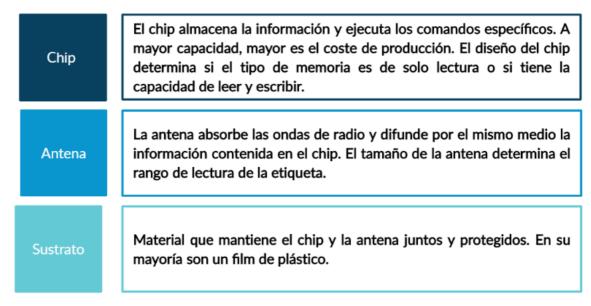


Figura 2: Componentes etiqueta RFID. Fuente: Elaboración propia.

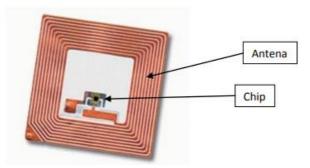


Figura 3: Ejemplo etiqueta RFID. Fuente: www.smallbusinesstrends.com

Las etiquetas pueden clasificarse según diversos criterios, atendiendo a su tipo de memoria (lectura o lectura/escritura), la capacidad de almacenamiento, el origen de la fuente de alimentación, las frecuencias de trabajo, las características físicas de las etiquetas o el protocolo de interfaz área, es decir, la forma en la que se comunica con el lector.

Sin embargo, las etiquetas se clasifican principalmente por su tipología: etiquetas activas y etiquetas pasivas [20]:

Etiquetas activas

Alimentación con Batería.

Tiempo de vida limitado por batería.

Mayor alcance (10 - 100 m).

Grandes dimensiones.

Inmunidad ante presencia de ruido.

Mayor precio.

Velocidad de transmisión alta.

Transmisor propio.

Etiquetas Pasivas

Alimentación con campo magnético (RF).

Tiempo de vida ilimitado.

Menor alcance (0.01 - 10 m).

Pequeñas dimensiones.

Sensible ante presencio de ruido.

Precio reducido.

Velocidad transmisión baja.

Dependencia de la señal del dispositivo lector.

Figura 4: Comparación etiquetas activas y pasivas. Fuente: Elaboración propia.

Como se observa en la tabla, el alcance de las etiquetas pasivas es muy inferior al de las activas, debido a que disponen de mayores niveles de alimentación, permitiendo transmitir a mayor potencia.

La ventaja principal de la etiqueta pasiva es su funcionamiento conocido como señalización pasiva, que consiste en la dualidad que tiene la antena para recibir y enviar información y alimenta el circuito para establecer el intercambio de información.

Las etiquetas pueden tomar diversas formas y tamaños dependiendo de sus características y de los entornos donde vayan a ser utilizadas. Las etiquetas, además, pueden ser encapsuladas en diferentes tipos de material. Normalmente se encapsulan en PVC para obtener una mayor durabilidad sobre todo en aplicaciones de ciclo cerrado donde se tienen que reutilizar o en ambientes hostiles. También pueden ser insertadas en tarjetas de plástico o láminas de papel. Por último, cabe mencionar que existen encapsulados en cristal o cerámica, especialmente idóneos en entornos altamente corrosivos y entornos líquidos [3] [20].

Figura 6: Ejemplo Tag activo. Fuente: www.sensitech.com

Figura 5: Ejemplo Tags pasivos. Fuente: www.new.siemens.com

2.3.2. Lector

Los lectores RFID son los dispositivos electrónicos encargados de emitir y recibir las señales de radio a través de las antenas que llevan acopladas. Después, capturan los datos almacenados en las etiquetas y, dependiendo del tipo de memoria, pueden sobrescribir datos en ellas.

Son los responsables del flujo de información existente entre las etiquetas y el sistema central, a través del middleware. Adicionalmente, se encargan de filtrar, procesar y agregar los datos de las etiquetas que han leído los lectores.

El funcionamiento del lector se debe a la antena que incluye, mediante la cual se permite el envío de información digital codificada a través de ondas de radiofrecuencia. El circuito receptor que existe en la etiqueta es capaz de detectar el campo modulado, generado por la antena del lector, decodificando la información y usando su propia antena para enviar una señal más débil de respuesta al lector.

Los lectores disponen de funcionalidades que les permiten enviar órdenes a algunas etiquetas para que se enciendan o se apaguen dependiendo de la necesidad de eliminar algunas interferencias que se pudieran producir dentro del campo de lectura. Además de estas órdenes de encendido o apagado, existen otras operaciones que se pueden realizar, como puede ser la lectura de su número de identificación o la escritura de información de interés en la etiqueta (si esta lo permite).

Dependiendo de su movilidad, pueden ser de tres tipos: fijos, de mano y móviles.

Figura 8: Lector fijo. Fuente: www.directindustry.com

Figura 7: Lector de mano. Fuente: www.directindustry.com

Figura 9: Lector móvil. Fuente: www.directindustry.com

Por otro lado, el lector está compuesto de varios componentes entre los que se encuentran un módulo de radio, un procesador y sus conexiones, que pueden ser de varios tipos para conectar con distintos dispositivos (conectores de antena, Ethernet, RS232, actuadores, sensores u otros).

De entre estos componentes, uno de los componentes principales de los lectores RFID es la antena. Esta antena consiste en un dispositivo que permite radiar las señales y leer las ondas de radio de las etiquetas. Varias antenas pueden ser gestionadas al mismo tiempo por un único lector.

Las antenas se pueden clasificar en móviles o fijas:

Antenas Móviles Disponen de movilidad para identificar las etiquetas. Normalmente se encuentran en los lectores móviles con antenas integradas o son utilizadas manualmente por un operario.

Antenas Fijas Están conectadas a lectores mediante cables. Un único lector puede gestionar varias antenas mediante la creación de una zona de interrogación.

Figura 10: Clasificación de antes según movilidad. Fuente: Elaboración propia.

Las antenas tienen patrones de radiación, es decir, por donde y con qué potencia envían la señal. Esta característica es muy importante para visualizar o calcular la cobertura que tenemos (zonas que podemos leer). Normalmente pueden ser antenas directivas, que envían y reciben la señal a una zona determinada, u omnidireccionales, que lo hacen de igual forma en todas las direcciones [22].

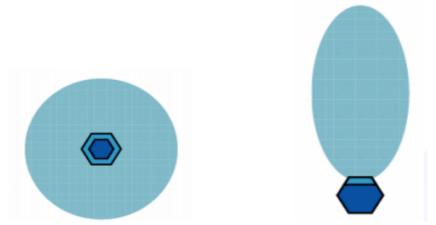


Figura 11:Antena omnidireccional frente antena directiva. Fuente: RFID Magazine.

Otro factor que caracteriza a las antenas son la ganancia y la anchura del haz, dos especificaciones relativas a la parte eléctrica de la antena y estrechamente relacionadas. Una ganancia mayor crea un área de cobertura más estrecha, pero una distancia de lectura será mayor, es decir, la antena será más directiva. En contraposición, una menor ganancia crea un área de cobertura mayor, pero una distancia de lectura menor, es decir, la antena será más omnidireccional. La anchura del haz y la ganancia son inversamente proporcionales.

El haz y la ganancia ideales dependerán de la aplicación específica.

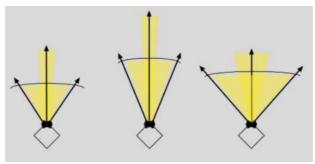


Figura 12: Anchura y distancia del haz. Fuente: www.fqingeniería.com

Algunos ejemplos de antenas RFID:

Figura 13: Modelos de antena RFID. Fuente: www.idtek.es

Mediante los lectores RFID se recoge la información de las etiquetas y esta información puede ser transferida a una capa de gestión superior. Esta capa superior consiste en un software de gestión de información, llamado middleware o base de datos.

2.3.3. Base de datos

Dentro de la tecnología RFID muchas veces la base de datos es la gran desconocida porque constantemente se habla de lectores y etiquetas RFID, pero no hay que olvidar que la gestión de la información captada por dichos elementos es igual o incluso más importante. La capa física de esta tecnología no aporta valor real si no se sabe cómo actuar con la información recogida del sistema.

Las funciones básicas del middleware son la gestión a nivel de control y configuración de toda la red de hardware de lectores y etiquetas, recolectar y filtrar datos de las lecturas y traspasar estos de manera eficiente a los sistemas de gestión.

El middleware tiene incorporadas muchas funcionalidades además de las incorporadas por los desarrolladores de software que los dotan de identidad propia. Las funcionalidades más genéricas son:

Procesado de datos El middleware realiza un filtrado de los datos recolectados por los lectores para evitar lecturas múltiples de una misma etiqueta y evitar la sobrecarga de datos. Además, tiene la capacidad de añadir valor a la información antes de traspasarla a los sistemas de gestión de una capa superior.

Gestión de dispositivos Puede controlar el estado de los lectores, su funcionamiento y alertar a los administradores de su mal funcionamiento.

El software puede tener configuradas alternativas ante un mal funcionamiento. También puede realizar la actualización de los distintos dispositivos gestionados.

Conectar información con apps

El middleware reside entre la infraestructura RFID y las aplicaciones empresariales, es por ello que se encarga de recopilar información de la infraestructura RFID y conectar esta con las aplicaciones empresariales que residen por encima del middleware.

Figura 14: Funciones de la Base de Datos. Fuente: Elaboración propia.

Por último, cabe mencionar que el middleware RFID está estrechamente relacionado con el tipo de aplicación en la que se quiera integrar la tecnología RFID. Aplicaciones empresariales básicas requieren de un middleware de poca sofisticación con una implementación de las funcionalidades indispensables. Por otro lado, en implementaciones complejas, la introducción de esta capa intermedia es indispensable y desempeña un papel de gran relevancia para realizar la gestión de los dispositivos, el procesado de los datos y la conexión con la aplicación [20].

Figura 15: Ejemplo de middleware. Fuente: www.intermec.co.uk

2.4. LIMITACIONES EN LA COMUNICACIÓN RFID

La tecnología RFID se compone, como ya se ha visto, de una serie de elementos como pueden ser el hardware (transmisor, receptor), el tipo de comunicación, la frecuencia, la antena utilizada o su polarización. Como consecuencia, existen diversos parámetros que impactan en el comportamiento del tag y sus respuestas según la frecuencia utilizada.

Extrapolando esta idea al contenido del proyecto, se deberá tener en cuenta los efectos principales que ciertos materiales y fluidos provocan sobre las señales de radio frecuencia, y, por tanto, sobre el comportamiento del tag. En este sentido, estos efectos podrán ser producidos tanto por los contenidos líquidos que se van a ensayar, como por los recipientes que los contienen.

Mediante la consideración de estos efectos [22], se contextualizará la influencia de los materiales y fluidos en los resultados que se obtengan:

 Absorción: La energía de la propagación de ondas es absorbida por algunos materiales. Este fenómeno es también conocido como pérdida (loss), en términos de RFID, provoca que haya menos potencia disponible para que el tag devuelva la señal.

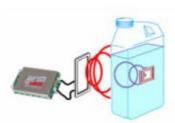


Figura 16: Absorción de ondas radio. Fuente: RFIDmagazine.

 Reflexión o refracción: En condiciones ideales, los tags reciben una onda directa desde el lector, pero en la mayoría de las ocasiones, los materiales que circundan el entorno del tag pueden reflejar o refractar esta onda principal, entonces la etiqueta o tag recibe la onda principal con las reflejadas o refractadas, que son totalmente diferentes a la onda original.

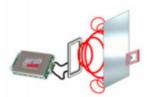


Figura 17: Reflexión de ondas radio. Fuente: RFIDmagazine.

- Efectos dieléctricos: Cuando un material dieléctrico (aislante en términos eléctricos) está cerca de la etiqueta, la concentración de campo eléctrico se puede multiplicar, provocando un efecto de desintonización de la antena del tag.
- **Efectos de propagaciones complejas:** son efectos provocados por dos fenómenos físicos que suceden cuando se trabaja con sistemas RFID para interferir en la correcta comunicación. Dichos fenómenos son:

- Ondas estacionarias u ondas diferentes a la principal que quiere alcanzar la etiqueta o tag. Ondas rebotadas en la misma dirección y diferentes sentidos que provocan que las ondas se sumen y creen una onda con más energía o sin ella, según el punto de medición.
- Múltiples caminos que son causados por las ondas estacionarias y pueden cancelar la onda directa en conjunto (interferencia destructiva)

Como ya se ha comentado, en el contexto del proyecto se va a trabajar con bandas de frecuencia RFID UHF. El principal problema de las ondas radio UHF son los efectos adversos que algunos materiales pueden producir en su utilización y que otras bandas de frecuencia inferior no tienen. Entre estas limitaciones encontramos la absorción de ondas que producen los líquidos o la reflexión de ondas por parte de los metales, por lo que su utilización se ve limitada en presencia de diversos materiales [3].

2.4.1. Limitaciones en aplicaciones líquidas

Los líquidos a ensayar junto con el recipiente que los contiene pueden presentar un amplio abanico de comportamientos respecto a la radio frecuencia debido a la variedad de materiales y fluidos de los que se componen. Por tanto, cabe pensar que sufrirán una combinación de los efectos anteriormente enumerados.

Concretando para los líquidos, el principal efecto negativo que los provocan en la radio frecuencia es la absorción. Estos líquidos absorben las ondas radio y reducen la energía necesaria por el tag. La consecuencia es una disminución de la fuerza de la señal original, que provoca que al tag no le llegue la energía suficiente para poder transmitir la información que contiene al lector.

Cabe puntualizar que el lector dispone de mayor energía para emitir que el tag, por lo que, en la mayoría de ocasiones, el lector sí que alcanza el tag pero no viceversa. El tag depende directamente de la energía que absorba de la señal enviada por el lector.

Puesto que cada liquido tiene sus parámetros, es de esperar que presenten distintos comportamientos. Los efectos que algunos materiales y fluidos pueden provocar se recogen en la tabla 2, mostrada a continuación:

Composición del material	Efecto en las señales RF (UHF)	
Caja de cartón ondulado	Absorción	
Líquidos conductivos	Absorción	
Vidrio	Atenuación (debilitación de la señal)	
Latas de aluminio	Propagación múltiple y reflexión	
Cuerpo humano	Absorción, resintonización y reflexión	
Metales	Reflexión	
Papel	Transparente	
Plástico	Resintonización (efecto dieléctrico),	
	transparente	
Madera	Transparente	

Tabla 2: Efectos provocados por diversos materiales y fluidos. Fuente: Elaboración propia.

Como se ha mencionado, generalmente el escenario de trabajo con líquidos se caracterizará por una combinación de materiales y fluidos. Concretamente para líquidos en contenedores, pueden provocar que el objeto etiquetado absorba, refleje o proteja las ondas RF en caminos diferentes.

Poniendo el ejemplo de una botella de salsa, se tiene líquido almacenado en una botella de cristal con tapa metálica. Dentro de la efectividad de la lectura, habrá ondas reflejadas que saldrán despedidas del metal, ondas que serán absorbidas o atenuadas por el líquido y más atenuación añadida por la botella de cristal.

Se debe tener conciencia de los diferentes comportamientos de las ondas radio alrededor del tag para lograr determinar la manera más eficaz de aplicar esta tecnología a distintos objetos. A continuación, se muestra un ejemplo de patrón de ondas electromagnéticas que se da para diversos materiales:

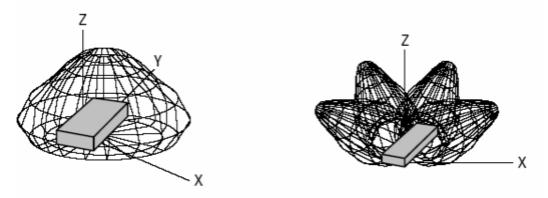


Figura 18: Comparación de los patrones de radiación para una caja de pañuelos (izquierda) y un líquido embotellado (derecha). Fuente: RFIDmagazine.

El ejemplo de la izquierda muestra una caja de pañuelos de papel y muestra un comportamiento uniforme y un patrón de radiación prácticamente omnidireccional.

El ejemplo de la derecha contextualiza el escenario en el que nos vamos a encontrar, ya que muestra la absorción de ondas provocada por un líquido, atenuación por cristal y reflexión por metal. Este caso presenta un reto mayor a la hora de etiquetar el objeto ya que existen menos áreas donde el tag pueda acoplarse a la señal. Estas áreas que muestran poca o nada de energía RF se denominan "Nulls", por lo que un tag localizado en estas zonas o en sus proximidades no podrán ser leídos efectivamente por el dispositivo lector RFID.

2.5. RENDIMIENTO RFID EN LÍQUIDOS

Como se ha visto, la operatividad de la comunicación RFID se ve limitada en presencia de líquidos debido a los efectos negativos que producen en la transmisión de ondas de radiofrecuencia. Esta limitación, sin embargo, no es una generalidad que se aplica a todos los fluidos por igual, sino que cada fluido tiene su propio comportamiento en función de los parámetros dieléctricos y electromagnéticos que lo caracterizan (Anexo 2). Por tanto, el tipo de fluido determina la distancia de lectura operativa.

Profundizando en la caracterización de los líquidos, diversos estudios e investigaciones [8] [12] [17] [18] han determinado que la diferencia de comportamiento entre los contenidos líquidos depende estrechamente de las diferencias dieléctricas (constante dieléctrica, factor de pérdida, índice de refracción o factor de atenuación). Estos estudios han avalado la caracterización de los fluidos a través de sus parámetros dieléctricos y a través de su cuantificación, se ha realizado una clasificación de los mismos en tres grupos, en función de su comportamiento, como se observa a continuación:

	Líquido	Cte dieléctrica (ε')	Factor de pérdida (ε'')
	Agua Destilada	75.64	14.7
	Agua Mineral	74.79	14.83
	Zumo naranja	67.38	18.77
	Zumo manzana	74.01	14.29
	Zumo uva	67.16	18.74
	Pepsi	74.92	20.98
	Coca-Cola	71.25	18.87
	NaCL 0.1M	77.68	23.96
	NaCL 0.05M	75.16	18.14
Base acuosa	Glucosa 5%	71.52	15.7
base acuosa	Glucosa 10%	68.65	16.19
	Leche desnatada	68.09	17.41
	Leche 1%	66.87	17.12
	Leche 2%	66.53	17.05
	Leche entera	64.34	16.51
	Té dulce	71.23	16.72
	Té verde	71.54	16.28
	Zumo granada	69.39	17.45
	Vino	72	24.5
	Café	73.49	12.97
	Isopropanol 50 %	30.4	19.79
	Isopropanol 70 %	16.21	12.87
Alcoholes	Isopropanol 91 %	5.35	4.21
	Etanol 70 %	17.63	15.11
	Vinagre	26.84	2.17
	Aceite cacahuete	2.6	0.12
	Aceite oliva	2.87	0.13
Acoitos	Aceite corte	1.35	0
Aceites	Aceite Soja	2.63	0.12
	Aceite motor	2	0
	Aceite maíz	2.57	0.14

Tabla 3: Constante dieléctrica y factor de pérdida de distintos fluidos. Fuente: "LiquID: A Wireless Liquid Identifier" [8].

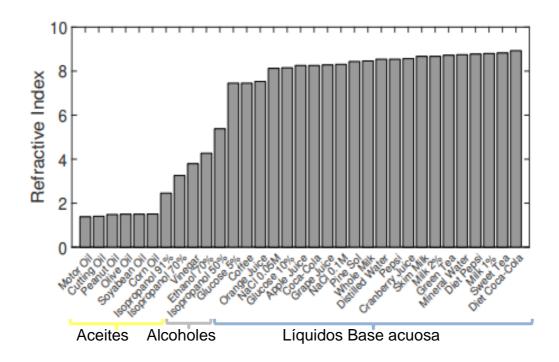


Figura 19: índice de refracción de distintos fluidos. Fuente: "LiquID: A Wireless Liquid Identifier" [8]

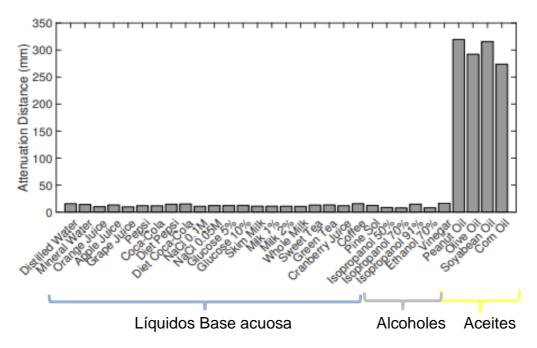


Figura 20: Factor de atenuación de distintos fluidos. Fuente: "LiquID: A Wirelees Liquid Identifier" [8].

La diferencia de estos parámetros dieléctricos justifica la clasificación de fluidos en tres grupos, cuyas características quedan recogidas en la siguiente tabla:

		Grupo		
		Aceites	Alcoholes	Líquidos base acuosa
	índice Refracción	Bajo	Medio	Alto
	Permitividad	Bajo	Media	Alto
Características	Distancia atenuación	Alta	Media	Pequeña
dieléctricas	Constante dieléctrica	Baja	Media-Baja	Alta
	Factor de pérdida	Bajo	Medio	Medio-Alto
	Conductividad	Baja	Alta	Media-Alta
Comportamiento		Bueno	Medio	Malo

Tabla 4: Caracterización de los líquidos ante RFID. Fuente: Elaboración propia.

El impacto en el cambio de temperatura del dieléctrico también se debe tener en cuenta, debido a que puede modificar el comportamiento del fluido [12].

De igual manera, existen otros factores a nivel elemental que determinan la operatividad del fluido, como por ejemplo el número de átomos de carbono que forman las moléculas de cada fluido, aportando mayores distancias de lectura a mayor número de átomos de carbono [15].

Por último, se profundizará en el análisis de cada uno de los grupos en los que se dividen los fluidos:

Aceites

Los aceites tienen un menor índice de refracción y una menor permitividad, pero una gran distancia de atenuación y por tanto su presencia no disminuye ni atenúa mucho la señal. Los aceites se pueden considerar transparentes a la radiofrecuencia [8] [26].

Líquidos de base acuosa

Tienen un gran índice de refracción y permitividad y una pequeña distancia de atenuación, por lo que se encuentran cerca de ser opacos a las radiofrecuencias [8].

Una serie de estudios experimentales exhaustivos [9] [25] concluyeron que la presencia de vino en botellas de vidrio atenúa la señal hasta un 23 %. El vino, además, modifica el patrón de radiación, lo que influencia negativamente la emisión/recepción de ondas de RF por parte del tag. Se produce una reducción del área de lectura con la presencia de este líquido.

Paralelamente al vino, fluidos como el agua, los tés, las bebidas carbonatadas, los zumos o la leche, presentan unos parámetros similares y, por tanto, un comportamiento similar [17].

Otro fluido que se ha ensayado en estudios experimentales es la sangre [27]. La tecnología RFID UHF es factible en la detección y monitorización de bolsas de sangre con ratios de detección del 85 %. En los estudios se concluyó que la configuración más efectiva para garantizar la lectura era situar la antena lectora dentro de los bancos refrigeradores (100%).

Alcoholes

Como se ha visto, tienen un índice de refracción, una permitividad y una distancia de atenuación media, por lo que su comportamiento se encuentra entre medias de los líquidos de base acuosa y los aceites [8].

Como se puede comprobar, existen líneas de investigación [8] [12] [17] [18] que validan algunas propiedades dieléctricas como parámetros determinantes del comportamiento de fluidos, haciendo una primera clasificación en tres grupos sin tener en cuenta los diferentes envases que se pueden presentar y su influencia en el comportamiento frente a la comunicación RFID UHF. De esta manera, se abre la puerta a ampliar el escenario de experimentación con diversos envases.

Extrapolando estos resultados al contexto del proyecto, se experimentará con algunos de los líquidos más comunes dentro de la gastronomía española y, por ende, dentro de la cadena logística (agua, leche y aceite), en diferentes envases (vidrio, plástico y tetra pack) también comunes en la comercialización de líquidos. De esta manera, se buscará determinar si realmente las propiedades dieléctricas sirven para caracterizar a los líquidos en cualquier envase empleado, así como establecer cuáles son los parámetros que más influyen en su comportamiento y la relación que tienen con respecto a las distancias de lectura.

2.6. RENDIMIENTO RFID EN CONTENEDORES LÍQUIDOS

La comunicación RFID UHF no solo se ve afectada por los líquidos, sino que también está influenciada por la forma y el material del recipiente. Como consecuencia, los recipientes contenedores de líquidos no deben tener formas arbitrarias, ya que la influencia de sus parámetros y del ángulo de incidencias de las ondas son importantes y de gran complejidad. Contenedores pequeños, por ejemplo, pueden hacer que la señal difractada ahogue la señal del líquido [12].

Entre estos factores, se incluyen la posición de colocación, la cantidad y tipo de líquido, y la forma y el grosor de las botellas, que también tienen una gran influencia en la efectividad del tag y de la comunicación RFID [17]. Como consecuencia, se han llevado a cabo diversos estudios con el fin de determinar la influencia de dichos factores:

2.6.1. Posición del tag

De entre las distintas configuraciones, la más efectiva es colocar el tag en el cuello de la botella [14] [17] [25] debido a tres razones:

- La distancia física entre cuellos de botella es mayor que la distancia entre cuerpos de botella, por lo que el tag en dicha posición es menos influenciado por el líquido de las botellas adyacentes en un escenario de detección múltiple de botellas.
- Se consigue un patrón de radiación omnidireccional y uniforme en el plano horizontal, lo que incrementa la posibilidad de identificación.
- Desde una perspectiva práctica, colocando el tag en el cuello, no se cubre la etiqueta original de la botella, por lo que no es necesario diseñar el envoltorio, reduciendo los costes.

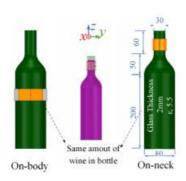


Figura 22: Posición tags simulados. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

Figura 21: Patrón de radiación según posición. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

Consecuentemente, la colocación en la parte superior y frontal de los recipientes aportan las mayores distancias de lectura.

2.6.2. Nivel del líquido

Es necesario determinar el nivel de líquido más adecuado para favorecer la transmisión de ondas de RF. Para ello, se consideran tres niveles de líquido: bajo el tag; hasta mitad del tag y cubriendo por completo el tag.

De entre estos tres niveles de líquido, se obtiene que al incrementarse el nivel del líquido en la botella, la absorción de ondas producida por el líquido se acentúa y el patrón de radiación omnidireccional disminuye, modificando y reduciendo las distancias de lectura de los tags [17].

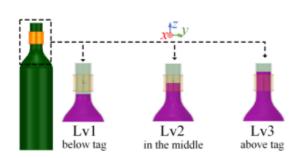


Figura 24: Nivel de líquidos simulados. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

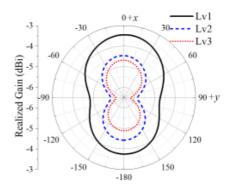


Figura 23:Patrón de radiación según nivel. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

2.6.3. Forma de la botella

Actualmente existen en el mercado multitud de diseños y formas de las botellas contenedoras de líquidos. Entre estos diseños, redundan botellas cilíndricas; de cono truncado o con forma de prisma regular.

En primer lugar, se debe tener en cuenta que cuando el tag se pega a una forma cónica truncada o a una forma prisma hexagonal, hay espacio entre el tag y el cuello de la botella debido a la forma estructural física de la misma. Este espacio que se genera entra la etiqueta y la botella, modifica negativamente el patrón de radiación, disminuyendo la distancia de lectura [17].

Entre las formas consideradas, la forma cilíndrica, seguida de la prisma hexagonal, son los diseños que menos inter espacios generan y por tanto mejor se comportan en la emisión/recepción de RF.

Figura 26:Formas de botella simuladas. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

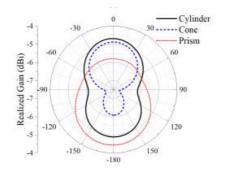


Figura 25:Patrón de radiación según forma. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

2.6.4. Grosor de la botella

El efecto del grosor de las botellas de cristal en la operatividad del RFID cobra especial relevancia. De acuerdo con el mercado actual, el grosor medio de estas botellas varía entre 2 y 3 mm.

Los estudios reflejan que la frecuencia de trabajo es muy sensible al grosor de la botella, por lo que la mínima variación en el grosor disminuye la efectividad de una frecuencia concreta de trabajo.

La radiación aumenta con la disminución de grosor, ayudando a reducir los efectos negativos en la propagación de ondas. Por tanto, interesa que los grosores de botella sean lo más finos posibles [17].

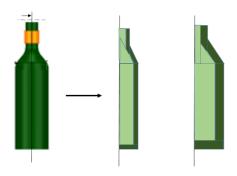


Figura 27: Grosor de botella simulados. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

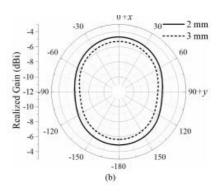


Figura 28: Patrón de radiación según grosor. Fuente: "A versatile flexible UHF RFID tag for glass bottle in self-service store" [17].

De igual manera, el diámetro de la botella también afecta a las ondas electromagnéticas emitidas, suponiendo una mayor atenuación cuánto mayor es el diámetro [15].

2.6.5. Tag

Uno de los parámetros a tener en cuenta a la hora de etiquetar los recipientes, es la posición de fijación del tag. Estudios recientes avalan que el tag en posición horizontal permite obtener distancias de lectura mayores que colocado en posición vertical [16]:

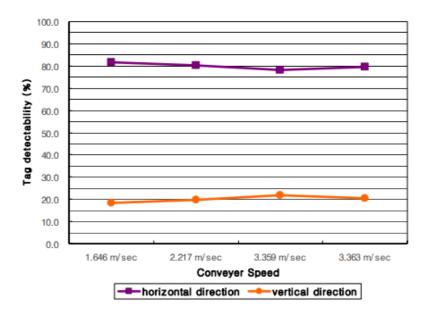


Figura 29: Porcentaje de lectura para configuración horizontal y vertical. Fuente: "RFID tag detection on a water content using a back-propagation learning machine" [16].

En esta línea, se obtienen mayores rangos de lectura en líquidos para etiquetas RFID alargadas.

Algunos otros factores influyentes también en el uso de RFID en la detección de líquidos son el ángulo de la antena y la velocidad del tag. De estos parámetros se extrae que la señal del tag no es sensible a bajas velocidad y que, por tanto, no influyen en la operatividad [16].

Paralelamente, se determinó que a mayor número de tags en el recipiente, menor rango de lectura [27].

En referencia a los datos que se manejan durante la transmisión de información entre tag y antena receptora, resulta más eficiente almacenar toda la información esencial y adicional en el tag [6].

A continuación, se muestra una tabla resumen con la influencia de cada parámetro relativo a los contenedores líquidos y los tags en la comunicación RFID:

Parámetro	Influencia
Posición tag en la botella	Colocación en el cuello de la botella favorece patrón omnidireccional de las ondas RF; existe menos influencia del líquido y se favorece la identificación.
Nivel líquido	A mayor nivel de líquido en el botella, mayor absorción y menos distancia de lectura.
Forma de la botella	Forma cilíndrica y prisma hexagonal presentan mejor comportamiento en la transmisión/recepción de ondas.
Grosor de la botella	La radiación aumenta con la disminución del grosor, reduciendo los efectos negativos en la propagación de ondas.
Diámetro de la botella	Mayor atenuación de ondas y peor comportamiento cuánto mayor es el diámetro.
Disposición del tag	Mejor propagación de ondas RF y mejores distancias de lectura para tags en horizontal.
Forma del tag	Mayores distancias de lectura para etiquetas alargadas.
Número de tags	A mayor número de tags, menores distancias de lectura.
Velocidad del tag	No influye en la operatividad.

Tabla 5: Influencia de contenedores y tags en la comunicación RFID. Fuente: Elaboración propia.

La caracterización actual existente de los materiales contenedores en la comunicación RFID se limita a parámetros relativos al diseño y dimensionado de los mismos, lo que deja abierto un amplio escenario de trabajo en el que se analice su operatividad en función del material utilizado.

El diseño y forma de los recipientes vendrán dados en la mayoría de los casos en las cadenas de distribución logísticas, por lo que no es un parámetro sobre el que se tenga potestad de forma general. Como consecuencia, a pesar de que se dan pautas para la colocación de los tags en los lugares más apropiados para favorecer la identificación, se vuelve necesario un análisis de los contenedores que se centre en el material de los mismos y permita determinar así su comportamiento de forma aislada y en presencia de fluidos, permitiendo establecer soluciones eficaces en escenarios reales en función del tipo de envase y fluido con el que se trabaje.

2.7. ALTERNATIVAS PARA ESCENARIOS LÍQUIDOS EN RFID

2.7.1. Modificación tag

La presencia del líquido incrementa la pérdida de resistencia del circuito equivalente del tag. Esto conlleva un desajuste de impedancia con un ancho de banda más estrecho y una pérdida de energía de retorno.

La solución propuesta consiste en añadir un circuito resonante RLC con una resistencia más pequeña (35 ohmios) en paralelo con el cuerpo de del tag. Esta resistencia corrige la pérdida de resistencia cuando la frecuencia de resonancia es próxima a la frecuencia de trabajo del tag [2] [24], mejorando las distancias de lectura.

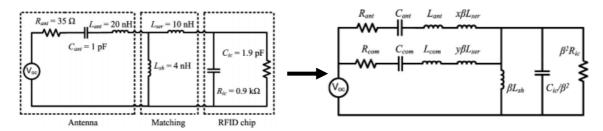


Figura 30: Modificación circuito equivalente. Fuente: " A UHF RFID tag with improved performance on Liquid Bottles" [24].

Material	BAT	Wonder Dog	Proposed design	
Free space	110	150	220	
Paper bottle	29	45	79	
Glass bottle	13	22	31	
Plastic bottle	16	23	54	

Figura 31: Comparación distancias de lectura para diversos tags. Fuente "A UHF RFID tag with improved performance on Liquid" [24].

2.7.2. Separadores

Se baraja la posibilidad de incluir una capa de material de alta permitividad en el tag, así como fabricar el propio tag en el recipiente contenedor.

En esta línea, una solución propuesta para superar el problema de la tecnología RFID con los líquidos es la utilización de planos reflectores bajo la botella. De esta manera se reduce la energía absorbida por el líquido y se aumenta el radio de lectura. Se obtienen radios de lectura de 1,45 m incluso aunque la eficiencia obtenida con la etiqueta en la botella sea del 3 %. De esta forma, se introduce la utilización de separadores como medida para solventar el problema de los líquidos [5] [11].

Figura 32: Tag con plano reflector para disminuir la absorción de ondas. Fuente: "UHF RFID tag antenna for bottle labeling" [11]

2.7.3. RFID frecuencia Dual

Una solución que se propone para establecer una comunicación RFID con líquidos y cuerpos humanos que palia los efectos negativos que estos producen en dicha tecnología para frecuencias UHF, es la utilización de tags de frecuencia doble o dual. Un funcionamiento de doble frecuencia permite que los tags no sean opacados por tejido humano, líquidos y otros fluidos [25].

Comparado con otras tecnologías de baja frecuencia, se pueden obtener distancias de lectura mucho mayores, principalmente porque el link de retorno (Del tag al Lector) opera a 6.8 MHz, que es mucho mayor que el link de ida (del lector al tag), que opera a 125 KHz.

Para ello se propone colocar un tag pasivo de frecuencia doble en la base de la botella.

Figura 33: Tag de frecuancia dual colocado en la base de una botella. Fuente: "RFID for the wine industry" [25].

2.7.4. RFID bajo agua

Como se ha visto en el capítulo de limitaciones, existen diversos efectos negativos que los líquidos provocan en la comunicación RFID. Dentro de estos efectos, la absorción de ondas de radio frecuencia es la que tiene un mayor impacto.

A raíz de este problema, se estudia la posibilidad de emplear dicha tecnología bajo agua, es decir, que la etiqueta o tag se encuentra inmersa en el líquido. La viabilidad de este método se basa en una serie de investigaciones [4] [7] que demuestran que los campos electromagnéticos pueden ser utilizados para transmitir radio señales bajo el agua.

Se concluye con las medidas tomadas que las frecuencias operativas bajo agua son las bajas frecuencias (LF, SLF y VLF):

	Low Frequency125kHz	High Frequency13.56MHz	Ultra High Frequency800MHz	Microwaves2.45GHz
Salt Water 4S/m	71cm	68mm	9mm	5mm
Fresh Water 30µS/cm	26m	2.5m	32.5cm	18.6 <i>cm</i>
Fresh Water 2000µS/cm	3.2m	30cm	4cm	2.3cm

Tabla 6: Comparación de la efectividad de diversas frecuencias en la comunicación RFID bajo agua. Fuente: "RFID under water:Technical Issues and Applications" [4].

Cuanta mayor es la frecuencia utilizada, menor probabilidad de comunicación, por lo que, para obtener buenos resultados, la frecuencia de operación debe ser lo más baja posible.

En la comunicación bajo agua, la transmisión de ondas entre el tag y el lector se ven influenciadas principalmente por dos parámetros: la energía irradiada por el tag, afectada por la inmersión en agua; y la sensibilidad del middleware y el ruido ambiente.

No obstante, aunque las bajas frecuencias son las adecuadas para este tipo de aplicaciones, es improbable que las ondas de radio frecuencia sean totalmente atenuadas mediante la utilización de frecuencias UHF.

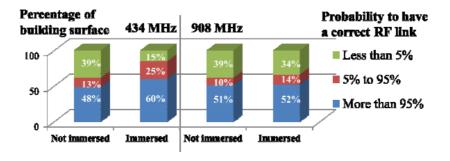


Figura 34: Porcentajes de lectura para diversas frecuencias. Fuente: "Reliability of active RFID tag immersed in water por anti-kidnapping applications" [7].

Se determina además que los métodos estocásticos son los más adecuados para analizar la influencia de la inmersión del tag en agua.

3. EXPERIMENTACIÓN CON LÍQUIDOS

3.1. TEOREMA DEL LÍMITE CENTRAL

Las mediciones experimentales llevadas a cabo en el laboratorio se han fundamentado en el teorema estadístico del límite central, con el fin de trabajar con un tamaño de muestra suficientemente grande como para aproximar la media muestral a una función de distribución normal y trabajar así con resultados que sean representativos.

El teorema del límite central indica que, en condiciones muy generales, la distribución de la suma de variables aleatorias tiende a una distribución normal cuando la cantidad de variables es muy grande. Es decir, garantiza una distribución normal cuando n es suficientemente grande.

Matemáticamente, establece que si X_1,\ldots,X_n son variables aleatorias independientes con media μ_i y varianza σ_i^2 , al margen del tipo de distribución que sigan los sumandos, la suma de todas ellas, $Y=X_1+\cdots\ldots+X_n$ tiende a distribuirse aproximadamente normal, con media $\mu=(\mu_{1+\cdots\ldots+\mu_n})$ y varianza $\sigma^2=(\sigma_1^2+\cdots\ldots+\sigma_k^2)/n$, siendo las aproximaciones mejores a medida que aumente n.

Concretando para el caso del presente proyecto, se trabajará con la variable distancia de lectura y se buscará determinar la media de la variable teniendo en cuenta que μ y σ son desconocidas.

A pesar de que dicho teorema se establece matemáticamente cuando n tiende a infinito, en la práctica si la muestra es aproximadamente 30 ($n \approx 30$), la media muestral tendrá una función de distribución próxima a una normal. En este marco de trabajo, en el laboratorio se consideran muestras de 25 medidas (lecturas) de las que se obtendrán la media muestral, que será la variable aleatoria.

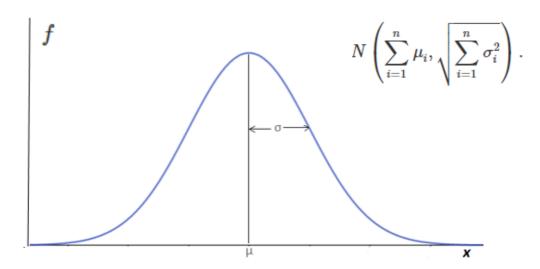


Figura 35: Aplicación TLC: Distribución Normal. Fuente: sectuario.com

Teniendo en cuenta que el número de muestras escogido (n≃25) permite que la distribución muestral se aproxima a una normal, conviene determinar el intervalo en el que se mueve la media de la distancia de lectura μ según la muestra obtenida.

El objetivo de estimar intervalos de confianza es la determinación de dos valores θ_1 y $heta_2$ tales que, al constituirse en intervalo $[heta_1, heta_2]$ contengan, con una probabilidad prefijada, el verdadero valor del parámetro que se desea estimar, en este caso, la media de la distancia de lectura:

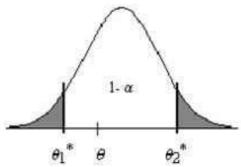


Figura 36: Representación gráfica de un intervalo de confianza. Fuente: economipedia.com

Donde:

- 1 α : coeficiente de confianza o nivel de confianza. Es la probabilidad de que el intervalo de confianza contenga el verdadero valor del parámetro poblacional θ .
- α : riesgo del error del intervalo. Es un valor comprendido entre 0 y 1, 0 < α < 1, (usualmente próximo a 0), que indica el riesgo de que el intervalo de confianza no contenga el valor del parámetro poblacional a estimar, θ.
- θ_1^* y θ_2^* : límite superior y límite inferior del intervalo. Son los valores que delimitan el intervalo de confianza. La diferencia entre el límite superior y el límite inferior de un intervalo, , $\theta_2^* - \theta_1^*$ se conoce como amplitud del intervalo.

En el caso que nos concierne, el cálculo del intervalo de confianza para la media de las distancia de lectura μ , se realiza teniendo una varianza poblacional σ_i^2 desconocida. El intervalo de confianza que se debe calcular es:

$$[\,\bar{X}-\,\,t_{1-\frac{\alpha}{2}}\frac{s}{\sqrt{n}},\bar{X}+\,\,t_{1-\frac{\alpha}{2}}\frac{s}{\sqrt{n}}\,]$$

Con:

- $\begin{array}{ll} \bullet & \bar{X} = \frac{\sum_{l} \overline{Xl}}{n} \;\; \text{media muestral.} \\ \bullet & S^2 = \frac{\sum_{l} (X_l \bar{X})}{n-1} \, \text{desviación estándar.} \end{array}$
- n = tamaño de la muestra.
- α = riesgo del error del intervalo.

Dicho intervalo permitirá realizar el control de la incertidumbre.

3.2. METODOLOGÍA

Como en todo proyecto, se debe seguir una metodología para planificar y gestionar los distintos pasos de los que se compone.

El primer paso ha consistido en profundizar en el estudio de la tecnología RFID y su aplicación en terreno líquido, analizando su problemática, las soluciones propuestas y su funcionamiento e implementación en escenarios reales, todo ello recogido en un estado del arte.

A continuación, se configura el escenario, equipo y material necesario (antenas y equipo RFID, software de lectura, líquidos y tags) en el laboratorio LOG.ID LAB de escuela de ingeniería y arquitectura de la universidad de Zaragoza, en el que se llevará a cabo la experimentación.

Una vez habituado el espacio de trabajo, se toman las lecturas y se recogen los datos en el escenario planteado, para posteriormente poder analizarlos y extraer unas conclusiones sobre el uso de dicha tecnología en el campo de los líquidos y orientar futuras investigaciones.

Dicha metodología queda recogida en el siguiente esquema:

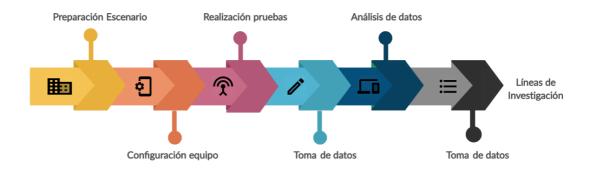


Figura 37: Metodología de trabajo. Fuente: Elaboración propia.

Detallando la operativa seguida en el laboratorio, las medidas se toman con una sola antena Intermec UHF, colocada y sujetada en el suelo mediante un soporte telescópico a través del siguiente procedimiento:

- 1. Se coloca la antena Intermec en el suelo y se toma como referencia.
- 2. Se desplazan los recipientes con los correspondientes fluidos sobre un pallet móvil en dirección a la antena desde una distancia origen de 3 metros hasta obtener una lectura del tag.
- 3. Se repite la operativa hasta completar las lecturas estipuladas.

Figura 38: Procedimiento toma de lecturas. Fuente: Elaboración propia.

La sistemática seguida para la toma de lecturas consiste en ensayar para cada fluido (aire; agua; leche y aceite) y recipiente (vidrio; plástico y tetra pack) dos tags distintos (tag 3 y tag 5) adoptados en el sector alimenticio por su adecuación en dicho entorno (TH24 y TE14) y en dos posiciones (vertical y horizontal). El número de mediciones, como se ha justificado mediante la aplicación del TLC, es de 25 lecturas para cada posibilidad.

Contenido	Contenedor	Tag	Posición
	Vidrio	To a 2	Horizontal
		Tag 3	Vertical
		Tag F	Horizontal
		Tag 5	Vertical
	Plástico	Tag 3	Horizontal
fluido			Vertical
Huldo			Horizontal
			Vertical
		T 2	Horizontal
		Tag 3	Vertical
	Tetra-Pack	Тосг	Horizontal
		Tag 5	Vertical

Tabla 7: Planificación de las lecturas. Fuente: Elaboración propia.

La última parte de la experimentación llevada a cabo corresponde con la introducción de separadores en la toma de lecturas para determinar su influencia, y se divide en dos secciones. Las condiciones de esta parte se basan en la utilización del tag 3 y en la utilización del recipiente tetra pack sin ningún fluido (vacío).

La primera sección consiste en ensayar con un único separador, en este caso folios de papel. La metodología seguida consiste en ir añadiendo progresivamente folios de papel e ir tomando medidas con cada separación.

Contenido	Tag	Posición	Separación	
			1 Folio	
Vacío Tag 3		2 Folios		
	To a 2	Horizontal	3 Folios	
	rag 3		4 Folios	
			5 Folios	
		6 Folios		

Tabla 8:Planificación de las lecturas con separación de papel. Fuente: Elaboración propia.

La segunda sección consiste en ensayar con múltiples separadores, entre los que se encuentran cartón, papel de burbujas o bolsas, y los dos tags. La metodología seguida se reduce a tomar lecturas con cada uno de los separadores y tags:

Contenido	Tag	Posición	Material separador
Vacío	Tag 3		Ninguno
Vacio	Tag 3		Bolsa dentro
Vacio	Tag 3		Bolsa fuera
Vacio	Tag 3		Burbujas
Vacio	Tag 3		Cartón
Vacio	Tag 3		Papel
Vacio	Tag 5	Horizontal	Ninguno
Vacio	Tag 5		Bolsa dentro
Vacio	Tag 5		Bolsa fuera
Vacio	Tag 5		Burbujas
Vacio	Tag 5		Cartón
Vacio	Tag 5		Papel

Tabla 9: Planificación de las lecturas con separadores. Fuente: Elaboración propia.

3.3. EQUIPOS

La experimentación llevada a cabo en el laboratorio LOG ID.LAB se ha realizado mediante un hardware que incluye una antena fijada en un soporte, un middleware, un software de procesamiento, los diversos fluidos ensayados, materiales separadores y un palé de transporte:

3.3.1. Antena

La antena Intermec IA39B utilizada para la parte experimental del proyecto se caracteriza por tener un recubrimiento (radomo) de fibra de vidrio de alta resistencia que la protege sin afectar a sus propiedades electromagnéticas. Además, se caracteriza por un sistema de red rígido y placas de circuito rígidas y un hardware de montaje de acero inoxidable que adecúa su uso ante golpes y vibraciones.

Las características más importantes, así como la antena, quedan recogidos a continuación:

Figura 39: Antena Intermec IA39B. Fuente: www.intermec.co.uk

Marca	Intermec
Modelo	IA39B
Frecuencia trabajo	865-870 MHz
Polarización	Circular
Potencia máxima	100 Watts

Tabla 10: Características básicas antena. Fuente: IA39B Data Sheet.

3.3.2. Soporte antena

La antena Intermec se fija a un arco telescópico modular diseñado y fabricado en la Universidad de Zaragoza con el que se permite la colocación de la antena en el suelo, configurando el escenario en el que se lleva a cabo la experimentación.

Figura 40: Arco telescópico modular. Fuente: Elaboración propia

3.3.3. Lector

El lector Intermec IF5 Intellitag empleado en el laboratorio es un lector RFID inteligente que puede configurarse para funcionar en diversas bandas de frecuencia RFID: 858 MHz, 869 MHz o 915 MHz. Además de disponer de funciones de lectura y escritura, el IF5 puede ejecutar aplicaciones personalizadas para filtrar información de las etiquetas RFID, supervisar sensores externos y controlar indicadores sonoros y visuales.

Sus características básicas se recogen a continuación:

Marca	Intermec
Modelo	IF5
Frecuencia trabajo	865, 869 y 915 MHz
Conexión antena	Cuatro:SMA, -20 dB
Conexión Red	Ethernet o cableada

Figura 41: Lector IF5. Fuente: www.intermec.co.uk

Tabla 11: Características básicas Lector. Fuente: IF5 Data Sheet

3.3.4. Software

La gestión de las lecturas y los datos se llevan a cabo a través de un software desarrollado en el LOG ID.LAB de la Universidad de Zaragoza.

El programa está compuesto por tres pestañas: Configurar Lector, Lee Tags y Escribe Tags. Cada una de estas pestañas tiene una función concreta:

- Configurar Lector: Las dos funciones principales de esta pestaña son la de configurar el lector y el modo de escritura/lectura de los tags, y la de conectar con el lector.
- Lee tags: La función de esta pestaña es la lectura de tags de forma continua.
- **Escribe tags**: Su función principal es la escritura de tags mediante dos campos: un campo cabecera y un campo de datos.

La interfaz del programa, así como su funcionalidad se muestra a continuación:

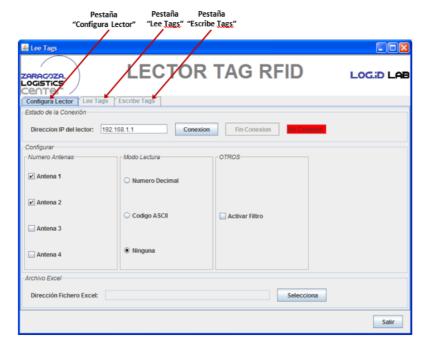


Figura 42: Interfaz programa lectura LOG.ID LAB. Fuente: Elaboración Propia.

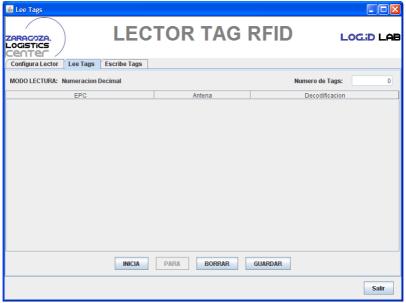


Figura 43:Pestaña Lee Tags. Fuente: Elaboración propia.

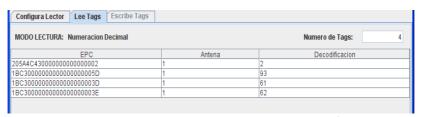


Figura 44: Pestaña Lee tags detallada. Fuente: Elaboración propia.

Figura 45: Pestaña Escribe tags. Fuente: Elaboración propia.

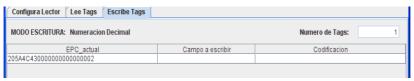


Figura 46: Pestaña Escribe tags detallada. Fuente: Elaboración propia.

3.3.5. Transporte

La movilidad de los distintos recipientes contenedores en la determinación de las distancias de lectura se lleva a cabo mediante un palet modificado de pequeñas dimensiones (20 x 16 mm). Esta solución en madera se adopta con el fin de evitar que elementos ajenos a la experimentación influyan en las lecturas, permitiendo la aproximación de los envases al colocarlos sobre la misma.

Figura 47: Palet de transporte. Fuente: Elaboración propia.

3.3.6. Envases y fluidos

Los envases empleados en la experimentación son un tetra pack, una botella de plástico y una botella de vidrio, que serán rellenados con agua, leche y aceite.

TH24 Hamtrace

44 x 44 mm

Figura 48:Envases empleados durante la experimentación. Fuente: Elaboración propia

3.3.7. Tags

Los tags utilizados en la realización de los distintos ensayos son:

La etiqueta RFID TH24 (tag 3) está diseñada para implementaciones RFID en la industria alimenticia. Esta etiqueta muestra un excelente rendimiento en entornos con altas cargas dieléctricas. Entre sus principales aplicaciones se encuentra la gestión de la cadena de suministro, inventarios y logística.

Modelo

Dimensiones

Frecuencia trabajo	860-960 MHz
Temperatura trabajo	-40 ºC a 85 ºC
Aplicación	Adhesiva (SH 3020)

Figura 49: Tag TH24. Fuente: www.tracetech-id.com

Tabla 12: Características básicas Tag TH24. Fuente: TH24 Data Sheet.

El otro tag (tag 5) utilizado es el TE14 Thinpropeller modificado. Se trata de un modelo de tag que se implementa también en la industria alimenticia, pero está customizado al recortarle las alas al modelo original, minimizando los problemas de lectura debido a los líquidos. Favorece la lectura en cuerpos húmedos

Figura 50: Tag TE14. Fuente: tracetech-id.com

Modelo	TE14 Thinpropeller
Dimensiones	94 x 7,5 mm
Frecuencia trabajo	860-960 MHz
Temperatura trabajo	-40 ºC a 85 ºC
Aplicación	Adhesiva

Tabla 13: Características básicas Tag TE14. Fuente: TE14 Data Sheet.

3.3.8. Separadores

La última parte del proyecto corresponde a la utilización de diversos separadores en el recipiente tetra brick. Entre los separadores utilizados, se encuentran: papel, cartón, bolsa de plástico y papel de burbujas.

Figura 51: Sin separador.

Figura 52:Bolsa plástico separadora

Figura 53:Papel de burbujas separador.

Figura 54:Papel separador.

Figura 55: cartón separador. Fuente: Elaboración propia.

3.4. ENSAYO DE FLUIDOS Y ANÁLISIS DE DATOS

Como se ha mencionado en el apartado de metodología, el experimento abarca tres tipos de recipientes (Vidrio, plástico y tetra pack) y cuatro fluidos (aire, agua, leche y aceite), además de la introducción de separadores. Todo ello dentro del marco de la comunicación RFID para frecuencias UHF, con el fin de cuantificar, validar y concluir la influencia de los líquidos y sus recipientes.

El análisis póstumo de la experimentación llevada a cabo en el laboratorio arroja datos concluyentes y futuras líneas de investigación con respecto a estos 3 campos distintos: contenedores, contenidos y separadores.

A continuación, se muestran las distancias de lectura de los distintos fluidos experimentados en cada uno de los envases objetos de estudio:

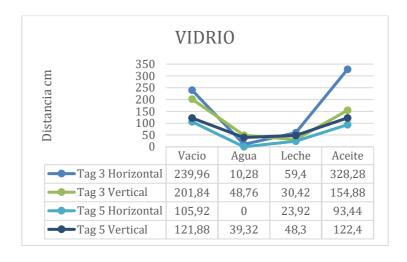


Figura 56: Lectura de fluidos con vidrio. Fuente: Elaboración propia.

Figura 57:Lectura de fluidos con plástico. Fuente: Elaboración propia.

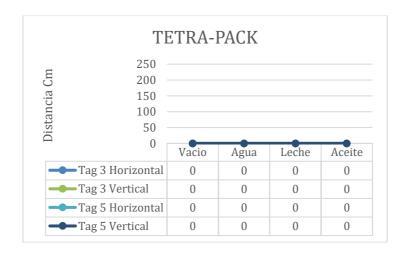


Figura 58: Lectura de fluidos con tetra pack. Fuente: Elaboración propia.

3.4.1. Contenidos

La primera observación que ya se había anunciado en el estado del arte, es la absorción producida por los líquidos ensayados, que modifica sustancialmente el comportamiento en radiofrecuencia:

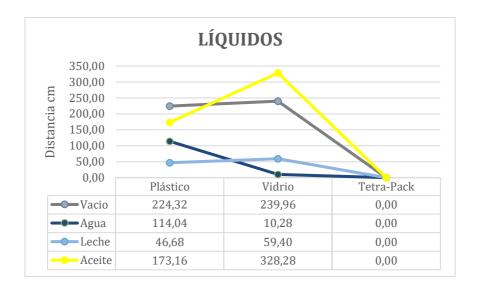


Figura 59: Distancias de lectura de los distintos líquidos. Fuente: Elaboración propia.

El tipo de líquido determina la absorción de ondas y el comportamiento en radiofrecuencia, ya que existe una diferencia evidente entre los líquidos de base acuosa (agua y leche) y el aceite:

 Líquidos de base acuosa: tienen un comportamiento similar frente a las radiofrecuencias, producen gran absorción de ondas y consecuentemente, reducen la distancia de lectura. Esta diferencia se cuantifica comparando las distancias de lectura entre contenedor vacío y lleno, datándose en hasta 1 metro de diferencia.

Dentro de estos líquidos, cabe discernir y puntualizar que la leche produce una absorción estable y uniforme para distintos recipientes (a excepción del tetra pack) mientras que el agua varía la absorción que produce según el recipiente que la contiene.

 Aceite: atendiendo a los resultados, es el fluido que mejor se comporta en el campo de las radiofrecuencias, ya que apenas produce absorción de ondas y se obtienen las mayores distancias de lectura, con un máximo de 320 cm.

Al igual que para el agua, la absorción que produce varía según el recipiente que la contiene y, sorprendentemente, con contenedor de vidrio no produce absorción de ondas.

En base al estado del arte recopilado relativo a los líquidos y teniendo en cuenta que el campo de las radiofrecuencias está influenciado por campos electromagnéticos, esta diferencia de comportamiento entre fluidos se puede deber a la diferencia de parámetros dieléctricos entre fluidos (Anexo 2).

A continuación, se han cuantificado algunos parámetros dieléctricos característicos de los fluidos ensayados [1] [8] [17]:

	Aire	Agua	Leche	Aceite
Cte Dieléctrica	1.0006	74.79	68	2.87
Factor de pérdida	0	14.83	17.41	0.13
Conductividad (S/m)	0	0.09	0.45	5e-12
Factor atenuación	0	2.5	10	0

Tabla 14: Propiedades dieléctricas de fluidos ensayados. Fuente:"LiquID: A Wireless Liquid Identifier" [8].

A la vista de los resultados obtenidos, la diferencia de comportamiento entre fluidos se puede argumentar recurriendo a la influencia de la constante dieléctrica y al factor de pérdida. Por un lado, tanto la leche como el agua tienen una constante dieléctrica elevada, por lo que tienen mayor capacidad para almacenar energía eléctrica y comportarse como aislantes eléctricos:

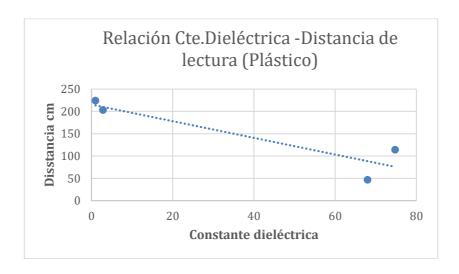


Figura 60: Distancias de lectura obtenidas en función de la Cte. Dieléctrica de los líquidos (Plástico).

Fuente: Elaboración propia.

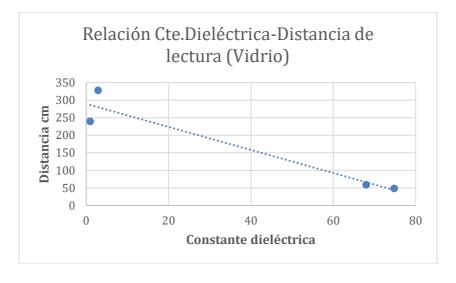


Figura 61: Distancias de lectura obtenidas en función de la Cte. Dieléctrica de los líquidos (Vidrio). Fuente: Elaboración propia.

Experimentalmente resulta evidente que cuánta mayor será la constante dieléctrica (permitividad relativa), pero es el comportamiento en radiofrecuencia y menor es la distancia de Lectura que se obtiene.

Por otro lado, también tienen mayor factor de pérdida, lo que implica que absorben mayor cantidad de energía disipada y, por consiguiente, el tag dispone de menor energía para emitir ondas:

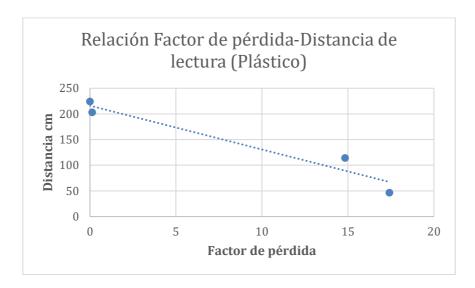


Figura 62: Distancias de lectura obtenidas en función del factor de pérdida de los líquidos (Plástico).

Fuente: Elaboración propia.

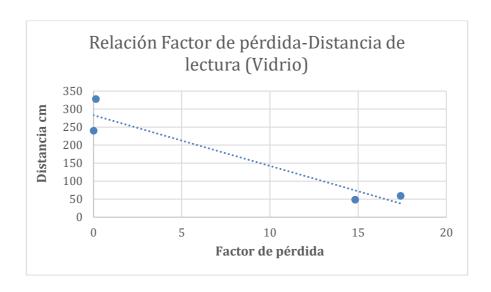


Figura 63: Distancias de lectura obtenidas en función del factor de pérdida de los líquidos (Vidrio).

Fuente: Elaboración propia.

Puesto que el aire y el aceite poseen valores sustancialmente menores de ambos parámetros, muestran mejor comportamiento en la transmisión de ondas electromagnéticas y consecuentemente en el campo de las radiofrecuencias.

En cuanto a otros parámetros como la conductividad o el factor de atenuación, la diferencia entre fluidos es muy ligera y por tanto, no suponen una influencia sustancial que determine el comportamiento de los mismos ante el escenario de estudio.

Cotejando los resultados obtenidos con otros estudios relativos a la aplicación de tecnología RFID UHF en líquidos, se verifica que, entre otros, la permitividad relativa y el factor de pérdida influencian y determinan fuertemente la absorción de ondas de cada fluido.

3.4.2. Continentes

En relación al material del que están compuestos los recipientes ensayados, entre los que se incluyen recipientes de plástico, de vidrio y de cartón (tetra-pack), se puede analizar la influencia del material en las distancias y en la efectividad de la lectura.

En primer lugar, se analizan los recipientes ensayados vacíos de contenido (aire) para determinar la atenuación de ondas de radiofrecuencia que producen los distintos materiales. De esta forma se podrá comprobar, a priori, que continente es mejor sin tener en cuenta la absorción de ondas producida por los líquidos. Posteriormente se analiza el comportamiento de los mismos con los fluidos en su interior:

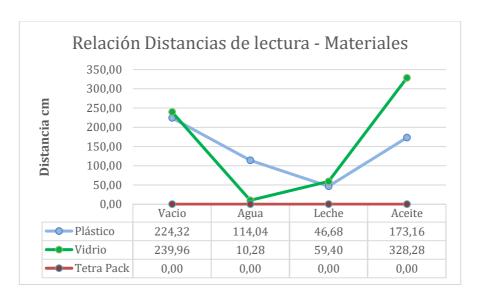


Figura 64: Distancias de lectura para distintos recipientes. Fuente: Elaboración propia.

De forma aislada, el vidrio presenta un mejor comportamiento ante RFID en banda de frecuencia UHF proporcionando las mayores distancias de lectura, ligeramente por encima del plástico y del tetra pack. Por tanto, el vidrio se postula a priori como el material más transparente a las ondas radio y el más indicado para emplear en el envasado de líquidos.

Analizando los continentes con presencia de fluido, se concluye:

El **recipiente tetra-pack** convencional (Cartón, polietileno y papel de aluminio) muestra el peor comportamiento ante tecnología RFID para frecuencias UHF, pues todas las lecturas para todos los líquidos fueron nulas. Por tanto, la composición de materiales de este recipiente muestra susceptibilidad a la lectura a través de efectos negativos como la reflexión o la refracción y demuestra su opacidad a las radiofrecuencias.

Dicho comportamiento se puede deber a la capa de papel de aluminio, puesto que el aluminio es un metal no ferromagnético y de gran conductividad eléctrica que favorece la reflexión de ondas electromagnéticas y su blindaje ante las mismas, convirtiendo este envase opaco a la radiación de ondas radio.

Consecuentemente, este envase y otros que contengan metales como aluminio, resultan poco o nada adecuados en la utilización de tecnología RFID.

El recipiente de vidrio muestra un patrón de lectura lógico, ya que las lecturas obtenidas son similares para los distintos tags y posiciones. El vidrio es el continente que mejor se comporta en presencia de aceite, leche y aire, pero empeora su comportamiento con el agua. En general, para la mayoría de los fluidos ensayados es el continente que menores efectos adversos produce en la comunicación RFID UHF. Sorprendentemente, muestra mejores distancias de lectura con presencia de aceite frente al recipiente vacío.

Con respecto al **recipiente de plástico**, también muestra un patrón de lecturas lógico para los tags y posiciones. Con este recipiente se obtienen peores distancias de lecturas a excepción del agua, con la que presenta el mejor comportamiento.

Como se había anunciado en el análisis de fluidos, según el tipo de líquido presente, existe una influencia determinada en la absorción de ondas. Tanto para el vidrio como para el plástico los líquidos de base acuosa (agua y leche) producen absorción de ondas, que junto con efectos como la refracción o reflexión producidas por el propio envase, reducen considerablemente las distancias de lectura, datándose en hasta 1 metro de diferencia.

De entre los dos tags experimentados, el tag 3 (TH24) presenta las mejores distancias de lectura para posición horizontal. A falta de una investigación más exhaustiva, este tag, cuyas características eran propicias para su utilización en el sector alimenticio y colocación, se erigen como los más efectivos para etiquetar líquidos en la utilización de tecnología RFID en frecuencias UHF.

Aunque el análisis de datos muestra que en términos generales el recipiente de vidrio es más adecuado en el envasado de líquidos por encima del plástico y del tetra pack, se puede apreciar como el comportamiento entre líquidos de la misma categoría (base acuosa) varía en función del recipiente utilizado. Estos resultados sugieren que la distancia de lectura no está totalmente determinada por el fluido o por el envase, sino que es la conjunción de ambos la que determina el comportamiento. Se abre una línea

de investigación que suponga el ensayo de más líquidos con estos recipientes para confirmar o desmentir esta sospecha y establecer una correlación entre ambos.

A raíz de los resultados obtenidos, se concluye:

- La presencia de líquidos produce absorción de ondas que varía en función del tipo de líquido, reduciendo la energía de la que dispone el tag y pudiendo acortar las distancias de lectura en hasta 1 m.
- De entre los factores que determinan la mayor o menor medida de absorción producida por un fluido, la constante dieléctrica y el factor de pérdida modelan este comportamiento.
- Se puede realizar una diferenciación ente el aceite y los líquidos de base acuosa (agua y leche) debido a dicha diferencia de parámetros. El aceite apenas produce absorción de ondas, mientras que el agua y la leche muestran un comportamiento similar y producen una absorción notable en el campo de las radiofrecuencias, reduciendo las distancias de lectura.
- Con el vidrio se obtienen mejores distancias de lectura para la mayoría de fluidos, por encima del plástico y del tetra pack.
- El tetra pack es un recipiente opaco a las ondas radio, se sospecha que la presencia de aluminio entre los materiales que lo componen produce la opacidad y susceptibilidad de la utilización de esta tecnología.
- El tag 3 (TH24) y la posición horizontal son las más efectivas para obtener distancias de lectura mayores.

3.4.3. Separadores

En la búsqueda de reducir los efectos negativos producidos por los fluidos (absorción) y los recipientes que los contienen, se introduce la utilización de separadores entre los recipientes y los tags para analizar su influencia en la toma de lecturas y en la propagación de ondas radio.

En este nuevo marco, se estudia la influencia de distintos separadores y materiales en las lecturas obtenidas con el tetra pack, cuyo comportamiento era nulo.

Papel (folios)

En primer lugar, se busca determinar Influencia de la utilización de un separador de papel en la lectura de tags pasivos RFID UHF para botella de tetra pack.

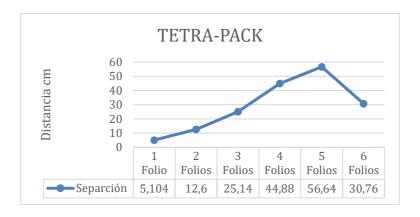


Figura 65: Influencia del papel como separador. Fuente: Elaboración propia.

Los resultados obtenidos muestran la operatividad de la utilización de separadores para mejorar el comportamiento en radiofrecuencia y aumentar los radios de lectura. Esta mejora se cuantifica en hasta 60 cm de distancia de lectura.

La utilización de capas de papel separadoras neutraliza efectos negativos como la propagación compleja de ondas o la reflexión, permitiendo que el tag disponga de mayor energía y potencia para transmitir ondas de vuelta al middleware.

Por otro lado, también cabe mencionar que una adición infinita de papeles separadores no es una solución factible ya que su rendimiento se ve afectado a partir de un grosor determinado. Este grosor se cuantifica en 0,625 mm (5 folios).

Este resultado sirve de pretexto para sugerir que los separadores no deben tener un grosor arbitrario, sino que debe tener un grosor determinado que garantice la máxima efectividad.

3.4.4. Múltiples separadores

Visto que la utilización de un separador es una solución factible para reducir efectos negativos que afectan a la comunicación RFID a altas frecuencias, se experimenta con una diversidad de materiales separadores:

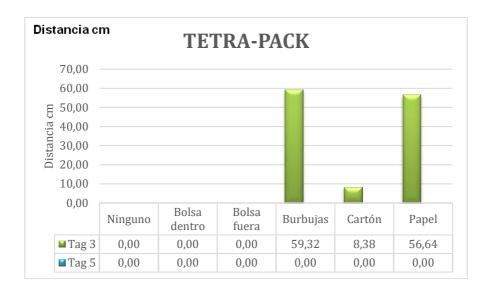


Figura 66: Influencia de distintos separadores. Fuente: Elaboración propia.

De entre el abanico de separadores utilizados, el papel de burbujas y los folios de papel muestran la mayor efectividad en la neutralización de efectos negativos, permitiendo obtener distancias de lectura de aproximadamente 60 cm.

El cartón también presenta cierta influencia positiva, pero limita la distancia máxima de lectura a 8 cm, un 13 % de la distancia máxima que podría obtenerse con otros separadores.

Como conclusión se puede extraer que la utilización de separadores es una alternativa efectiva para disminuir el efecto de las limitaciones que presenta la tecnología RFID en tanto en cuanto a la presencia de fluidos o materiales que puedan perturbar la correcta transmisión de ondas de radiofrecuencia.

De entre estos separadores, el papel de burbujas es el que mayor influencia tiene, seguido del papel y del cartón, para un tetra brick sin contenido líquido. Estos resultados dan una idea de su efectividad, pero abren una rama de futuras investigaciones para determinar que materiales separadores, con que dimensiones y en que recipientes y fluidos son la mejor opción para su utilización.

4. CONCLUSIONES

4.1. CONCLUSIONES GENERALES

El objetivo del presente proyecto ha consistido en analizar, cuantificar y validar la operatividad de la tecnología RFID en aplicaciones líquidas con la banda de frecuencia UHF.

Dicho objetivo nace fruto de las limitaciones que supone utilizar esta banda de frecuencia en aplicaciones logísticas, ya que a pesar de ser la más adecuada por los amplios radios de alcance y las grandes velocidades de transferencia, es la frecuencia más afectada en la identificación de objetos líquidos y metálicos, sufriendo diversos efectos adversos.

El análisis se ha centrado en caracterizar algunos de los líquidos de consumo más comunes dentro de nuestra gastronomía y que, por tanto, tendrán mayor presencia y participación en la cadena logística alimenticia. Esto fluidos son el agua, la leche y el aceite. Paralelamente se han caracterizado los envases más comunes de dichos fluidos, como lo son botellas de vidrio, botellas de plástico y envases tetra pack.

Además de indagar en la influencia de ciertos líquidos y envases, se ha introducido la utilización de materiales separadores entre envases y etiquetas RFID, analizando su efectividad y realizando una comparativa de las distintas posibilidades que se pueden adoptar.

La selección de fluidos, recipientes contenedores y separadores se ha realizado teniendo en cuenta su amplia presencia en el sector alimenticio. De esta manera, las conclusiones obtenidas tienen aplicación en escenarios reales, pudiendo ser adoptadas por empresas del sector.

La parte experimental del proyecto se ha fundamentado en el teorema central del límite, mediante el cual se justifica trabajar con un tamaño de muestra de 25 muestras, permitiendo aproximar la media muestral a una función de distribución normal y obteniendo resultados representativos y extrapolables a un escenario general.

Por tanto, para cada posibilidad ensayada se han tomado 25 lectura, realizando un total de 1.625 lecturas. Estas posibilidades se disgregan en 25 medidas para cada posición (vertical y horizontal) de cada tag (TH24 y TE14) de un fluido (vacío, leche, agua y aceite) en un envase (vidrio, plástico y tetra pack). Adicionalmente, se han tomado 25 medidas de cada tag con los distintos separadores (6 capas de papel, cartón, papel de burbuja, bolsa dentro y bolsa fuera).

La primera conclusión respecto a los líquidos consiste en validar la absorción de ondas de radiofrecuencia que producen en la utilización de esta tecnología con banda UHF. La diferencia entre recipientes llenos y vacíos se data en hasta 1 metro en función del tipo de líquido, por lo que se postula como un problema real e influyente.

El estudio experimental con líquidos muestra una diferencia de comportamiento notable entre líquidos de base acuosa (agua y leche) y el aceite, que permite diferenciarlos en estos dos grupos. Los líquidos de base acuosa producen mayor absorción de ondas y limitan en mayor medida las distancias de lectura. Esta diferencia se evidencia comparando la máxima distancia obtenida entre ambos, ya que para el primer grupo la distancia máxima ha sido de 114 cm, mientras que para el aceite ha sido de 328 cm.

Fruto de la recopilación bibliográfica realizada en el estado del arte y comprobado experimentalmente, las propiedades dieléctricas caracterizan los líquidos frente a la comunicación RFID, permitiendo realizar la diferenciación entre grupos. Se ha comprobado que la permitividad relativa (constante dieléctrica) y el factor de pérdida son los factores que más influencia tienen y su valor es inversamente proporcional a las distancias de lectura. Cuanto mayor son para un determinado líquido, mayor absorción se produce y menor distancia de lectura se consigue.

En relación a los envases, en términos generales el recipiente de vidrio tiene un mejor comportamiento para diversos líquidos, convirtiéndose en la mejor elección de envasado, por encima del plástico y del tetra pack. El vidrio y el plástico no difieren apenas en comportamiento mientras que el tetra pack es totalmente opaco a las radiofrecuencias, lo que lo convierte en inadecuado para la utilización de esta tecnología.

Se sospecha que la presencia de aluminio entre los materiales del brick es la causante del blindaje de dicho recipiente frente a la transmisión de ondas electromagnéticas, que, extrapolando a un escenario general, sugiere la no utilización de envases que tengan metales.

En cuanto a la utilización de separadores, se ha comprobado que su utilización es factible y operativa, planteándose como solución para reducir efectos como la reflexión, la refracción, la propagación de ondas complejas o efectos dieléctricos que puedan producir los envases de forma aislada. Entre los separadores utilizados, la mejor opción es el papel de burbujas, mejorando las distancias de lectura en hasta 59 cm, seguido por el papel normal, que la mejora en 56 cm y por el cartón, que son de entre los ensayados, los separadores que han mostrado efectividad.

Sin embargo, se ha comprobado con el papel que el separador debe cumplir unas características determinadas en relación a sus dimensiones, ya que su grosor no puede ser arbitrario, llegando a disminuir las distancias de lectura, como se ha comprobado experimentalmente.

Por otro lado, de entre los tags escogidos para realizar los ensayos, el tag TH24 Hamtrace ha aportado los mejores resultados, traducidos en las mayores distancias de lectura para todos los fluidos. Se trata de un tag ya en uso dentro de la industria alimentaria y se verifica su operatividad en el envasado de líquidos.

Las conclusiones extraídas permiten caracterizar y clasificar en cierta medida el comportamiento de los líquidos y envases en el campo de las radiofrecuencias mediante la utilización de tecnología RFID en la banda UHF, así como la utilización de separadores. Sin embargo, los datos obtenidos sugieren abrir futuras líneas de investigación que completen esta caracterización y permitan ahondar en la búsqueda de la solución más efectiva para la identificación de líquidos mediante la comunicación RFID.

4.2. TRABAJO FUTURO

Como se comentaba anteriormente, se abre un abanico de futuras investigaciones que completen el estudio de la operatividad de la tecnología RFID UHF en la identificación de líquidos.

Una primera línea de investigación radica en ampliar el número y el tipo de fluidos a ensayar que permitan corroborar la clasificación ya hecha (divididas en tres grupos: aceites, alcoholes y líquidos de base acuosa) y que validen la fijación de las propiedades dieléctricas como los parámetros determinantes de su comportamiento. En concreto la experimentación con distintos tipos de aceite y la introducción de alcoholes.

En relación a los envases, ampliar las posibilidades ensayadas con distintos tipos de vidrio y distintos tipos de plásticos, comparando diferentes propiedades electromagnéticas, entre las que se incluyan las mencionadas en el Anexo 2, que permitan establecer conclusiones sobre la influencia del material en el campo de la transmisión de ondas radio.

Aunque el análisis de datos muestra que en términos generales el recipiente de vidrio es más adecuado en el envasado de líquidos por encima del plástico y del tetra pack, se puede apreciar como el comportamiento entre líquidos de la misma categoría (base acuosa) varía en función del recipiente utilizado. Estos resultados sugieren que la distancia de lectura no está totalmente determinada por el fluido o por el envase, sino que es la conjunción de ambos la que determina el comportamiento. Se abre una línea de investigación que suponga el ensayo de más líquidos con estos recipientes para confirmar o desmentir esta sospecha y establecer una correlación entre líquido y envase.

Por último, los separadores abren un nuevo mundo experimental: En primer lugar, en determinar su eficacia en envases llenos de líquido, ya que la experimentación ha introducido la experimentación de los recipientes vacíos de contenido. Por otro lado, no solo aumentar el número de materiales separadores, sino también variar los parámetros de los mismos, permitiendo sacar conclusiones de las dimensiones que deben tener para optimizar su eficiencia.

BIBLIOGRAFÍA

- [1] "Anexo 5: Gráficas para obtener el factor de atenuación y la penetración nominal)." https://www.tdx.cat/bitstream/handle/10803/6216/50anexo5.PDF?sequence=50 &isAllowed=y (August 26, 2020).
- [2] "Antennas and Propagation; Reports Outline Antennas and Propagation Study Results from University of Liverpool (A UHF RFID Tag With Improved Performance on Liquid Bottles)." 2016.: 1–3.
- [3] Aragón Reviriego, Luis Vidal. 2016. "Estudio de La Tecnología de Comunicación Por Radiofrecuencia RFID y Su Implementación.": 110. http://bibing.us.es/proyectos/abreproy/90638/fichero/Estudio+de+la+tecnología +de+comunicación+por+radiofrecuencia+RFID+y+su+implementación.pdf.
- [4] Benelli, Giuliano, and Alessandro Pozzebo. 2013. "RFID Under Water: Technical Issues and Applications." *Radio Frequency Identification from System to Applications*.
- [5] Björninen, Toni, Leena Ukkonen, Lauri Sydanheimo, and Atef Z. Elsherbeni. 2011. "Development of a Low Profile Conformal UHF RFID Tag Antenna for Identification of Water Bottles." *IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)*: 533–36.
- [6] Botterweck, Goetz, J. Felix Hampe, and Sven Westenberg. 2007. "Mobile RFID Management An Application Scenario on the Handling of Industrial Liquid Containers." 20th Bled eConference eMergence: Merging and Emerging Technologies, Processes, and Institutions Conference Proceedings: 114–24.
- [7] Crémoux, Clément et al. 2014. "Reliability of Active RFID Tag Immersed in Water for Anti-Kidnapping Applications To Cite This Version: HAL Id: Hal-01068122 Reliability of Active RFID Tag Immersed in Water for Anti-Rapt Anti Applications."
- [8] Dhekne, Ashutosh et al. 2018. "LiquID: A Wireless Liquid Identifier." *MobiSys 2018 Proceedings of the 16th ACM International Conference on Mobile Systems, Applications, and Services*: 442–54.
- [9] Expósito, Isabel, and Iñigo Cuiñas. 2011. "RFID Tag Readability around White Wine Bottles." 2011 International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2011: 1–5.
- [10] "Frecuencias RFID, ¿Cuál Es La Más Adecuada Para Mi Proyecto? Parte 1 | FQ Ingeniería Electrónica." https://www.fqingenieria.com/es/conocimiento/frecuencias-rfid-cual-es-mas-adecuada-para-mi-proyecto-parte-1-41 (August 26, 2020).

- [11] Goncalves, Ricardo et al. 2014. "UHF RFID Tag Antenna for Bottle Labeling." *IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)*: 1520–21.
- [12] Ha, Unsoo et al. 2020. "Food and Liquid Sensing in Practical Environments Using RFIDs This Paper Is Included in the Proceedings of the Food and Liquid Sensing in Practical Environments." Nsdi: 1083–1100.
- [13] Huamán, Marlene Reyes, and Daniel Elias Bravo Loayza. 2014. "Radiofrecuencia de Identificación (RFID): Microtecnología de Gran Impacto." *Revista de investigación de Sistemas e Informática* 7(2): 77–86.
- [14] ICEX. 2004. "El Sector Del Aceite de Oliva En España.": 1–7.
- [15] Janeczek, Kamil, and Grazyna Koziol. 2011. "Performance Characteristics of UHF RFID Tags Used in Identification on Liquids." *Przeglad Elektrotechniczny* 87(5): 246–49.
- [16] Jo, Minho, Chang Gyoon Lim, and Emory W. Zimmers. 2007. "RFID Tag Detection on a Water Content Using a Back-Propagation Learning Machine." *KSII Transactions on Internet and Information Systems* 1(1): 19–32.
- [17] Liu, Qi, Hui Li, and Yu Feng Yu. 2018. "A Versatile Flexible UHF RFID Tag for Glass Bottle Labelling in Self-Service Stores." *IEEE Access* 6: 59065–73.
- [18] Makarovaite, Viktorija et al. 2019. "Passive Wireless UHF RFID Antenna Label for Sensing Dielectric Properties of Aqueous and Organic Liquids." *IEEE Sensors Journal* 19(11): 4299–4307.
- [19] México, Campus Ciudad De. "BIBLIO TECA Instituto Tecnológico y de Estudios Superiores de Monterrey Manejo de Inventarios Mediante Tecnología RFID."
- [20] Piedra, De. 2009. "Principios De La Tecnología Rfid.": 184–89. http://docplayer.es/2773682-Capitulo-3-principios-de-la-tecnologia-rfid.html.
- [21] "RFID | Identificación Por Radiofrecuencia IONOS." https://www.ionos.es/digitalguide/servidores/know-how/rfid/ (August 26, 2020).
- [22] RFIDmagazine. 2006. "Los Aspectos Físicos Detrás de La Tecnología RFID."
- [23] San José, José Pastor, and Andrés García. 2012. "RFID: La Identificación Por Radiofrecuencia Como Futuro de La Identificación de Objetos." October (October). https://www.researchgate.net/profile/Jose_San_Jose_Vieco/publication/275020 704_RFID_La_Identificacion_por_Radiofrecuencia_como_futuro_de_la_identificacion_de_objetos/links/5706a31f08aed73c8548a221.pdf.

- [24] Sohrab, Abed Pour et al. 2016. "A UHF RFID Tag with Improved Performance on Liquid Bottles." *IEEE Antennas and Wireless Propagation Letters* 15: 1673–76.
- [25] "Soluciones RFID Para El Sector Vitivinícola."
- Tracking, Quality. "RFID for the Wine Industry Quality Tracking from Vineyard to Glass.": 1–4.
- [26] Violino, Simona et al. 2020. "A Full Technological Traceability System for Extra Virgin Olive Oil." Foods 9(5).
- [27] Zhou, Yucheng. 2015. "RFID-Based Blood Bag Monitor Research."

ÍNDICE DE FIGURAS

Figura 1: Diagrama explicativo funcionamiento RFID. Fuente: Elaboración propia 5
Figura 2: Componentes etiqueta RFID. Fuente: Elaboración propia6
Figura 3: Ejemplo etiqueta RFID. Fuente: www.smallbusinesstrends.com 6
Figura 4: Comparación etiquetas activas y pasivas. Fuente: Elaboración propia
Figura 5: Ejemplo Tags pasivos. Fuente: www.new.siemens.com
Figura 6: Ejemplo Tag activo. Fuente: www.sensitech.com
Figura 7: Lector de mano. Fuente: www.directindustry.com
Figura 8: Lector fijo. Fuente: www.directindustry.com
Figura 9: Lector móvil. Fuente: www.directindustry.com 8
Figura 10: Clasificación de antes según movilidad. Fuente: Elaboración propia
Figura 11:Antena omnidireccional frente antena directiva. Fuente: RFID Magazine9
Figura 12: Anchura y distancia del haz. Fuente: www.fqingeniería.com
Figura 13: Modelos de antena RFID. Fuente: www.idtek.es 10
Figura 14: Funciones de la Base de Datos. Fuente: Elaboración propia 11
Figura 15: Ejemplo de middleware. Fuente: www.intermec.co.uk
Figura 16: Absorción de ondas radio. Fuente: RFIDmagazine
Figura 17: Reflexión de ondas radio. Fuente: RFIDmagazine
Figura 18: Comparación de los patrones de radiación para una caja de pañuelos
(izquierda) y un líquido embotellado (derecha). Fuente: RFIDmagazine 14
Figura 19: índice de refracción de distintos fluidos. Fuente: "LiquID: A Wireless Liquid
Identifier'' [8]
Figura 20: Índice de refracción de distintos fluidos. Fuente: "LiquID: A Wirelees Liquid
Identifier'' [8]
Figura 21: Patrón de radiación según posición. Fuente: "A versatile flexible UHF RFID
tag for glass bottle in self-service store" [17]
Figura 22: Posición tags simulados. Fuente: "A versatile flexible UHF RFID tag for glass
bottle in self-service store" [17]
Figura 23:Patrón de radiación según nivel. Fuente: "A versatile flexible UHF RFID tag
for glass bottle in self-service store" [17]21

Figura 24: Nivel de líquidos simulados. Fuente: "A versatile flexible UHF RFID tag for
glass bottle in self-service store" [17]
Figura 25:Patrón de radiación según forma. Fuente: "A versatile flexible UHF RFID tag
for glass bottle in self-service store" [17]
Figura 26:Formas de botella simuladas. Fuente: "A versatile flexible UHF RFID tag for
glass bottle in self-service store" [17]21
Figura 27: Grosor de botella simulados. Fuente: "A versatile flexible UHF RFID tag for
glass bottle in self-service store" [17]
Figura 28: Patrón de radiación según grosor. Fuente: "A versatile flexible UHF RFID tag
for glass bottle in self-service store" [17]
Figura 29: Porcentaje de lectura para configuración horizontal y vertical. Fuente: "RFID
tag detection on a water content using a back-propagation learning machine" [16] 23
Figura 30: Modificación circuito equivalente. Fuente: " A UHF RFID tag with improved
performance on Liquid Bottles" [24]
Figura 31: Comparación distancias de lectura para diversos tags. Fuente "A UHF RFID
tag with improved performance on Liquid" [24]
Figura 32: Tag con plano reflector para disminuir la absorción de ondas. Fuente: "UHF
RFID tag antenna for bottle labeling" [11]
Figura 33: Tag de frecuancia dual colocado en la base de una botella. Fuente: "RFID for
the wine industry" [25]
Figura 34: Porcentajes de lectura para diversas frecuencias. Fuente: "Reliability of
active RFID tag immersed in water por anti-kidnapping applications" [7]27
Figura 35: Aplicación TLC: Distribución Normal. Fuente: sectuario.com
Figura 36: Representación gráfica de un intervalo de confianza. Fuente:
economipedia.com
Figura 37: Metodología de trabajo. Fuente: Elaboración propia
Figura 38: Procedimiento toma de lecturas. Fuente: Elaboración propia
Figura 39: Antena Intermec IA39B. Fuente: www.intermec.co.uk
Figura 40: Arco telescópico modular. Fuente: Elaboración propia
Figura 41: Lector IF5. Fuente: www.intermec.co.uk
Figura 42: Interfaz programa lectura LOG.ID LAB. Fuente: Elaboración Propia 36
Figura 43:Pestaña Lee Tags. Fuente: Elaboración propia

Figura 44: Pestaña Lee tags detallada. Fuente: Elaboración propia	36
Figura 45: Pestaña Escribe tags. Fuente: Elaboración propia	37
Figura 46: Pestaña Escribe tags detallada. Fuente: Elaboración propia	37
Figura 47: Palet de transporte. Fuente: Elaboración propia	37
Figura 48:Envases empleados durante la experimentación. Fuente: Elaboración pro	pia
	38
Figura 49: Tag TH24. Fuente: www.tracetech-id.com	38
Figura 50: Tag TE14. Fuente: tracetech-id.com	38
Figura 51: Sin separador. Figura 52:Bolsa plástico separadora	39
Figura 53:Papel de burbujas separador. Figura	
54:Papel separador	39
Figura 55: cartón separador. Fuente: Elaboración propia	40
Figura 56: Lectura de fluidos con vidrio. Fuente: Elaboración propia	40
Figura 57:Lectura de fluidos con plástico. Fuente: Elaboración propia	41
Figura 58: Lectura de fluidos con tetra pack. Fuente: Elaboración propia	41
Figura 59: Distancias de lectura de los distintos líquidos. Fuente: Elaboración propia	a. 42
Figura 60: Distancias de lectura obtenidas en función de la Cte. Dieléctrica de los	
líquidos (Plástico). Fuente: Elaboración propia	43
Figura 61: Distancias de lectura obtenidas en función de la Cte. Dieléctrica de los	
líquidos (Vidrio). Fuente: Elaboración propia	43
Figura 62: Distancias de lectura obtenidas en función del factor de pérdida de los	
líquidos (Plástico). Fuente: Elaboración propia	44
Figura 63: Distancias de lectura obtenidas en función del factor de pérdida de los	
líquidos (Vidrio). Fuente: Elaboración propia	44
Figura 64: Distancias de lectura para distintos recipientes. Fuente: Elaboración prop	oia.
	45
Figura 65: Influencia del papel como separador. Fuente: Elaboración propia	48
Figura 66: Influencia de distintos separadores. Fuente: Elaboración propia	49
Figura 67: Bandas de frecuencia. Fuente: RFIDmagazine.	62
Figura 68: Tipos de polarización. Fuente: RFIDmagazine	64
Figura 69: características según el tipo de polarización. Fuente: Elaboración propia.	65

Figura 70: Distancias de lectura de distintos fluidos con contenedor plástico. Fuente:
Elaboración propia69
Figura 71: Gráfico de barras de distintos fluidos con contenedor plástico. Fuente:
Elaboración propia69
Figura 72: Distancias de lectura de distintos fluidos con contenedor de vidrio. Fuente:
Elaboración propia
Figura 73: Gráfico de barras de distintos fluidos con contenedor de vidrio. Fuente:
Elaboración propia
Figura 74: Distancias de lectura de distintos fluidos con contenedor tetra pack. Fuente:
Elaboración propia71
Figura 75: Gráfico de barras de distintos fluidos con contenedor tetra pack. Fuente:
Elaboración propia72
Figura 76: Distancias de lectura de distintos recipientes vacíos. Fuente: Elaboración
propia
Figura 77: Gráfico de barras de distintos recipientes vacíos. Fuente: Elaboración propia.
Figura 78: Distancias de lectura de distintos recipientes con agua. Fuente: Elaboración
propia
Figura 79: Gráfico de barras de distintos recipientes con agua. Fuente: Elaboración
propia
Figura 80: Distancias de lectura de distintos recipientes con leche. Fuente: Elaboración
propia77
Figura 81: Gráfico de barras de distintos recipientes con leche. Fuente: Elaboración
propia
Figura 82: Distancias de lectura de distintos recipientes con aceite: Elaboración propia.
Figura 83: Gráfico de barras de distintos recipientes con aceite. Fuente: Elaboración
propia
Figura 84: Influencia de separadores de papel en las lecturas. Fuente: Elaboración
propia82
Figura 85: Medidas para distintos separadores. Fuente: Elaboración propia

ÍNDICE DE TABLAS

Tabla 1:Principales frecuencias de trabajo RFID. Fuente: Elaboración propia 4
Tabla 2: Efectos provocados por diversos materiales y fluidos. Fuente: Elaboración
propia
Tabla 3: Constante dieléctrica y factor de pérdida de distintos fluidos. Fuente: "LiquID:
A Wireless Liquid Identifier" [8]
Tabla 4: Caracterización de los líquidos ante RFID. Fuente: Elaboración propia 18
Tabla 5: Influencia de contenedores y tags en la comunicación RFID. Fuente:
Elaboración propia
Tabla 6: Comparación de la efectividad de diversas frecuencias en la comunicación
RFID bajo agua. Fuente: "RFID under water: Technical Issues and Applications" [4] 27
Tabla 7: Planificación de las lecturas. Fuente: Elaboración propia
Tabla 8:Planificación de las lecturas con separación de papel. Fuente: Elaboración
propia
Tabla 9: Planificación de las lecturas con separadores. Fuente: Elaboración propia 33
Tabla 10: Características básicas antena. Fuente:IA39B Data Sheet
Tabla 11: Características básicas Lector. Fuente: IF5 Data Sheet
Tabla 12: Características básicas Tag TH24. Fuente: TH24 Data Sheet
Tabla 13: Características básicas Tag TE14. Fuente: TE14 Data Sheet
Tabla 14: Propiedades dieléctricas de fluidos ensayados. Fuente: "LiquID: A Wireless
Liquid Identifier" [8]
Tabla 15: Principales frecuencias de trabajo. Fuente: Elaboración propia
Tabla 16: Influencia de diversos parámetros electromagnéticos. Fuente: Elaboración
propia
Tabla 17: Distancias de lectura para envases sin relleno. Fuente: Elaboración propia. 73
Tabla 18: Distancias de lectura para envases rellenos de agua. Fuente: Elaboración
propia
Tabla 19: Distancias de lectura para envases rellenos de leche. Fuente: Elaboración
propia77
Tabla 20: Distancias de lectura para envases rellenos de aceite. Fuente: Elaboración
propia

Tabla 21: Lecturas para distintas separaciones con papel. Fuente: Elaboración propia	
	81
Tabla 22: Lecturas para diversos separadores. Fuente: Elaboración propia	83

ANEXOS

ANEXO 1. ASPECTOS FÍSICOS COMUNICACIÓN RFID

ANEXO 1.1. Rango y Frecuencia de trabajo

Toda radiación electromagnética consiste en la propagación de la energía en forma de onda, la cual puede ser alterada en frecuencia y en amplitud.

Las frecuencias están agrupadas en bandas de frecuencias que contienen características similares. Además, a medida que se incrementa o disminuye la frecuencia, la relación respecto a la longitud de onda y la energía varía [22].

Las bandas de frecuencia características son:

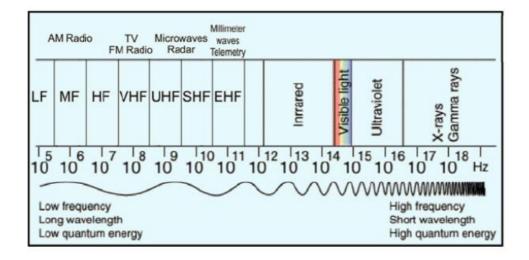


Figura 67: Bandas de frecuencia. Fuente: RFIDmagazine.

La frecuencia de operación determina aspectos de la etiqueta como la capacidad de transmisión de datos, la velocidad y tiempo de lectura, el radio de cobertura o el coste de la etiqueta.

A continuación, se muestran los valores de frecuencia y longitudes de onda de las primeras bandas frecuenciales de la tabla, donde se encuentran las utilizadas por la tecnología RFID. En dicha tabla se especifican estas bandas de frecuencia, la frecuencia que engloban, el tamaño de longitud de onda y sus características básicas [10]:

Banda	LF (Low Frequency)	HF (High Frequency)	UHF (Ultra High Frequency)	Microondas
Frecuencia	30 - 300 KHz	3 - 30 MHz	300 - 1000 MHz	2.4 - 6 GHz
Longitud onda	10 - 1 Km	100 - 10 m	1 - 0.1 m	0.1 - 0.01 m
Características	Campo magnético bien definido Buen funcionamiento en presencia de metal Buena capacidad para atravesar materiales Comportamiento no afectado por los líquidos Baja velocidad de lectura/escritura Económicos	Campo magnético bien definido Buen comportamiento con la mayoría de materiales. Metales causan atenuación Lectura simultánea de tags (anticolisión) Velocidad de lectura/escritura media Moderadamente caro	Campo magnético bien definido Buen comportamiento con la mayoría de materiales. Metales causan atenuación Lectura simultánea de tags (anticolisión) Velocidad de lectura/escritura media Moderadamente caro	Características similares a UHF Mayor velocidad de lectura/escritura Caros

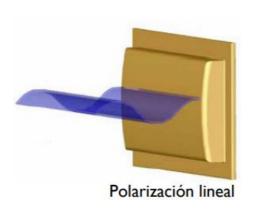
Tabla 15: Principales frecuencias de trabajo. Fuente: Elaboración propia.

ANEXO 1.2. Tipo de comunicación

Existen dos tipos de mecanismo de comunicación electromagnética [22], que dependerá directamente de la distancia de la comunicación y de la frecuencia utilizada:

- Far Field (Campo lejano): está basado en los campos electromagnéticos. Se utiliza para comunicación de largas distancias o para frecuencias altas. Esta comunicación es la utilizada para entornos líquidos o metálicos. Es el mecanismo utilizado para etiquetas HF.
- Near Field (Campo próximo): basado en campos magnéticos, para cortas distancias y bajas frecuencias de comunicación. Es el mecanismo utilizado para la HF.

La antena de las etiquetas es crítica en las comunicaciones, ya que su forma y tamaño varían según si se utiliza campo lejano o campo próximo. En el caso de trabajar con comunicación de campo lejano, el tamaño de la antena ha de ser la mitad de la longitud de la onda.


ANEXO 1.3. Protocolo de comunicación

Según el protocolo de comunicación [3], los sistemas RFID se pueden clasificar en:

- **Dúplex**: el tag transmite su información en cuanto recibe la señal del lector y mientras esta dura. A su vez se clasifican en:
 - o Half Dúplex: Cuando tag y lector transmiten en turnos alternativos.
 - Full Dúplex: Cuando la comunicación es simultánea. La transmisión del tag se realiza a frecuencia distinta que la del lector.
- **Secuencial:** El campo del lector se apaga a intervalos regulares, momento que aprovecha el tag para enviar su información. Se suele emplear con etiquetas activas, ya que el tag no puede aprovechar toda la potencia que le envía al lector y requiere de una batería.

ANEXO 1.4. Polarización

La polarización de las antenas también es un factor importante para entender el funcionamiento de la tecnología RFID. Esta consiste en la figura geométrica que traza el extremo del vector campo eléctrico a una cierta distancia de la antena al variar el tiempo [3] [22].

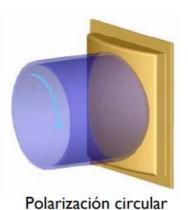


Figura 68: Tipos de polarización. Fuente: RFIDmagazine.

Polarización Lineal

Energía radiada en forma de forma fija en dirección lineal: horizontal; vertical; 45°.

Se obtienen mayores rangos.

Tendencia a generar un haz de señal delgada o muy estrecha.

Requiere mayor precisión en el alineamiento entre las antenas.

Mejor comportamiento en entornos controlados

Polarización Circular

Energía rota de manera circular, siendo dextrógiras (derechas) o levógiras (izquierdas).

Tendencia a generar haz de señal muy ancha.

Alineamiento de antenas menos crítico.

Independencia de la orientación

Rango de alcance bastante reducido.

Mejor comportamiento en presencia de múltiples caminos de señal o muy dispersas.

Figura 69: características según el tipo de polarización. Fuente: Elaboración propia.

ANEXO 2. CARACTERIZACIÓN DE FLUIDOS

Cuando hablamos de comunicación vía radio frecuencia, se tiene que pensar en mecanismos de comunicación electromagnéticos o magnéticos, dependiendo de la distancia de comunicación y frecuencia utilizada.

Para el caso concreto del presente proyecto, tratamos con una comunicación Far-Field (Campo lejano), basada en campos electromagnéticos. Este mecanismo se aplica a largas distancias o altas frecuencia, como es el caso de la UHF.

Como consecuencia, esta comunicación es sensible al entorno, como los elementos líquidos o metálicos, puesto que influirán en el comportamiento de estos campos electromagnéticos a través de diversos parámetros magnéticos y eléctricos. Estos parámetros dependen del material o fluido en cuestión y de sus propiedades.

En esta línea, la caracterización dieléctrica de materiales en radiofrecuencia ha sido desarrollada ampliamente en los últimos tiempos. En concreto, la planificación de los sistemas de comunicación inalámbrica requiere el conocimiento de una amplia variedad de entornos donde se produce la propagación radioeléctrica. Se ha determinado que las propiedades dieléctricas pueden predecir la atenuación, reflexión o incluso absorción que las ondas sufren debido a la presencia de obstáculos sólidos y líquidos. Por tanto, es crucial determinar los valores de la permitividad relativa de los materiales, así como otros parámetros para comprender su comportamiento.

A continuación, se tendrán en cuenta algunos de los parámetros dieléctricos a considerar de los materiales, relacionados con el campo electromagnético para comprobar posteriormente cuales tienen mayor influencia en la tecnología RFID UHF mediante experimentación en laboratorio:

• Constante dieléctrica (Permitividad relativa): También llamada permitividad dieléctrica relativa ($\varepsilon r'$), es una constante que da una medida de la capacidad de polarización de un material en presencia de un campo eléctrico. Genera un valor de la respuesta estática del material cuando está en presencia de un campo eléctrico.

La constante dieléctrica posee la habilidad para relacionar la capacidad de una sustancia y su habilidad para almacenar energía eléctrica.

En general, los materiales dieléctricos son malos conductores de la electricidad, pudiendo considerarse aislantes eléctricos.

• Factor de pérdida (loss factor): El factor de pérdidas del dieléctrico ($\varepsilon r''$), está relacionado con varios mecanismos de absorción de energía disipada y es siempre un número positivo y normalmente mucho más pequeño que la

constante dieléctrica. Si el material es de bajas pérdidas, el factor de pérdidas es aproximadamente cero.

Un mayor factor de pérdida tiene efectos negativos en el patrón de radiación y, por tanto, se reduce la distancia de lectura.

• Conductividad eléctrica: La definición de conductividad nos dice que cuando la encontramos en un medio nos proporciona una medida de la respuesta de sus cargas libres en presencia de un campo eléctrico externo, siendo el factor de proporcionalidad entre el campo libre aplicado y la densidad de volumen de corriente debido al movimiento de estas cargas libres. Es decir, proporciona una medida de la capacidad de un material de conducir corriente eléctrica.

Generalmente se puede distinguir entre materiales conductores, semiconductores y aislantes.

Además de las propiedades dieléctricas, cabe la posibilidad de que existan otros parámetros electromagnéticos que caractericen o determinen el comportamiento de materiales y fluidos en el campo de las radiofrecuencias. Entre ellos, podrían tener cabida:

• **Permeabilidad magnética:** es la capacidad de una sustancia o medio para atraer y hacer pasar a través de sí los campos magnéticos, es decir, es la capacidad de un material a ser magnetizado.

Este parámetro es el que relaciona la inducción magnética, con la intensidad de campo magnético.

- **Factor de atenuación:** El factor de atenuación de un material es definido como el ancho de material necesario para disminuir la intensidad del campo electromagnético a 1/e de su valor original.
- Coeficiente de transmisión: Cuando una onda se encuentra con un límite material, solo una porción de la energía incidente penetra en el nuevo medio, el resto es reflejada. La fracción de energía penetrada es dada por el coeficiente de transmisión [:

$$t_E = \frac{2Z_2}{Z_2 + Z_1}$$

Donde Z1 es la impedancia intrínseca del material cuyas ondas proceden y Z2 es la impedancia intrínseca del material en el que las ondas van a penetrar.

Algunos de los parámetros que pueden determinar la operatividad de la tecnología RFID en banda UHF de distintos materiales y fluidos, queda recogidos en la tabla 16:

Parámetro	Influencia
Constante dieléctrica	A menor constante dieléctrica, se almacena menos energía eléctrica y por tanto se dispone de mayor campo eléctrico para la transmisión de ondas radio.
Factor de pérdida	A menor factor de pérdida, menor absorción de energía disipada y por tanto, mejor comportamiento en radiofrecuencia.
Conductividad	Cuanto mayor sea la conductividad, mayor será la capacidad para conducir campo eléctrico y mejorar la transmisión de ondas radio.
Permeabilidad magnética	Una mejor permeabilidad magnética favorecerá la radiación de campos electromagnéticos y por tanto, mejorará la transmisión de ondas.
Factor de atenuación	Cuanto mayor sea el factor de atenuación, mayor será el grosor necesario del material para reducir la intensidad del campo electromagnético.
Coeficiente de transmisión	Puesto que es la fracción de energía penetrada de una onda al pasar de un medio a otro, a mayor coeficiente, mayor energía incidente penetra en el nuevo medio.

Tabla 16: Influencia de diversos parámetros electromagnéticos. Fuente: Elaboración propia.

ANEXO 3. TOMA DE DATOS

Una vez realizadas todas las lecturas y mediciones posibles para los distintos contenidos y continentes con el equipo disponible, se introducen los resultados y mediciones en Microsoft Excel con el fin de analizarlos y poder extraer conclusiones.

A continuación, se muestran los datos y gráficas separados por continentes y contenidos. Posteriormente se introduce la utilización de separadores en la toma de lectura.

CONTINENTES

Plástico

Como ya se ha comentado con anterioridad, se han utilizado para la toma de lecturas 2 tags distintos en 2 posiciones, por lo que las gráficas muestran para estas 4 posibilidades las distintas distancias de lectura que se obtienen para los fluidos ensayados, en este caso, vacío, agua, leche y aceite:



Figura 70: Distancias de lectura de distintos fluidos con contenedor plástico. Fuente: Elaboración propia.

Figura 71: Gráfico de barras de distintos fluidos con contenedor plástico. Fuente: Elaboración propia

Se evidencia la absorción producida por los líquidos con contenedor plástico debido a la diferencia en las distancias de lectura con respecto al envaso vacío. En general se obtienen las mayores distancias de lectura con el aceite y los peores con la leche. Adicionalmente, el tag 5 (TE14) muestra un peor comportamiento en las lecturas que el tag 3 (TH24). En cuanto a la posición de colocación, se discierne que la posición horizontal proporciona un comportamiento ligeramente mejor, concretamente para el tag 3.

Vidrio

Se realiza la misma toma de medidas y en igualdad de condiciones para el vidrio, ensayando los fluidos ya mencionados en este tipo de recipiente:

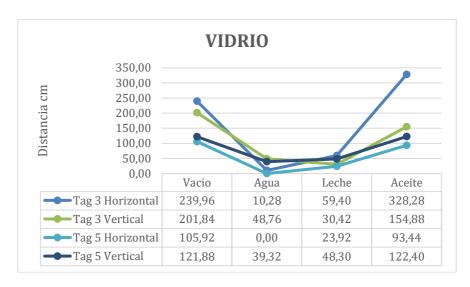


Figura 72: Distancias de lectura de distintos fluidos con contenedor de vidrio. Fuente: Elaboración propia.

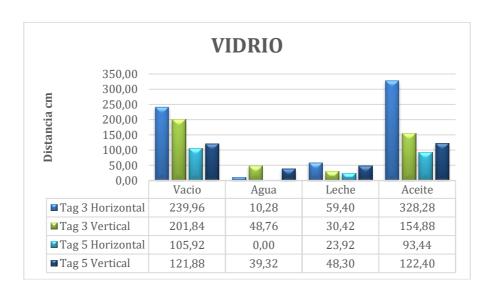


Figura 73: Gráfico de barras de distintos fluidos con contenedor de vidrio. Fuente: Elaboración propia.

En comparación con el plástico, el vidrio de forma aislada (vacío) aporta mejores distancias de lectura y menores efectos negativos en la comunicación RFID. En cuanto a fluidos, la leche se comporta de forma parecida para ambos envases, pero el agua y el aceite tienen un comportamiento diferente. En concreto, el aceite se comporta mejor, presenta menor absorción de ondas y aumenta las distancias de lectura mientras que el agua se comporta peor y reduce sus distancias de lectura.

Al igual que para el plástico, con el tag 3 en horizontal (TH24) se obtienen mejores distancias de lectura que con el tag 5 (TE14).

Tetra pack

El último recipiente ensayado fue un tetra pack, el cual está compuesto por diversos materiales, como cartón, polietileno o papel de aluminio. De forma análoga a los otros dos recipientes, se toman medidas para los distintos fluidos contenidos en dicho recipiente:

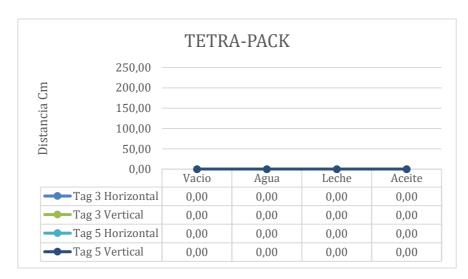


Figura 74: Distancias de lectura de distintos fluidos con contenedor tetra pack. Fuente: Elaboración propia.

		TET	'RA-PACK		
	250,00 —				
Cm	200,00 —				
cia (150,00 —				
Distancia	100,00 —				
Dis	50,00 —				
	0,00	Vacio	Agua	Leche	Aceite
■ Tag	3 Horizontal	0,00	0,00	0,00	0,00
	3 Vertical	0,00	0,00	0,00	0,00
■ Tag		0,00	0,00	0,00	0,00
	5 Horizontal	0,00	-,		

Figura 75: Gráfico de barras de distintos fluidos con contenedor tetra pack. Fuente: Elaboración propia.

A la vista de los resultados, frente al contenido líquido, la influencia del recipiente tetra pack y los materiales que lo conforman es notablemente superior ya que ha determinado la lectura de todos los casos. Se puede determinar que alguno de los materiales o la conjunción de los mismos (cartón, polietileno, papel de aluminio) vuelve a este recipiente opaco respecto a las ondas de RF, por lo que resulta poco práctica su utilización.

Estos resultados reflejan la influencia del material contenedor como factor que condiciona firmemente el comportamiento en radiofrecuencia y paralelamente inducen a investigar la introducción de separadores como solución para mejorar los resultados de las lecturas.

CONTENIDOS

Vacío

En primer lugar, se deciden tomar medidas de los recipientes ensayados vacíos de contenido para determinar la atenuación de ondas de radiofrecuencia que producen los distintos materiales. De esta forma se podrá comprobar, a priori, que continente es mejor sin tener en cuenta la absorción de ondas producida por los líquidos.

A continuación, se recoge en la tabla X las lecturas tomadas para los envases sin contenido y su representación gráfica:

				Distancia				Inter	valo de c	onfianza
Contenido	Contenedor	Tag	Posición	Media	Desv. Estándar	t	cv	1	+	Diferencia
Vacio	Plástico	Tag 3	Horizontal	224,32	14,28	2,06	0,06	218,43	230,21	11,79
Vacio	Plástico	Tag 3	Vertical	117,96	11,66	2,06	0,10	113,15	122,77	9,63
Vacio	Plástico	Tag 5	Horizontal	68,16	5,54	2,06	0,08	65,87	70,45	4,58
Vacio	Plástico	Tag 5	Vertical	60,84	8,59	2,06	0,14	57,29	64,39	7,09
Vacio	Vidrio	Tag 3	Horizontal	239,96	29,13	2,06	0,12	227,93	251,99	24,05
Vacio	Vidrio	Tag 3	Vertical	201,84	9,03	2,06	0,04	198,11	205,57	7,46
Vacio	Vidrio	Tag 5	Horizontal	105,92	7,22	2,06	0,07	102,94	108,90	5,96
Vacio	Vidrio	Tag 5	Vertical	121,88	8,81	2,06	0,07	118,24	125,52	7,28
Vacio	Tetra-Pack	Tag 3	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tetra-Pack	Tag 3	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tetra-Pack	Tag 5	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tetra-Pack	Tag 5	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00

Tabla 17: Distancias de lectura para envases sin relleno. Fuente: Elaboración propia.

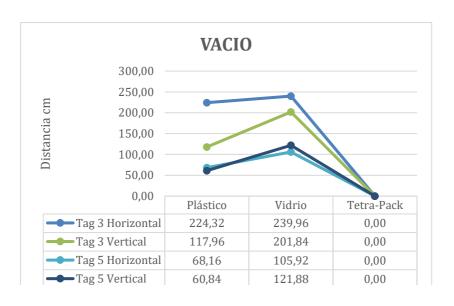


Figura 76: Distancias de lectura de distintos recipientes vacíos. Fuente: Elaboración propia.

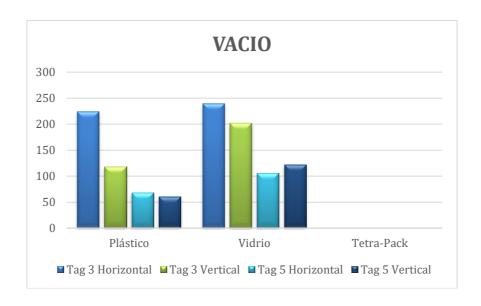


Figura 77: Gráfico de barras de distintos recipientes vacíos. Fuente: Elaboración propia.

Se puede observar que, de forma aislada, el vidrio presenta un mejor comportamiento ante RFID en banda UHF proporcionando las mayores distancias de lectura, por encima del plástico y del tetra pack. Por tanto, el vidrio se postula a priori como el material más transparente a las ondas de radiofrecuencia y consecuentemente, la mejor opción en el envasado de líquidos.

Como ya se ha visto para el recipiente tetra pack, todas las medidas para el mismo son nulas, lo que corrobora su opacidad a las ondas radio.

El tag 3 (TH24) reivindica su mejor comportamiento frente al tag 5 (TE14) y se puede ver como su colocación en horizontal mejora el radio de lectura obtenido.

Agua

A continuación, comienzan a tomarse medidas con los recipientes rellenos de fluido. Se comienza ensayando agua dulce:

				Distancia				Inter	valo de c	onfianza
Contenido	Contenedor	Tag	Posición	Media Desv. Estándar t CV			-	+	Diferencia	
Agua	Plástico	Tag 3	Horizontal	114,04	5,41	2,06	0,05	111,81	116,27	4,47
Agua	Plástico	Tag 3	Vertical	60,76	3,79	2,06	0,06	59,20	62,32	3,13
Agua	Plástico	Tag 5	Horizontal	95,36	3,57	2,06	0,04	93,89	96,83	2,95
Agua	Plástico	Tag 5	Vertical	95,92	4,81	2,06	0,05	93,93	97,91	3,97
Agua	Vidrio	Tag 3	Horizontal	10,28	6,04	2,06	0,59	7,79	12,77	4,99
Agua	Vidrio	Tag 3	Vertical	48,76	4,11	2,06	0,08	47,07	50,45	3,39
Agua	Vidrio	Tag 5	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Agua	Vidrio	Tag 5	Vertical	39,32	2,39	2,06	0,06	38,33	40,31	1,98
Agua	Tetra-Pack	Tag 3	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Agua	Tetra-Pack	Tag 3	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Agua	Tetra-Pack	Tag 5	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Agua	Tetra-Pack	Tag 5	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00

Tabla 18: Distancias de lectura para envases rellenos de agua. Fuente: Elaboración propia.

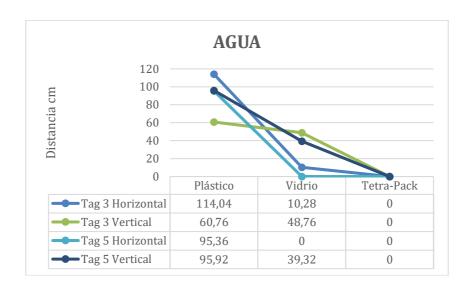


Figura 78: Distancias de lectura de distintos recipientes con agua. Fuente: Elaboración propia.

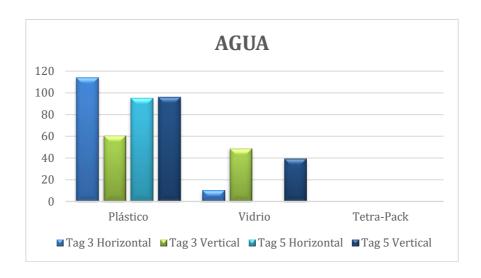


Figura 79: Gráfico de barras de distintos recipientes con agua. Fuente: Elaboración propia.

Contrariamente a lo que se había visto para los recipientes vacíos y en consonancia con la teoría recogida en el estado del arte, la presencia de agua modifica y empeora el comportamiento en RFID de los recipientes llenos de líquido, evidenciando la absorción de ondas radio. Esta diferencia se cuantifica comparando la distancia de lectura entre contenido vacío y lleno, datándose en más de 1 metro de diferencia.

Sorprendentemente, se invierten los resultados entre el plástico y el vidrio, obteniéndose mayores distancias de lectura y mejor comportamiento del agua con el recipiente plástico.

El tag 3 (TH24) en general sigue mostrando un mejor comportamiento, siendo la posición horizontal con la que se obtienen mejores lecturas.

Leche

El siguiente fluido con el que se han tomado medidas es la leche. La metodología de experimentación es la misma que para los casos anteriores:

				Distanci	ia		Intervalo de confianza			
Contenido	Contenedor	Tag	Posición	Media	Desv. Estándar	t	cv	-	+	Diferencia
Leche	Plástico	Tag 3	Horizontal	46,68	9,30	2,06	0,20	42,84	50,52	7,68
Leche	Plástico	Tag 3	Vertical	17,56	3,24	2,06	0,18	16,22	18,90	2,68
Leche	Plástico	Tag 5	Horizontal	46,68	9,30	2,06	0,20	42,84	50,52	7,68
Leche	Plástico	Tag 5	Vertical	47,72	3,59	2,06	0,08	46,24	49,20	2,96
Leche	Vidrio	Tag 3	Horizontal	59,40	6,27	2,06	0,11	56,81	61,99	5,18
Leche	Vidrio	Tag 3	Vertical	30,42	2,64	2,06	0,09	29,33	31,51	2,18
Leche	Vidrio	Tag 5	Horizontal	23,92	1,26	2,06	0,05	23,40	24,44	1,04
Leche	Vidrio	Tag 5	Vertical	48,30	6,67	2,06	0,14	45,55	51,05	5,50
Leche	Tetra-Pack	Tag 3	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Leche	Tetra-Pack	Tag 3	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Leche	Tetra-Pack	Tag 5	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Leche	Tetra-Pack	Tag 5	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00

Tabla 19: Distancias de lectura para envases rellenos de leche. Fuente: Elaboración propia.

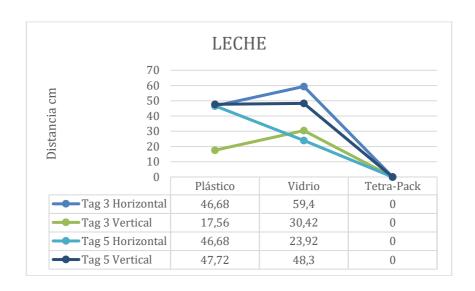


Figura 80: Distancias de lectura de distintos recipientes con leche. Fuente: Elaboración propia.

Figura 81: Gráfico de barras de distintos recipientes con leche. Fuente: Elaboración propia.

La principal diferencia respecto del agua es la distancia de lectura máxima obtenida con la leche. La diferencia se cuantifica en 60 cm, la mitad obtenida con el agua. En general se puede observar que la leche produce mayor absorción de ondas.

A diferencia del agua y en consonancia con los recipientes vacíos, vuelve a ser el vidrio el continente que mejor se comporta frente a la radiofrecuencia en presencia de líquido, en este caso, leche. Estos resultados sugieren la posibilidad de que las lecturas no estén determinadas mayoritariamente por el material contenedor o por el líquido, sino que reflejan que es la combinación de ambos la que determina el comportamiento.

Paralelamente, el tag 3 (TH24) vuelve a mostrar un mejor comportamiento frente al tag 5 (TE14) y también aporta la mayor distancia de lectura para posición horizontal del mismo.

A la vista de los resultados, no se puede concluir, por tanto, que sea el continente o el contenido el factor más influyente en la utilización de la tecnología RFID para banda UHF, sino que depende estrechamente de ambos.

Aceite

El último fluido con el que se han tomado medidas es con el aceite, y la metodología es análoga a la del resto de fluidos:

					Distanc	cia		Inter	valo de c	confianza	
Contenido	Contenedor	Tag	Posición	Media	Desv. Estándar	t	cv	-	+	Diferencia	
Aceite	Plástico	Tag 3	Horizontal	173,16	10,80	2,06	0,06	168,70	177,62	8,92	
Aceite	Plástico	Tag 3	Vertical	202,96	21,36	2,06	0,11	194,14	211,78	17,63	
Aceite	Plástico	Tag 5	Horizontal	65,72	8,51	2,06	0,13	62,21	69,23	7,02	
Aceite	Plástico	Tag 5	Vertical	67,56	6,70	2,06	0,10	64,79	70,33	5,53	
Aceite	Vidrio	Tag 3	Horizontal	328,28	35,67	2,06	0,11	313,55	343,01	29,45	
Aceite	Vidrio	Tag 3	Vertical	154,88	11,14	2,06	0,07	150,28	159,48	9,20	
Aceite	Vidrio	Tag 5	Horizontal	93,44	7,01	2,06	0,08	90,55	96,33	5,79	
Aceite	Vidrio	Tag 5	Vertical	122,40	9,37	2,06	0,08	118,53	126,27	7,73	
Aceite	Tetra-Pack	Tag 3	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00	
Aceite	Tetra-Pack	Tag 3	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00	
Aceite	Tetra-Pack	Tag 5	Horizontal	0,00	0,00	2,06	0,00	0,00	0,00	0,00	
Aceite	Tetra-Pack	Tag 5	Vertical	0,00	0,00	2,06	0,00	0,00	0,00	0,00	

Tabla 20: Distancias de lectura para envases rellenos de aceite. Fuente: Elaboración propia.

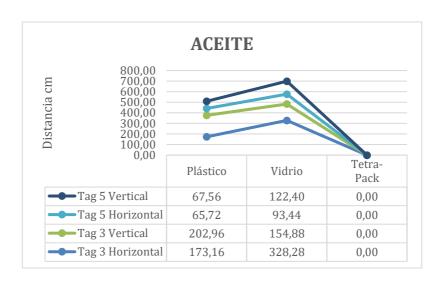


Figura 82: Distancias de lectura de distintos recipientes con aceite: Elaboración propia.

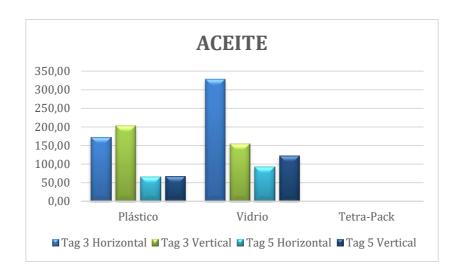


Figura 83: Gráfico de barras de distintos recipientes con aceite. Fuente: Elaboración propia.

En relación al aceite, es el fluido con el que mayores distancias de lectura se obtienen, superiores incluso a los recipientes vacíos, con un máximo de 328 cm.

Esta diferencia de comportamiento entre fluidos se podría relacionar con las propiedades dieléctricas de los mismos, recurriendo, por ejemplo, a la constante dieléctrica y al factor de pérdida, ya que le aceite presenta menores valores para ambas variables. Como ya se ha recogido en el estado del arte, están involucrados en el comportamiento frente a las radiofrecuencias y experimentalmente se está obteniendo esta diferenciación entre aceites y líquidos de base acuosa.

El vidrio es el continente que mejor se comporta en presencia de aceite, reiterando los resultados que se habían obtenido para la leche y el aire. A la vista de la conjunción de resultados obtenidos, es el continente ensayado que menores efectos adversos produce en la comunicación RFID para banda UHF. Sin embargo, los resultados respecto al vidrio no son categóricos, ya que para el agua, por ejemplo, el comportamiento es peor que para el resto de fluidos Este hecho sugiere una investigación más exhaustiva en la mezcla de contenidos con continentes, que busque relacionar dicha relación.

El tag 3 (TH24) se erige de nuevo como el tag con mayor rendimiento mediante su colocación en horizontal. Se puede concluir también, a falta de un estudio más exhaustivo, que la posición horizontal del tag aporta mejores resultados.

Separadores

Como se ha observado en las medidas tomadas en laboratorio, el recipiente tetra pack parece totalmente opaco a las ondas RF debido a los materiales que lo conforman.

Este hecho amplía el escenario en el que se desarrolla la tecnología RFID UHF mediante la introducción de separadores entre los recipientes y los tags, en la

búsqueda de la disminución de los efectos colaterales producidos por los fluidos y recipientes a los que se adhieren.

En este nuevo marco, se estudia la influencia de distintos separadores y materiales en las lecturas obtenidas con el tetra pack.

Papel (folios)

En primer lugar, se busca determinar Influencia de la utilización de un separador en la lectura de tags RFID para banda UHF con botella tetra pack. Para ello, se comienza el estudio empleando folios de papel como material separador.

					Distanci	а		Inter	valo de	confianza
Contenido	Tag	Posición	Separación	Media	Desv. Estándar	t	cv	•	+	Diferencia
			1 Folio	5,10	8,55	2,06	1,68	1,57	8,63	7,06
			2 Folios	12,60	9,13	2,06	0,72	8,83	16,37	7,54
		horizontal	3 Folios	25,14	2,76	2,06	0,11	24,00	26,28	2,28
Vacio	Tag 3		4 Folios	44,88	2,88	2,06	0,06	43,69	46,07	2,38
			5 Folios	56,64	2,46	2,06	0,04	55,62	57,66	2,03
			6 Folios	30,76	2,02	2,06	0,07	29,93	31,59	1,66

Tabla 21: Lecturas para distintas separaciones con papel. Fuente: Elaboración propia.

Los ensayos se realizan con el tag 3 (TH24), que anteriormente ha mostrado ser el tag más eficiente en las distancias de lectura.

La metodología seguida consiste en ir añadiendo progresivamente folios de papel e ir tomando medidas con cada separación para estudiar su comportamiento e influencia.

A continuación, se recogen los ensayos experimentales en una tabla resumen y su representación gráfica:

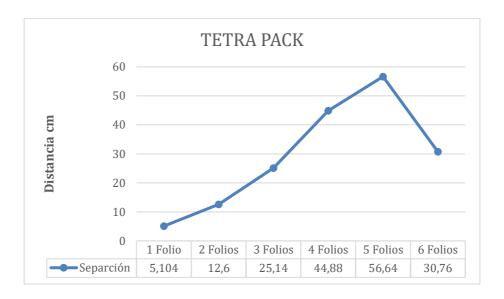


Figura 84: Influencia de separadores de papel en las lecturas. Fuente: Elaboración propia.

Los resultados obtenidos muestran la operatividad de la utilización de separadores para mejorar el comportamiento en RF y aumentar los radios de lectura. Esta mejora se cuantifica en hasta 60 cm de distancia de lectura.

La utilización de capas de papel separadoras neutraliza efectos negativos como la propagación compleja de ondas o la reflexión, permitiendo que el tag disponga de mayor energía y potencia para transmitir ondas de vuelta al middleware.

Por otro lado, también cabe mencionar que una adición infinita de papeles separadores no es una solución factible ya que su rendimiento se ve afectado a partir de un grosor determinado. Este grosor se cuantifica en 0,625 mm (5 folios).

Este resultado sirve de pretexto para concluir que los separadores no deben tener un grosor arbitrario, sino que debe tener un grosor determinado que garantice la máxima efectividad.

Múltiples separadores

Una vez observado que los separadores se postulan como una solución factible para mejorar los radios de lectura y aminorar los efectos negativos producidos por los materiales del recipiente y el fluido de su interior, el siguiente paso consiste en estudiar distintos materiales separadores.

Consecuentemente, se toman lecturas en el laboratorio con distintos materiales para esclarecer cuales son más eficientes en su labor separadora. Entre los materiales ensayados se encuentra papel, cartón, papel de burbujas o bolsas de plástico:

_					Distanc	ia		Inter	valo de	confianza
Contenido	Tag	Posición	Material separador	Media	Desv. Estándar	t	cv	-	+	Diferencia
Vacio	Tag 3		Ninguno	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 3		Bolsa dentro	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 3		Bolsa fuera	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 3		Burbujas	59,32	8,99	2,06	0,15	55,61	63,03	7,43
Vacio	Tag 3		Cartón	8,38	8,54	2,06	1,02	4,85	11,91	7,05
Vacio	Tag 3	llavia a maal	Papel	56,64	2,46	2,06	0,04	55,62	57,65	2,03
Vacio	Tag 5	Horizontal	Ninguno	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 5		Bolsa dentro	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 5		Bolsa fuera	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 5		Burbujas	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 5		Cartón	0,00	0,00	2,06	0,00	0,00	0,00	0,00
Vacio	Tag 5		Papel	0,00	0,00	2,06	0,00	0,00	0,00	0,00

Tabla 22: Lecturas para diversos separadores. Fuente: Elaboración propia.

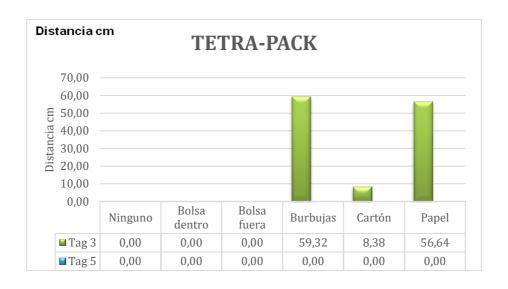


Figura 85: Medidas para distintos separadores. Fuente: Elaboración propia.

Las lecturas obtenidas muestran la operatividad de algunos separadores en la aminoración de efectos negativos como la reflexión o refracción de ondas. Entre estos, el papel de burbujas es el separador que mejor funciona, seguido del papel (anteriormente validado) y el cartón (de grosor 4 mm).

Estos resultados demuestran que existen diversos materiales que pueden ser empleados como separadores y consecuentemente mejorar la comunicación RFID en banda UHF. Sin embargo, sugieren un amplio escenario de investigación, ya que, como se ha visto, existe más de un material efectivo en la separación, el grosor no puede ser arbitrario y no se ha experimentado con el recipiente lleno de fluido.

Puesto que de forma aislada los separadores funcionan, estos reducen los efectos adversos que produce el recipiente contenedor, lo que induce a pensar que, a pesar de la absorción producida por el líquido, seguirá siendo efectiva su utilización para mejorar las distancias de lectura. No obstante, como se ha comentado, habrá que determinar su influencia con presencia de líquido y variando los parámetros del separador.

Por último, como se puede apreciar, no todos los tags son receptivos a la utilización de separadores, ya que el tag 5 (TE14) no muestra mejora en las distancias de lectura. El tag 3 (TH24) se postula como un tag adecuado para aplicaciones líquidas por su efectividad en los diversos escenarios ensayados.

ANEXO 4. ESTADO DEL ARTE RFID EN LÍQUIDOS

Artículo	Fecha	Autores	Contenido	Lector/antena/software	Tag	Frecuencia de trabajo	Conclusiones	Referencia
Los aspectos	2006	RFID	Aspectos físicos	Espectro completo	Espectro	Todas las	De entre los distintos	[22]
físicos detrás		Magazine	en la		completo	frecuencias	efectos que afectan a	
de la			comunicación				comunicación RFID	
tecnología			RFID; efectos de				(Reflexión o refracción,	
RFID			los líquidos en la				efectos dieléctricos,	
			tecnología RFID.				propagación compleja y	
							absorción	
							principalmente), los	
							líquidos se ven	
							especialmente afectados	
							por la absorción de ondas	
							de RF, que reduce la	
							energía del tag y como	
							consecuencia reduce la	
							señal emitida.	
Manejo de	2006	Erika	Pruebas de	Lector Mercury 4; 2	Squiggle	UHF 915	Existirá absorción de las	[19]
inventarios		Rabadán; P.	etiquetas sobre	antenas TM-ANT-NA-	ALL-9440	MHz	ondas UHF en presencia	
mediante		German; M.	diversos	P6-2C; Software	(Gen 2); ALL-		de líquidos que debilitará	
tecnología		Román; E.	materiales y	HERMES	9350 (Gen		la señal propagada. La	
RFID		González	rendimiento de		1); Matrics		absorción variará	
			equipos y		0+ (Gen 1)		dependiendo de la	
			etiquetas.				sustancia y de la potencia	
							a la que se envíe la señal.	
							El paso de señal óptimo	
							para llevar a cabo las	
							lecturas los tenemos a	
							partir de 200 ms	

RFID under water: Technical Issues and Applications	2013	Giuliano Benelli; Alessandro Pozzebon	Viabilidad tecnología RFID bajo agua	No especificados	No especificado	Todas las frecuencias	Las bandas de frecuencia que mejor funcionan bajo el agua son: ELF (Extremely Low Frequency); SLF (Super Low Frequency) y VLF (Very Low Frequency). Cuanto mayor es la frecuencia utilizada, menor probabilidad de comunicación. Mejor comunicación en agua salada (frente al agua dulce).	[4]
Soluciones RFID para el sector de aceite de oliva	2019	TOSHIBA	Tecnología RFID en el sector del aceite de oliva	No especificados	E0S-310 (impinj RFID R6); E0S- 231; E0S- 130	UHF 860- 960 MHz	Mayor rango de lectura cuando el tag está colocado en el cuello de la botella (frente a colocarlo en el frontal de la misma). Mayor rango de lectura cuando la antena enfoca el tag a través del cuello de la botella y no directamente el tag. En ambos casos, lectura superiores a 1,5 metros.	[14]

	2215		/ _=:=		=00.046			[0.6]
Soluciones	2019	TOSHIBA	Tecnología RFID	No especificados	E0S-310	UHF 860-	Al igual que para el aceite,	[26]
RFID para el			en la actividad		(impinj RFID	960 MHz	mayor rango de lectura	
sector			vitivinícola		R6); E0S-		cuando el tag está	
vitivinícola					231; EOS-		colocado en el cuello de la	
					130		botella (frente a colocarlo	
							en el frontal de la misma).	
							Mayor rango de lectura	
							cuando la antena enfoca	
							el tag a través del cuello	
							de la botella y no	
							directamente el tag.	
							En ambos casos, lectura	
							superiores a 1,5 metros.	
RFID for the	_	FALKEN	Uso de la	IP-X TM anti-collision	Tag pasivo	HF 6,8	Solución para la lectura	[25]
wine industry	_	Secure	tecnología RFID	algorithm	de	MHz	RFID en líquidos y cuerpos	[23]
wille illuusti y		Networks	_	aigoritiiii	frecuencia	IVITIZ	humanos mediante	
		Networks	para controlar y					
			monitorizar el		dual IPICO		tecnología de frecuencia	
			vino				doble o Dual, que permite	
							solucionar dicho problema	
							mediante una operativa	
							con frecuencias que no	
							son opacadas por	
							humanos, líquidos y otros	
							fluidos.	
							Se coloca un tag pasivo de	
							frecuencia dual en la base	
							de la botella	
L					I		I	

RFID Tag readability around White wine bottles	2011	Isabel Expósito; Íñigo Cuiñas (U.Vigo)	Estudio del comportamiento de distintos tags en botellas de vino blanco	Reader ALR 9900; Antena ALR-8611-C	Tags UPM (DogBone; ShortDipole; Hammer y web) y tags alien (Squiggle; 2x2; Short; G)	UHF 866 MHz	La presencia de vino en la botella atenúa la señal hasta un 23 %. El vino también modifica el patrón de radiación, lo que influencia negativamente la emisión de ondas RF por parte del tag. Se produce una reducción del área de lectura con la presencia de líquido. El tag Alien G muestra el mejor comportamiento con una fuerza de señal recibida del 38 % y un área de lectura de 330º. Tag apropiado para botellas de vidrio con líquido.	[9]
RFID based blood bag monitor research	2015	Yucheng Zhou	Evaluación del comportamiento de la tecnología RFID en bolsas de sangre líquida	R220 UHF RFID Reader; Software Imping multireader UI	UPM Raflatac Dogbone; UPM ShortDipole	UHF 865 MHz	La tecnología RFID UHF es factible en la detección y monitorización de bolsas de sangre con ratios de detección del 85 %. La configuración más efectiva consiste en situar la antena lectora en el interior de los bancos refrigeradores. A mayor número de tags	[27]

							en el recipiente, menor rango de lectura. La colocación en la parte superior y frontal del recipiente aportan los mayores ratios de lectura. Las bolsas apiladas dan mejor resultado que colocadas en paralelo	
Performance characteristics of UHF RFID tags used in identification on liquids	2011	Kamil Janeczek; Grazyna Koziol	Estudio del comportamiento de las ondas electromagnéticas durante la comunicación entre el lector RFID y los tags.	No especificados	UPM Hammer; UPM DogBone; UPM ShortDipole;	UHF 868 MHz	El mayor rango de lectura se obtiene para etiquetas RFID alargadas. Hay una diferencia significativa en la atenuación de ondas entre alcoholes y cetonas. El diámetro de la botella afecta a las ondas electromagnéticas (mayor atenuación a mayor diámetro). A mayor número de átomos de carbono, mayores ratios de lectura. El tipo de líquido es determinante en los rangos de lectura.	[15]

Reliability of	2014	Clement	Método para	No especificados	Tag	UHF 434-	La energía irradiada por el	[7]
active RFID		Cremoux;	evaluar la		modelado	908 MHz	tag se ve influenciada por	
tag inmersed		Alexandre	operatividad de		con un		la profundidad de	
in water for		Boyer; Karim	tags activos RFID		dipolo		inmersión en el agua. La	
anti-		Ben Dhia	inmersos en agua.		magnético		emisión de ondas RF del	
kidnapping					equivalente		tag también se ve	
applications					con un		influenciada por la	
					momento		sensibilidad del	
					magnético		middleware y el ruido	
					de 7.54e-6		ambiente.	
					A.m2		Un método estocástico es	
							la mejor opción para	
							estudiar la influencia de la	
							inmersión de un tag.	
							Es improbable que las	
							ondas RF sean totalmente	
							atenuadas a 434 y 908	
							MHz para tags inmersos.	
							Mejor frecuencia de	
							utilización LF.	
							Utilidad de la tecnología	
							basada en la triangulación	
							RSSI para la	
							emisión/lectura de los	
							campos	
							electromagnéticos en	
							agua	

Development	2011	Toni	Diseño de un	Software Ansoft's high	Tag	UHF 860-	El tag desarrollado no	[5]
of a Low		Björninen;	sistema RFID UHF	frequency strucutre	diseñado	960 MHz	contiene ninguna capa de	
Profile UHF		Leena	de perfil bajo con	simulator; Antena de 3	con Higgs 3		material entre el	
RFID Tag		Ukkonen;	patrón	cables con ancho de	EPC gen 2		conductor del tag y el	
antenna for		Lauri	omnidirecional	traza de 3 m.	UHF RFID IC		recipiente, pudiendo	
identification		Sydänheimo			Alien		fabricarse directamente	
of water							en el recipiente (ahorro	
bottles							costes).	
							El tag colocado en una	
							botella llena de agua tiene	
							un patrón de radiación	
							omnidireccional, con un	
							rango máximo de lectura	
							de hasta 2 m.	
							Eficiencia de la señal y	
							rango de lectura	
							severamente imitados por	
							la presencia de agua.	
							Investigar la eficiencia de	
							lectura incluyendo una	
							capa de material de alta	
							permitividad en el tag	

UHF RFID tag	2014	Ricardo	Diseño de tag	No especificados	Tag basado	UHF 866	La solución propuesta	[11]
antenna for		GonÇalves;	pasivo en sustrato		en un dipolo	MHz	para superar el problema	
bottle		Nuno B.	de papel para ser		con un anillo		de la tecnología RFID con	
labeling		Carvalho;	integrado en las		de unión		los líquidos es colocar un	
		Roberto	etiquetas de las		inductivo.		plano reflactor bajo la	
		Magueta;	botellas de				botella. Se reduce la	
		Alcidia	bebidas:				energía absorbida por el	
		Duarte y	Determinación de				líquido y se aumenta el	
		Pedro Pinho	las posibles				radio de lectura.	
			fuentes que				Máximo radio de lectura	
			influencian la				de 1.45 m incluso aunque	
			actuación de la				la eficiencia obtenida con	
			antena				la etiqueta en la botella	
							sea del 3 %	
A UHF RFID	2016	Abed Pour;	Efecto de la	CST Software; ID PL3000	Tag ALN-	UHF 860-	La presencia de líquido	[2]
Tag with		Yi Huang;	presencia de	UHF RFID Reader	9768	960 MHz	incrementa la pérdida de	
Improved		Muaad	líquido en la		modificado;		resistencia del circuito	
Performance		Hussein;	tecnología RFID		Tag Wonder		equivalente de tag.	
on Liquid		Muayad Kod	UHF		Dog		Desajuste de impedancia	
Bottles		y Paul Carter					con un ancho de banda	
							más estrecho y pérdida de	
							energía de retorno.	
							Solución añadiendo un	
							circuito resonante RLC con	
							una resistencia más	
							pequeña (35 ohmios) en	
							paralelo con el cuerpo de	
							la antena. Esta resistencia	
							corrige la pérdida de	
							resistencia cuando la	
							frecuencia de resonancia	

Food and Liquid sensing in practical	2020	Unsoo Ha; Junshan Leng; Alaa	Evaluación de un sistema RFID (RF- EATS) inalámbrico	USRP X310 y N210 radios; Software RF-EATS	Tags UHF RFID pasivos,	UHF 20- 500 MHz	es próxima a la frecuencia de trabajo del tag. Se incrementa el rango de lectura. Resultados válidos para líquidos de base acuosa, aceites y vinos. La operativa depende entre otros factores de las diferencias dieléctricas	[12]
environments using RFIDs		Khaddaj y Fadel Adib	que permite identificar comida y bebida	implementado en Matlab y python	incluyendo Alien ALN- 9640.		entre los contenidos líquidos. La constante dieléctrica cambia con la frecuencia. Las medidas RFID se ven influenciadas por la forma y el material del recipiente e incluso por el impacto de los cambios de temperatura en el dieléctrico	

Mobile RFID	2007	Goetz	Conceptos,	Todo el espectro	Todo el	Todo el	La falta de estandarización	[6]
Management		Botterweek;	desafíos y	·	espectro	espectro	del hardware y software	
– An		J. Felix	alternativas en la			-	continúa siendo uno de	
application		Hampe y	aplicación de la				los principales desafíos en	
secenario on		Sven	tecnología RFID				el desarrollo de	
the handling		Westenberg	en un contexto				aplicaciones RFID.	
of industrial			industrial				El éxito de los proyectos	
liquid							RFID depende	
containers							estrechamente de un	
							modelo y una data-base	
							bien definidos.	
							Se toman medidas que	
							favorecen la lectura de	
							líquidos:	
							Asignar un identificador	
							único al recipiente.	
							Deseable identificar	
							automáticamente los	
							contenedores al recibirlos	
							en la zona de recepción.	
							Aumenta la identificación	
							sin formato con datos	
							adicionales. Almacenar	
							toda la información	
							esencial y adicional en el	
							tag.	
							Establecer criterios de	
							calidad y evaluar la	
							idoneidad del entorno	
							industrial.	
							Seleccionar tecnología	

							RFID específica que	
							favorezca la lectura.	
A versatile	2018	Ye-Feng Yu	Se propone un tag	No especificados	Tag basado	UHF 860-	Influencia de diversos	[17]
flexible UHF			RFID UHF versátil		en una	960 MHz	factores en la lectura de	
RFID tag por			y flexible para		estructura		líquidos:	
glass bottle			monitorizar		en bucle,		La colocación en el cuello	
labelling in			botellas con		compacto y		de la botella favorece el	
self-service			diversos líquidos		flexible		patrón omnidireccional de	
stores					compuesto		las ondas RF, existe menos	
					por un		influencia del líquido y se	
					Impinj		favorece la identificación.	
					Monza 4		Un mayor nivel de líquido	
					chip		conduce a una frecuencia	
							de trabajo ligeramente	
							inferior, menor ratio de	
							lectura.	
							El sake, vino, vinagre y	
							zumo tienen mismo	
							comportamiento ante	
							RFID. La salsa de soja tiene	
							menor constante	
							dieléctrica y un mayor	
							factor de pérdida y el	
							aceite presenta una	
							menor constante	
							dieléctrica, un menor	
							factor de pérdida y una	
							menor absorción de	
							radiación.	
							Un mayor factor de	
	1						pérdida tiene efectos	

							negativos en el patrón de	
							radiación y por tanto, se	
							reduce el ratio de lectura.	
							Formas de botella cónicas	
							y prisma hexagonal	
							suponen distintas	
							frecuencias de trabajo	
							para el tag.	
							La radiación aumenta con	
							la disminución del grosor,	
							ayudando a reducir los	
							efectos negativos en la	
							propagación de ondas.	
RFID tag	2007	Minho Jo;	Método para	Reader 910-914 MHz,	Tag ISO	UHF 910-	Los factores más	[16]
detection on		Chang	determinar las	convertidor AC/DC, 50	18000-6	914 MHz	influyentes en el uso de	
a water		Gyoon Lim y	condiciones de los	canales y 500 Khz de	type C Gen 2		RFID en la detección de	
content using		Emory	factores más	espaciado entre canales;	Class 1		líquidos son: el ángulo de	
a back		W.Zimmers	influyentes en la	Antena multi estática,			la antena, la velocidad del	
propagation			detectabilidad en	polarización circular y			tag y la posición del tag.	
learning			la tecnología	polarización inversa TNC			La señal del tag no es	
machine			RFID.				sensible a bajas	
							velocidades y por tanto,	
							no influyen en la	
							operatividad.	
							El tag en horizontal	
							proporciona mejores	
							ratios de lectura que el tag	
							en posición vertical.	

LiquID: A	2018	Ashutosh	Viabilidad de la	2 antenas UWB;	Sin Tags	Señales	Los contenedores no	[8]
Wireless		Dhekne;	identificación de	software VNA (vector	· ·	UWB A 4	pueden tener formas	
liquid		Mahanth	líquidos	network analyzer)		GHz	arbitrarias ya que la	
identifier		Gowda;	analizando las	, .			influencia de la constante	
		Yixuan Zhao;	señales UWB que				dieléctrica y del ángulo de	
		Haitham	los atraviesan				incidencia de las ondas es	
		Hassanieh;					notable y de gran	
		Romit Roy					complejidad.	
		Choudhury					Contenedores pequeños	
		,					pueden hacer que la señal	
							difractada ahogue la señal	
							del líquido.	
							Los aceites tienen un	
							menor índice de	
							refracción y una menor	
							permitividad, pero una	
							gran distancia de	
							atenuación y por tanto no	
							disminuye ni atenúa	
							mucho la señal.	
							Los alcoholes tienen un	
							índice de refracción, una	
							permitividad y una	
							distancia de atenuación	
							media.	
							Los líquidos de base	
							acuosa tienen un gran	
							índice de refracción y	
							permitividad y una	
							pequeña distancia de	
							atenuación. Cerca de ser	

							opacos a las radio	
							frecuencias.	
							Estimando la permitividad	
							de material se puede	
							identificar.	
Passive	2019	Viktorija	Diseño de un	Lector Voyantic	Tag	800-100	Con el diseño propuesto	[18]
Wireless UHF		Makarovaite;	sistema RFID UHF	TagformancePro;	diseñado	MHz	es posible determinar las	
RFID Antenna		Aaron.	para la detección	Software CST	con circuito		propiedades dieléctricas	
Label for		Hillier;	de líquidos		integrado		de diversos fluidos y	
Sensing		Simon	desconocidos y la		Higgs 3		líquidos, permitiendo su	
Dielectric		J.Holder;	determinación de		class-1		identificación en un rango	
Properties of		Campbell	sus propiedades		Generation-		mínimo de 2 metros de	
Aqueous and		W.Gourlay;	dieléctricas		2(V 1.2.0)		distancia. La principal	
Organic		John					aplicación del tag y	
Liquids		C.Batchel					sistema diseñado es la	
							diferenciación y	
							determinación de fluidos	
							químicos y peligrosos sin	
							la necesidad de abrir los	
							recipientes y determinar	
							manualmente el líquido	
							en cuestión.	