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1. Introduction

Nilmanifolds constitute a well-known class of compact manifolds providing interesting explicit
examples of geometric structures with special properties. A nilmanifold is a compact quotient N = Γ\G
of a connected and simply connected nilpotent Lie group G by a lattice Γ of maximal rank in G. Hence,
any left-invariant geometric structure on G descends to N. We will refer to such structures as invariant.
For instance, there are nilmanifolds admitting invariant complex structures, as the Iwasawa manifold,
or invariant symplectic forms, as the Kodaira–Thurston manifold, with remarkable properties [1,2].
However, by [3], a nilmanifold cannot admit any Kähler metric (invariant or not), unless it is a torus.
Since there are also nilmanifolds with no invariant complex structures or symplectic forms, it is an
interesting problem to understand which nilmanifolds do admit such kinds of structures.

Symplectic and complex geometries constitute two special cases in the unified framework given
by generalized complex geometry, introduced by Hitchin in [4] and further developed by Gualtieri [5].
In [6], Cavalcanti and Gualtieri study invariant generalized complex structures on nilmanifolds.
Furthermore, Angella, Calamai and Kasuya show in [7] that nilmanifolds provide a nice class for
investigating cohomological aspects of generalized complex structures.

In ([6], Theorem 3.1) the authors prove that any invariant generalized complex structure on
a 2n-dimensional nilmanifold must be generalized Calabi–Yau, extending a result of Salamon [8]
for invariant complex structures. This means that any generalized complex structure is given by a
(left-invariant) trivialization ρ of the canonical bundle, i.e.,

ρ = eB+i ω Ω, (1)

where B, ω are real invariant 2-forms and Ω is a globally decomposable complex k-form, i.e.,
Ω = θ1 ∧ · · · ∧ θk, where each θi is an invariant 1-form. Moreover, these data satisfy the
non-degeneracy condition

ωn−k ∧Ω ∧Ω 6= 0, (2)
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as well as the integrability condition
dρ = 0. (3)

The integer 0 ≤ k ≤ n is called the type of the generalized complex structure. Type k = n
corresponds to usual complex structures, whereas structures of type k = 0 are symplectic. It is proved
in [6] that every 6-dimensional nilmanifold admits a generalized complex structure of type k, for at
least one 0 ≤ k ≤ 3; however, it is shown that there are nilmanifolds in eight dimensions not admitting
any invariant generalized complex structure.

Let g be the nilpotent Lie algebra underlying the nilmanifold N = Γ\G, and let (
∧
g∗, d) be the

Chevalley–Eilenberg complex seen as a commutative differential graded algebra (CDGA). Hasegawa
proved in [3] that this CDGA provides not only the R-minimal model of N but also its Q-minimal
model. A result by Bazzoni and Muñoz asserts that, in six dimensions, there are infinitely many rational
homotopy types of nilmanifolds, but only 34 different real homotopy types (see [9], Theorem 2). Hence,
there only exits a finite number of real homotopy types of 6-dimensional nilmanifolds admitting any
kind of geometric structure. The existence of infinitely many real homotopy types of 8-dimensional
nilmanifolds with a complex structure (having special Hermitian metrics) is proved in [10]. However,
these nilmanifolds do not admit any symplectic form. For this reason, we address the problem of
finding a family of nilmanifolds with infinitely many real homotopy types that admit not only complex
and symplectic structures, but also generalized complex structures of every possible type. In particular,
we prove the following:

Theorem 1. There are infinitely many real homotopy types of 8-dimensional nilmanifolds admitting generalized
complex structures of every type k, for 0 ≤ k ≤ 4.

Although in dimension 6 there are nilmanifolds admitting generalized complex structures of
every possible type, their real homotopy types are finite. As our result shows, this does no longer hold
in higher dimensions.

This paper is structured as follows. In Section 2, we review some general results about minimal
models and homotopy theory, and we define a family of nilmanifolds Nα in eight dimensions
depending on a rational parameter α > 0. Section 3 is devoted to the construction of generalized
complex structures on the nilmanifolds Nα. More concretely, we prove the following:

Proposition 1. For each α ∈ Q+, the 8-dimensional nilmanifold Nα has generalized complex structures of
type k, for every 0 ≤ k ≤ 4.

In Section 4, we study the real homotopy types of the nilmanifolds in the family {Nα}α∈Q+ .
More precisely, the result below is attained:

Proposition 2. If α 6= α′, then the nilmanifolds Nα and Nα′ have non-isomorphic R-minimal models, so they
have different real homotopy types.

Note that Theorem 1 is a direct consequence of Propositions 1 and 2. Moreover, by taking products
with even dimensional tori, the result holds in any dimension 2n ≥ 8 and for every 0 ≤ k ≤ n.
Furthermore, our result in Theorem 1 can be extended to the complex homotopy setting (see Remark 2
for details). Since the nilmanifolds Nα cannot admit any Kähler metric [3], one has the following:

Corollary 1. Let n ≥ 4. There are infinitely many complex homotopy types of 2n-dimensional compact
non-Kähler manifolds admitting generalized complex structures of every type k, for 0 ≤ k ≤ n.
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2. The family of Nilmanifolds Nα

Let us start recalling some general results about homotopy theory and minimal models,
with special attention to the class of nilmanifolds. In [11], Sullivan shows that it is possible to associate
a minimal model to any nilpotent CW-complex X, i.e., a space X whose fundamental group π1(X) is a
nilpotent group that acts in a nilpotent way on the higher homotopy group πk(X) of X for every k > 1.
Recall that a minimal model is a commutative differential graded algebra, CDGA for short, (

∧
VX , d)

defined over the rational numbers Q and satisfying a certain minimality condition, that encodes the
rational homotopy type of X [12].

More generally, let K be the field Q or R. A CDGA (
∧

V, d) defined over K is said to be minimal
if the following conditions hold:

(i)
∧

V is the free commutative algebra generated by the graded vector space V = ⊕V l ;
(ii) there exists a basis {xj}j∈J , for some well-ordered index set J, such that deg(xk) ≤ deg(xj)

for k < j, and each dxj is expressed in terms of the preceding xk (k < j).

A K-minimal model of a differentiable manifold M is a minimal CDGA (
∧

V, d) over K together
with a quasi-isomorphism φ from (

∧
V, d) to the K-de Rham complex of M, i.e., a morphism φ inducing

an isomorphism in cohomology. Here, the K-de Rham complex of M is the usual de Rham complex of
differential forms (Ω∗(M), d) when K = R, whereas for K = Q one considers Q-polynomial forms
instead. Notice that the K-minimal model is unique up to isomorphism, since char (K) = 0. By [11,13],
two nilpotent manifolds M1 and M2 have the same K-homotopy type if and only if their K-minimal
models are isomorphic. It is clear that if M1 and M2 have different real homotopy types, then M1 and
M2 also have different rational homotopy types.

Let N be a nilmanifold, i.e., N = Γ\G is a compact quotient of a connected and simply connected
nilpotent Lie group G by a lattice Γ of maximal rank. For any nilmanifold N, one has π1(N) = Γ,
which is nilpotent, and πk(N) = 0 for every k ≥ 2. Therefore, nilmanifolds are nilpotent spaces.

Let n be the dimension of the nilmanifold N = Γ\G, and let g be the Lie algebra of G. It is well
known that the minimal model of N is given by the Chevalley–Eilenberg complex (

∧
g∗, d) of g. Recall

that by [14], the existence of a lattice Γ of maximal rank in G is equivalent to the nilpotent Lie algebra g

being rational, i.e., there exists a basis {e1, . . . , en} for the dual g∗ such that the structure constants are
rational numbers. Thus, the rational and the nilpotency conditions of the Lie algebra g allow to take a
basis {e1, . . . , en} for g∗ satisfying

de1 = de2 = 0, dej = ∑
i,k<j

aj
ik ei ∧ ek for j = 3, . . . , n, (4)

with structure constants aj
ik ∈ Q.

Therefore, (
∧
g∗, d) is a CDGA satisfying both conditions (i) and (ii) with ordered index set

J = {1, . . . , n} and V = V1 = 〈x1, . . . , xn〉 = ∑n
j=1 Qxj, where xj = ej for 1 ≤ j ≤ n. That is to say,

the CDGA (
∧
g∗, d) over Q is minimal, and it is determined by(∧

〈x1, . . . , xn〉, d
)

(5)

with n generators x1, . . . , xn of degree 1 satisfying equations of the form (4). Notice that the CDGA
(
∧
g∗, d) over R is also minimal, since it is given by(∧

〈x1, . . . , xn〉 ⊗R, d
)
. (6)

There is a canonical morphism φ from the Chevalley–Eilenberg complex (
∧
g∗, d) to the de Rham

complex (Ω∗(Γ\G), d) of the nilmanifold. Nomizu proves in [15] that φ induces an isomorphism in
cohomology, so the R-minimal model of the nilmanifold N = Γ\G is given by (6). Hasegawa observes
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in [3] that (5) is the Q-minimal model of N and that, conversely, given a Q-minimal CDGA of the form
(5), there exists a nilmanifold N with (5) as its Q-minimal model.

Deligne, Griffiths, Morgan and Sullivan prove in [13] that the K-minimal model, K = Q or R, of a
compact Kähler manifold is formal, i.e., it is quasi-isomorphic to its cohomology. Hasegawa shows
in [3] that the minimal model (5) is formal if and only if all the structure constants aj

ik in (4) vanish, so a
symplectic nilmanifold does not admit any Kähler metric unless it is a torus. (See for instance [2,16]
for more results on homotopy theory and applications to symplectic geometry.)

Bazzoni and Muñoz study in [9] the K-homotopy types of nilmanifolds of low dimension.
They prove that, up to dimension 5, the number of rational homotopy types of nilmanifolds is
finite. However, in six dimensions the following result holds:

Theorem 2. ([9], Theorem 2) There are infinitely many rational homotopy types of 6-dimensional nilmanifolds,
but there are only 34 real homotopy types of 6-dimensional nilmanifolds.

As a direct consequence, there is only a finite number of real homotopy types of 6-dimensional
nilmanifolds admitting an extra geometric structure of any kind (in particular, generalized complex
structures; see Section 3 for definition). We will prove that, in contrast to the 6-dimensional case,
there are infinitely many real homotopy types of 8-dimensional nilmanifolds admitting generalized
complex structures of every type k, for 0 ≤ k ≤ 4.

To construct such nilmanifolds, let us take a positive rational number α and consider the connected,
simply connected, nilpotent Lie group Gα corresponding to the nilpotent Lie algebra gα defined by

de1 = de2 = de3 = de4 = 0,

de5 = e12,

de6 = e15 + (1− α) e24,

de7 = −(1 + α) e14 − e23 + (1 + α) e25,

de8 = e16 + e27 + e34 − 2 e45,

(7)

where eij = ei ∧ ej, being {ei}8
i=1 a basis for g∗α, and α ∈ Q+. It is clear from (7) that the Lie algebra gα is

rational, hence by the Mal’cev theorem [14], there exists a lattice Γα of maximal rank in Gα. We denote
by Nα = Γα\Gα the corresponding compact quotient.

Therefore, we have defined a family of nilmanifolds Nα of dimension 8 depending on the rational
parameter α ∈ Q+. We will study the properties of Nα, for α ∈ Q+, in Sections 3 and 4. Here, we simply
provide their Betti numbers.

A direct calculation using Nomizu’s theorem [15] allows to explicitly compute the de Rham
cohomology groups of any nilmanifold Nα. In particular, for degrees 1 ≤ l ≤ 3, the l-th de Rham
cohomology groups Hl

dR(Nα) are

H1
dR(Nα) = 〈 [e1], [e2], [e3], [e4] 〉,

H2
dR(Nα) = 〈 [e13], [e14], [e23], [e24], [e34], [e16 − (1− α) e45],

[e17 + (1 + α) e26 + e35],
[
(1 + α)e18 − e37 − (1 + α)(3 + α) e46 + (1 + α)e57] 〉,

H3
dR(Nα) = 〈 [e127], [e146], [e256], [e248 + e456], [e128 + 2 e246 − e345], [e136 + (1− α) e345],

[e137 + (1 + α) e236], [e156 − (1− α) e246], [e138 + (3 + α) e346 − e357],

[e147 + (1 + α) e246 + e345], [(1 + α)e148 − e347 − (1 + α)e457],

[e238 + e356 + (3− α) (e148 − e457)] 〉.
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Let bl(Nα) denote the l-th Betti number of Nα. By duality we have:

b0(Nα) = b8(Nα) = 1, b1(Nα) = b7(Nα) = 4, b2(Nα) = b6(Nα) = 8, b3(Nα) = b5(Nα) = 12.

One can finally compute the Betti number b4(Nα) taking into account that the Euler–Poincaré
characteristic χ of a nilmanifold always vanishes, namely,

0 = χ(Nα) =
8

∑
l=0

(−1)lbl(Nα) = b4(Nα) + 2
(
b0(Nα)− b1(Nα) + b2(Nα)− b3(Nα)

)
,

which implies b4(Nα) = 14. In particular, we observe that the Betti numbers of the nilmanifolds Nα do
not depend on α.

3. Generalized Complex Structures on the Nilmanifolds Nα

Generalized complex geometry, in the sense of Hitchin and Gualtieri [4,5], establishes a unitary
framework for symplectic and complex geometries. Let M be a compact differentiable manifold of
dimension 2n. Denote by TM the tangent bundle and by T∗M the cotangent bundle, and consider the
vector bundle TM⊕ T∗M endowed with the natural symmetric pairing

〈X + ξ | Y + η〉 = 1
2
(
ξ(Y) + η(X)

)
.

Recall that the Courant bracket on the space C∞(TM⊕ T∗M) is given by

[X + ξ, Y + η] = [X, Y] + LXη −LYξ − 1
2

d(ιXη − ιYξ),

where L and ι respectively denote the Lie derivative and the interior product. A generalized complex
structure on M is an endomorphism J ∈ End(TM⊕ T∗M) satisfying J 2 = −1 whose i-eigenbundle
L ⊂ (TM⊕ T∗M)⊗C is involutive with respect to the Courant bracket.

There is an action of TM⊕ T∗M on
∧• T∗M given by

(X + ξ) · ρ = ιXρ + ξ ∧ ρ.

Now, for a generalized complex structure J with i-eigenbundle L, one can define the canonical
line bundle K ⊂ ∧• T∗M⊗C as

L = Ann(K) = {u ∈ (TM⊕ T∗M)⊗C | u · K = 0}.

Any ρ ∈ K is a non-degenerate pure form, i.e., it can be written as

ρ = eB+i ω Ω,

where B, ω are real 2-forms and Ω = θ1 ∧ · · · ∧ θk is a complex decomposable k-form, such that

ωn−k ∧Ω ∧Ω 6= 0.

The number k is called the type of the generalized complex structure. Moreover, any φ ∈ C∞(K)
is integrable, i.e., there exists X + ξ ∈ C∞(TM⊕ T∗M) satisfying

dφ = (X + ξ) · φ.
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Notice that the converse also holds: if K ⊂ ∧• T∗M⊗C is a line bundle such that any ρ ∈ K is
a non-degenerate pure form and any φ ∈ C∞(K) is integrable, then we have a generalized complex
structure whose i-eigenbundle is L = Ann(K).

In the case that K is a trivial bundle admitting a nowhere vanishing closed section, the generalized
complex structure is called generalized Calabi–Yau.

Recall that if J is a complex structure on M then

JJ =

(
−J 0
0 J∗

)

is a generalized complex structure of type n, and if ω is a symplectic form on M then

Jω =

(
0 −ω−1

ω 0

)

is a generalized complex structure of type 0. Near a regular point (i.e., a point where the type is locally
constant), a generalized complex structure is equivalent to a product of a complex and a symplectic
structure ([5], Theorem 3.6).

In the case of a nilmanifold N, Cavalcanti and Gualtieri proved in ([6], Theorem 3.1) that any
invariant generalized complex structure on N must be generalized Calabi–Yau. Hence, it is given by a
(left-invariant) trivialization ρ of the canonical bundle of the form (1) satisfying the non-degeneracy
condition (2) and the integrability condition (3).

Let us now prove Proposition 1, that is, each nilmanifold Nα has generalized complex structures
of every type k, for 0 ≤ k ≤ 4. These structures will be explicitly described in terms of the global basis
of invariant 1-forms {ei}8

i=1 on Nα given in (7). We begin providing a structure of type 4.

• Generalized complex structure of type 4 (complex structure). We define the following complex
1-forms:

θ1 =
1
2

(
1√

3 + α
e1 − e2

)
+

i
2

(
1√

3 + α
e1 + e2

)
,

θ2 = −α e4 − i√
3 + α

(
1
2

e3 + e5
)

,

θ3 =
α

(1 + α)2

(
e6 − 1√

3 + α
e7
)
+

i α

(1 + α)2

(
e6 +

1√
3 + α

e7
)

,

θ4 =
1√

3 + α

(
e5 +

1− α

2 (1 + α)2 e3
)
− i α

(
e4 +

2
(1 + α)2

√
3 + α

e8
)

.

(8)

From Equation (7), we get

dθ1 = 0,

dθ2 = θ1 ∧ θ1,

dθ3 = θ1 ∧ θ4 + θ1 ∧ θ4 +
2 α

(1 + α)2 θ2 ∧ θ1 +
2 i

(1 + α)2 θ1 ∧ θ2,

dθ4 = i θ1 ∧ θ1 − 2
(1 + α)2 θ2 ∧ θ2 − i θ1 ∧ θ3 + i θ3 ∧ θ1.

(9)

Declaring the forms θi to be of bidegree (1, 0), we obtain an almost complex structure J on the
nilmanifold Nα for every α ∈ Q+. It follows from (9) that dθi has no (0, 2) component, so J is integrable.
Hence, ρ = Ω = θ1 ∧ θ2 ∧ θ3 ∧ θ4 is a generalized complex structure of type 4.
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Remark 1. The complex nilmanifold (Nα, J) has a holomorphic Poisson structure given by the
holomorphic bivector β = X3 ∧ X4 of rank two, where {Xi} is the dual basis of {θi} (see [6],
(Theorem 5.1) for the existence of such a bivector on nilmanifolds). It is worth observing that (Nα, J)
does not admit any (invariant or not) holomorphic symplectic structure: since the center of the Lie
algebra gα has dimension 1, the complex structure defined by (8) is strongly non-nilpotent (see [17] for
properties on this kind of complex structure); by [18], a strongly non-nilpotent complex structure on
an 8-dimensional nilmanifold cannot support any holomorphic symplectic form.

• Generalized complex structure of type 3. Let us consider ρ = eB+i ω Ω, with B = 0, ω = i θ4 ∧ θ 4

and Ω = θ1 ∧ θ2 ∧ θ3, where θ1, θ2, θ3 and θ4 are the complex 1-forms given in (8). It is clear that

ω ∧Ω ∧Ω = −i θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 6= 0,

so the non-degeneracy condition (2) is satisfied. A direct calculation using (9) shows

d(θ1 ∧ θ2 ∧ θ3) = 0

and
dω ∧ θ1 ∧ θ2 ∧ θ3 = i dθ4 ∧ θ4 ∧ θ1 ∧ θ2 ∧ θ3 − i θ4 ∧ d θ4 ∧ θ1 ∧ θ2 ∧ θ3 = 0,

which implies that dρ = 0, i.e., the integrability condition (3) holds.
Therefore, the nilmanifolds Nα have generalized complex structures of type 3.

• Generalized complex structure of type 2. Recall that the action of a bivector β is given by ρ 7→ eιβ ρ.
If J is a complex structure and β is a holomorphic Poisson structure of rank l, then one can deform J
into a generalized complex structure of type n− l (see [5]). In ([6], Theorem 5.1) it is proved that every
invariant complex structure on a 2n-dimensional nilmanifold can be deformed, via such a β-field with
l = 2, to get an invariant generalized complex structure of type n− 2. Therefore, our nilmanifolds
have a generalized complex structure of type 2.

More concretely, in view of Remark 1, from the generalized complex structure of type 4 defined
by ρ = θ1 ∧ θ2 ∧ θ3 ∧ θ4 above, we get that

ρ̃ = eθ3∧θ4
Ω,

with Ω = θ1 ∧ θ2, is a generalized complex structure of type 2. Indeed, B = 1
2 (θ

3 ∧ θ4 + θ3 ∧ θ4) and
ω = − i

2 (θ
3 ∧ θ4 − θ3 ∧ θ4). Thus,

ω2 ∧Ω ∧Ω =
1
2

θ3 ∧ θ4 ∧ θ3 ∧ θ4 ∧ θ1 ∧ θ2 ∧ θ1 ∧ θ2 6= 0,

and d(θ1 ∧ θ2) = 0 and d(B + i ω) ∧ θ1 ∧ θ2 = d(θ3 ∧ θ4) ∧ θ1 ∧ θ2 = d(θ1 ∧ θ2 ∧ θ3 ∧ θ4) = 0 by the
Equation (9).

For the definition of generalized complex structures of type 1 and type 0 we will deal with
the space Z2(Nα) of invariant closed 2-forms on the nilmanifold Nα. The following lemma
is straightforward:

Lemma 1. Every invariant closed 2-form ω on the nilmanifold Nα is given by

ω = x12 e12 + x13 e13 + x14 e14 + x15 e15 + x16 e16 + x17 e17 − (1 + α) x37 e18

+ x23 e23 + x24 e24 + x25 e25 + (1 + α) x17 e26 + x27 e27 + x34 e34 + x17 e35 + x37 e37

−
(
(1− α) x16 + (1 + α) x27

)
e45 + (1 + α) (3 + α) x37 e46 − (1 + α) x37 e57,

(10)
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where x12, . . . , x37 ∈ R. Hence, the space Z2(Nα) has dimension 12.

• Generalized complex structure of type 1. We must find ρ = eB+i ω Ω, with B, ω real invariant
2-forms and Ω a complex 1-form, satisfying

ω3 ∧Ω ∧Ω 6= 0, dΩ = 0, (dB + i dω) ∧Ω = 0.

Since Ω is a complex 1-form, it can be written as Ω = ∑4
j=1 zj ej, for some complex coefficients

z1, . . . , z4 ∈ C. Let us choose Ω = e3 + i e4, which satisfies dΩ = 0 according to the structure
Equation (7).

We consider B = 0 and let ω be any 2-form given in (10) with coefficients x17, x37 6= 0. A direct
calculation shows that

ω3 ∧Ω ∧Ω = 12 i (1 + α)3 x17 x2
37 e12345678 6= 0.

Since both B and ω are closed, the condition (dB + i dω) ∧ Ω = 0 is trivially satisfied,
and ρ = ei ω Ω defines a generalized complex structure of type 1 on the nilmanifold Nα.

• Generalized complex structure of type 0 (symplectic structure). The form ω in Lemma 1
determined by (10) satisfies

ω4 = −24 (1 + α)2 x2
37

((
(1− α) x16 − 2 x27 + (1 + α) x34

)
x17

+
(
(1 + α) (3 + α) x23 + (3 + α) x25

)
x37

)
e12345678.

(11)

It suffices to choose, for instance, x17 = x23 = 0 and x25x37 6= 0 to get a symplectic form ω on Nα.
This concludes the proof of Proposition 1.

4. The Nilmanifolds Nα and Their Minimal Model

The goal of this section is to prove Proposition 2, i.e., the nilmanifolds Nα and Nα′ have
non-isomorphic R-minimal models for α 6= α′.

As we recalled in Section 2, the R-minimal model of the nilmanifold Nα is given by the
Chevalley–Eilenberg complex (

∧
g∗α, d) of its underlying Lie algebra gα. Consequently, to prove

Proposition 2, it suffices to show that the real Lie algebras gα, α ∈ Q+, define a family of pairwise
non-isomorphic nilpotent Lie algebras. Indeed, we will prove the following:

Proposition 3. If the nilpotent Lie algebras gα and gα′ are isomorphic, then α = α′.

Remember that in eight dimensions, no classification of nilpotent Lie algebras is available. Indeed,
nilpotent Lie algebras are classified only up to real dimension 7. More concretely, Gong classified
in [19] the 7-dimensional nilpotent Lie algebras in 140 algebras together with 9 one-parameter families.
One can check that our family {gα}α∈Q+ is not an extension of any of those 9 families, i.e., the quotient
of gα by its center (which has dimension 1) does not belong to any of the 9 one-parameter families of
Gong. Furthermore, the usual invariants for nilpotent Lie algebras are the same for all the algebras
in the family {gα}α∈Q+ . For instance, the dimensions of the terms in the ascending central series
are (1, 3, 6, 8), whereas those of the descending central series are (4, 3, 1, 0) (see Lemma 3 for further
details). Moreover, the dimensions of the Lie algebra cohomology groups Hk(gα) coincide for every
α ∈ Q+, as shown at the end of Section 2. For this reason, we will directly analyze the existence of an
isomorphism between any two of the nilpotent Lie algebras in our family {gα}α∈Q+ .

The following technical lemma will be useful for our purpose.
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Lemma 2. Let f : g −→ g′ be an isomorphism of the Lie algebras g and g′. Consider an ideal {0} 6= a ⊂ g, and
let a′ = f (a) ⊂ g′ be the corresponding ideal in g′. Let {er+1, . . . , em}, resp. {e′r+1, . . . , e′m}, be a basis of a, resp.
a′, and complete it up to a basis {e1, . . . , er, er+1, . . . , em} of g, resp. {e′1, . . . , e′r, e′r+1, . . . , e′m} of g′. Denote the
dual bases of g∗ and g′∗ respectively by {ei}m

i=1 and {e′ i}m
i=1. Then, the dual map f ∗ : g′∗ −→ g∗ satisfies

f ∗(e′ i) ∧ e1 ∧ . . . ∧ er = 0, for all i = 1, . . . , r.

Proof. Let π : g −→ g/a and π′ : g′ −→ g′/a′ be the natural projections, and f̃ : g/a −→ g′/a′ the Lie
algebra isomorphism induced by f on the quotients. Taking the corresponding dual maps, we have
the following commutative diagrams:

g

π

��

f // g′

π′

��
g/a

f̃ // g′/a′,

g′ ∗
f ∗ // g∗

(g′/a′)∗

π′ ∗

OO

f̃ ∗ // (g/a)∗.

π∗

OO

Taking the basis {e1, . . . , er, er+1, . . . , em} of g, we have that {ẽ1, . . . , ẽr} is a basis of g/a.
Let {ẽ1, . . . , ẽr} be its dual basis for (g/a)∗. Using a similar procedure, we find a basis {ẽ′ 1, . . . , ẽ′ r} for
(g′/a′)∗. Since the maps π∗ and π′ ∗ are injective, and the diagram is commutative, we get

f ∗(e′ i) = f ∗
(
π′ ∗(ẽ′ i)

)
= π∗

(
f̃ ∗(ẽ′ i)

)
∈ 〈e1, . . . , er〉,

for any 1 ≤ i ≤ r.

Applying the previous result to our particular case, we get:

Lemma 3. Consider gα and gα′ for α, α′ ∈ Q+. If f : gα −→ gα′ is an isomorphism of Lie algebras, then in
terms of their respective bases {ei}8

i=1 and {e′ i}8
i=1 given in (7), the dual map f ∗ : g∗α′ −→ g∗α satisfies

f ∗(e′ i) ∧ e12 = 0, for i = 1, 2,

f ∗(e′ i) ∧ e1234 = 0, for i = 3, 4,

f ∗(e′ 5) ∧ e12345 = 0,

f ∗(e′ i) ∧ e1234567 = 0, for i = 6, 7.
(12)

Proof. Recall that the ascending central series of a Lie algebra g is defined by {gk}k, where g0 = {0}
and

gk = {X ∈ g | [X, g] ⊆ gk−1}, for k ≥ 1.

Observe that g1 = Z(g) is the center of g.
Let {ei}8

i=1 and {e′i}8
i=1 be the bases for gα and gα′ dual to {ei}8

i=1 and {e′ i}8
i=1, respectively.

In terms of these bases, the ascending central series of gα and gα′ are

(gα)1 = 〈e8〉 ⊂ (gα)2 = 〈e6, e7, e8〉 ⊂ (gα)3 = 〈e3, e4, e5, e6, e7, e8〉,

and
(gα′)1 = 〈e′8〉 ⊂ (gα′)2 = 〈e′6, e′7, e′8〉 ⊂ (gα′)3 = 〈e′3, e′4, e′5, e′6, e′7, e′8〉.

Since f
(
(gα)k

)
= (gα′)k for any Lie algebra isomorphism f : gα −→ gα′ , applying Lemma 2 to the

ideals a = (gα)k for k = 1, 2, 3 one gets (12) for i = 1, 2, 5, 6 and 7.
Moreover, the derived algebras of gα and gα′ are, respectively,

[gα, gα] = 〈e5, e6, e7, e8〉, [gα′ , gα′ ] = 〈e′5, e′6, e′7, e′8〉.

Using again Lemma 2 with a = [gα, gα], we obtain (12) for i = 3, 4.
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We are now in the conditions to prove Proposition 3.

Proof of Proposition 3. Given any homomorphism of Lie algebras f : gα −→ gα′ , its dual map
f ∗ : g∗α′ −→ g∗α naturally extends to a map F :

∧∗ g∗α′ −→ ∧∗ g∗α that commutes with the differentials, i.e.,
F ◦ d = d ◦ F. Hence, in terms of the bases {ei}8

i=1 for g∗α and {e′ i}8
i=1 for g∗α′ satisfying the Equations (7)

with respective parameters α and α′, any Lie algebra isomorphism is defined by

F(e′ i) =
8

∑
j=1

λi
j ej, i = 1, . . . , 8, (13)

satisfying conditions
d
(

F(e′ i)
)
− F(de′ i) = 0, for each 1 ≤ i ≤ 8, (14)

where the matrix Λ = (λi
j)i,j=1,...,8 belongs to GL(8,R).

We first note that the preceding lemma allows us to simplify the 8× 8 matrix Λ. In fact, from
Lemma 3 one has that λi

j = 0 for 1 ≤ i ≤ 2 and 3 ≤ j ≤ 8, for 3 ≤ i ≤ 5 and 6 ≤ j ≤ 8, and also

λ3
5 = λ4

5 = λ6
8 = λ7

8 = 0. Since Λ belongs to GL(8,R), the previous conditions imply that λ5
5 6= 0 and

λ8
8 6= 0.

Note also that (14) is trivially fulfilled for 1 ≤ i ≤ 4. Hence, it suffices to focus on 5 ≤ i ≤ 8. We
will denote by

[
d
(

F(e′ i)
)
− F(de′ i)

]
jr the coefficient for ejr in the expression of the 2-form d

(
F(e′ i)

)
−

F(de′ i).
By a direct calculation we have

0 =
[
d
(

F(e′ 8)
)
− F(de′ 8)

]
35 = 2 λ4

3 λ5
5.

Since λ5
5 6= 0, we conclude that λ4

3 = 0. Now observe that the following expressions must
annihilate: [

d
(

F(e′ 6)
)
− F(de′ 6)

]
23 = −(λ1

2λ5
3 + λ6

7),[
d
(

F(e′ 7)
)
− F(de′ 7)

]
23 = λ2

2
(
λ3

3 − (1 + α′)λ5
3
)
− λ7

7,[
d
(

F(e′ 6)
)
− F(de′ 6)

]
25 = −λ1

2λ5
5 + (1 + α)λ6

7,[
d
(

F(e′ 7)
)
− F(de′ 7)

]
25 = −(1 + α′)λ2

2λ5
5 + (1 + α)λ7

7.

Solving λ6
7 and λ7

7 from the first two equations and replacing their values in the last ones, we get:

λ1
2
(
λ5

5 + (1 + α) λ5
3
)
= 0, λ2

2

(
λ3

3 − (1 + α′) λ5
3 −

1 + α′

1 + α
λ5

5

)
= 0. (15)

Moreover, the following terms must vanish:[
d
(

F(e′ 8)
)
− F(de′ 8)

]
34 = −λ4

4 (λ
3
3 + 2λ5

3) + λ8
8,

[
d
(

F(e′ 8)
)
− F(de′ 8)

]
45 = 2 (λ4

4λ5
5 − λ8

8).

From the second one, we have λ8
8 = λ4

4λ5
5. Since λ8

8 6= 0, in particular also λ4
4 6= 0. Using the first

expression above, we can then solve
λ3

3 = λ5
5 − 2 λ5

3. (16)

In addition, observe that
[
d
(

F(e′ 5)
)
− F(de5)

]
12 =

[
d
(

F(e′ 7)
)
− F(de7)

]
13 = 0 leads to

λ5
5 = λ1

1λ2
2 − λ1

2λ2
1, λ2

1
(
λ3

3 − (1 + α′)λ5
3
)
= 0. (17)

We now check that the vanishing of the coefficient λ1
1 leads to a contradiction. Indeed, in such a

case, the first expression in (17) becomes λ5
5 = −λ1

2λ2
1 6= 0, and from (15) we then have λ5

5 = −(1 + α)

λ5
3, which plugged into (16) gives λ3

3 = −(3+ α)λ5
3. Replacing this value in the second equation of (17),

the condition λ5
3(α + α′ + 4) = 0 arises. Since α and α′ are greater than zero, we are forced to consider
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λ5
3 = 0. However, this leads to λ5

5 = 0, which is a contradiction. Hence, we necessarily have that λ1
1

is nonzero.
Since λ1

1 6= 0, the condition

0 =
[
d
(

F(e′ 6)
)
− F(de′ 6)

]
13 = −λ1

1λ5
3

implies λ5
3 = 0. Replacing this value in (15), (16), and (17), we obtain:

λ1
2 λ5

5 = 0, λ2
1 λ5

5 = 0, λ2
2 λ5

5

(
1− 1 + α′

1 + α

)
= 0, λ3

3 = λ5
5 = λ1

1λ2
2 − λ1

2λ2
1.

As λ5
5 6= 0, one immediately has λ2

1 = λ1
2 = 0 and λ5

5 = λ1
1λ2

2. Consequently λ2
2 6= 0, which allows

us to conclude 1 + α = 1 + α′, and thus α = α′. This completes the proof of the proposition.

Remark 2. In addition to the notions of rational and real homotopy types, there is also the notion of
complex homotopy type [13]. Two manifolds X and Y have the same C-homotopy type if and only
if their C-minimal models (

∧
VX ⊗Q C, d) and (

∧
VY ⊗Q C, d) are isomorphic. Here, (

∧
VX, d) and

(
∧

VY, d) are the rational minimal models of X and Y, respectively. Recall that when the field K has
char (K) = 0, the K-minimal model is unique up to isomorphism. Clearly, if X and Y have different
complex homotopy types, then X and Y have different real (hence, also rational) homotopy types.

For nilmanifolds, it is proved in ([9], Theorem 2) that there are exactly 30 complex homotopy
types of 6-dimensional nilmanifolds. It is worth remarking that if α 6= α′, then our nilmanifolds Nα

and Nα′ have different C-minimal models. Indeed, it can be checked that the proof of Proposition 2
above directly extends to the case when the matrix Λ = (λi

j)i,j=1,...,8 defined in (13) belongs to GL(8,C).
In conclusion, our main result in Theorem 1 extends to the complex case, i.e., there are infinitely many
complex homotopy types of 8-dimensional nilmanifolds admitting a generalized complex structure of
ever type k, for 0 ≤ k ≤ 4. Now, Corollary 1 is a consequence of the fact that the product nilmanifolds
Nα ×T2m do not admit any Kähler metric.
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