
Microservice chatbot architecture for chronic patient

support

Surya Rocaa,1, Jorge Sanchoa, José Garćıaa, Álvaro Alesancoa

aAragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza,
Spain

Abstract

Chatbots are able to provide support to patients suffering from very different

conditions. Patients with chronic diseases or comorbidities could benefit the

most from chatbots which can keep track of their condition, provide specific

information, encourage adherence to medication, etc. To perform these func-

tions, chatbots need a suitable underlying software architecture. In this pa-

per, we introduce a chatbot architecture for chronic patient support grounded

on three pillars: scalability by means of microservices, standard data sharing

models through HL7 FHIR and standard conversation modelling using AIML.

We also propose an innovative automation mechanism to convert FHIR re-

sources into AIML files, thus facilitating the interaction and data gathering

of medical and personal information that ends up in patient health records.

To align the way people interact with each other using messaging platforms

with the chatbot architecture, we propose these very same channels for the

chatbot-patient interaction, paying special attention to security and privacy

Email addresses: surya@unizar.es (Surya Roca), jslarraz@unizar.es (Jorge
Sancho), jogarmo@unizar.es (José Garćıa), alesanco@unizar.es (Álvaro Alesanco)

1Corresponding author

Preprint submitted to Journal of Biomedical Informatics September 17, 2019



issues. Finally, we present a monitored-data study performed in different

chronic diseases, and we present a prototype implementation tailored for one

specific chronic disease, psoriasis, showing how this new architecture allows

the change, the addition or the improvement of different parts of the chatbot

in a dynamic and flexible way, providing a substantial improvement in the

development of chatbots used as virtual assistants for chronic patients.

Keywords: Artificial Intelligence Markup Language (AIML), Chronic

patient support, Fast Healthcare Interoperability Resources (FHIR),

Medical chatbot, Messaging platforms, Microservice architecture

1. Introduction

Chatbots are currently a hot topic in eHealth scenarios. A chatbot is a

computer program that automatically provides services conversing with the

final user through diverse communication channels (e.g. messaging platforms,

mobile apps, etc.). In the last five years, fostered by the explosion of Artificial

Intelligence and the enormous penetration in society of messaging platforms,

chatbots have been gaining momentum in the eHealth world. Studies show

that there exist positive results in support-chatbots for patients with breast

cancer [1], with overall satisfaction of 93.95%. Chatbots can be used as

virtual assistants helping their users by playing many different roles, for

example as symptom checkers [2], medication reminders [3] or personal data

gatherers [4]. Moreover, physicians agree with the idea that chatbots can help

in most of the automatic simple tasks in healthcare scenarios [5]. However,

their usability is limited by the algorithms behind them, their ability to share

data, their scalability and the sense of security and privacy they are able to

2



implement and transmit to their users.

One of the eHealth scenarios that is growing fast and is expected to

grow even faster in the coming years is caring for patients with chronic dis-

eases or comorbidities [6]. While research on patient-centred care has largely

spawned from technical and clinical research traditions, it inevitably (not

intentionally) concentrates mainly on medical staff and supporting clinical

work. Traditionally, healthcare and telemedicine are focused on acquiring

data and information from patients and transferring them into healthcare

contexts, not the other way around. Chatbots are the perfect tools to make

possible this turnaround, being aligned with chronic patients’ needs, inter-

acting with them in the same way that patients communicate with their

friends and relatives through their favourite messaging platforms. Neverthe-

less, current eHealth chatbots are not taking advantage of this great potential

and are only being used in a very generic manner (nutritional disorders and

neurological disorders are the areas most tracked [7]). Although these are

interesting and necessary approaches, they do not realize the full potential of

chatbots which remain quite limited for chronic patient support. To unleash

this potential, chatbot software architecture should be grounded on three

pillars: scalability that enables easy growth, standard data models that fos-

ter data sharing and reusability, and standard conversational modeling that

facilitates the conversation between the user and the chatbot.

Scalability provides a growing ecosystem of services available to patients

while they evolve (e.g. a chronic patient develops a new comorbidity). Thus,

the chatbot would be able to provide them with solutions without the need

of using other chatbots or even the need to go back to a specific mobile app.

3



In other words, due to the rise in patients’ comorbidities, eHealth chatbots

should be scalable to adapt to new patients’ needs, providing them with new

tasks and services over time. The lack of scalability in these systems can

hamper the chatbot growth, i.e. the offering of new services to healthcare

actors (patients, doctors, health professionals in general).

To solve the problem of scalability, the chatbot architecture must be mod-

ular and flexible. Microservices are an architectural paradigm which empha-

sizes modular, lightweight services with a high degree of cohesion. This is in

contrast to monolithic applications where tightly integrated components im-

plement the applications’ functionality and changing requirements affects the

system as a whole. In contrast, microservices can be developed, deployed and

scaled independently of other services that make up the system. The basis of

microservices is to split a single application into a set of small services, each

running its own process. Microservices communicate through well-defined

interfaces and standard lightweight protocols such as HTTP and do not need

to use the same development languages or platforms. Thus, they are the

perfect choice for a modular and continuously growing architecture to sup-

port the needs of chronic patients. New functionalities addressing new health

conditions can be added as new microservices, fostering a care ecosystem and

open to contributions from collaborative developers.

The choice of an open model for patient data is crucial to endow the chat-

bot architecture with an open nature for data sharing, avoiding the creation

of isolated data silos, so dangerous for eHealth expansion [8]. In eHealth

environments, the ability of standard data sharing enables all the gathered

data to be integrated in other bigger structures related with the patient such

4



as his/her Electronic or Personal Health Record (EHR/PHR). With this in

mind, all the data exchanged with the chatbot regarding the patient’s con-

ditions would end up, eventually, in his/her EHR, enriching it and enabling

carers (doctors, nurses, etc.) to complete their health assessment of the

patient with important data gathered on a regular basis. Fast Healthcare

Interoperability Resources (FHIR) is a next generation standards framework

created by HL7 [9]. The FHIR standard defines a list of data models which

can represent a wide range of healthcare related features, both clinical and

administrative. Instances of these data models, which are named resources,

are used to exchange and/or store the data using different serialization for-

mats (e.g. XML or JSON). These resources can easily be assembled into

working systems making them suitable for use in a wide variety of contexts

e.g. mobile phone apps, EHR-based data sharing, server communication in

large institutional healthcare providers, etc [10]. All these features make it

the perfect choice for data sharing and storing in the microservice chatbot

architecture.

Regarding chatbot-user interaction, the chatbot should be able to process

the user input and, through natural language processing, to obtain a response

as consistent as possible with the user conversation. Nowadays, there are

many advances in natural language processing that offer tools and standards

to allow fluent interactions with users. Among them, one appears to have

a widespread acceptance, Artificial Intelligence Markup Language (AIML)

[11]. AIML is a language based on XML that serves for the development

of software agents and adds the capability to communicate with users in

natural language. Thanks to the abilities of natural language processing, it is

5



possible to obtain valuable health data from the user-bot conversation. Thus,

AIML seems the perfect choice for modeling interaction in our proposed

architecture.

In this paper, we introduce a chatbot architecture for chronic patient

support grounded on three pillars: scalability by means of microservices,

standard data sharing models through HL7 FHIR and standard conversation

modeling using AIML.

The remainder of the paper is structured as follows. Section 2 provides

a review of related works. In Section 3, a complete description of the pro-

posed architecture is presented. Section 4 describes how the validation of the

architecture has been performed and also presents the developed prototype

in a specific healthcare scenario. Section 5 provides an analysis of the main

challenges of the proposed architecture. Finally, we present the conclusions

and future work in Section 6.

2. Related work

Some research works propose the use of software architectures for eHealth

scenarios which are not primarily intended for them. Catarinucci et al. [12]

propose an IoT-Aware Architecture that uses an IoT smart gateway (con-

taining a two-way proxy, management application and secure access man-

ager) to connect the hybrid sensing network with the user interfaces. In

[13], a microservice architecture for an Internet of Things healthcare sce-

nario is proposed to provide future requirements of scalability and resilience

as the failure of a service should not adversely affect the overall system. The

fundamental use cases of care provision have each action directly designed

6



as a microservice in a microservice architecture. The microservices are de-

scribed in [13], but no technical details are given about the link between the

proposed system architecture and the microservices. Furthermore, no pri-

vacy protocols are studied. Another approach [14] describes a microservice-

based platform that uses activity trackers to provide a monitoring solution

for health-related data. This is an interesting approach providing elasticity

and scalability thanks to the microservices, but no security features are taken

into consideration and there is no information about the data standardiza-

tion for medical data storage. In [15], an IoT platform is presented in which a

set of recommendations microservices is proposed for depressive disorders. A

very attractive microservice model has been implemented, but the authors do

not provide information about user interaction with the system and security

issues.

The interest in using chatbots in eHealth environments is growing and

attracting a lot of attention [2], [16], [17], [18], [19]. Recent advances in

chatbots show that they can improve the efficiency of healthcare delivery by

performing clinical tasks that can be automated. Fadhil et al. [20] propose

an AI-chatbot for delivering support to nutrition education. From this work

it can be concluded that chatbots have a lot of advantages in the eHealth

domain both for healthcare providers and patients, but no information about

the architecture used is provided. Other healthcare chatbots like HealthBot

[21] and Your.MD [16] are symptom checkers, providing the user with medi-

cal advice and useful tips about different medical conditions. Again, no hint

about their underlying architecture is provided. Tschanz et al. propose a

chat-like smartphone app (eMMA) to manage patient medication through

7



a chatbot [22] focused on patient interactions and medication management.

Also, in [3] a chatbot has been developed to provide patients with med-

ication reminders and a health tracker using patient data gathering, but

without providing end-to-end encryption. These chatbot applications follow

the same pattern: they are tailored to a specific medical condition or activ-

ity and no implementation details are provided, making it hard to evaluate

their potential in terms of modularity, standard data management and stan-

dard chatbot-user interaction. Among those chatbot proposal that provide

implementation details, Augellio et al. [23] propose a web-based infrastruc-

ture for chatbots with a modular knowledge base. Even though the division

into modules is of interest, the system needs an extra effort to activate and

deactivate the modules and to reload the core to apply changes upon the

modules. In [24] M. Yan et al. present a generic architecture for a chat-

bot framework built on top of a serverless computing platform. Although

the approach is very interesting due to its decentralized nature, its server-

less orientation together with the need to rely on IBM Watson services for

chatbot-user interaction makes it hard to apply in healthcare scenarios.

Other research works have explored generic chatbot architectures. These

architectures are composed of intent classification, entity recognition, candi-

date response generator and response selector [25]. An example of this type

of chatbot architecture in healthcare scenarios can be observed in [26], where

a chatbot is developed for weight control and health promotion. The work

focuses on how the message is processed to obtain the user response, rather

than giving more information on how the software distribution is addressed

to give flexibility and modularity to the system.

8



To address the remaining challenges for providing modularity, standard

data exchange and standard user interactions, we propose a complete chatbot

architecture based on microservices, HL7 FHIR and AIML to give support

in healthcare environments focused on chronic patient care.

3. Microservice architecture

This paper proposes the application of a microservices-based architecture

in the design of a chatbot architecture for healthcare scenarios (see Fig. 1).

The proposed architecture is intended to provide new services and functional-

ities for evolving user needs. The logic based on microservices in the proposed

architecture serves to process the user information and perform automatic

tasks to provide scalability in a healthcare chatbot ecosystem. Furthermore,

modularity is covered by the proposed microservice structure, allowing a new

microservice to be built independently and without needing to modify the

developed chatbot.

The standardization of user data and the modeling of user conversations

are added within the proposed microservice structure, to provide interoper-

ability to the system. The structure of the architecture allows having different

types of databases depending on the necessities of the chatbot storage. In

order to be able to manage the entire amount of data that is generated and

provide interoperability between different healthcare systems, the architec-

ture supports EHR for medical data storage. Furthermore, each microservice

has its own small database to store all the information needed during the run

time.

The proposed architecture includes microservices intended for the correct

9



Figure 1: Overview of the chatbot internal structure.

10



functioning of the system (monitoring, authentication, and logging). One

microservice is dedicated to checking if the system is running correctly. An-

other microservice is dedicated to providing authentication between all the

microservices running in the platform. Finally, there is a microservice that

provides logging facilities. The number of microservices can be increased

according to the needs that arise within the system.

The coordination and distribution of the system tasks among the mi-

croservices of the architecture is essential to be able to perform a fluent

user-bot interaction. The architecture has two core microservices: the proxy

and the API gateway. The proxy translates the message received from the

user through the messaging platform into the internal standard format of

the architecture (e.g., a Telegram format message translated into the inter-

nal standard modeled in the JSON Schema that contains user information,

message body, attachment content, and timestamp). The API gateway is the

smart gateway that decides, with the information obtained from the message

body and the current state information of the system, which chatbot mi-

croservice is best suited to receive the user message. Apart from the core

microservices, there is a chatbot microservices pool where each microservice

has independent and specific tasks to perform. The chatbot microservices

pool allows the chatbot to offer different functionalities to the user. Each

microservice is completely independent from others, giving the opportunity

to personalize the scenario by developing specific tasks for each group of pa-

tients’ needs. Moreover, an advantage of using microservices is that new func-

tionalities can be tested separately of the rest of the functionalities, added

into the system without causing any disturbance to the user (the prototype

11



does not need to be restarted in order to add new pieces of code into the

microservice architecture, in contrast with monolithic architectures). One

example of functionality is the microservice that allows users to check the

opening hours and the location of their health clinic. Within the chatbot

microservices, there are two different types: functions (microservices that

have an interaction with the users) and data processing (microservices that

perform more complex tasks, such as processing the relevant information of

an image).

The microservices are based on an internal structure that consists of three

main components designed for this architecture (that may appear in the mi-

croservice or not). The first component of the microservice is the part that

communicates with other microservices. The communication uses JavaScript

Object Notation (JSON) to exchange data between all microservices. Fur-

thermore, the communication is established using the secure version of HTTP

(Hypertext Transfer Protocol Secure, HTTPS). The second component is

the interaction with the databases of the architecture. These interactions

use HTTPS for the communication, in some cases using the standardization

needed for some specific data types. More specifically, FHIR is used in the

architecture for medical exchange data. The last component is the part of

the microservice dedicated to the interaction with the user. This interaction

is designed with workflows and modeled with AIML.

4. Architecture validation

In [27], we studied twelve different chronic diseases in order to obtain

the data gathering requirements so as to implement a complete telemonitor-

12



ing scenario based on ontologies. This work has provided us with a highly

valuable study in order to know the data gathering requirements as well as

patient interactions for a very complete set of chronic conditions.

These requirements were obtained working with primary care physicians,

creating a questionnaire that contains all the needs for the supervision of each

chronic disease. Moreover, we have added additional requirements for psori-

asis with the collaboration of dermatologists and their patients. A summary

of these needs is shown in Table 1.

Studying the needs of different chronic diseases, some common function-

alities can be obtained, as well as specific functions for concrete illnesses.

The need of monitoring some vital constants such as weight or height are

integrated into the same microservice, called Questionnaire, which can ask

periodically the users’ vital constans, giving the possibility to monitor their

data. We have modeled this microservice to allow physicians to create cus-

tomized questionnaires, generating automatically the alerts and the interac-

tion with the patients. Other more specific microservices, such as one that

offers deeper tools in monitoring the quantity and the type of food eaten, are

not included in the generic prototype because not all diseases need it.

In order to validate the viability of the architecture, we have developed a

generic virtual assistant with the most common functionalities. The rest of

specific functionalities can be independently and easily added to the generic

virtual assistant developed. To validate the flexibility of the scenario, after

building a generic virtual assistant, we have modeled and developed three

functionalities that are specific for psoriasis scenarios, described in the fol-

lowing sections.

13



4.1. Proof of concept: prototype development

This proof of concept aims to create a generic virtual assistant including

the most common functionalities for chronic disease management. After-

wards the following section shows how the virtual assistant can be easily

adapted to an specific disease, in this case psoriasis.

In a health environment scenario, the most important feature to consider

while choosing the messaging platform is to guarantee the privacy of the data

that is exchanged between the user and the chatbot. Signal [28], with its end-

to-end encryption, is used as a messaging platform in this prototype. The

Proxy microservice is the only microservice that interacts directly with the

messaging platform server, as shown in Figure 1. In this proof of concept, the

microservice Proxy sends and receives the client messages through the Signal

server, using the Java libraries signal4j [29] version 1.0.4 and signal-service-

java [30] version 2.3.1 unofficial 1 (both libraries have been modified because

they are not updated with the latest changes of the Signal official repository

[31]). The Proxy microservice has been developed in Android, based on a

sample bot [32]. Despite having developed the proof of concept with the

Signal messaging platform, the Proxy is designed so that new messaging

platforms can easily be added to the architecture.

The pool of microservices for the chatbot architecture developed for this

proof of concept is described in Table 2. As mentioned before, we have

the Questionnaire microservice to ask users about their healthcare data.

Also, generic microservices such as Register, Unsubscribe or Verification are

included due to the necessities associated to the use of the virtual assistant.

Specialist and Patients help to see the different actors that use the platform.

14



Another tool that is shared between all chronic diseases is Appointment to

manage the appointments with the healthcare professionals.

The microservices in this project have been developed in two principal

programming languages: Java (using Java 8 Update 121) and Python (using

Python 3.7). The microservices developed in Java use the open source Jersey

framework supporting JAX-RS APIs to implement the RESTful service and

client development, and the Grizzly framework to implement the HTTPS

server. The microservices developed in Python use the Flask framework for

developing small server applications and Gunicorn is used to serve the Flask

application at a production level. All the microservices developed in this

work have an asynchronous HTTPS server that relies on TLS for clients

authentication. In order to provide a way to add new microservices easily

into the generic chatbot, we have created a template in Java and another

in Python (the templates in both programming languages are available in

https://github.com/ehealthz-lab). Thanks to these templates that con-

tain the basic code to develop a microservice which works in the proposed

architecture, new functionalities related to specific illnesses could be added

into the generic chatbot. The developer needs to model the conversation flow

and create the AIML file with the conversation of this new functionality of

the generic chatbot. After, the AIML file and the programmed tasks of this

specific microservice are added in the template, creating the new microser-

vice. We have used these templates with three students, that have developed

new functionalities inside the chatbot without a deep knowledge of the archi-

tecture itself, obtaining good results about the easiness of the usage of the

templates.

15



Figure 2: Relations of the FHIR resources.

We use the Docker platform to build lightweight containers, each one

with a different microservice of the architecture, allowing dynamic deploy-

ment. This allows us to have a modular, independent and flexible microser-

vice architecture with the possibility of adding new microservices without

compatibility problems with other programming languages or versions.

In order to provide interoperability with other eHealth systems, the user

healthcare information is stored in FHIR resources, that contain all the rel-

evant data for each case. The FHIR resources used to cover the information

storage needs in this scenario are shown in Fig. 2. The user information is

stored in Patient, Practitioner and RelatedPerson resources, depending on

the type of the user. The other resources shown in Fig. 2 are for storing the

relevant information that each user provides during the conversation with

the chatbot.

16



AIML version 2.0 is used in this proof of concept as a language to define

the chatbot behavior. The AIML interaction is divided between the different

microservices of the architecture. This separation of the conversation among

different microservices generates the problem of knowing to which microser-

vice any message is directed in order to obtain the user’s response from his

AIML file. To solve this problem, we propose an expansion of AIML with

a new element called Microservice. This new element, Microservice, can be

found within the AIML tag Category, providing the necessary information to

know if this base unit of knowledge is in the middle of a conversation with

the user or the conversation has ended to allow the user to initiate a new

conversation with another microservice.

In order to provide personalization in the conversation with the user based

on the information stored in the FHIR resources, the creation of AIML files

must be dynamic and flexible to adapt to each specific case. The AIML files

used generically in the chatbots are created in a static manner, not offering

this degree of personalization based on the information stored in databases.

This study tries to solve this problem by offering an AIML file generator

that, based on the FHIR resources available in the database, generates a

new file with the interaction to be produced with the user, resulting in a

more personalized interaction.

The use of this AIML file generator can be useful in generating a user

interaction for a questionnaire. This questionnaire is stored in the database

with the statement of the questions and the type of data stored for each

question as a Questionnaire resource (an example is shown in Fig. 3). This

Questionnaire resource can be created by the doctor or by another user. The

17



AIML file generator is able to read this resource and create a new file with

the user interaction where the user has to fill out the complete questionnaire.

An example of an AIML file created by the AIML file generator is shown

in Fig. 4. This file is generated from the resource Questionnaire shown

in Fig. 3. The file contains the user-bot interaction generated from the

questionnaire. First, when the user asks for the questionnaire, the chatbot

asks the first question to the user (in this case, “How many hours did you

sleep last night?”). Then, with the response of the user, the chatbot saves

the response thanks to the oob tag, knowing that it should be a decimal

answer (“<oob>SAVE DECIMAL</oob>”). Then, the chatbot finishes the

questionnaire because there are no more questions in the FHIR resource. All

this conversation is automatically created thanks to the AIML file generator.

This AIML generator has been built based on the patterns used to build

AIML files. These patterns have been programed in Java (using Java 8

Update 121) to be able to create the conversation flow in the case of surveys.

Each Questionnaire resource is linked to its AIML file by the name of the file

and also with the first pattern of the first category of the AIML file, where

the id of the resource in FHIR is set to know which AIML file should use

the virtual assistant (as shown in Fig. 3, line 3, with the FHIR id 45467).

Also, the Microservice AIML tag extension is used to know when the user is

in the middle of a conversation and when the questionnaire is finished.

In this example, we have shown how the translation from a FHIR resource

to an AIML file is performed, showing one of the many cases in which this

generator can be used.

All the user interaction and the usage and the state of the microservices

18



Figure 3: FHIR resource example: Questionnaire.

Figure 4: AIML example: Questionnaire auto-generated.

19



Figure 5: Logging snapshot: users’ messages and microservices usage.

can be shown in the monitoring microservice thanks to the logging facility.

In this prototype, Kibana [33] has been used as a tool to display the relevant

information such as, for example, the messages sent over time or the average

usability values of microservices (shown in Fig. 5).

The privacy of the data is preserved due to all the data exchanged in the

scenario are encrypted. Because of Signal is used as a messaging platform in

the scenario, the conversation between the end-user and the virtual assistant

has end-to-end encryption. Inside the architecture proposed, all the data

exchange between microservices use the HTTPS protocol, which encrypts the

data, providing privacy. All the sensible data related to personal data and

illnesses are stored in FHIR, which uses the HTTPS protocol to exchange the

information and provide privacy. The FHIR data are stored in an encrypted

hard disk. The periodic backups are configured to cipher the data and save

20



them in an external encrypted hard disk. Applying all these measures of

privacy and user’s rights, we follow both national data protection law LO

03/2018 [34] and European GDPR [35] due to the sensitivity of the data

stored in the system.

4.1.1. Psoriasis profile

The psoriasis prototype aims to demonstrate the feasibility of just one of

the several possible use-case scenarios for the proposed microservice chatbot

architecture. The new chatbot seeks to support and help chronic psoriasis

patients by providing specific tools for psoriasis monitoring. Patients have

the possibility of saving images of the body surface area through the chatbot

which is then able to show the saved images over time. Thanks to these

functionalities, patients, caregivers and healthcare professionals are able to

see the evolution of the affected skin area and how it reacts to the treatment.

The functionalities are designed with the collaboration of a group of der-

matologists, which are given their needs and opinion about what they want

to have in the virtual assistant to give support to psoriatic patients. In order

to obtain the specific functionalities needed in a psoriasis scenario, we have

followed two steps. First, we have asked what are the parameters that the

dermatologists usually monitor in their medical consultations, and we have

obtained the questionnaires that they use to ask periodically to their patients.

Then, with this information, we have designed a group of functionalities and

discussed them with the dermatologists, obtaining the final functionalities

specially designed for the psoriasis scenario. The microservices that we have

added to the generic virtual assistant are shown in Table 3. We have added

new monitoring tools that helps with tasks which were very difficult to per-

21



form before, the image storage of the affected areas. The chatbot provides

an improvement in the facility to store images and watch them in a timeline,

in order to see the evolution of the affected area. Essentially, the psoriasis

disease is addressed through the Image, Record and Query microservices.

The FHIR resource “Media” has been added into the scenario, to store the

images generated from the users.

Some possible functionalities that can be added into the scenario, to fulfill

more needs from other diseases could be a food tracker with a specific tool

that counts the calories in obesity scenarios or a sleep monitor. All these new

functionalities could be added following the needs proposed by the physicians

of each chronic disease.

Finally, two usage examples are shown in Fig. 6, where a user interacts

with the chatbot to store a photograph and to delete an appointment.

5. Analysis

Various aspects and challenges are addressed in the proposed architec-

ture. We classify these in three categories: Modularity, Standardization and

Security.

5.1. Modularity

The microservices architecture pattern accomplishes a level of modularity

that in practice is extremely difficult to achieve with a monolithic architec-

ture [36]. An important point in microservice architecture is the service size.

In the proposed architecture, the service size offers a chatbot split into tasks

called functionalities. These functionalities are offered to users in a main

22



(a) Image example. (b) Appointment example.

Figure 6: Real interaction with the chatbot implemented.

23



menu with numeric options. The menu can adapt in real time to the func-

tionalities running at that moment, to add modularity in the expansion of

the microservices. Thanks to this feature, new microservices related to new

functionalities can be added dynamically and independently in the architec-

ture.

Furthermore, when a microservice with interaction is incorporated to the

running system, the interaction is added inside the new Docker created for

that specific microservice. The new interaction can be added independently

as a behavior on the chatbot even when the core system is running thanks to

the new element, called Microservice, in AIML syntax discussed above. This

provides the possibility of splitting the chatbot conversation in different com-

ponents in the system architecture, knowing which AIML file the program

should search for the user response.

5.2. Standardization

Standardization in scenarios where data is stored and used is fundamen-

tal to guarantee the interoperability between different systems. Furthermore,

standardization is fundamental to guarantee robustness against the difficul-

ties faced during the deployment of the architecture. The main drawback is

the initial effort needed from the developers to learn and adapt the system

to the different standards used.

In a patient support scenario, medical data integration is required to

guarantee interoperability. The proposed chatbot architecture supports the

storage and sharing of medical information strictly aligning with HL7 FHIR

standards. Furthermore, the standard AIML has been used as the conversa-

tion modelling to give homogeneity in the development of the interaction of

24



Figure 7: JSON Schema: message format.

the user with different microservices. Finally, a JSON Schema is proposed

to standardize the communication between the microservices that require

interaction with the user. A schema is shown in Fig. 7.

5.3. Security

Besides all the things that have to be taken into account in any system,

such as general security considerations (e.g. database configuration, known

service vulnerabilities, etc.) and the specific hardening tactics required when

using Docker (e.g. unprivileged container execution, per-container firewalling,

etc.), some specific security issues have been considered in the proposed ar-

chitecture. These issues are related with access control (authentication and

25



authorization) for both users and microservices, so that the privacy of the

user’s data meets the expected requirements.

Inside the architecture, services authentication relies on TLS for both

client and server. Since all communications are secured using HTTPS and

all services in the architecture play at least the role of server (most of them are

also clients), each service already have its own digital certificate. Relative

to service authorization, each service in the architecture is provided with

an Access Control List (ACL) at configuration time. This list includes the

services that would need to perform calls to its API in a normal way of

operation.

Furthermore, a user’s identity is verified as soon as a new message reaches

the system. User authentication relies on signal’s user management which is

based on public key architecture where a user’s identity key pair is generated

at the time the application is installed and the public keys are exchanged

the first time a communication is established between two users. To ensure

that there are no man-in-the-middle attacks when the session is established,

the users can check the chatbot’s public key fingerprint which is shared with

them beforehand. Once the system has verified the user identity, a JWT is

issued which is included in further requests between services. Moreover, au-

thorization is performed in a finer-grained way using the XACML framework

for policies definition and evaluation.

This security and privacy solution is based on standard security mech-

anisms that are typically used in microservices architectures, providing a

complete vision of how existent technology could be wellsuited to address

security and privacy issues in the proposed architecture (critical when clini-

26



cal data are involved). Notwithstanding, the proposed solution is not unique

since other standard solutions already exist to that end (e.g. OAuth) and

adhoc mechanism might be designed to be used in place.

6. Conclusions and future work

The purpose of this study is to offer a solution based on microservices

to provide personalized eHealth functionalities and data storage using vir-

tual assistants in healthcare scenarios. The internal chatbot architecture

allows the addition of new services and tools over time, splitting of the con-

versation and development of a wide range of healthcare functionalities as

microservices. This architecture is designed to suit any chronic patient, over-

coming the shortcomings of other mobile applications that are only intended

for a specific type of disease [37], [38]. Furthermore, our approach makes

some additional contributions in terms of automation to translate a FHIR

resource into an AIML interaction file, making the conversations more per-

sonal. Standardization, security and fluent interaction are considered in the

proposed architecture. The final chatbot architecture design integrates dif-

ferent possible healthcare scenarios, with the aim of providing telemonitoring

of any disease through the use of messaging platforms and user-bot interac-

tion. It provides the advantages of flexibility, modularity and expansiveness

in a virtual assistant scenario, enabling the chatbot to be modeled follow-

ing the specifications of patients’ illnesses. Specifically, our architecture is

validated and adjusted following a prototype developed for psoriasis patient

care. The chatbot architecture and the use of microservices provide a good

flexible solution for personalized monitoring services. This architecture has

27



been proposed to address the challenges of personalization and data stor-

age in mHealth scenarios. The proposed chatbot can also be re-used for

telemonitoring of other diseases as well.

A future extension to the proposed architecture may be the addition of

speech recognition functionalities for better user-bot interaction.

The viability of the virtual assistant architecture has been validated

through the development of a generic chatbot along with the extension for one

concrete scenario. This specific scenario is the psoriasis profile, which pro-

vides a photographic record as the main feature for skin area tracking. Future

work can be focused on adding advanced and automated image processing-

based advice services or adding new functionalities for new chronic diseases

into the generic chatbot. The objective of automation in the field of mHealth

is to provide comfort and convenience when using medical services, since the

tool can be used anywhere. This, in turn, can reduce costs in the healthcare

sector while improving the quality of life of patients and reducing the number

of face-to-face medical consultations.

To conclude, it is worth highlighting that the chatbot architecture pro-

posed in this work covers the necessities of mHealth scenarios. The security

measurements are addressed, as well as data storage and FHIR-AIML au-

tomation. Moreover, the proposed architecture has been designed for inter-

operability with any communication channel, such as messaging platforms or

web interfaces, thanks to the proxy translator that is able to convert from

the specific formats of communication channels into the general data format

used within the chatbot architecture.

28



Acknowledgements

Research funded by Ministerio de Economı́a, Industria y Competitivi-

dad from Gobierno de España and European Regional Development Fund

(TIN2016-76770-R and BES-2017-082017) and Gobierno de Aragón (Refer-

ence Group T31 17R) and FEDER 2014-2020 “Construyendo Europa desde

Aragón”.

References

[1] B. Chaix, J.-E. Bibault, A. Pienkowski, G. Delamon, A. Guillemassé,

P. Nectoux, B. Brouard, When chatbots meet patients: One-year

prospective study of conversations between patients with breast cancer

and a chatbot, JMIR Cancer 5 (1) (2019) e12856. doi:10.2196/12856.

URL http://cancer.jmir.org/2019/1/e12856/

[2] Symptomate, last accessed 2019/01/21.

URL https://symptomate.com/

[3] Florence, last accessed 2019/02/18.

URL https://www.florence.chat/

[4] Forksy, last accessed 2019/02/18.

URL https://getforksy.com/

[5] A. Palanica, P. Flaschner, A. Thommandram, M. Li, Y. Fossat, Physi-

cians’ perceptions of chatbots in health care: Cross-sectional web-based

survey, J Med Internet Res 21 (4) (2019) e12887. doi:10.2196/12887.

URL https://www.jmir.org/2019/4/e12887/

29



[6] E. Wallace, C. Salisbury, B. Guthrie, C. Lewis, T. Fahey, S. M. Smith,

Managing patients with multimorbidity in primary care, BMJ (Online)

350 (January) (2015) 6–11. doi:10.1136/bmj.h176.

URL http://dx.doi.org/doi:10.1136/bmj.h176

[7] J. Pereira, Ó. Dı́az, Using health chatbots for behavior change:

A mapping study, Journal of Medical Systems 43 (5) (2019) 135.

doi:10.1007/s10916-019-1237-1.

URL https://doi.org/10.1007/s10916-019-1237-1

[8] C. Marcos, A. González-Ferrer, M. Peleg, C. Cavero, Solving the inter-

operability challenge of a distributed complex patient guidance system:

A data integrator based on HL7’s Virtual Medical Record standard,

Journal of the American Medical Informatics Association 22 (3) (2015)

587–599. doi:10.1093/jamia/ocv003.

[9] Fhir, last accessed 2018/11/07.

URL http://www.hl7.org/FHIR/

[10] J. Ruminski, A. Bujnowski, T. Kocejko, A. Andrushevich, M. Biallas,

R. Kistler, The data exchange between smart glasses and healthcare

information systems using the hl7 fhir standard, in: 2016 9th Inter-

national Conference on Human System Interactions (HSI), 2016, pp.

525–531. doi:10.1109/HSI.2016.7529684.

[11] R. S. Wallace, The elements of AIML style, Alice AI Foundation (2003).

doi:10.1.1.693.3664.

30



[12] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M. L.

Stefanizzi, L. Tarricone, An iot-aware architecture for smart health-

care systems, IEEE Internet of Things Journal 2 (6) (2015) 515–526.

doi:10.1109/JIOT.2015.2417684.

[13] R. Hill, D. Shadija, M. Rezai, Enabling community health care with

microservices, CoRR abs/1709.07037 (2017). arXiv:1709.07037.

URL http://arxiv.org/abs/1709.07037

[14] O. OBrien, R. D. OReilly, Beats-per-minute (bpm): A microservice-

based platform for the monitoring of health related data via activity

trackers, in: 2018 IEEE 20th International Conference on e-Health

Networking, Applications and Services (Healthcom), 2018, pp. 1–7.

doi:10.1109/HealthCom.2018.8531169.

[15] S. Ali, M. G. Kibria, M. A. Jarwar, S. Kumar, I. Chong, Mi-

croservices model in woo based iot platform for depressive disor-

der assistance, in: 2017 International Conference on Information and

Communication Technology Convergence (ICTC), 2017, pp. 864–866.

doi:10.1109/ICTC.2017.8190800.

[16] Your.md, last accessed 2018/09/25.

URL http://www.your.md

[17] ada, last accessed 2019/01/21.

URL https://ada.com/

[18] mediktor, last accessed 2019/01/21.

URL https://www.mediktor.com/en

31



[19] Healthtap, last accessed 2019/01/21.

URL https://www.healthtap.com/

[20] A. Fadhil, S. Gabrielli, Addressing challenges in promoting healthy

lifestyles: The al-chatbot approach, in: Proceedings of the 11th EAI In-

ternational Conference on Pervasive Computing Technologies for Health-

care, PervasiveHealth ’17, ACM, New York, NY, USA, 2017, pp. 261–

265. doi:10.1145/3154862.3154914.

URL http://doi.acm.org/10.1145/3154862.3154914

[21] Healthbot, last accessed 2018/09/25.

URL https://healthbot.in

[22] M. Tschanz, T. L. Dorner, J. Holm, K. Denecke, Using

emma to manage medication, Computer 51 (8) (2018) 18–25.

doi:10.1109/MC.2018.3191254.

[23] A. Augello, M. Scriminaci, S. Gaglio, G. Pilato, A modular framework

for versatile conversational agent building, in: 2011 International Con-

ference on Complex, Intelligent, and Software Intensive Systems, 2011,

pp. 577–582. doi:10.1109/CISIS.2011.95.

[24] M. Yan, P. Castro, P. Cheng, V. Ishakian, Building a Chatbot with

Serverless Computing, Proceedings of the 1st International Work-

shop on Mashups of Things and APIs - MOTA ’16 (2016) 1–

4doi:10.1145/3007203.3007217.

URL http://dl.acm.org/citation.cfm?doid=3007203.3007217

32



[25] A. M. Rahman, A. A. Mamun, A. Islam, Programming challenges

of chatbot: Current and future prospective, in: 2017 IEEE Region

10 Humanitarian Technology Conference (R10-HTC), 2017, pp. 75–78.

doi:10.1109/R10-HTC.2017.8288910.

[26] C. Huang, M. Yang, C. Huang, Y. Chen, M. Wu, K. Chen, A chatbot-

supported smart wireless interactive healthcare system for weight con-

trol and health promotion, in: 2018 IEEE International Conference on

Industrial Engineering and Engineering Management (IEEM), 2018, pp.

1791–1795. doi:10.1109/IEEM.2018.8607399.

[27] N. Lasierra, A. Alesanco, S. Guillén, J. Garćıa, A three stage ontology-

driven solution to provide personalized care to chronic patients at

home, Journal of Biomedical Informatics 46 (3) (2013) 516–529.

doi:10.1016/j.jbi.2013.03.006.

URL http://dx.doi.org/10.1016/j.jbi.2013.03.006

[28] Signal, last accessed 2018/08/21.

URL https://signal.org/

[29] A facade to make using the libsignal-service easy, last accessed

2019/01/11.

URL https://github.com/Turakar/signal4j

[30] A java library for communicating via signal, last accessed 2019/01/11.

URL https://github.com/Turasa/libsignal-service-java

[31] Signal oficial repository, last accessed 2019/01/11.

URL https://github.com/signalapp

33



[32] A bot for signal, last accessed 2019/01/11.

URL https://github.com/nerdclub-tfg/signal-bot

[33] Kibana, last accessed 2019/02/18.

URL https://www.elastic.co/products/kibana

[34] Constitutional law 3/2018 of the 5th december concerning protection of

personal data and guarantee of digital rights, last accessed 2019/03/20.

URL https://www.boe.es/buscar/doc.php?id=BOE-A-2018-16673

[35] Regulation (eu) 2016/679 of the european parliament and of the council

of 27 april 2016, last accessed 2019/03/20.

URL https://eur-lex.europa.eu/eli/reg/2016/679/oj

[36] C. Richardson, F. Smith, Microservices - From Design to Deployment,

Nginx (2016) 80.

[37] Psoriasiscalc, last accessed 2019/01/30.

URL https://play.google.com/store/apps/details?id=org.

dipler.psoriasiscalc.android

[38] Diabetes diagnostics, last accessed 2019/01/30.

URL https://play.google.com/store/apps/details?id=uk.ac.

exeter.DiabetesDiagnostics

34



Profile Needs to ask
Chronic Ob-
structive Pul-
monary Disease
(COPD)

Height, weight, pulse rate, blood pressure, SpO2, FEV1,
glucose, medication, number of cigarettes, patient location,
room temperature, room humidity, health test questionnaire
(COPD specific)

Obesity Height, weight, pulse rate, blood pressure, SpO2, glucose,
medication, liquids quantity, food quantity, body fat, body
water, health test questionnaire (Obesity specific)

Thyroid Disor-
ders

Height, weight, pulse rate, blood pressure, SpO2, temper-
ature, glucose, medication, liquids quantity, food quantity,
health test questionnaire (Thyroid specific)

Ischemic heart
disease (IHD)

Height, weight, pulse rate, blood pressure, SpO2, Glucose,
medication, number of cigarettes, health test questionnaire
(Ischemic specific)

Asthma Height, weight, pulse rate, blood pressure, SpO2, FEV1, Tem-
perature, Glucose, patient location, room temperature, medi-
cation, number of cigarettes, room humidity, health test ques-
tionnaire (asthma specific)

Hypertension
(HTA) or high
blood pressure

Height, weight, pulse rate, blood pressure, SpO2, Glucose,
medication, number of cigarettes, health test questionnaire
(HTA specific)

Osteoporosis Height, weight, medication, health test questionnaire (Cal-
cium), health test questionnaire (Falls)

Heart failure
(HF)

Height, weight, pulse rate, blood pressure, SpO2, medication,
liquids quantity, health test questionnaire (Liquids), health
test questionnaire (HF)

Diabetes melli-
tus

Height, weight, pulse rate, blood pressure, Glucose, medica-
tion, liquids quantity, food quantity, number of cigarettes,
HbA1c, health test questionnaire (Diabetes)

Dyslipidemia Height, weight, pulse rate, blood pressure, medication, num-
ber of cigarettes, health test questionnaire (Dyslipidemia)

Osteoarthritis Height, weight, blood pressure, temperature, medication,
number of cigarettes, health test questionnaire (Osteoarthri-
tis)

Psoriasis Height, weight, pulse rate, medication, patient location, sleep
hours, stress level, health test questionnaire (Psoriasis)

Table 1: Chronic patient profiles with their needs

35



Microservice Tasks
Proxy 1. Pull messages from Signal server

2. Translate the messages into a formatted JSON
3. Send the messages to the API gateway

API gateway 1. Choose the best microservice to send the message to
2. Forward the message to the chosen microservice

Verification Register the user in the chatbot
Personalize Enable or disable the functionalities in the menu
Modify profile Modify personal data
Reminder 1. Check the reminder queue

2. Send the reminders to the users
Unsubscribe Delete all the data related to the user
Specialist 1. Show the specialists list

2. Change the data permissions for the specialists
Patients 1. Show the permissions granted to a specialist

2. Show a summary of the patient’s activity
Register Register, by another user, a new user in the chatbot
Appointment 1. Show the medical appointments

2.Add new medical appointments
3. Modify medical appointments
4. Delete medical appointments
5. Set reminders related to the appointments

Questionnaire 1. Create questionnaires
2. Modify questionnaires
3. Delete questionnaires
4. Fill in questionnaires
5. Generate AIML files based on questionnaires
6. Set reminders related to fill in the questionnaire

Suggestions Receive the feedback from users

Table 2: Proof of concept: generic chatbot

36



Microservice Tasks
Image 1. Store the user’s images in the FHIR database
Record 1. Display the images that are stored in the database
Query Redirect the questions that patients have about their

illnesses to the dermatologists

Table 3: Proof of concept: psoriasis chatbot

37


