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We introduce an active, all-optical method for controlling the intensity and directionality of light

scattering from single nanostructures. The method is based on the coherent interplay between linear light

scattering and second-harmonic generation. The intensity and directionality of scattered light can be

controlled by the phase delay and the relative angle between excitation beams. We discuss the principle of

this coherent control technique and perform numerical model calculations.
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Recent advances in nanofabrication and optical charac-
terization of nanostructuredmaterials have paved theway to
new technology at the nanoscale [1–4]. Optical nanoanten-
nas emerged as promising optoelectronic devices that
enhance the interaction between light and matter [5,6].
For example, directional emission, one of the most charac-
teristic properties of antennas, has been recently demon-
strated at optical frequencies with Yagi-Uda antennas made
of gold elements [7]. In that work, as in most other antenna
designs, the geometrical parameters and the material prop-
erties characterize the antenna performance, which defines
these antennas as passive devices. In the work presented
here we achieve all-optical control of the antenna response
by exploiting the nonlinear optical properties ofmetal nano-
structures. The method makes use of second harmonic
generation (SHG) [8–15], a process where two photons
create a single photon of half the incident wavelength [16].

Because the induced charge distributions at the second-
harmonic (SH) and fundamental frequencies have different
symmetries, SHG provides access to electromagnetic (EM)
modes that cannot be excited by linear scattering (dark
modes). As illustrated in Fig. 1, we exploit the coherent
interaction between the polarization currents generated by
linear scattering and those induced by SHG and demonstrate
that the combined charge distribution can be markedly
asymmetric, thereby opening up the possibility of control-
ling the directionality of radiation. Furthermore, it is
possible to suppress or enhance certain EM modes, which
provides a means to actively control the scattered intensity.

To understand the principle of this coherent control
technique we perform a theoretical model calculation
based on a combination of the Finite-Difference Time-
Domain (FDTD) method [17] and the volume integral
equation [18]. While FDTD is used to compute induced
polarization currents and optical near fields, the volume
integral equation is employed to propagate the near fields
into the far field. In FDTD the linear response of gold is
described by a Drude-Lorentz model [19], and to calculate
the response at the SH frequency, we follow a perturbative

approach, for which the intensity of the exciting field is not
decreased due to SHG (nondepletion regime). We first
perform a linear calculation to determine the EM field

at fundamental wavelength, Eð2�Þ. The SH fields are gen-
erated simultaneously. The update equations are the same
as in the linear case, with the exception that the source

is defined by the second-order polarization vector, Pð�Þ,
instead of the incident field. In centrosymmetric materials
like polycrystalline metals, the induced polarization at the
SH frequency has multiple origins: (i) a dipolar contribu-
tion, which is nonzero at material boundaries, and (ii) a
quadrupolar contribution, which can be enhanced by sur-
face roughness and nanostructuring [20,21]. Both contri-
butions are of the same order of magnitude, originating
from a surface contribution that can be expressed as

Pð�Þ
n ¼ ½�ð2Þ

nnnðEð2�Þ
n Þ2 þ �ð2Þ

nttðEð2�Þ
t Þ2�n

Pð�Þ
t ¼ 2�ð2Þ

tntE
ð2�Þ
n Eð2�Þ

t

(1)

where n and t stand for normal and tangential to the surface
respectively, and �ijk are the nonvanishing components of

the second-order susceptibility tensor. For gold at a wave-

length of 1064 nm we choose �ð2Þ
nnn ¼ 250:0, �ð2Þ

tnt ¼ 3:6,

FIG. 1 (color online). Principle of the coherent control
method. The scattered intensity and direction of a signal beam
is influenced by a control beam of twice the wavelength.
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and �ð2Þ
ntt ¼ 1:0 in units of 3:27� 10�15 cm=V [22]. Pure

bulk nonlinearities are negligible compared to surface
nonlinearities [13,22]. Furthermore, the inclusion of bulk
contributions would not lead to the excitation of new
modes and therefore not affect our symmetry considera-
tions. Our code has been tested against analytical results
and proven to yield correct results (not shown) [23].

To simplify our calculations we chose a cylindrical
symmetry (infinite gold nanowire) and p-polarized fields.
The problem can then be treated by a two-dimensional
FDTD code. This choice does not affect the generality of

the coherent control method discussed in this study. The
gold nanowire has a radius of 50 nm and is surrounded
by air. It is excited by a low-intensity field of wavelength
� ¼ 532 nm (the signal) and by a second high-intensity
field of wavelength 2� (the control). We are interested in
the properties of light radiated at �. When the nanowire is
excited by the signal beam only, the optical response is
characterized by an electric dipole pointing along the x
axis. The left panel of Fig. 2(a) provides a sketch of the
near-field charge distribution. It has an odd symmetry, with
two poles defining the electric field lines. The right panel of
Fig. 2(a) shows the corresponding radiation pattern. It
features two lobes pointing forwards (� ¼ 90�) and back-
wards (� ¼ 270�). A different situation is encountered if
the nanowire is excited by SHG, that is, by the control
beam [Fig. 2(b)]. The charge distribution now has even
parity (left panel) with radiation lobes that are directed
towards the same side (right panel). As discussed before,
SHG in metal nanostructures has different origins and our
model takes both nonlinear dipole and quadrupole terms
into account, that is, Fig. 2(b) is the result of both terms.

Next, we excite the gold nanorod by both the signal field
and the control field [Fig. 2(c)]. The interference between
the two terms gives rise to an asymmetric polarization
charge distribution (left panel) and an asymmetric radia-
tion pattern (right panel). For a pronounced effect, the
contributions from signal and control must be of similar
magnitude. For the gold nanorod considered here we adjust
the excitation fields of signal and control as Econtrol ¼
�Esignal, where �� 105 expði��Þ. The results shown in

Fig. 2(c) have been calculated for zero phase delay (� ¼ 0)
and it is evident that the charge distribution and the radia-
tion pattern will depend on �. The asymmetry in the
radiation pattern shown in Fig. 2(c) is a consequence of
retardation. Note that the excitation fields Esignal and

Econtrol have different frequencies and that their phases
need to be locked.

We now investigate the influence of � on the direction-
ality and the intensity of scattered light at wavelength �.
Figure 3(a) shows the radiation patterns for three different
phase delays. From these far-field maps we calculate
the directionality, defined as the ratio of maximum inten-
sity emitted to the left to maximum intensity emitted to
the right. As shown in Fig. 3(b), the directionality can be

tuned over 4 orders of magnitude by varying the phase
delay �.
Figure 3(c) shows the radiation efficiency as a function

of �, defined as the total scattered power in the presence of
both signal and control beams normalized with the scat-
tered power in absence of the control plus the scattered
power in absence of the signal. The curve indicates that the
radiation efficiency is not affected by the phase delay. In
other words, � influences the directionality but leaves the
total area covered by the radiation patterns unaffected. The
ability to steer the radiation with a dynamic range of
4 orders of magnitude without introducing any losses is
unique. Similar results are traditionally achieved with
phased-array antennas, or with multielement antennas
(e.g., Yagi-Uda) but with a considerably larger footprint
and complexity. Note that the nanowire considered here is
not an optimized geometry and that much stronger effects
can be achieved with suitably designed antennas [24].
Interestingly, we can find excitation conditions for

which the total scattered power can be suppressed or
enhanced. To demonstrate such a situation we excite the

FIG. 2 (color online). Charge distributions (left) and radiation
patterns (right) of a gold nanowire excited under different con-
ditions. (a) Linear scattering of a signal beam of wavelength �.
(b) Second-harmonic generation with a control beam of wave-
length 2�. (c) Excitation by both signal and control beams.
The linearly scattered signal field and the second-harmonic
control field interfere and give rise to an asymmetric charge
and radiation pattern.
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antenna with orthogonal beams, that is, control and signal
beams are incident from angles that differ by 90 degrees.
As shown in Figs. 4(a) and 4(b), this configuration has
almost no effect on the directionality. The radiation pattern
remains symmetric for all phase delays �. However, the
area of the radiation patterns and hence the radiation
efficiency changes drastically [Fig. 4(a)]. While the large

area of the ‘‘fly’’-like pattern at � ¼ 0:5 rapidly reduces
when increasing the phase delay to � ¼ 1:5, the direction-
ality remains unaltered. In contrast, the radiation efficiency
oscillates sinusoidally, reaching values either larger or
smaller than one [see Fig. 4(c)]. Thus, depending on the
phase delay and the angles of incidence we are able to
suppress or enhance light scattering. The reason why light
scattering can be suppressed is that an induced charge
density can be generated having a negligible dipole com-
ponent, that is, the charge distribution corresponds to a
dark mode [25–29].
To better understand why in the collinear case the phase

delay � only affects the directionality (Fig. 3) and in the
orthogonal case it only affects the radiation efficiency
(Fig. 4) we perform calculations as a function of the angle
’ between the incident beams. For this purpose we keep
the control beam angle fixed (normal incidence) and adjust
the phase delay to � ¼ 0:5. The calculated radiation effi-
ciency, shown in Fig. 5, exhibits a complicated behavior
with peaks and dips, which arise from the interactions

between the different �ð2Þ contributions, namely the linear
and nonlinear dipole interactions and the quadrupole inter-
action. To illustrate the contribution of the quadrupole term
we implemented a simple model of two interacting dipoles
(one of them fixed, the other being rotated with angle ’).
This model accounts for the interaction between the linear
dipole mode and the nonlinear dipole mode [30,31]. The
result is shown as the thick red curve in Fig. 5. Evidently,
constructive and destructive dipole-dipole interactions
cannot explain our results, the disagreement being most
pronounced for angles ’ ¼ 135� and ’ ¼ 315� (see blue
shaded areas in Fig. 5). While for ’ ¼ 135� the dipole-
dipole response and the full calculation display similar
radiation patterns, the corresponding radiation efficiencies
are markedly different: the dipole-dipole model predicts

FIG. 3 (color online). Control of radiation efficiency and
directionality by phase delay �. Signal and control beams are
collinear. (a) Radiation patterns for three different �.
(b) Directionality as a function of �. (c) Normalized total
scattered power as a function of �. See main text for definitions.
The arrows in the inset represent the induced linear dipole (LD),
nonlinear dipole (NLD), and nonlinear quadrupole (NLQ).

FIG. 4 (color online). Similar study to the one shown in Fig. 3,
but with signal and control beams aligned orthogonally.

FIG. 5 (color online). Radiation efficiency as a function of the
signal beam incidence angle, � ¼ 0:5. The solid thick red line
represents the calculated far-field efficiency of two interacting
electric dipoles (see text for details).
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attenuation whereas the full calculation yields an enhance-
ment of the radiation efficiency. For ’ ¼ 315� we find the
opposite scenario. Thus, the coherent control mechanism
exploited in this work depends on the specific symmetry of
the second-order nonlinear susceptibility and on the rela-
tive magnitude of its components. In Fig. 3, the control
beam breaks the charge symmetry induced by the signal
beam, but the induced modes (linear dipole, nonlinear
dipole, and quadrupole) remain orthogonal. This is the
reason why the radiation efficiency is not affected by the
phase delay �. For the situation in Fig. 4, on the other hand,
the linear dipole and the nonlinear dipole are not orthogo-
nal, which means that the total dipole moment can be
enhanced or suppressed, thereby affecting the radiation
efficiency. None of the results involving quadrupole fields
are achievable with a purely linear scattering approach
[32,33]. A true dark mode cannot be excited by linear
excitation; however, it can be excited through SHG [34].
In practice, retardation effects make it possible to excite
quadrupole modes even with linear excitation, especially
for larger particle sizes. However, SHG provides a means
for much more efficient excitation of dark modes [34].

In conclusion, we introduced a method for coherent
control of light scattering by nanoparticles. A control
beam ‘‘writes’’ a polarization charge distribution into the
scattering object via SHG, whereas a signal beam then
interacts with this charge distribution. The coherent inter-
action between SHG from the control beam and linear
scattering from the signal beam gives rise to directional
radiation. The directionality and radiation efficiency can be
tuned by varying the phase delay � between control and
signal beams. The theoretical results presented in this work
can be experimentally tested using standard pump-probe
spectroscopy with a fixed phase relation between pump and
probe pulses. Experimentally, a homogeneous environment
can be achieved by depositing nanoparticles on a dielectric
substrate and using index matching liquids for coverage.
The concept developed here is neither limited to simple
geometries nor metallic materials. The work opens the
door for engineering the surface charge density of nano-
structures, which can be employed in spectroscopy when
nondipolar transitions take place [35], and for sensing
using localized surface plasmon resonances [34].
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