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Disorder is more the rule than the exception in natural and synthetic materials. Nonetheless, wave
propagation within inhomogeneously disordered materials has received scant attention. We combine
microwave experiments and theory to find the spatial variation of generic wave propagation quantities in
inhomogeneously disordered materials. We demonstrate that wave statistics within samples of any
dimension are independent of the detailed structure of a material and depend only on the net strengths of
distributed scattering and reflection between the observation point and each of the boundaries.
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Coherent waves launched into a random sample are
scrambled in a haze of scattered fields that is manifested
in the speckle pattern of scattered light. This makes
disordered materials opaque and impairs communication,
imaging, and transport. Studies of transport in random
systems have focused on disordered materials with uniform
scattering strength throughout the medium and possible
surface reflection [1–8]. For example, Brownian motion of
particles in a homogeneous liquid was shown by Einstein to
be due to randomly fluctuating forces on microparticles
by molecules in thermal equilibrium [9], while, in
Chandrahekar’s radiative transfer model, the rate of particle
scattering out of or into a particular direction is homo-
geneous [10]. In quantum scattering, the suppression of
electron diffusion was first studied in the Anderson tight-
binding model, in which the distributions of electron energy
at each lattice site are the same [11]. Localization of radio
waves was first found in calculations for random wave-
guideswith a spatially homogeneous distribution of disorder
in the dielectric constant [12]. Such studies have led to a deep
understanding of ballistic and diffusive propagation and of
Anderson localization. However, the paradigm of homo-
geneously disordered materials does not represent key
elements of our surroundings, which are generally inhomo-
geneously disordered with a spatially varying scattering
strength and multiple interfaces within the bulk of the
material and at the surface.Understandingwavepropagation
in such materials would enable a wide range of applications
in diverse fields, including medical imaging [13], lidar and
remote sensing [14], astrophysics [10], telecommunication
[15], electronics [16,17], phononics [18–20], invisibility
cloaking [21], and photothermal therapy [22].
In this Letter, we go beyond canonical homogeneously

disordered materials. We begin by considering a simple
departure from the traditional uniformly disordered

material—the insertion of a single reflector into a uniformly
disordered sample. We discover an invariance principle for
such materials: wave statistics at any point of observation is
invariant with regard to displacement of a reflector along
the length of the sample, apart from a discontinuity that
arises when the reflector crosses that point. This leads
to the discovery of an even broader invariance principle.
By that principle we obtain a full description of wave
propagation and statistics for general inhomogeneously
disordered materials with multiple embedded reflectors or
tunneling barriers and a longitudinally varying transport
mean free path lðxÞ.
We carry out microwave measurements in a uniformly

disordered one-dimensional (1D) open medium of length L
with a reflector at depth x0. We consider the intensity at a
point x, Iðx; x0Þ, which is normalized so that its value at the
output is equal to the flux transmission coefficient for an
ensemble of disorder configurations. The results of mea-
surements of the ensemble averages hln Iðx; x0Þi, hIðx; x0Þi
and the probability density function Pðln Iðx; x0ÞÞ are
explained using random matrix theory (RMT) [5,23,24]
and supersymmetry field theory (SUSY) [25,26]. We
consider Pðln IÞ rather than PðIÞ since ln I self-averages
so that a comparison to theory can be made with mea-
surements on fewer disorder configurations. RMT and
SUSY address wave propagation from different perspec-
tives and together provide a universal description for it.
We find that the average and the probability density

function of all local quantities that can be expressed in
terms of the Green function of the wave equation share a
common feature with regard to their variation with x0:
when x is fixed, but x0 is changed, a quantity Oðx; x0Þ
representative of waves in a disordered ensemble is
unchanged as long as x remains in front of or behind
the reflector, and changes discontinuously from Oðx; 0Þ to
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Oðx;LÞwhen x0 crosses x. This behavior is encapsulated in
the following identity proved below:

Oðx; x0Þ ¼ θðx0 − xÞOðx;LÞ þ θðx − x0ÞOðx; 0Þ; ð1Þ

where θ is the Heaviside function. This allows us to find the
spatial structure of the statistics of intensity and of the
intensity in transmission eigenchannels [27–31]. The
impact of distributed scattering and discrete reflection on
the profile of hln Ii is additive, while the profile of hIi is
determined by the position-dependent diffusion coefficient
Dðx; x0Þ, which is a function of the strength of distributed
scattering, discrete reflection, and the relative positions of x
and x0. Dðx; x0Þ not only satisfies Eq. (1), but also obeys a
scaling law,

Dðx; x0Þ=D0 ¼ D∞ðλðx; x0ÞÞ; ð2Þ

once it is rescaled by the Boltzmann diffusion coefficient
D0. Here x and all parameters describing the inhomoge-
neity enter into the scaling factor λðx; x0Þ, and the scaling
function D∞ðλÞ describes propagation in both homo-
geneously and inhomogeneously disordered materials.
These findings go beyond traditional studies that address
the interplay between surface reflection and particle scat-
tering, which ignore wave interference [3,10,32–35]. The
results are surprising since the field at x results from the
coherent superposition of waves arriving at x, which is
inevitably affected by the specific location of a reflector, x0,
placed in front of or behind x. Finally, the principle applies
not only in 1D, but also in quasi-1D and higher dimensions.
Measurements are carried out with the use of a vector

network analyzer in a single-mode rectangular copper
waveguide containing ceramic slabs of thickness 6.6 mm
and Teflon U-channel air spacers with thickness randomly
chosen from three values: 1.27, 2.55, and 3.82 cm. The
sample of length L ¼ 86.0 cm is contained in a copper
waveguide with a cutoff frequency of 6.56 GHz. Successive
sample elements are selected randomly with a probability
of 1=2 for the ceramic slabs and 1=6 for each thickness of
the U-channel elements. Spectra are taken for ensembles of

100 random configurations without a reflector and with a
reflector placed at relative depths of x0=L ¼ 0, 1=4, 3=4,
and 1. The reflector is a thin copper plate covering 76% of
the waveguide cross section with transmission coefficient
Γ ¼ 0.36 in the empty waveguide.
The wave is detected by an antenna inserted sequentially

into a series of holes of diameter 3.17 mm spaced by 1 cm
along the waveguide. Field spectra are taken over the
frequency interval 10.00–10.70GHz inwhich thewaveguide
supports a single mode. The incident intensity I0 is found by
fitting the expression for the intensity of counterpropagating
waves: I0½1þ r2 þ 2r cosð2kxþ φÞ� in a 4-cm-long seg-
ment before the random sample to determine the incident
field. Here r is the magnitude of the reflected field, k is the
wave number determined from waveguide dispersion, and φ
is the phase. We undo the impact of absorption using the
method described in the Supplemental Material [36].
Measurements of intensity at each position are normalized
by measurements in the empty waveguide with absorbers at
its ends so that the sensitivity is uniform at all positions.
Measured profiles of hln Iðx; x0Þi for samples without a

reflector and with a reflector at x0 ¼ L=4 or 3L=4, in which
the impact of absorption is removed are plotted in Fig. 1(a).
hln Ii decreases linearly in front of the reflector and
overlaps the profile measured in samples without a reflec-
tor, but it drops sharply behind the reflector and then
continues to fall with the same slope as before the reflector.
The profiles in samples with a reflector at x0 ¼ L=4 and
3L=4 are identical in the region in front of (x < L=4) and
behind (x > 3L=4) the reflectors, demonstrating that the
size of the drop is independent of x0. Away from x0, the
slope of hln Ii in all regions is the same as the slope in a
sample without a reflector. When x is rescaled by L, this
gives a slope of magnitude s ¼ L=l ¼ 3.51 [24] corre-
sponding to a mean free path l ¼ 24.5 cm. In the following
and in the Supplemental Material [36], we use RMT to
show

hln Iðx; x0Þi ¼
�−x=l for x < x0
−x=lþ lnΓ for x > x0

: ð3Þ
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FIG. 1. Measurements of and theoretical results for Oðx; x0Þ ¼ ðaÞhln Iðx; x0Þi, and (b) hIðx; x0Þi, and (c) Pðln Ið0.5L; x0ÞÞ in 1D
samples with a reflector at different x0 or without a reflector are in good agreement. They all exhibit the invariance and discontinuity
with regard to displacement of the reflector, and are identical to Oððx;Lð0ÞÞ for x < x0 (x > x0).
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The discontinuity at x0 is equal to the logarithm of the
transmission coefficient Γ of the reflector. This analytic
result is plotted in Fig. 1(a), and seen to be in excellent
agreement with measurements. Equation (3) is a special
case of the general result of Eq. (1). For x < x0 (x > x0),
hln Iðx; x0Þi is the same as when the reflector is at the
output (input).
Measured profiles of hIðx; x0Þi for samples without a

reflector and with a reflector at x0 ¼ L=4 or 3L=4 are
plotted in Fig. 1(b). The profiles for the reflector at x0 ¼
L=4 and 3L=4 still overlap for x < L=4 and x > 3L=4, as is
the case for hln Ii. Though hln Iðx; x0Þi in front of the
reflectors (x < L=4) is not affected by the presence of the
reflector, hIðx; x0Þi increases significantly for x < L=4
relative to the profile for samples without a reflector.
Using SUSY, we show this is another application of Eq. (1),

hIðx; x0Þi ¼ θðx0 − xÞhIðx;LÞi þ θðx − x0ÞhIðx; 0Þi; ð4Þ

where

hIðx; 0ðLÞÞi ¼ hIð0; 0ðLÞÞi − ½hIð0; 0Þi þ hIð0;LÞi − 2�

×
erf

� ffiffiffiffiffiffiffi
sL
Lþζ

q
2x−ðL∓ζÞ

2L

�
− erf
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� :

ð5Þ

Here ζ is a length determined by Γ and hIð0; 0Þi≡
hIð0þ; 0Þi. From Eq. (5), we find hIðx;0Þi þhIðL−x;LÞi¼
2. This is in accordance with the sum of intensity at a point
due to all incident channels being equal to the local density
of states with its average unaffected by the presence of a
reflector. Good agreement of Eqs. (4) and (5) with
measurements is found for s ¼ 3.51, ζ ¼ 0.33L [36],
hIð0; 0Þi ¼ 1.61, and hIð0;LÞi ¼ 1.92, with the last two
parameters calculated using Eq. (10) below. For samples
without a reflector, ζ vanishes. In this case, we find with
the use of Eq. (10) that hIð0; 0Þi ¼ hIð0;LÞi ¼ 1.86.
Substituting this into Eq. (5) gives hIðx; 0Þi ¼ hIðx;LÞiwith
a profile in good agreement with measurements.
Measurements of Pðln IðL=2; x0ÞÞ at x0=L ¼ 0, 1=4,

3=4, and 1 are shown in Fig. 1(c) and compared to
RMT calculations for Pðln IðL=2; 0ðLÞÞÞ. We see that
the measurements of Pðln IÞ for x0=L ¼ 0; 1=4 coincide
with the theoretical result for Pðln IðL=2; 0ÞÞ, while, for
x0=L ¼ 1; 3=4, the measurements match the theoretical
result for Pðln IðL=2;LÞÞ. This is in accordance with
Eq. (1), which predicts that Pðln IðL=2; x0ÞÞ is invariant
with regard to the displacement of the reflector as long as
θðx − x0Þ does not change, but changes suddenly when x0
crosses L=2.
To study universal aspects of hIi, we show below that

−∂xDðx; x0Þ∂xhIi ¼ 0 ð6Þ

in the interior of the medium. This differs from the standard
diffusion equation in the position dependence of the dif-
fusion coefficient, which is the result of the spatial variation
of localization effects in open media [25,26,51–53].

Dðx; x0Þ
D0

¼ e−λðx;x0Þ;

λðx; x0Þ ¼
( ðxþζÞðL−xÞ

lðLþζÞ ; x > x0
xðLþζ−xÞ
lðLþζÞ ; x < x0

; ð7Þ

where λ is essentially the probability density of return
obtained from the diffusion equation with diffusion coef-
ficientD0. Because λ for x > x0 (x < x0) is the same aswhen
x0 ¼ 0 (L), it obeys Eq. (1), and so does D.
Intensity fluctuations are too large to allow for an

accurate experimental determination of Dðx; x0Þ with data
from 100 configurations. Thus we perform simulations
using the experimental values for l, L, and Γ, and compute
Dðx; x0Þ from −hTi=∂xhIi, which is the generalized Fick’s
law. Here hTi is the ensemble-averaged transmission
coefficient, which is equal to the flux. Simulation results
for x0 ¼ L=4 and 3L=4 are shown in Fig. 2(a) and are in
good agreement with the analytic result of Eq. (7). We next
use the expression for λ given above to map x to λðx; x0Þ.
For samples without a reflector, we set ζ ¼ 0 so that
λ ¼ xðL − xÞ=ðlLÞ. The simulated profile Dðx; x0Þ=D0

for samples with different x0 or for samples without a
reflector collapse to a single curve:D∞ðλÞ ¼ e−λ, as shown
in Fig. 2(b). This scaling law was found previously for
uniformly disordered materials [26].
We sketch the analytic derivations. The full theory is

provided in a self-contained manner in the Supplemental
Material [36]. We first consider quasi-1D but locally two-
dimensional (2D) random media and then extrapolate the
final results from quasi-1D to 1D. The dielectric constant
ϵðrÞ exhibits independent Gaussian fluctuations around
unity at every point r≡ ðx; yÞ. The reflector is modeled by
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FIG. 2. (a) Simulation and analytic results for 1D samples with a
reflector at different x0 show that the profiles Dðx; x0Þ overlap
Dðx;Lð0ÞÞ for x < x0 (x > x0) and display a discontinuity at x0.
(b) Uponmapping x to λðx; x0Þ, simulated profiles ofDðx; x0Þ=D0

(symbols) for samples with different x0 or without a reflector
collapse to a single curve: D∞ðλÞ ¼ e−λ (solid line).
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a layer of high dielectric constant. The propagation of a
wave of angular frequency ω is described by the retarded
(advanced) Green function GRðAÞ≡ ½∇2þω2ϵðrÞ�i0þ�−1.
Using the SUSY technique [54], GRðAÞ can be expressed in
terms of a path integral over a supervector field. Since a local
quantity such as Iðx; x0Þ can be expressed in terms ofGRðAÞ,
upon performing the disorder average, one can express
Oðx; x0Þ in terms of a functional integral over a supermatrix
fieldQðxÞ [25,26]. Upon rescaling x by 4ξ where ξ ¼ πνD0

with ν the density of states per unit length, we find

Oðx;x0Þ¼
Z

DQðxÞMOðQðxÞÞ

×

�
WðQL;QðxÞ; L̃−xÞW̃ðQðxÞ;Λ;x;x0Þ; x> x0;

W̃ðQL;QðxÞ; L̃−x;x0−xÞWðQðxÞ;Λ;xÞ; x< x0;

ð8Þ

with L̃ ¼ L=ð4ξÞ. Different observablesO differ only in the
functionalMO½QðxÞ� and in the boundary constraintQðLÞ ¼
QL [Qð0Þ is a constant matrix Λ]. HereW is the heat kernel
and

W̃ðQ;Q0; x1; x2Þ≡
Z

DQ−DQþeγstrðQ−QþÞ

×WðQ;Qþ; x1 − x2ÞWðQ−; Q0; x2Þ;
for x1 > x2: ð9Þ

Here −γstrðQ−QþÞ is the action accounting for wave
tunneling through the reflector, with γ depending on ω, Γ
and the cross sectional area, and str represents the supertrace.
Using Eq. (8), we find that both ∂x0Oðx; x0 < xÞ and
∂x0Oðx; x0 > xÞ vanish [36]. This justifies Eq. (1).
Applying Eq. (8) to the spatial correlator, Yðx; x0Þ≡

hR R
dydy0GAðr; r0ÞGRðr0; rÞi, we find that it is the funda-

mental solution of the generalized diffusion equation,
−∂xDðx; x0Þ∂xY ¼ δðx − x0Þ, from which Eq. (6) follows.
We also find D∞ðλÞ¼1−λþOðλ3Þ for λ ≪ 1 correspond-
ing to weakly localized waves, with λ given by Eq. (7) and

ζ ¼ ξ=ð4γÞ. This perturbative expansion of D∞ is exactly
the same for samples without a reflector [26], and the
presence of a reflector at x0 only enters into λ. The scaling
behavior described by Eq. (2) is expected to hold for all λ.
Thus we can apply the results for localized samples without
a reflector [26] to the present case. This gives D∞ ≈ e−λ

for λ≳ 1 and Dðx; x0Þ ¼ D0e−λðx;x0Þ in 1D. Solving Eq. (6)
gives Eq. (5).

PðlnIðx;x0ÞÞ¼
ZZ

2π

0

dθldθr
ð2πÞ2

ZZ
2π

0

dμldμr
ð2πÞ2

ZZ
∞

0

dλldλr

×pslðλlÞpsrðλrÞδðlnIðx;x0Þ− lnIðx;fλ;θ;μgÞÞ:
ð10Þ

Here Iðx; fλ; θ; μgÞ is the expression for intensity in the
polar representation [5]. The parameters θlðrÞ; μlðrÞ are
uniformly distributed over ½0; 2π�, and λlðrÞ is distributed
according to pslðsrÞðλlðrÞÞ [55,56] with sl ¼ x=l [sr ¼
ðL − xÞ=l]. The explicit forms of Iðx; fλ; θ; μgÞ and
pslðsrÞ are given in the Supplemental Material [36]. From
Eq. (10), one may obtain the statistics of any function of
intensity. It gives the values hIð0; 0ðLÞÞi in Eq. (5) and
Pðln IÞ at x ¼ L=2 plotted in Fig. 1(c) and the analytic
expression of Eq. (3).
In general, inhomogeneity arise from multiple segments

with different scattering strength or a smoothly varying
mean free path, and multiple embedded reflectors. In this
case, we map x to η ¼ ηðxÞ ¼ R

x
0 ½dx0=lðx0Þ� [ηL ¼ ηðLÞ].

A generic average quantity assumes the form Oðη; fηigÞ,
where fηig are the coordinates of interfaces or reflectors.
Using SUSY, we find

∀ j∶ ∂ηjOðη; fηigÞ ¼ 0; if and only if ηj ≠ η: ð11Þ

Thus O is invariant with regard to arbitrary shuffling of
interfaces or reflectors, as long as they do not cross η. This
generalizes Eq. (1). Indeed, Eq. (1) has an equivalent form,
namely, ∂x0Oðx; x0Þ ¼ 0 if and only if x0 ≠ x, which is a
special case of Eq. (11).
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FIG. 3. Simulations for three ensembles, two consisting of 1D samples composed of two segments of different scattering strength (red
dashed and green dash-dotted curves) and one of uniformly disordered samples (blue solid curve). In all samples, ηL ¼ 6. Upon
mapping x to ηðxÞ, the profiles of (a, inset) hln Ii, (b, inset) hIi, and (c) Pðln IÞ in different ensembles collapse to a single curve
(main panel).
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For inhomogeneity arising solely from variations in
scattering strength, Eq. (11) implies that the η dependence
of O is identical to that in a uniformly disordered sample.
For hln Ii, we find using RMT that hln Ii ¼ −η. For hIi, we
find using SUSY that −∂ηDðηÞ∂ηhIi ¼ δðη − η0Þ with
DðηÞ ¼ e−ηðηL−ηÞ=ηL , which gives

hIðηÞi¼hIð0Þi−2½hIð0Þi−1�
erfð2η−ηL

2
ffiffiffiffi
ηL

p Þ−erfð−
ffiffiffiffi
ηL

p
2
Þ

erfð
ffiffiffiffi
ηL

p
2
Þ−erfð−

ffiffiffiffi
ηL

p
2
Þ
: ð12Þ

In Fig. 3, we compare numerical results for intensity
statistics in samples with ηL ¼ 6 but different variations
of lðxÞ. The spatial profiles of hln IðηÞi and hIðηÞi and the
probability distributions of ln I of any value of η are the
same in different samples.
The invariance principle for high-dimensional diffusive

samples, in which nonuniformity in scattering arises either
from an embedded reflector or a spatially varying mean free
path, is demonstrated theoretically in the Supplemental
Material [36]. In Fig. 4, we compare numerical results for
the average longitudinal profile of energy within the
sample, denoted WτðxÞ, normalized so that Wτðx¼LÞ¼τ
[28,30], in two ensembles consisting of 1000 samples with
channel number N ¼ 80, aspect ratio 2, ηL ¼ 5, and the
scaling conductance g ¼ N=ηL ¼ 16. The mean free path is
uniform in one ensemble of samples but varies with x in the
other. The profiles in two different ensembles overlap upon
mapping x to ηðxÞ.
The invariance principle allows us to shift the focus from

the surface to the interior of the sample and from homo-
geneous to inhomogeneous disorder. We have demon-
strated its application to intensity statistics in a general
dimension and to controlling the spatial structure of trans-
mission eigenchannels. Our findings open a door to
engineering the profiles of wave energy and its flow inside
inhomogeneously disordered materials.
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