
lable at ScienceDirect

Forensic Science International: Digital Investigation 32 (2020) 300917
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2020 EU e Proceedings of the Seventh Annual DFRWS Europe
On Challenges in Verifying Trusted Executable Files in Memory
Forensics

Daniel Uroz, Ricardo J. Rodríguez*

Dept. of Computer Science and Systems Engineering, University of Zaragoza, Spain
a r t i c l e i n f o

Article history:

Keywords:
memory forensics
Authenticode
Digital signature verification
Code signing
Volatility
* Corresponding author.
E-mail address: rjrodriguez@unizar.es (R.J. Rodrígu

https://doi.org/10.1016/j.fsidi.2020.300917
2666-2817/© 2020 The Author(s). Published by Elsevie
).
a b s t r a c t

Memory forensics is a fundamental step in any security incident response process, especially in computer
systemswheremalwaremay be present. Thememory of the system is acquired and then analyzed, looking
for facts about the security incident. To remain stealthy and undetected in computer systems, malware are
abusing the code signing technology, which helps to establish trust in computer software. Intuitively, a
memory forensic analyst can think of code signing as a preliminary step to prioritize the list of processes to
analyze. However, amemory dump does not contain an exact copyof an executable file (thefile as stored in
disk) and thus code signingmay be useless in this context. In this paper, we investigate the limitations that
memory forensics imposes to the digital signature verification process ofWindowsPE signed files obtained
from a memory dump. These limitations are data incompleteness, data changes caused by relocation,
catalog-signed files, and executable file and process inconsistencies. We also discuss solutions to these
limitations. Moreover, we have developed a Volatility plugin named sigcheck that recovers executable
files from a memory dump and computes its digital signature (if feasible). We tested it on Windows 7 x86
andx64memorydumps.Our experiments showed that the success rate is low, especiallywhen thememory
is acquired from a system that has been running for a long time.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A common kind of security incident is caused by the presence of
malicious software (malware) in a system. As part of a security inci-
dent response process, computer and network forensics becomes a
fundamental step during the detection and analysis stage. Anoma-
lous or unauthorized activity performed by malware in a compro-
mised systemcanbedetected through the analysis of both thedevice
drive and the memory of the system. Disk forensics is the part of
forensics focused on the analysis of device drives. On the other hand,
memory forensics focuses on theanalysis of the data contained in the
memory of the system under study (Ligh et al., 2014).

Although we normally have both possibilities, there are situa-
tions where the access to the physical device drives is difficult to
accomplish (for instance, in Cloud computing). Furthermore, the
current storage capacity in disk devices make the analysis of
memory content (in the order of magnitude of gigabytes) a more
affordable task that the analysis of disk content (in the order of
magnitude of terabytes), as well as facilitate the initial triage.
ez).

r Ltd. This is an open access article
Considering these facts, in this paper we focus onmemory forensics.
Memory forensics is usually carried out capturing the current

state of the system's memory and dumping it into disk as a snap-
shot file. This file is also known as memory dump. A memory dump
can then be taken offsite to analyze it with dedicated software such
as Volatility (Walters and Petroni, 2007), searching for facts about
the security incident.

A memory dump contains tons of data that might be of interest
for analysis. Among other things, it contains a snapshot of the
processes in execution, as well as other system information such as
logged users, open files, or open network connections at the time of
memory acquisition. Note that the memory state can be inconsis-
tent if it was acquired in a live system, since the system itself
evolves over time and system objects might be created or destroyed
during the acquisition process. To assess the reliability of analysis
results, the use of the temporal dimension in memory forensics has
been recently proposed (Pagani et al., 2019).

Code signing helps to establish trust in computer software, since
it allows to authenticate the software publisher and to guarantee
code integrity through the validation of the digital signature ship-
ped within the software (Parno et al., 2010). Several operating
systems rely on code signing to warn the users about the poten-
tially harmful actions that a piece of software may perform. For
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rjrodriguez@unizar.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.300917&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.300917
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2020.300917


D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917S2
instance, the execution of a properly signed application in Win-
dows avoids any alert box informing the user about the possible
harmful consequences of its execution. Under this premise, mal-
ware developers use digital signatures to deceive users to execute
their malware and thus compromise their systems, thus subverting
the trust in digitally signed software.

Although the use of digital signatures in malware is not a
growing trend (Ugarte-Pedrero et al., 2019; Rivera et al., 2019),
there are documented cases of signed malware samples in the wild
(such as Stuxnet (Langner, 2011), Duqu, or Flame, to name a few).
Malware developers use trusted certificates that were either
compromised or issued directly to them to sign their software. As
the primary defense against these threats, we rely mainly on the
revocation process of the abused certificates done by the certifi-
cation authorities (CAs).

Intuitively, a forensic analyst can think of code signing as a pre-
liminary step to prioritize the list of suspicious processes that need
further analysis. The rationale for this thought is correct, but unfor-
tunately is not very fruitful when inspecting a memory dump: a
process is an inaccurate representation of the executable files1 in
memory, since parts of the binary codemay be paged out of memory
or may change at acquisition time (Case and Richard, 2017).
Furthermore, software defenses such as address space layout
randomization (Bhatkar et al., 2003; PaX Team) or position-
independent code may change the memory references of certain bi-
narycode instructions. But, towhatextent can these issuesnegatively
affect the signature computation? Is there any other issues affecting
it? Are there anyways to overcome these problems? These questions
havemotivatedour research.Ourmainresearchgoal in thispaper is to
explorewhethercodesigningbringsanybenefit tomemory forensics.

Contributions. In this paper, we describe the limitations that
memory forensics imposes to the digital signature verification
process of Windows PE signed files. In particular, Authenticode is
the code signing standard designed to digitally sign files in Win-
dows, introduced in Windows 2000 (Microsoft Corporation, 2008).
We focused on Windows since it is still the preferred target of
malware authors (AV-TEST, 2019). We have also developed a
Volatility plugin to verify digital signatures in a memory dump,
named sigcheck (as the tool provided by Microsoft for verifying
digital signatures on binary files (Russinovich, 2019)). When
feasible, our plugin works on kernel-space file objects that repre-
sent executable files, computing the signature and verifying the
certificate chain attached to the digital signature. To assess the
reliability of our plugin, we tested it in different scenarios and in
signed malware samples. We concluded that the longer a system
runs, the fewer file objects can be acquired. Hence, given the cur-
rent limitations (data incompleteness, data changes caused by
relocation, catalog-signed files, and executable file and process
inconsistencies), the verification of digitally-signed files does not
bring any benefit to memory forensics.

Structure of the paper. The structure of this paper is as follows.
Section 2 gives background on previous concepts. In Section 3, we
describe in detail the plugin sigcheck that we have developed.
Section 4 details the experimentation and discussion of results. Sec-
tion 5 is devoted to explaining the limitations imposed by memory
forensics and possible solutions. Section 6 presents related work.
Finally, Section7concludes thepaperandstatesplans for futurework.

2. Previous concepts

In this section, we briefly describe first the Microsoft
1 In this paper, we refer as executable file to the representation of a file as in disk
and as image file to the representation of a file as in memory.
Authenticode code-signing technology and then we explain the
internal structures used by the Windows operating system (OS) to
represent files.

2.1. Microsoft Authenticode

Microsoft Authenticode is the code-signing standard used by
Windows to digitally sign files that adopt the Windows portable
executable (PE) format (Microsoft Corporation, 2008), which in-
cludes executables (files with extension.exe), dynamically loaded
libraries (.dll), and drivers (.sys), among other files.

Based on Public-Key Cryptography Standard (PKCS) #7 (Kaliski,
1998) and X.509 version 3 certificates (code-signing certificates
issued by certificate authorities), it allows to bind an Authenticode-
signed binary to the identity of a software publisher and to guar-
antee the integrity of the file content.

The Authenticode signature of a PE file follows the PKCS#7
structure that includes the signature (the hash value of the PE file), a
timestamp (optional) and the certificate chain. Roughly speaking, the
Authenticode signature is a binary data blob consisting of a certificate
and a signed hash of the file (which excludes certain parts of the PE
header in the hash calculation). As hash algorithms, Authenticode
supports MD5 (currently supported only for backwards-
compatibility), SHA-1, and SHA-256 hashes. Let us note that a PE file
can be dual-signed by applyingmultiple signatures, which is strongly
recommended when using deprecated hashing algorithms such as
MD5. The certificate chain is built to a trusted root certificate by using
X.509 chain-building rules. This trusted root certificate is mandatory
as long as the root certificate is not present in the users’ root stores.

An Authenticode-signed Windows file can be shipped in two
different ways, either through an embedded signature within the
PE file structure or through a digitally-signed catalog file. Whether
embedded signed or catalog signed, both signatures are stored as
PKCS #7 signed data, which follows the Abstract Syntax Notation
One (ASN.1) format (ITU-T, 1984).

ASN.1 is a joint standard of the International Telecommunication
Union Telecommunication Standardization Sector and ISO/IEC
broadly used in telecommunications, computer networking, and
cryptography (for instance, ASN.1 is used in X.509 certificates). It
states how to store binary data of different data structures and in-
cludes a set of encoding rules that specify how to represent a data
structure as a series of bytes to facilitate their serialization. In partic-
ular, Authenticode signatures follows theDER-encodedASN.1 format.

The digital signature data in an embedded Authenticode-signed
Windows PE file is appended to the file. The offset and size of the
embedded signature is stored in the Security directory entry
within the Data directories array of the PE optional header. The
Data directories array contains offsets and sizes of different
structures within the PE file, such as the export, import, or relo-
cation directories, among others. All directories but the security
directory store their offsets as relative virtual address (RVA) offsets,
which means that they are the virtual addresses from the PE file
once it is loaded into memory. On the contrary, the security
directory stores its offset as a file offset.

The binary data stored at the security directory file offset is a
WIN_CERTIFICATE structure (Microsoft Corporation, c), which
defines the signature length (in bytes), the certificate revision, the
type of certificate, and the certificate list. In the case of Authenti-
code signatures, the certificate type matches a PKCS#7 Sign-

edData structure.
A catalog file (extension.cat) collects digital signatures for an

arbitrary number of files. It contains a collection of cryptographic
hashes, each one corresponding to a file that is included in the
collection. To prevent unauthorized modifications, catalog files are
also Authenticode-signed files. Catalog files are located in the



D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917 S3
system32/catroot path within the Windows directory (nor-
mally, C:\Windows). The database of catalog files in a Windows
system is maintained in a separate file, named catdb, which is
located in the system32/catroot2 path within the Windows
directory. This database follows the Extensible Storage Engine (ESE)
format, an indexed and sequential access method storage tech-
nology developed by Microsoft.

Signature verification of authenticode-signed windows files
Microsoft designed the subject interface package (SIP) archi-

tecture to support the creation, retrieval, and hash calculation and
validation of digital signatures, abstracting software developers
about any inner behavior. The verification of signed code is per-
formed using a trust provider, which is a piece of software that
decides whether a given file is trusted based on the certificate
associated to that file. Every trust provider establishes its own
criteria to validate a signed file. A more detailed explanation of SIP
and trust providers architectures, as well as their intrinsic re-
lationships, is given in (Graeber, 2018). In a nutshell, a series of
Windows APIs of distinct system's dynamic link libraries (DLLs) are
invoked to verify the digital signature of a file.

We have manually checked the execution flow followed by the
Windows OS to verify an Authenticode-signed file. To do so, we
have extracted and then analyzed the Windows API trace of an
execution of the Sysinternals’ sigcheck (Russinovich, 2019) tool
when verifying an embedded-signed file. Themain core steps of the
verification process is done by the WINTRUST and CRYPT32 DLLs.
The (summarized) execution flow is as follows:

1. First, the function WinVerifyTrust (in WINTRUST) is invoked
(Microsoft Corporation, d). This function performs a trust veri-
fication action on a specified object, inquiring to a trust provider
that supports the action identifier passed by parameter. We are
interested in the Authenticode trust provider, specified by the
WINTRUST_ACTION_GENERIC_VERIFY_V2 action identifier.
Furthermore, this function accepts a structure named WIN-

TRUST_DATA where we can explicitly indicate if we want to
perform the certificate revocation process, among other verifi-
cation options.

2. Then, the function CryptSIPRetrieveSubjectGuid (in
CRYPT32) is invoked to retrieve the globally unique identifier
(GUID) ea 128-bit integer number used to identify resourcese
of the SIP implementation. This GUID is passed to the function
CryptSIPLoad, which loads the DLL that implements the
specified SIP and sets pointers to SIP-related functions appro-
priately. The Windows' Authenticode trust provider of PE files is
implemented in WINTRUST.

3. The first of these called functions is CryptSIPGetSignedDa-

taMsg, which retrieves the Authenticode signature from a file.
Internally, this function eventually invokes to the function
ImageGetCertificateData (in imagehlp DLL) to retrieve the
Authenticode signature from the given file.

4. Once the signature is retrieved from the file, the function
CryptSIPVerifyIndirectData is invoked to verify the hash
Fig. 1. Representation of navigation from a FILE_OBJECT structure t
of the file. When computing the Authenticode hash of a PE file,
certain parts of the PE file are skipped: the Authenticode
signature itself, the pointer reference to the location of the
Authenticode signature (located in an entry of the data di-
rectories), and the PE file checksum (located in the optional
header). This functions returns a boolean value indicating
whether the Authenticode hash verification was succeeded.

5. Once the Authenticode hash is validated, the process continues
invoking the function CryptVerifyTime-StampSignature

to validate the timestamp signature on the Authenticode data
though a Time Stamping Authority, which certifies that it
observed the signed data at a specific time. This step is optional
since a signature may optionally be timestamped.

6. When the certificate chain needs also to be validated, the verifi-
cation process continues after the validation of the Authenticode
signature. The function CertGetCertificateChain (in
CRYPT32) is eventually invoked, which builds a certificate chain
context starting from an end certificate and going back (if
possible) to a trusted root certificate. This function accepts some
flags to indicate whether extra processing is required. In our ex-
periments, we have observed that the Sysinternals' sigcheck
tool uses the value CERT_CHAIN_CACHE_END_CERT |

CERT_CHAIN_REVOCATION_ACCUMULATIVE_TIMEOUT |

CERT_CHAIN_REVOCATION_CHECK_CHAIN_EXCLUDE_ROOT. A
full descriptionof theseflags is given in (MicrosoftCorporation, a).

The verification process of a catalog-signed file is done in a
programmatic way. The functions needed are defined also in
WINTRUST and have CryptCAT as prefix in the function name. A
correct way to implement this is to first acquire a handle to a cat-
alog administrator context (function CryptCATAdminAcquir-

eContext eit requires to later invoke the function
CryptCATAdminReleaseContext), then to compute the
Authenticode hash of the file using the function CryptCA-

TAdminCalcHashFromFileHandle, and finally get the handle to
the catalog that contains the given hash using the function
CryptCATAdminEnumCatalogFromHash. Once the specific cata-
log is retrieved, the function WinVerifyTrust can be invoked to
verify the file signature against that given catalog. Internally, since
the catalog file is also an Authenticode-signed file, the function
WinVerifyTrust may perform as indicated before to validate the
signature of the catalog file.

2.2. File objects

File Objects represent the memory mapped files into the kernel
memory, acting as the logical interface between kernel and
useremode processes and the corresponding file data stored in the
physical disk (Microsoft Corporation, b). This object is used by Win-
dows to track a single open instance of a file (that is, if you open
multiple timesafile, youhavemultiplefileobjects) (Russinovichetal.,
2012). The representation of this internal memory structure is
depicted in Fig.1. Apart fromthe datawritten to thefile, thefile object
contains a set of kernel-maintained attributes, suchasapointer to the
o DataSectionObject and ImageSectionObject structures.



D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917S4
Unicode-encoded file name and a pointer to a structure named De-

vice object that represents the device which contains the file.
A file object also stores a pointer to a SECTIO-

N_OBJECT_POINTERS structure, used by the memory manager
and cache manager to store file-mapping and cache-related infor-
mation for a file stream. This structure is conformed by three opaque
pointers (DataSectionObject, SharedCacheMap, and Image-

SectionObject). An opaque pointer points to a data structure
whose contents are not exposed at the time of its definition.

The pointer DataSectionObject is used to track state infor-
mation for a data file stream. That is, it may pointer to data files
such as those used by a word processor o a spreadsheet. Similarly,
the pointer ImageSectionObject is used to track state infor-
mation for an executable file stream. Roughly speaking, it points to
executable files mapped into memory (images). The pointer
SharedCacheMap points to a structure used by theWindows OS to
maintain the cache.

Only DataSectionObject and ImageSectionObject are of
interest to our research, since both structures are useful to look for
executable files. In a memory dump, we can look for the file objects
handled by the Windows OS at the time the memory dump was
acquired. We may find a DataSectionObject pointing to the
memory zone where the executable file was mapped as data file
ealthough it may contain end padding bytes by memory alignment
issues. Similarly, we may also find an ImageSectionObject

pointing to the memory zone where the executable file was map-
ped prior to be initialized by the Windows PE loader e that is, a
memory zone that contains the image file after the relocation
process was done to prepare the image for execution. As before, it
may contain also end padding bytes. Unlike DataSectionObject,
an ImageSectionObject is missing the data related to the
Authenticode signature contained in the PE header. We argue that
the PE loader strips this data beforemapping the file, since it is used
to verify the file prior execution and thus it is not longer needed.
Surprisingly, though, this internal structure contains the relocation
information even it is neither longer needed.

3. Description of the plugin sigcheck

This section describes the Volatility plugin that we developed to
verify digital signatures of executable files (namely,.exe,.dll,
and.sys files) in memory dumps. We named the plugin sig-

check, as the Microsoft's tool that verifies digital signatures on
binary files (Russinovich, 2019). We have selected Volatility as
memory forensics framework since it has become a de facto stan-
dard for analyzing memory dumps in computer forensics. Initially
released in 2007 (Walters and Petroni, 2007), Volatility is currently
an open source project that supports the analysis of memory
dumps from the main-streams operating systems (namely, Win-
dows, Linux, and macOS), and in both 32-bit and 64-bit architec-
tures. Every supported OS has its own profile, which helps Volatility
to find the references to internal OS structures within the memory
dump. Volatility is implemented in Python and incorporates an API
that allows developers to implement their own plugins or to extend
the features of the official tools very easily.

Our plugin relies also on a set of plugins shipped with Volatility.
In particular, it uses tasks (to retrieve the list of processes in
execution), modules (to retrieve the list of drivers), devicetree
(to retrieve the driver objects for a given module), file-scan (to
retrieve the list of file objects), and dumpfiles (to obtain the list of
memory addresses associated to a FileObject structure. The
content of these addresses is later read in a programmatic way).

Algorithm 1 shows a pseudo-algorithm of the workflow fol-
lowed by sigcheck to verify the digital signature of an executable
module e, contained in a memory dumpM , both given as inputs. As
output, it returns a status code to indicatewhether or not the digital
signature of ewas verified. This status code is then parsed to a user-
friendly message to report the user appropriately.

As first step, the plugin obtains the file object f associated to the
executable module e (line 1). Then the boolean flag pe_rebuilt is
initialized to false value (line 2). If f does not exist or does not
contain any valid data, it returns FILEOBJECT_ERROR (lines 2e3). In
our experiments, every file object that we found contained either a
DataSectionObject or an ImageSectionObject valid pointer
(cf. Section 2.2). These memory zones are then checked for
completeness.

When data is complete (lines 5e43), first the end padding is
removed from the file object f. Then, f is interpreted as a PE file and
stored in p (line 7). If f is in fact an ImageSectionObject struc-
ture, then we look for an image address a2A such that the
computation of the PE checksum is correct after undoing any
relocation, considering that value as image address (line 9). Note
that our tool needs a list A of frequent image base addresses. We
have populated this list after analyzing all system executable files in
the Windows OS flavors used in the experiments (cf. Section 4). In
case that no valid address is found, it returns PE_REBUILT_FAILED
(lines 10e11). Otherwise, the flag pe_rebuilt is set to true value.
Then, the validation of the PE checksum is performed only if
pe_rebuilt is false, and if there is a mismatch, it returns
PE_CHECKSUM_MISMATCH (line 17). Otherwise, the verification of
the PE signed file p is validated through the steps shown in
Algorithm 2 (explained below). When data is incomplete (lines
21e39), first f is interpreted as a PE file and stored in p (line 22). If
there is some error with the PE data content (e.g., important data is
missing), it returns PARTIAL_CONTENT_PE_DATA_ERROR. Then, it is
checked if p contains an embedded Authenticode signature. If so, if
the data content of f is an ImageSectionObject structure, the
tool returns SIGNED_FILE_NOT_VERIFIED (line 28). Otherwise, if the
certificate chain c exists, it is verified (line 30). We rely on OpenSSL
1.1.0l binary package for this purpose, following a strict certificate
validity time. Unfortunately, we have empirically tested that this
software does not verify the revocation of certificates. We plan to
solve this issue programmatically as future work. Our plugin
returns the result of the certificate chain verification (explained
below), prefixing it with PARTIAL_CONTENT. If c does not exists, the
tool returns CONTENT_SIGNED_NOT_VERIFIED. If the Authenticode
header is missing, it is checked whether the file object f is located in
the Windows directory or its subdirectories (line 34). In that case,
the tool return PARTIAL_CONTENT_MAYBE_CATALOG_SIGNED or
PARTIAL_CONTENT_NOT_SIGNED otherwise (lines 38 and 40,
respectively).

The verification of an Authenticode-signed file has been
implemented as an independent Python function (named sigva-

lidator), and thus it can be used with image files as well as with
executable files. Its workflow is detailed in Algorithm 2. As input, it
needs a PE file p and a boolean value to indicate whether the PE file
was rebuilt.

First, the Authenticode hash hp of p is computed (line 1). The steps
of the Auhtenticode algorithm are published in (Microsoft
Corporation, 2008). If p contains an Authenticode header, it is
retrieved to extract its Authenticode signature hc and the certificate
chain c.When theAuthenticodehasheshc andhp mismatch (line 4), it
returns either AUTHENTICODE_SIGNATURE_MISMATCH or AUTHENTI-
CODE_SIGNATURE_MISMATCH_OR_INCORRECT_IMAGEBASE, depend-
ing on the flag pe_rebuilt. Note that by probability of collisions, itmay
happen that an image address value was selected such that the PE
checksum is correct when rebuilding the PE file, but however, it was
not the original image address value (in line 9 of Algorithm 1). Hence,
the Authenticode hash computed would be surely different from the
real one.WhenbothAuthenticodehashesmatch, the certificate chain



Algorithm 1. Pseudo-algorithm of the analysis performed by the plugin sigcheck.

D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917 S5
c is verified (line 5) with the OpenSSL binary package. If the
Authenticode header is missing (i.e., the offset value in the PE header
is zero), it is checked if hp2H , where H is the list of known hash
values extracted from catalog files (line 14). Let us note that our tool
needs a list H of known hash values. Our tool directly extracts these
hash values from the catalog files stored in a given directory. If the
hash is found, it returns CATALOG_SIGNED. Otherwise, it is checked if
the file object f is located in the Windows directory or in any of its
subdirectories. In that case, we assume that the file is cataloged-
signed but hA;H , and the tool returns MAYBE_CATALOG_SIGNED
(line 18). Otherwise, the tool returns either NOT_SIGNED or NOT_-
SIGNED_OR_INCORRECT_IMAGEBASE, depending of the value of the
input flag pe_rebuilt.

Finally, let us describe the possible return values of the certifi-
cate chain verification process. After the verification process done
by OpenSSL, our plugin may return the following: CERT_EXPIRED,
when the certificate validity time passed; CERT_UNTRUSTED, when
the certificate comes from an unknown publisher; CERT_FORMA-
T_ERROR, when there is an issue with the certificate structure as
missing fields or malformed certificate; CERT_VERIFICATION_
SUCCESS, when the certificate chain verification was successful. As
explained above, currently OpenSSL does not verify the revocation
of certificates.We are currently extending our plugin to include also
this feature, adding CERT_REVOKED into the set of possible return
values to report the user if any certificate of the chain is revoked.

To foster research in this area and enable the reproducibility of
experiments, both the plugin sigcheck and the auxiliary tool
sigvalidator have been released under GNU/GPL version 3 li-
cense and are freely available at https://github.com/reversea-me/
sigcheck.

4. Experiments and discussion

In this section, we detail the experiments performed with
sigcheck. We have considered two different experiments. In the
first experiment, we measure the effectiveness of sigcheck

analyzing a set of memory dumps from different machines. In
particular, we compute how many file objects are retrieved from
memory dumps under different scenarios. The second experiment
is focused on the analysis of signed malware samples.

https://github.com/reversea-me/sigcheck
https://github.com/reversea-me/sigcheck


Algorithm 2. Pseudo-algorithm of the signature verification process.

D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917S6
4.1. Effectiveness of sigcheck

For experiments, we have considered a Windows 7 SP1 OS En-
terprise edition Build 7601 in both 32 and 64 bits, running on top of
VMware Workstation 15 Pro 15.0.2 build-10952284. Although we
initially also considered Windows 8.1 and Windows 10, we dis-
carded them from the experimentation since one of the Volatility
plugins on which sigcheck relies (in particular, dumpfiles) was
not working appropriately. We plan to investigate this particular
problem further.

Apart from a freshly installed OS, we have installed additional
software commonly used by users on both virtual machines, such
as Mozilla Firefox 69.0.3, Google Chrome 77.0.3865.120, Libre Office
6.3.1, Notepadþþ 7.8, and Adobe Reader DC 2019.012.20036. Every
virtual machine was executed 10 times and to provide an effec-
tiveness measure of sigcheck over time, the memory of these
machines was acquired in four different time moments: at a fresh
boot and after 10, 20, and 30 min of user activity (with data doc-
uments opened and viewing YouTube content with Mozilla Fire-
fox). The processes captured in each of these dumps correspond to
the ones related to the normal Windows OS activity plus the ones
related to the additional software installed.

Fig. 2 shows the average of FileObject types retrieved by
sigcheck in 10 memory dumps of Windows 7 SP1 x86 (top figure)
and Windows 7 SP1 x64 (bottom figure), obtained at different time
moments. Recall that our plugin allows to verify the signature of
executable files (extension.exe), dynamic-link library files
(extension.dll), and driver files (extension.sys).

Discussion. The results show that there are more chances of
retrieving file objects with complete data at fresh boot. As expected
by the way of working of Windows’ memory subsystem (page
smearing, demand paging, and swap pages), the number of file
objects with full content quickly drops as the time evolves.
Furthermore, the results in a 32-bit OS are better than in 64-bit OS,
for all scenarios. In Windows 7 x86, almost half of driver files are
successfully verified as catalog-signed files, while executable and
DLL files reach more than 30%. It is remarkable that the content of a
huge percentage of file objects is partial, seeming not signed or
with an incorrect image base address. In 64-bit DLL files, this per-
centage increases remarkably. Finally, let us also remark that none
of the file objects retrieved in both scenarios contained the
Authenticode signature as full content. Only 13 32-bit DLL files
contained the certificate header, but it was incomplete due to
memory paging issues.

4.2. Analysis of signed malware samples

In this part, we selected a number of signed malware samples
(Niemel€a, 2010) from public repositories. Table 1 shows the SHA-
256 of the selected samples for experimentation. When preparing
this paper, we found a recent malware threat that was distributed
also as a signed file (malware04). We also extract the most likely
family names from VirusTotal reports to label every malware
sample using the AVClass malware labeling tool (Sebasti�an et al.,
2016).

We have analyzed every malware sample with sigcheck

through the auxiliary tool sigvalidator (cf. Section 3, Algo-
rithm 2). Table 2 collects the experiment results. For every malware
sample, we show the problem of the certificate (expired and revoked
by issuer; only expired or only revoked by the issuer; and self-signed
certificate), thewarningwindow shown to the user by theWindows
UAC in a Windows 10 x64 Stable 1809 OS when executing the
sample (from more trust to less trust: asking for permission to
make changes, verified publisher [blue color]; asking for permis-
sion to make changes, unknown publisher [yellow color]; and
execution blocked [red color]), and the results of execution of the
SysInternal's sigcheck tool (Russinovich, 2019) and our plugin
sigcheck. Let us remark that we have selected this version of
Windows OS instead of Windows 7 (as in experimentation) since
we are interested in the most updated messages of Windows UAC.



Table 1
Signed malware samples used in the experiments.

Label SHA-256 hash AVClass result

malware01 012503199e73d10c3f9f1b3db4876100bf1aebaea53c5da9b8b746a78cf65276 polycrypt

malware02 0da7bf4ee9884242fa2b413ecfd9b7efca2e5ccc9a87a308328c7e8279b24d20 perfectdefender

malware03 178c6f7ad9a2fa6b10e0df89f2d0893afab2215684fffb2ffa4db07f19e95833 trustedzone

malware04 2fc0512083ca44f2669815a8ce8fdcf1eaac63a282fbbc4c1c0892422816251f megacortex
malware05 49dbf0e4f7aebb512fcd081ff5f1dbb2ec5ded98a3fbd5882e2c4c2f1a5c25e4 sobit

malware06 6910f947b942a0484097e0b95d54e49582801a93bf2ab62382f9ef45f8f2b5ac pernefed

malware07 850c4554528c82d12a1a31f308f5b7a9b8d15eb453e65748dd5c65555ab6ba98 perfectdefender

malware08 a8bcc4f6564a96a4602584a06c5e17d0fab2f15a07a49c208657d6a37162ef24 geral

malware09 b057f90eac6a3427e95ffd8bc502659cad08206b0b560f30ab5db9e4b90bb9fd perfectdefender

Table 2
Experiments with signed malware samples.

Sample Real issue with the certificate Windows UAC SysInternal's Sigcheck Plugin sigcheck

malware01 Certificate expired and revoked by
issuer

Verified publisher (blue color) Signed Certificate expired

malware02 Certificate expired Verified publisher (blue color) Signed Certificate expired
malware03 Certificate expired and revoked by

issuer
Execution blocked (red color) Certificate revoked by issuer Certificate expired

malware04 Certificate revoked by issuer Verified publisher (blue color) Certificate revoked by issuer Verification successful
malware05 Certificate expired Verified publisher (blue color) Signed Certificate expired
malware06 Certificate expired Verified publisher (blue color) Signed Certificate expired
malware07 Certificate expired Verified publisher (blue color) Signed Certificate expired
malware08 Self-signed certificate Unknown publisher (yellow

color)
Root certificate untrusted (under current security
policies)

Issuer certificate
missing

malware09 Certificate expired Verified publisher (blue color) Signed Certificate expired

Fig. 2. Average of FileObject types retrieved by sigcheck in 10 memory dumps of Windows 7 SP1 x86 (top figure) andWindows 7 SP1 x64 (bottom figure) obtained at different
time moments.

D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917 S7
Discussion. The results indicate that both Windows UAC and
SysInternal's sigcheck are more focused on the publisher trust-
fulness rather than other aspects of the certificate, such as the
certificate validity time. We believe that apart from the publisher
trustfulness, a certificate expired should always be reported, as our
plugin does. Moreover, the messages shown by the Windows UAC
are less intuitive for the users. The case of self-signed certificate
(malware08) is detected by the three tools, although text messages
differ slightly. The most interesting case is malware04, a malware
threat associated to the ransomware MegaCortex (Brandt, 2019).



D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917S8
Although SysInternal's sigcheck warns that the certificate was
revoked by the issuer, surprisingly the Windows UAC tells the user
that the file comes from a verified publisher. This difference may be
caused by the parameter settings when calling to WinVerify-

Trust. Similarly, our plugin also returns that the verification pro-
cess was successful. Recall that as discussed in Section 3, sigcheck
does not perform any certificate revoking checking, since it is not
supported by the OpenSSL binary package on which our plugin
relies. We are currently implementing the certificate revocation
process using the OpenSSL library to fix this issue.
5. Limitations

This section reviews the main limitations imposed by memory
forensics to the verification of digitally signed Windows PE files
that we have identified in our study. We also discuss some possible
solutions to these limitations.

Data incompleteness. Although during our experiments we
have always found file objects corresponding to different mapped
files, in most of the cases data were incomplete. The Windows
memory manager swaps physical memory pages when it needs to
use more memory than actually available in RAM. Apart from this,
page smearing and demand paging are also obstacles to obtain an
image file that exactly matches with its corresponding executable
file. Page smearing refers to the inconsistency in the page tables
and the content of physical memory pages due to changes during
the acquisition process, while demand paging is an optimization
mechanism used by the OS to load data intomemory only when it is
absolutely needed (Case and Richard, 2017). Note that the calcu-
lation of the Authenticode signature needs the full PE file, excluding
only certain parts (cf. Section 2.1). Hence, if only one memory page
of an image file is missed, the signature of that file cannot be
computed correctly.

A possible solution to overcome this issue is to guarantee that
the Windows PE loader locks memory pages that contain file ob-
jects (Russinovich et al., 2012). In this regard, it should always
maintain an open reference to every mapped file while the corre-
sponding process is on execution. Of course, this solution imposes a
performance penalty, since physical memory pages are “wasted”
containing data that are unused and thus the memory pages could
be paged out or even freed. However, the memory of current
computer systems is in the order of gigabytes and thus this penalty
may be negligible. This is an open question that deserves further
investigation. Other solution might be a combined analysis of a
memory dump and their corresponding swap files (up to 16 paging
files of different sizes in Windows OS (Russinovich et al., 2012)).

Data changes caused by PE relocation. As discussed in Section
2.2, a DataSectionObject is a perfect copy of the executable file
when we eliminate the end padding added due to page alignment
issues. However, an ImageSectionObject is created after the
Windows PE loader makes the relocation process, and thus apart
from the end padding there are also bytes that change, such as the
image base address (located in the PE header) and every absolute
address defined in the relocation section or other function tables of
the executable file. This issue imposes two major limitations to our
approach:

� In 64-bit files, there are a total of 252 possibilities for an image
address value (considering an offset of 0 � 1000 between
memory addresses). Therefore, it is computationally infeasible
to brute-force the image address. To overcome this limitation,
our plugin considers the most common image base addresses of
every version ofWindows OS, empirically obtained. This implies
that sigcheckmay reconstruct the executable file and consider
it as wrongly signed if a Windows update changes the image
address of that file to a value not considered by sigcheck.

� To verify a successful reconstruction of the executable file, we
have opted for using the value of the CheckSum attribute,
located at the PE optional header. Although stored in a 32-bit
value, it is in fact a 24 bit checksum (the higher nibble is dis-
carded) computed using an additive checksum algorithmwhich
serves as redundancy check. Thus, since the number of possible
collisions is high (1=224), it may happen that sigcheck finds an
image address value such that the PE checksum is correct, but
the computed Auhtenticode hash value is invalid.

Furthermore, let us recall that the Authenticode signature data,
which is contained in the security directory of the PE header, is not
mapped into the ImageSectionObject structure. Therefore, if
the executable file is an embedded Authenticode-signed file, using
this internal structure we can only tell that the file is signed but its
signature cannot be verified (since we are unable to retrieve the
signature data from memory).

When the relocation data exist in the ImageSectionObject

structure, we can easily revert the relocation process performed by
the Windows PE loader. However, since we are unaware of the
original image base address of the executable file, it is difficult to
generate a valid Authenticode signature. A solution that might
overcome this problem is the use of a database storing the version
information, Authenticode hash signature, and image address
values for every system file of each Windows OS flavor (and asso-
ciated updates). Of course, the database would quickly grow up
given the vast amount of system files in all Windows OS flavors.

Catalog-signed files. As shown in Section 4, many system files
in Windows are catalog-signed PE files. To verify every signature,
we need the catalog database that contains that hash signature.
This implies that we need to have every possible catalog file for
every Windows OS flavor, as well as any of their updates. For
instance, the database of catalogs that we used in our experiments
is about 200MB, distributed over 8784 files. However, this database
only contains data from the versions of Windows 7 and Windows
10 used in experimentation (cf. Section 4), as well as a version of
Windows 8.1.

At the moment of this writing, there is not a centralized data-
base of catalog data. State-sponsored CERTs (or university-related
CERTs) could lead this initiative and maintain this database,
providing a public web service to check the database for other
incident response teams.

Executable file and process inconsistencies. Our plugin relies
on the file object structure to verify the Authenticode signature.
However, it may happen that although themapped file is legitimate
(i.e., the file contained in the device drive was not manipulated), its
corresponding process is malicious. For instance, malware can
inject malicious code in a legitimate process or perform a process
hollowing (it occurs when a process is created in a suspended state
and then its process memory is replaced with malicious code) to
evade detection and analysis. Currently, our plugin does not detect
this kind of evasion techniques. We have empirically tested that
these evasion techniques are also undetected by other forensic
programs that verify Authenticode signatures from running pro-
cesses in live systems, such as Process Explorer and Process

Hacker.
In our opinion, this is one of the biggest challenges in memory

forensics. To be sure that the binary code of an image file was un-
modified, we need to unmap its corresponding process, reverting
all the work performed by the Windows PE loader, and then
compare the unmapped image file with the executable file. At the
moment of this writing, we are unaware of any tool capable of
doing this backward process and comparison reliably. We could



D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917 S9
also check the virtual address descriptor (VAD) tree of a process,
looking for strange changes in the permissions of every VAD node.
VAD is a tree data structure used by the Windows OS to store in-
formation about process memory regions (Dolan-Gavitt, 2007). A
similar idea is used in (Srivastava and Jones, 2017), where a Vola-
tility plugin is introduced to locate injected code using cross-
validation with stack information even when VAD nodes have
beenmodified by themalware to remain stealthy. Of course, we can
also rely on other Volatility plugins more focused on malware
detection such as malfind or clamav, or more focused on process
similarity as ProcessFuzzyHash (Rodríguez et al., 2018).

6. Related work

There are works regarding the analysis and the presence of
Authenticode-signed files in malware landscape, as well as high-
lighting the weaknesses of code signing in Windows.

One of the first works showing the abuse of software digital
certificates and the presence of malware samples signedwith rogue
certificates was (Wood, 2010). The common pitfalls of certificate
authorities that allow the prevalence of signed malware samples
are also introduced in this paper. The presence of signed malware
samples was also confirmed by (Kotzias et al., 2015), where a
malware dataset of 356K samples from 2006 to 2015 was analyzed.
They concluded that most signed samples in the dataset were
potentially unwanted programs (between 88%� 95%), while only a
few were signed samples of malware (5%� 12%).

(Kim et al., 2017) proposed a threat model which highlights
some weaknesses in the use of code-signing technology, after
detecting that signed malware may cause anti-virus (AVs) products
to stop analyzing them. The highlighted weaknesses are related to
inadequate client-side protections (such as the use of AVs that skip
analysis of signed binaries), publisher-side key mismanagement
(an inadequate security management in the publisher side may
facilitate the stealing of private keys that corresponds to the pub-
lisher's certificate or the infection of developer machines), and CA-
side verification failures (verification process may fail, resulting in
certificates issued to shell companies or malicious publishers with
stolen identities). They also analyzed a total of 325 signed malware
samples, having a 58:2% of samples properly signed (the rest signed
with malformed certificates) and classifying the certificate abuse as
a compromised certificate or issued to a fraudulent or shell
company.

In a similar work (Koz�ak et al., 2018), studied the underground
market of code signing certificates, identifying 4 leading vendors of
Authenticode certificates. Furthermore, they collected 14;221 signed
malware samples and analyzed the certificate attributes to graphi-
cally map the relationships amongmalware families and certificates.

The malware dataset focused on Windows built in (Ugarte-
Pedrero et al., 2019) showed that close to 18% of the 172;612
collected samples are signed binaries, with very few (only 11
samples) using revoked certificates. Signed binaries are also
collected and analyzed in Rivera et al. (2019), where 39% of 75;615
malware samples analyzed are signed e three out of four samples
being correctly validated as Authenticode-signed files.

All of the aforementioned works focus on executable files
instead on binary data extracted from memory dumps, as we do in
this paper. To the best of our knowledge, we are the first to put a
spotlight on the analysis of Authenticode-signed files extracted
from memory dumps and to highlight the limitations and possible
solutions.

7. Conclusions and future work

In this paper, we have investigated whether code signing brings
any benefit to memory forensics. In particular, we have focused on
Windows OS. However, due to how Windows works and the cur-
rent limitations of memory forensics (such as paging memory, page
smearing, and demand paging), the verification of digital signatures
of processes captured in amemory dump is a difficult task.We have
highlighted the limitations imposed by memory forensics (data
incompleteness, data changes caused by relocation, catalog-signed
files, and executable file and process inconsistencies), as well as
proposed some solutions. Furthermore, we have developed sig-

check, a Volatility plugin that verifies a digitally-signed file (if
feasible) retrieved from a memory dump through internal OS
structures (in particular, file objects). We tested it on Windows 7
x86 and x64. Our findings indicate that the success rate is low,
especially when the memory is acquired from a system that was
running for a long time.

As future work, we aim to complete the verification process of
our plugin with certificate revocation and to further study the
lifetime of file objects. We also aim to explore the solutions pro-
posed for the current limitations.

Acknowledgements

This work was supported in part by the Spanish Ministry of
Science, Innovation and Universities under grant MEDRESE-
RTI2018-098543-B-I00 and by the University, Industry and Inno-
vation Department of the Aragonese Government under Programa
de Proyectos Estrat�egicos de Grupos de Investigaci�on (DisCo research
group, ref. T21-17R). The research of D. Uroz was also supported by
the Government of Arag�on under a DGA predoctoral grant (period
2019-2023).

References

Av-Test, 2019. Malware statistics. https://www.av-test.org/en/statistics/malware/.
Bhatkar, E., Duvarney, D.C., Sekar, R., 2003. Address obfuscation: an efficient

approach to combat a broad range of memory error exploits. In: Proceedings of
the 12th USENIX Security Symposium, pp. 105e120.

Brandt, A., 2019. “MegaCortex” ransomware wants to be the One. https://news.
sophos.com/en-us/2019/05/03/megacortex-ransomware-wants-to-be-the-one/
. (Accessed 30 September 2019).

Case, A., Richard, G.G., 2017. Memory forensics: the path forward. Digit. Invest. 20,
23e33. Special Issue on Volatile Memory Analysis.

Dolan-Gavitt, B., 2007. The VAD tree: a process-eye view of physical memory. Digit.
Invest. 4, 62e64.

Graeber, M., 2018. Subverting Trust in Windows. Specter Ops, Inc. Technical Report.
Itu-T, 1984. Introduction to ASN.1. https://www.itu.int/en/ITU-T/asn1/Pages/

introduction.aspx. (Accessed 25 September 2019).
Kaliski, B., 1998. PKCS #7: Cryptographic Message Syntax Version 1.5. IETF Network

Working Group. https://tools.ietf.org/html/rfc2315. (Accessed 25 September
2019).

Kim, D., Kwon, B.J., Dumitraş, T., 2017. Certified malware: measuring breaches of
trust in the windows code-signing PKI. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, New York, NY,
USA, pp. 1435e1448.

Kotzias, P., Matic, S., Rivera, R., Caballero, J., 2015. Certified PUP: abuse in Authen-
ticode code signing. In: Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, New York, NY, USA,
pp. 465e478.

Koz�ak, K., Kwon, B.J., Kim, D., Gates, C., Dumitras, T., 2018. Issued for Abuse:
Measuring the Underground Trade in Code Signing Certificate. CoRR abs/1803,
02931.

Langner, R., 2011. Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9,
49e51.

Ligh, M.H., Case, A., Levy, J., Walter, A., 2014. The Art of Memory Forensics: Detecting
Malware and Threats in Windows, Linux, and Mac Memory. John Wiley & Sons,
Inc.

Microsoft Corporation, a. CertGetCertificateChain- function. https://docs.microsoft.
com/en-us/windows/win32/api/wincrypt/nf-wincrypt-certgetcertificatechain.
(Accessed 26 September 2019).

Microsoft Corporation, b. FILE_OBJECT structure. https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/wdm/ns-wdm-_file_object. (Accessed
30 September 2019).

Microsoft Corporation, c. WIN_CERTIFICATE structure. https://docs.microsoft.com/
en-us/windows/win32/api/wintrust/ns-wintrust-win_certificate?
redirectedfrom¼MSDN. (Accessed 25 September 2019).

https://www.av-test.org/en/statistics/malware/
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref2
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref2
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref2
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref2
https://news.sophos.com/en-us/2019/05/03/megacortex-ransomware-wants-to-be-the-one/
https://news.sophos.com/en-us/2019/05/03/megacortex-ransomware-wants-to-be-the-one/
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref4
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref4
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref4
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref5
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref5
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref5
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref6
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://tools.ietf.org/html/rfc2315
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref9
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref9
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref9
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref9
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref9
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref9
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref10
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref10
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref10
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref10
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref10
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref11
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref11
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref11
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref11
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref12
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref12
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref12
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref13
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref13
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref13
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref13
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-certgetcertificatechain
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-certgetcertificatechain
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ns-wdm-_file_object
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ns-wdm-_file_object
https://docs.microsoft.com/en-us/windows/win32/api/wintrust/ns-wintrust-win_certificate?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/wintrust/ns-wintrust-win_certificate?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/wintrust/ns-wintrust-win_certificate?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/wintrust/ns-wintrust-win_certificate?redirectedfrom=MSDN


D. Uroz, R.J. Rodríguez / Forensic Science International: Digital Investigation 32 (2020) 300917S10
Microsoft Corporation, d. WinVerifyTrust function. https://docs.microsoft.com/en-
us/windows/win32/api/wintrust/nf-wintrust-winverifytrust. (Accessed 26
September 2019).

Microsoft Corporation, 2008. Windows Authenticode portable executable signature
format. http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-
9fde-d599bac8184a/authenticode_pe.docx. (Accessed 25 September 2019).

Niemel€a, J., 2010. It's signed, therefore it's clean, right?. In: CARO 2010 Technical
Workshop.

Pagani, F., Fedorov, O., Balzarotti, D., 2019. Introducing the temporal dimension to
memory forensics. ACM Trans. Priv. Secur. 22 (9), 1e9:21.

Parno, B., McCune, J.M., Perrig, A., 2010. Bootstrapping trust in commodity com-
puters. In: 2010 IEEE Symposium on Security and Privacy, pp. 414e429.

PaX Team. PaX address space layout randomization (ASLR). https://pax.grsecurity.
net/docs/aslr.txt.

Rivera, R., Kotzias, P., Sudhodanan, A., Caballero, J., 2019. Costly freeware: a sys-
tematic analysis of abuse in download portals. IET Inf. Secur. 13, 27e35.

Rodríguez, R.J., Martín-P�erez, M., Abadía, I., 2018. A tool to compute approximation
matching between windows processes. In: Proceedings of the 2018 6th Inter-
national Symposium on Digital Forensic and Security. ISDFS), pp. 313e318.
Russinovich, M., 2019. Sigcheck v2.73. https://docs.microsoft.com/en-us/
sysinternals/downloads/sigcheck. (Accessed 25 September 2019).

Russinovich, M.E., Solomon, D.A., Ionescu, A., 2012. Windows Internals, Part 1:
Covering Windows Server 2008 R2 and Windows 7, sixth ed. Microsoft Press,
Redmond, WA, USA.

Sebasti�an, M., Rivera, R., Kotzias, P., Caballero, J., 2016. AVclass: a tool for massive
malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (Eds.),
Research in Attacks, Intrusions, and Defenses. Springer International Publishing,
Cham, pp. 230e253.

Srivastava, A., Jones, J.H., 2017. Detecting code injection by cross-validating stack
and VAD information in windows physical memory. In: 2017 IEEE Conference
on Open Systems (ICOS), pp. 83e89.

Ugarte-Pedrero, X., Graziano, M., Balzarotti, D., 2019. A close look at a daily dataset
of malware samples. ACM Trans. Priv. Secur. 22 (6), 30, 1e6.

Walters, A., Petroni, N., 2007. In: BlackHat, D.C. (Ed.), Volatools: Integrating Volatile
Memory Forensics into the Digital Investigation Process.

Wood, M., 2010. Want my autograph? The use and abuse of digital signatures by
malware. Technical report. Virus Bull. Conf. 1e8.

https://docs.microsoft.com/en-us/windows/win32/api/wintrust/nf-wintrust-winverifytrust
https://docs.microsoft.com/en-us/windows/win32/api/wintrust/nf-wintrust-winverifytrust
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/authenticode_pe.docx
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref19
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref19
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref19
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref20
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref20
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref20
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref21
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref21
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref21
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref23
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref23
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref23
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref24
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref24
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref24
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref24
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref24
https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref26
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref26
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref26
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref27
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref27
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref27
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref27
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref27
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref27
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref28
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref28
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref28
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref28
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref29
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref29
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref29
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref30
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref30
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref31
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref31
http://refhub.elsevier.com/S2666-2817(20)30012-3/sref31

	On Challenges in Verifying Trusted Executable Files in Memory Forensics
	1. Introduction
	2. Previous concepts
	2.1. Microsoft Authenticode
	Signature verification of authenticode-signed windows files

	2.2. File objects

	3. Description of the plugin sigcheck
	4. Experiments and discussion
	4.1. Effectiveness of sigcheck
	4.2. Analysis of signed malware samples

	5. Limitations
	6. Related work
	7. Conclusions and future work
	Acknowledgements
	References


