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Abstract: The research trend in additive manufacturing (AM) has evolved over the past 30 years,
from patents, advances in the design, and layer-by-layer materials, to technologies. However,
this evolution is faced with some barriers, such as the implementation of additive manufacturing (AM)
in operations, its productivity limitations, and economic and social sustainability. These barriers need
to be overcome in order to realize the full potential of AM. The objective of this study is to analyze
the bibliometric data on these barriers through a systematic review in two study areas: business
model innovation and sustainability in AM from Industry 4.0 perspective. Using the most common
keywords in these two study areas, we performed a search on the Web of Science (WoS) and Scopus
databases and filtered the results using some inclusion and exclusion criteria. A bibliometric analysis
was performed for authorship productivity, journals, the most common keywords, and the identified
research clusters in the study areas. For the bibliometric analysis, the BIBEXCEL software was used
to extract the relevant information, and Bibliometrix was used to determine the research trend over
the past few years. Finally, a literature review was performed to identify future trends in the study
areas. The analysis showed evidence of the relationship between the study areas from a bibliometric
perspective and areas related to AM as an enabler for Industry 4.0.

Keywords: literature review; bibliometric analysis; Industry 4.0; additive manufacturing; business
model; sustainability

1. Introduction

The research trend in additive manufacturing (AM)/3D printing/rapid prototyping has evolved
over the past 30 years from a rapid prototyping technology to advanced manufacturing. According
to Mohsen [1], the third industrial revolution started in 1987 with the commercialization of the
first stereolithography (SLA) machine, named SLA-1, developed by 3D Systems. After several
commercialized versions of SLA machines in 1991, three new AM-based technologies were
commercialized: fused deposition modeling (FDM), solid ground curing, and laminated object
manufacturing (LOM). This was followed by several years of sustained development in the AM
technology from using resin to metal powder and from non-functional molding applications to
fabricating medical implants [2]. At present, the focus is on the implementation of this technology in
the manufacturing environment [3], considering business/operations cost implications [1,4–7], design
for manufacturing or design optimization [8], and the sustainable development of this technology
considering environmental implications such as the product life cycle, circular economy (CE), and use
of recycled materials [9–11]. Few studies have reviewed the business innovation (BI) and sustainable
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development of the AM technology separately [12–16]. Industry 4.0 technologies facilitate decision
making using real-time data [17,18], but others give more importance to how effective Industry 4.0
data are for environmentally sustainable implications [19,20]. Therefore, a systematic literature review
and a bibliometric analysis of the AM business model and sustainability areas are needed to consider
the integration of these developments into Industry 4.0. The objective of this review is to analyze the
bibliometric data based on these two key aspects in the AM field and theirs integration into Industry
4.0 as an enabler of it and to provide a foundation on which future research may be built.

The remainder of this review is organized as follows. The backgrounds of additive manufacturing
and Industry 4.0 are discussed in Section 2. The guidelines for the review and the methodology
adopted for article selection are discussed in Section 3. The results of the bibliometric and literature
review are analyzed in Section 4.

2. Background

2.1. Additive Manufacturing

As defined by the American Society for Testing and Materials (ASTM) and the ISO/TC 261
Committee for Standardization in Additive Manufacturing, additive manufacturing is a collection
of technologies able to join materials to make objects from 3D model data, usually layer upon layer,
as opposed to the subtractive manufacturing methodologies [21].

In the existing literature, AM processes have been classified by various parameters: materials
used, direct or indirect process technology, and the state of the raw material used (which is one of the
most commonly used basis) (See Figure 1).
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Figure 1. Types of additive manufacturing processes based on state of raw materials.

Past research indicated significant advances in the AM technology in terms of its
applications [22–26], economic impact [3,27–29], use of raw materials [30–32], and design [33–35].
To the best of our knowledge, the filament and powder are the most frequently used raw materials for
cost characterization, business model proposals, and sustainability processes. Furthermore, the filament
and powder are the most common AM technologies implemented for Industry 4.0 integration [36,37],
and which are compared with traditional manufacturing methods [6,38–40].
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2.2. Industry 4.0

In recent years, Industry 4.0 has seen significant advances in production processes,
data management, cybersecurity, and competitiveness based on customization and client relationship
(see Figure 2) [37,41–43]. Industry 4.0, well known as the fourth industrial revolution, was born in
Germany as Industrie 4.0 in 2011 as a proposal to develop the German economy [44,45].
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Industry 4.0 is characterized by interactions and communication among industrial equipment
and cyber-physical systems for managing operations in real time [48] for decision-making, Internet of
Things, artificial intelligence, robotics, cybersecurity, and 3D printing [49] (see Figure 3). By means
of Industry 4.0, companies can use autonomous fabrication systems, make decentralized decisions,
and facilitate interconnectivity among employees, machines, orders, suppliers, and customers [18,50].
Technology based on Industry 4.0 enables organizations to create products that meet customers’ needs,
and facilitates production parameter control such as energy consumption, material flow, and real-time
monitoring [18].

Recent research established Industry 4.0 as an enabler of recent trends related to CE [36,42,51–53],
innovation in businesses concerning manufacturing [43,54], new business models [55,56], and supply
chain and cost model configuration [57].

The pursuit of increased competitiveness drives research in energy efficiency, resource
redistribution, and smart equipment, which are key characteristics of Industry 4.0 [58]. The growth
and proliferation of Industry 4.0 are related to the implementation of smart factories, smart products,
cyber-physical systems, smart cities, and digital sustainability [45].
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3. Materials and Methods

AM plays an important role in the six approaches presented in Figure 3 in the context of Industry
4.0 from the perspectives of sustainability and innovation in business. This systematic literature review
and a bibliometric analysis considers the AM business model and sustainability in the context of
its integration with Industry 4.0. The first objective of this review was to analyze the bibliometric
data based on these two key aspects related to the AM topic and its integration with Industry 4.0 as
an enabler of it. The second objective was to provide a foundation on which future research can be
built. To this end, we established a research protocol to identify a set of specific publications from two
scientific databases. Based on a systematic literature review, we summarized the existing information,
determined a research protocol, and suggested areas for further study [59]. The objective of this
methodology was to guide the review into three phases: planning, execution of the theoretical review,
and reporting of results.

The first step in planning was the identification of the information sources. We selected the Web
of Science (WoS) and Scopus databases: WoS has a wide coverage with citation and bibliographic
data and Scopus is the largest database on the market for multidisciplinary scientific literature [60].
We identified the most common terminology associated with the two selected key aspects in AM,
starting with the various terms for AM in the literature. For sustainability and business innovation,
we searched for the most common terms associated with additive manufacturing. Next, we defined
the following inclusion criteria to select articles for this review:

• I 1. Article type must be research paper, proceedings paper, or review
• I 2. Article must be in English
• I 3. Articles must be from 2018 Journal Citation Report

For the most common terms for AM, the search code used for both databases was (“additive
manufactur *” OR “3D Print *” OR “rapid prototype *”), followed by the application of two different
filters based on the objectives of this research. First was “sustainable development” OR “circular
economy,” which are frequently used terms for research associated with sustainable development in
AM. The second was the “cost model” OR “cost characterization” OR “business model,” which are
terms associated with BI in AM. See Figure 4 for the exact codes used for searching the databases.
Under certain assumptions, the classification of the two key aspects of this review can be construed
as follows. The sustainability aspect of AM was divided into recycled raw materials, sustainable
processes, and creation or implementation of sustainable technology for AM. Furthermore, the BI aspect
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of AM was divided into business model innovation, cost model characterization, AM operation cost,
and supply-chain adaptation. These bibliographic data are useful for the bibliometric analysis using
Bibexcel [61] and Bibliometrix R Studio package to visualize the relationship between the bibliographic
data and trend [62]. Bibexcel is an open-source tool for various bibliometric analyses, and it can
interface easily with other software such as Excel [61]. Bibliometrix is a freely downloadable tool
developed based on the science mapping package for the R programming language for detecting,
quantifying, and visualizing the evolution of a research field [62].
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First, a general search was performed using the search string in both selected databases. Second,
we removed duplicates and excluded the articles that did not satisfy the inclusion criteria I1, I2, and I3
already established. Finally, we reviewed the articles obtained previously by title, then by abstract,
and then by full text. We selected the articles concerning sustainability and business innovation topics.
In addition, we included the remaining articles for a qualitative synthesis for this research. The detailed
process flow used to gather the information is shown in Figure 5.Metals 2020, 10, x FOR PEER REVIEW 6 of 27 
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4. Results

4.1. Bibliometric Findings

The year-wise numbers of publications in both study areas are presented in Figure 6 (through
February 2020). These numbers indicate the research trend in these topics and show that research
productivity increased from 2015 onward. Note that studies on the sustainability area in AM were
initially conducted in 2013. These studies involved the life-cycle economic analysis of open-source
3D printers [63]; further, the benefits of this technology were demonstrated in terms of the cost, time,
and energy savings for personal use, and its sustainable development in terms of the payback time and
return on investment. Notably, while several journals published literature on either of the two study
areas, only six journals published literature on both areas (Table 1). From the data listed in Table 2,
it is evident that the International Journal of Advanced Manufacturing Technology and Journal of
Cleaner Production published the maximum number of papers on BI and sustainability, respectively.
Both journals publish the most recent scientific literature on the two topics.
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Table 1. List of journals publishing literature on both business innovation and sustainability in additive
manufacturing (AM).

Journals BI Sustainability

Additive Manufacturing 5 2
International Journal of Advanced Manufacturing Technology 3 2

International Journal of Production Economics 2 1
Journal of Manufacturing Systems 2 2

Journal of Manufacturing Technology Management 1 1
Technological Forecasting and Social Change 1 1
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Table 2. Names of journals along with the year and number of articles published on the two topics.

Journal Name
Topic Number of Articles Published

2006 2007 2008 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

International Journal of Advanced Manufacturing Technology Business Innovation 1 1 1 2 5
International Journal of Production Economics 1 1 1 3

Rapid Prototyping Journal 1 1 1 3
Journal of Manufacturing Technology Management 1 1 2

Journal of Thermal Spray Technology 1 1 2
Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering

Manufacture 1 1 2

Technological Forecasting and Social Change 2 2
Additive Manufacturing 1 1

British Food Journal 1 1
Computers in Industry 1 1

Entrepreneurship Research Journal 1 1
Journal of Manufacturing Systems 1 1

Journal of Mechanical Science and Technology 1 1
Journal of Operations Management 1 1

TOTAL: 1 1 1 2 1 1 1 1 3 3 2 9 26

Journal of Cleaner Production Sustainability 1 1 3 3 2 10
Journal of Industrial Ecology 3 1 4

Materials 1 2 3
Materials Today Communications 3 3
California Management Review 2 2

International Journal of Advanced Manufacturing Technology 1 1 2
International Journal of Production Economics 2 2

Journal of Manufacturing Technology Management 1 1 2
Polymer Testing 1 1 2

ACS Omega 1 1
Additive Manufacturing 1 1

Angewandte Chemie - International Edition 1 1
Applied Sciences (Switzerland) 1 1

CIRP Annals 1 1
CIRP Journal of Manufacturing Science and Technology 1 1

Clean Technologies and Environmental Policy 1 1
Composites Part A: Applied Science and Manufacturing 1 1

Energy for Sustainable Development 1 1
Energy Policy 1 1
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Table 2. Cont.

Journal Name
Topic Number of Articles Published

2006 2007 2008 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

International Journal of Intelligent Systems 1 1
Journal of Manufacturing Systems 1 1

Journal of Medical Systems 1 1
Journal of Thermoplastic Composite Materials 1 1

Mechatronics 1 1
Polymers 1 1

Powder Technology 1 1
Processes 1 1

Resources, Conservation and Recycling 1 1
Sustainability 1 1

Technological Forecasting and Social Change 1 1
Virtual and Physical Prototyping 1 1

TOTAL: 1 2 3 1 12 12 19 2 52
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On the BI topic, the International Journal of Advanced Manufacturing Technology published
five articles that met the inclusion criteria described earlier. On the sustainability topic, the Journal
of Cleaner Production is the most relevant, with 10 articles over the past 5 years. Figure 7 exhibits
the keywords co-occurrences for BI, as provided by the Bibliometrix package. The most common
keyword is additive manufacturing, which is related to the ASTM Standard in Terminology for AM [64],
the terminology commonly used in connection with the standard. The latest keyword used for BI is
“cost optimization,” in relation to cost optimization in the laser-type AM, cost optimization comparing
mechanical properties of a determinate product, and cost optimization for deposition efficiency. For BI
keywords, there are three main clusters whose principal terms are “design,” “additives/metals,” and
“cost-benefit analysis.” Based on research keywords used recently, the evolution of BI is moving
in the direction of the cost optimization of 3D printing applications, performance, and business
model proposals.
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The authorship pattern showed that the average number of authors per article in BI articles was
three. Among the 78 shortlisted articles, there was only one single-author article. The most productive
authors in the BI domain are listed in Figure 8. Richard Hague published two articles in co-authorship
with Massimiliano Ruffo. One paper, by Eleonora Atzeni, topped the list of the 10 most cited articles
(Table 3).
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Table 3. Top 10 most cited articles on business innovation.

No. Article Total Citations (tc) Tc/Year

1 [65] 277 30.78
2 [66] 137 9.13
3 [38] 110 10.00
4 [3] 103 20.60
5 [67] 71 8.88
6 [68] 63 4.50
7 [69] 57 4.38
8 [70] 48 9.60
9 [71] 33 3.00
10 [28] 25 5.00

Our findings on research productivity in the BI domain indicate that at least 69% of the articles
were published during the past 5 years, which shows an increasing interest in this domain of AM.

In the sustainability field, “additive manufacturing” is the most used keyword. The latest
keywords include “filament,” “extruder,” “waste plastic,” “recycling,” and “large-scale.” The keyword
“filament” is related to RepRap, open-source, CE, and polymers. “Extruder” is related to design,
distributed manufacturing, and polyethylene. “Waste plastic,” “recycling,” and “large scale” are
other common keywords related to CE, polymers, and distributed manufacturing. Based on the
most recent research keywords, research in sustainability is being directed towards the study of raw
materials from recycled materials and polymers to facilitate the processes for the implementation of
CE. Three clusters in keyword co-occurrence can be distinguished from the R Bibliometrix analysis
tool (Figure 9). The first cluster (blue) it is related to the sustainable development of AM in respect of
two technologies: fused deposition modeling and selective laser sintering, where energy efficiency and
material recycling are being actively studied. The second cluster is related to metal AM technologies.
The principal keywords for these technologies are “powder bed fusion” and “laser beam melting
sintering” methods for metal parts and their relationship with the sustainability of AM through energy
utilization analyses, life cycle analyses, and comparative studies with various materials. The third
cluster includes keywords relating to the ecological and environmental impacts of AM.
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Among the 52 identified articles, one author wrote a single-author article and 193 authors
contributed to multi-authored articles. On an average, there were 3.73 authors per article. While 4% of
the identified articles were reviews related to CE and the environmental impact of AM, the rest were
original articles. Finally, among the top ten most productive authors in the literature on sustainability
(Figure 10), we may mention Joshua Pearce and Aubrey Woern, who had six and three articles,
respectively. From the most cited reference point of view, Malte Glebler had 246 global citations for an
original article related to qualitative results of sustainability evaluation of 3D printing (Table 4).
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Table 4. Top 10 most cited articles on sustainability.

No. Article Total Citations Tc/Year

1 [72] 246 35.143
2 [63] 185 23.125
3 [9] 132 22
4 [73] 82 20.5
5 [74] 52 13
6 [75] 49 9.8
7 [76] 39 9.75
8 [77] 29 7.25
9 [78] 28 9.333
10 [32] 28 9.333

Based on our thematic systematic review, 86.79% of the articles are from the past 4 years, including
the initial months of 2020, and are available online.

Based on the collaboration diagram presented in Figure 11, there were no remarkable collaborations
among countries on BI studies. In contrast, in sustainability studies related to AM, the United Kingdom
and the USA were the principal countries that collaborated. Notably, the European countries comprised
almost half of all countries that published sustainability studies and collaborated with each other,
whereas only two Latin American countries published sustainability studies and collaborated with
each other.
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Figure 11. Country collaborations for (a) business innovation and (b) sustainability studies.

Among the most productive countries (Figure 12), Italy and the USA occupy the two top positions
in both study areas. Italy, with a 26% share, leads the scientific literature production on BI studies and is
followed by the USA in second place, with a 16% share. The USA, with a 21% share, leads the scientific
literature production on sustainability, and is followed by Italy in second position, with a 12% share.
Furthermore, combining the top ten countries contributing to both study areas in a Pareto analysis, 80%
of the scientific research comes from the USA, Italy, the United Kingdom, the Netherlands, Canada,
Brazil, China, and France (Figure 13).
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(b) sustainability in additive manufacturing.
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4.2. Recent Developments in AM

4.2.1. Developments in BI

It is interesting to note that BI studies in recent years range from cost model characterization to
supply-chain and operation-cost adaptation (Figure 14). Based on this systematic literature review,
we found that the cost characterization was oriented principally toward two types of AM: polymer raw
material process SLS (selective laser sintering) and FDM. To the best of our knowledge, there is just
one research paper on cost characterization using the FDM technology [40]. However, there are several
articles on cost characterization using the SLS technology (Table 5), originating mostly from [79].
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Table 5. Author contributions to cost characterization.

Author(s) Year Contribution/Assumption AM Process Reference

Neil Hopkinson and Phill
Dickens [40] 2003

Cost comparison of injection molding
with layer manufacturing process. Cost
included: machine, labor, and material.

SLA
FDM
SLS

[38]
[67]
[80]
[81]
[82]

Massimiliano Ruffo et al. [66] 2006

Cost based on lifecycle costing, cost
objective, and full costing. Assuming
100 h machine working time per week

over 50 weeks/year.

SLS

[79]
[66]
[68]
[82]

Ian Campbell [83] 2008
2D schema time estimator to make a

quotation before the STL file. The
construction time of a single piece.

SLA

Eleonora Atzeni et al. [38] 2010

AM cost characterization based on
injection molding cost elements. The

same piece could be fabricated by
injection molding and AM.

SLS

[5]
[67]
[38]
[82]

Lukas Rickenbacher et al. [67] 2013

Each part cost model estimator for a
mixed build including pre- and post-
processing. Same variables as in the

1998 Paul Alexander cost model.

SLM [81]
[82]

Martin Baumers et al. [80] 2016

Cost structure measurement model
adapted from Ruffo and Hague, (2007).

Raw material cost and energy
consumption are considered as direct

cost for the evaluation of both
AM technologies.

EBM
Direct Metal

Laser
Sintering
(DMLS)

[82]

Marcello Fera et al. [81] 2017

Cost evaluation of relevant AM
technologies when integrated with a

general production process. Five
generic process steps were assumed:

preparation, build job, setup, building,
and removal.

SLA
SLS

EBM
[82]

Yiran Yang and Lin Li [82] 2018

Cost model to evaluate the cost
performance of simultaneous

production with non-mixed and mixed
geometries. Nonuniform energy cost
per part for various geometries and

some constants in formulation for an
optimization problem.

Mask image
projection

SLA

The cost characterization proposed by Massimiliano Ruffo for the SLS technology (1) is oriented
to calculate the indirect cost associated with the construction time (tB) and the direct cost associated
with the used material in the construction (mB):

CostB = Cost (tB) + Cost (mB) (1)

This cost characterization model was proposed for low-to-medium-production sizes. Later in
2007 [68], a change was proposed to this model based on the various production scenarios for
the production of a single type of part. Massimiliano Ruffo and Richard Hague based the cost
characterization on the Hopkinson–Dickenson cost model [40], which was principally designed to
compare the costs of producing a part using AM techniques (SLA, FDM, and SLS) and injection
molding for selected geometries and different quantities.

A study in 2010 compared AM and injection molding and interrelated the flexibility of redesigning
AM technologies and cost estimation [38] and introduced the formal concept of design for rapid
manufacturing. Dilip Sahebrao followed the step-in cost characterization but considered other
constraints such as the total cost of preparation. In this first attempt, the author established the
cost-determining factors particularly for the FDM technology to obtain the optimal part orientation
and the value of parameters resulting in the minimum total cost [84]. In 2013, a new cost model
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was formulated for the SLM (selective laser melting) process, which included all required pre-
and post-processing steps and considered part orientation and build cost based on the model by
Alexander et al. [85]. Finally, in 2018, Yang and Li [82] proposed a new cost model for complex and
simultaneous production for mixed geometries using the SLA process and formulated a manufacturing
cost optimization problem considering decision variables such as the layer thickness and surface
stratification angle. Researchers established polymers as raw materials for cost characterization because
of the ease to compare with traditional processes such as injection molding. Various authors and
their contributions are presented in Table 5. The cost characterization proposed by Hopkinson and
Dickens [40], Ruffo, M. [66], Rickenbacher, L. [67], and Baumers, M. [80] did not consider the operational
costs in a manufacturing system or in the implementation of industry 4.0, whereas Atzeni, E. [38],
Fera, M. [81], and Yang and Li [82] proposed a cost model considering some operational costs for AM
implementation. To the best of our knowledge, authors have not considered in cost evaluation the
possibility of a redistributed manufacturing [3,4] that may reduce supply chain and inventory costs;
one of the key factors of AM implementation in Industry 4.0 context.

Regarding the business model, there is an innovative perspective because AM technologies offer
the freedom to customize. Bogers et al. [3] highlighted some considerations from a business model
perspective to shift from a manufacturer- to consumer-centric value logic, giving some comparisons
between AM technologies for consumer goods manufacturers, and formulated an idea for client-oriented
decentralized supply chain. Rayna and Striukova, [4], using the key components of business models,
established a forecast on how 3D printing can change business model innovation and discussed its
evolution from rapid prototyping and direct manufacturing to home fabrication. Jia et al. [70] explored
a supply-chain-centric business model in 3D chocolate printing and simulated a business model on
customer preferences using the ExtedSim software. Laplume et al. [28] established the availability
of 3D printing business models considering some parameters to evaluate the margin advantage, net
present value, and the return on investment from open-source 3D printers. From another perspective,
Holzmann et al. [27] gathered and analyzed data from eight user entrepreneurs in Europe and North
America, not only resulting in specific information on the customer and market type from a managerial
point of view but also identifying some issues that possibly affect the formulation of public policies.
Analyzing mature markets (traditional companies), Flammini et al. [86] proposed a framework based
on the traditional business model considering emerging technologies such as AM (3D printing) and
affirmed that it is possible to use more than one business model simultaneously. More recently,
Mattos Nascimento et al. [36] explored how emerging technologies such as AM, from Industry 4.0, can
be integrated with CE. The principal outcome of their study was the recommendation of a circular
model to reuse some Industry 4.0 waste, including AM to support circular economy. Research in
business innovation has considered AM as a tool to be implemented by entrepreneurs in new business
models [28], as an innovative tool proposed for changes in traditional business models [86], and more
recently as business proposals based on CE strategies [36] for its capabilities in customization, low
waste production, and free-form build.

4.2.2. Developments in Sustainability

We classified the developments in sustainability as the developments in sustainable processes,
creation or usability of recycled materials for various types of AM technologies, and creation of
sustainable technologies. After the papers were screened and analyzed, we found that at least 52% of
them pertained to the development of sustainable processes, 29% to sustainable technology, and 19%
to recycled materials (Figure 15).
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AM, as a relatively novel technology, has high potential in production cost reduction, is amenable
to customization, and can reduce CO2 emission from industrial activity [72]. In recent years, from a
sustainability point of view, research in AM has focused in the utilization of recycled materials and
economic model implementations such as the CE and social movements to reduce CO2 emissions from
industrialization. In Table 6, we present a synopsis of the materials considered for recycling in the AM
process. Research on the sustainable economic model in the AM technology was also considered. CE is
based on a philosophical concept of the creation—a schema that includes regenerating natural systems,
maintaining materials in use and designing products while minimizing waste and pollution [87].
Some authors have seen AM as an enabler for the development of CE and its potential for the product
design [88], business modeling to facilitate CE in the Industry 4.0 context [36], use of recycled plastic in
the manufacturing process to enhance CE [32,89], and repair, refurbish, and remanufacture of metal
components to return its value during its life cycle in the CE context [90].

Table 6. Recycling materials for additive manufacturing processes proposed by various authors.

Author (s) Recycling Material Demostrated for Application

Fedor Kucherov et al.
[76]

Biomass-derived red
polyethylene-2,5-furandicarboxylate (PEF)

Fused deposition
modeling

Better properties rather than the
available materials for FDM. High

thermal stability and low
temperature, which are necessary

for extrusion.

Aubrey Woern et al. [91]
Virgin polylactic acid (PLA), acrylonitrile

butadiene styrene (ABS), polyethylene
terephthalate (PET) and polypropylene (PP)

Fused particle fabrication To prove the usability of a wide
range of recycled polymer materials

with minimal post processing.Gigabot X1

Joanna
Paciorek-Sadowska et al.

[92]
Eco-polyol based on polylactide (PLA) Recycling of AM

technology waste

Fast, cheap, and ecological
management of polylactide waste

with possible reuse.

Matthew Reich et al. [93] Recycled polycarbonate Stiffness and mechanical
properties Extrusion material for FDM

1 Fused particle fabrication machine.

During the past 5 years, the developments in sustainable processes have been focused on the
life-cycle assessment of AM manufactured products considering energy consumption [19,75,94–97],
environmental impact and production costs [98,99], and remanufacturing and refurbishing of metal
parts [20,100,101] (see Table 7).
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Table 7. Recent developments on sustainable processes in additive manufacturing technologies.

Author (s) Year Type of Process Demonstrated for Application

Jian Qin et al. [19] 2020
Energy

consumption
predictor

SLS

Deep learning-driven
particle swarm

optimization to optimize
energy utility.

Jinghua Xu et al. [97] 2020 Energy efficiency
optimization FDM

3DP energy optimization
based on adaptative

multi-layer
customization

considering material and
greenhouse gas

emissions

Paolo Priarone et al.
[99] 2019

Framework for
cases in which AM

can substitute
machining
processes

Wire arc additive
manufacturing

Framework that
considers cost,

manufacturing times,
energy demand, and

carbon footprint and in
which machining can be

replaced with AM
process.

Abdollah Saboori et al.
[101] 2019

Repair and
restoration of metal

parts

Direct energy
deposition

Aerospace and
automotive

Chris Turner et al. [20] 2019 Supply chain
Can be applied
with any AM

technology

Redistributed
manufacturing closing

the loop between
customer and factories.

Sheng Yang et al. [102] 2018
Assembly design

and part
consolidation

SLM

LCA proposed to
analyze of the
environmental

performance of assembly
operations plus part

consolidation via AM

Tobias Kamps et al.
[95] 2018 Gear

manufacturing LBM

Life-cycle assessment of
AM implementation for

gear manufacturing
enterprises, considering

cost and energy
efficiency.

Justin Bours et al. [98] 2017 Raw material
evaluation FDM PBF

Life-cycle assessment
considering hazardous
implication in material

selection and
environmental impact.

Yiran Yang et al. [82] 2018
Energy

consumption
predictor

SLA

Mathematical model for
energy consumption in

SLA AM technology
considering various
parameters and their
potential interaction.

Anoop Verma and
Rahul Rai [103] 2017

Energy
consumption and
material wastage

SLS

For sustainability
analysis and

optimization of
parameters.



Metals 2020, 10, 1061 18 of 24

Table 7. Cont.

Author (s) Year Type of Process Demonstrated for Application

Paolo Priarone et al.
[77] 2017

Energy
consumption and

CO2 emissions
SLM EBM

Combination of
machining and AM

process reduce energy
demand and CO2

emissions.

Yunlong Tang et al.
[75] 2016

Design, energy, and
material

consumption
Binder jetting

Environmental impact
comparison between
machining and AM

technology

Osiris Canciglieri et al.
[104] 2015

Prioritization for
sustainable AM

prototyping
technologies.

SLS FDM

Proposed matrix to
consider environmental
and sustainable features

in the design
decision-making.

AM entails a huge advance in sustainability studies, from the improvements in refurbishment
and remanufacturing processes [20,101,102] to the impact in production systems such as energy
consumption [19,94–98], the use of recycled raw materials [32,89], and the improvements which imply
AM implementation for a CE strategy [88]. For Industry 4.0, AM studies in sustainability provide
an opportunity for an environmentally sustainable manufacturing adaptation despite the high cost
of AM implementation cost in a manufacturing environment. Moreover, various studies identified
the benefits of AM implementation through a life-cycle assessment of AM manufactured products
considering energy consumption [19,94–98], environmental impact, and production costs [99,100].

5. Discussion

Three-dimensional printing, also known as AM in the Industry 4.0 context, may offer potential
benefits by way of its design freedom [105] and capability to revolutionize industry in terms of
sustainability [106]. For production and operation management, the integration of AM technologies can
facilitate business process management and help to predict, optimize, and automate the manufacturing
process in the Industry 4.0 ecosystem [47]. The multiple cost model based on the standalone
implementation of AM [38,40,66,67], integration in a traditional manufacturing environment [81], and
others for the redistribution of large manufacturing environments to local factories [107] can enable smart
production systems. The proposed AM technology business models are based on the fast production of
multiple parts [27], energy consumption and wastage management [36], and a solution for refurbishing
of metal parts [100,101]. Traditional machining systems, such as the computer numerical control milling,
have been compared with AM [6,94,96] in terms of the energy efficiency, CO2 emissions, and relative
costs of low- to medium-production batches [66]. Various authors proposed the characterization of the
AM cost model for a standalone production or various geometries in a build [40,66,67,80]. However,
for the implementation in a traditional manufacturing environment, to the best of our knowledge, cost
evaluation has not been considered for a redistributed manufacturing model [3,4] that may reduce
supply chain and inventory costs all together with an environmental sustainability improvement.
Despite the AM cost, various studies have supported the AM implementation cost and environmental
sustainability through a life-cycle assessment.

Recent studies have focused on the analysis of AM emissions, ultrafine substances emitted during
the extrusion of polymer filaments [108], and reduction in CO2 emission through energy efficiency
in the manufacturing processes [94,97]. The analysis of the environmental impact of emissions
from machine operations as part of AM systems remains an open area of research [109]. Customer
involvement in the manufacturing process increases the reduction in transportation and promotes a
redistributed model [20]. The manufacturing redistribution, utilization of recycled materials [76,91,93],
and reutilization of AM-generated process waste [92] fit well into the CE model.
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For Industry 4.0, cost and sustainable development are key aspects to be considered for
AM implementation in a customizable manufacturing environment rather than just a rapid
prototyping method [20,101,102]. Therefore, AM’s capabilities (computer-aided design, design
freedom, and free-from build) and the current environmental requirements make AM highly valuable
for Industry 4.0. Cyber-physical systems, cyber-security, blockchain, and AM play an interesting role
in a redistributed manufacturing model and promote social sustainability [5,53].

6. Conclusions

This systematic literature review analyzed the developments and trends in business innovation
and sustainability of AM in the Industry 4.0 context, which includes AM as a technological platform.

First, using a well-structured and replicable literature review, we identified 26 and 52 articles,
respectively, on business innovations and sustainability in AM from the existing literature available
in online databases. Using the bibliometric data, we established authorship patterns and research
clusters. Using descriptive statistics, some plots and tables from R tool Bibliometrix were presented
to analyze the most cited articles, country collaborations, and country-wise literature production on
business innovation and sustainability in the context of AM. By classifying the shortlisted articles,
we found a relationship between AM and Industry 4.0. This relationship points at AM as an enabler
for redistributed manufacturing [20], because it can offer design freedom, on-demand production
series [66,68] for tooling [110], and the repair and refurbishment of metal parts [100,111].

Second, based on the data obtained from the literature review, we classified the study areas and
found a relationship between them. Different business model proposals consider AM as an enabler for
sustainable development and diffusion of CE. AM plays an important role in Industry 4.0, because
of its ability to create customizable products, reduce cost for low- and medium-batch sizes, and it
material reuse capabilities.

To the best of our knowledge, the existing literature appears to touch upon AM very briefly.
Therefore, future research needs to examine and define key aspects of AM for its implementation in
Industry 4.0 because of its free-form build capabilities and material potential for CE business proposals.
Furthermore, future AM cost models should consider the following variables: the whole production
system, tooling for operations, and rapid prototyping, for operational processes, logistics, and the
supply chain in general.
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