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1. Introduction. A complex system is characterized by the existence of many
components which are interdependent on one another [20, 40, 49]. Each of these
components is at the same time characterized by a certain structure, dynamics, and
function [4], which influence the global behavior of the system. The interconnection
between these components represents the exoskeleton of the complex system, and
it is well characterized by the use of complex networks [20, 40, 49]. The internal
structure of the corresponding entities---inside the nodes of the complex network---
represents the endostructure of the system and is not necessarily a network in itself.
Next we consider some examples, selected from the vast variety that exists in nature
and society, to illustrate this point.

The first type of system, represented in Figure 1(a), is formed by cells that are
interconnected by means of their physical contacts, such as in the case of cellular
systems in tissues, neuronal networks, or astrocytic complexes, i.e., star-shaped glial
cells [48]. In this case the exoskeleton of the system is the cellular network per se, and
the endoskeleton is described by the crowded environment inside the cells, in which
up to 40\% of the cytoplasmic volume is occupied by RNA, ribosomes, and proteins
[69, 70]. The situation is similar if we consider regions inside an organ instead of
individual cells. A typical example is that of anatomical or functional regions of the
brain [8]. Here the system is again characterized by an exoskeleton formed by the
brain network and an endostructure describing the interior of those regions.

In the second example, illustrated in Figure 1(b), we consider an enriched concep-
tual metaplex. This is a conceptual organization model inferred by Go\~ni et al. [31]
from verbal fluency of 200 individuals. The study was aimed at finding the conceptual
storage structure of the natural category of animals as a network. Thus, every node
of the metaplex represents a category of animals, e.g., pets, and inside the nodes we
find all the words in that category.

Our third example consists of the patches formed in an ecological landscape as
illustrated in Figure 1(c). In this case, the system of patches and the corridors connect-
ing them form an exoskeleton known as a landscape network [63]. The combination
of the geographic and ecological features of the individual patches determines their
endostructures. This example will be discussed in what follows.
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(a) (b)

(c) (d)

Fig. 1 (a) Illustration of a cellular system formed by biological cells connected by means of gap junc-
tions to interchange chemicals and a zoom of the internal structure of a cell. (b) Enriched
conceptual system representing the conceptual organization of animal categories. (c) Land-
scape ecological system formed by patches interconnected by corridors used by some species
to move from patch to patch. Zooming in reveals the foraging movement of these species
inside the patches. (d) Climate system formed by a network of climatic event correlations
and the internal climatic events at local regions.

The final example is, however, at a much larger scale (see Figure 1(d)). It corre-
sponds to a climate system in which the nodes represent geographical regions in the
world. These regions are connected by climatic correlations or causalities, such that
two regions are connected if a climatic event in one region triggers a climatic event in
the other [67, 15]. Inside every region, however, there is a vast collection of complex
phenomena taking place which are typically modeled using weather and local climatic
models.

A common dynamical process occurring in the systems described in Figure 1 is
diffusion, which is also ubiquitous in many other physical [26], chemical [38], biolog-
ical, and socioeconomic systems [35, 41], especially on mesoscopic scales [68]. In the
systems described above, and in many other complex systems, there is a trade-off
between a diffusive process taking place inside the entities of the systems and the
diffusion taking place between them. When both the endo- and the exostructures of
the complex system are representable by networks, we can use some of the physico-
mathematical tools already available in the literature, such as networks of networks
[27, 59] or multiplexes [3, 30, 36, 55]. However, the main challenge here is that in
many cases the endostructure of the system is described by a continuous space, while
the exoskeleton is a discrete one, e.g., a network. In the case of cells, their interior
is formed mainly by cytoplasm, which is 80\% water [43], while their interconnection
is well described by a cellular network. Go\~ni et al. [31] considered in their work the
idea that inside each category every pair of words is connected. Thus, it is assumed
that the internal space inside categories is a continuum in which words are found in a
random-walk-like navigation inside the memory of individuals. In the next example,

D
ow

nl
oa

de
d 

08
/0

7/
20

 to
 1

34
.1

17
.1

0.
20

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

620 ERNESTO ESTRADA, GISSELL ESTRADA-RODRIGUEZ, AND HEIKO GIMPERLEIN

where species are moving in a patchy environment, the movement inside the patches is
better described using continuous diffusive models [1, 9], and the hop between patches
through the narrow corridors is better accounted for by using a network-theoretic ap-
proach [63]. Finally, in climate systems the processes inside the regions---nodes---are
well described by aerodynamics and fluid dynamics, while the causal influence be-
tween regions is well described by a network of interactions, including long range
effects [15, 67].

The implications of this endo-exo trade-off in complex systems is very important
for understanding their function. There is experimental evidence, for instance, that
the movement of small molecules inside a cell follows an anomalous diffusive process,
either subdiffusive [29, 51, 65] or superdiffusive [56]. The distinction between normal
(or Fickian) and anomalous diffusion is made on the basis of the scaling of the mean
squared displacement \langle x2\rangle = \langle (x  - x0)

2\rangle of the diffusive particle with time [7, 46],
where x is the current position of a particle and x0 is the initial position. See the
supplementary material for a more detailed description of anomalous diffusion. While
for normal diffusion the mean squared displacement scales linearly with time \langle x2\rangle \sim t,
for anomalous diffusion it scales as a power law \langle x2\rangle \sim t\alpha with exponent \alpha \in (0, 2)
larger (super-) or smaller (sub-) than 1. This means that on long time scales, in
a superdiffusive process the space explored by the diffusive particle is larger than
the space explored in a normal diffusion in exactly the same time, due to the high
probability of long range hopping. In the case of a small molecule inside a cell,
anomalous diffusion is mainly due to the crowded environment inside the cells [58, 60].
However, there are more complex mechanisms inside certain types of cells that can
lead to anomalous diffusive processes. One example is the generation of calcium
waves [10], which have been observed in cardiac muscle [25], skeletal muscle fiber [16],
medaka eggs [57], and astrocytes [11]. This subdiffusive Ca2+ movement might be
involved with cardiac [39, 42] and brain [66, 34] diseases.

When global systems, such as tissues [50] or the whole brain [8], are analyzed,
superdiffusive processes can be experimentally observed for fresh specimens of car-
cinoma, fibrous mastopathies, adipose, and liver tissues [37] as well as for signals
navigating across regions of the brain [12]. Interesting research questions emerge
from these experiments: Is the anomalous diffusive behavior of a global system the
consequence of sub- or superdiffusive processes inside the entities, e.g., cells or re-
gions? Are they the result of the anomalous diffusion between the entities only? Is
it the combination of the exo- and endostructures that determines the nature of the
diffusive process in a complex system? How relevant is the endostructure depending
on the type of network, i.e., a small-world network? Similar questions emerge for the
analysis of other systems such as the landscape system discussed above. In landscape
systems the superdiffusive movement of species inside a patch is well documented and
described by continuous models [1, 9, 64]. Can this behavior alone determine the
nature of the diffusive process at the global landscape level?

In this work we answer these questions by introducing the concept of metaplexes.
Informally, a metaplex is a representation of a complex system in which the internal
structure of the nodes and the interconnection between them are considered at the
same time (see Figure 2). Thus, a dynamical system on a metaplex consists of the cou-
pling between the dynamics inside the entities, typically a continuous space, and the
dynamics between these entities, which is controlled by the interentity connectivity.

Our results show that in a linear metaplex, superdiffusion due to long range
hopping in a network, such as in [22], survives irrespective of the internal structure of
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METAPLEX NETWORKS 621

Fig. 2 Diffusion in a metaplex. The domains \Omega j are the nodes of the graph (exoskeleton) in which
a continuous diffusion process takes place. The connections with different strengths, given
by \alpha 12 and \alpha 23, account for the edges of the graph. The colors indicate the ``density"" of the
diffusing particles, with yellow for higher concentration.

the nodes. On the other hand, we prove that superdiffusion in the nodes can speed up
regular diffusion in the metaplex, but it cannot lead to superdiffusion. The geometry
of the nodes and their coupling play crucial roles for the global dynamics, which we
explain via a combination of analysis and numerical experiments. The results shed
light on the rich and substantially different nature of the dynamics of metaplexes and
the interplay of their exo- and endostructures, including in the real-world systems
considered in subsection 6.3.1.

Here we start with a formal definition of a metaplex and a dynamical system on
the metaplex. We then study a linear toy model that allows us to understand some
of the fundamental principles of diffusive processes on metaplexes. Finally, we study
two real-world metaplexes indicating the potential applications of this representation
of complex systems.

2. Preliminaries. In this section we define the concepts and notation to be used
in this article. Here we consider two kinds of diffusive dynamical systems, one taking
place in a continuous space and the other in a discrete space. Let us start by defining
the diffusive process on the continuous space.

Let u (t,x) be the density of the diffusive particle at time t for x in a domain in
\BbbR n. The density u (t,x) evolves according to

(2.1) \partial tu (t,x) = ( - \Delta )
s
u (t,x) ,

where ( - \Delta )
s
denotes a fractional Laplacian operator for s \in (0, 1] . The application

of the fractional Laplacian to u (t,x) on \BbbR n at a fixed time t is given by
(2.2)

( - \Delta )su(x) = cn,s P.V.

\int 
\BbbR n

u(x) - u(y)

| x - y| n+2s
dy = cn,s lim

\varepsilon \rightarrow 0+

\int 
\{ | \bfy | >\varepsilon \} 

u(x) - u(y)

| x - y| n+2s
dy ,

D
ow

nl
oa

de
d 

08
/0

7/
20

 to
 1

34
.1

17
.1

0.
20

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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where P.V. denotes the Cauchy principal value and cn,s is the following normalization
constant in terms of Euler Gamma functions:

cn,s =
22ss\Gamma 

\bigl( 
n+2s

2

\bigr) 
\pi 

n
2 \Gamma (1 - s)

.

In a domain \Omega \subset \BbbR n it is better to define the fractional Laplacian in terms of the
following bilinear form:
(2.3)\int 

\Omega 

( - \Delta )
s
u (x) v (x) dx =

cn,s
2

\int \int 
(\Omega \times \BbbR n)\cup (\BbbR n\times \Omega )

(u (x) - u (y)) (v (x) - v (y))

| x - y| n+2s dydx

for u, v belonging to the Sobolev space Hs (\Omega ). When s = 1 this operator corresponds
to the differential Laplacian operator \Delta u = \partial 2x1

u+ \cdot \cdot \cdot + \partial 2xn
u [46, 47] with Neumann

boundary conditions [14].
Let us now move on to the diffusive process on a discrete space. Let G = (V,E)

be a simple, connected graph with | V | = N nodes and | E| = m edges. The degree
of a node in V is the number of its nearest neighbors. Let dist (v, w) be the shortest
path distance between the nodes v \in V and w \in V , i.e., the number of edges in one
shortest path connecting both nodes. Let dmax = maxv,w dist (v, w) be the maximum
distance between any pair of nodes in G, i.e., the graph diameter.

Hopping between the nodes in the discrete space of a network occurs through sinks
(dark blue area in Figure 2) and sources (yellow area), where particles are allowed
to hop to nonnearest nodes with a certain probability. Since the metaplexes that we
study are undirected, the sinks also act as sources, and vice versa (see Supplementary
Note 2). The evolution of the density of the diffusive particle among the nodes of the
graph is controlled by the generalized diffusion equation [19],

(2.4)
du (t)

dt
=  - 

\Biggl( 
dmax\sum 
d=1

cd\Delta d

\Biggr) 
u (t) , u (0) = u0,

where \Delta d is the d-path Laplacian operator of the graph transformed by the coefficients
cd. This operator is defined as follows. Let C (V ) denote the set of complex-valued
functions in V. Let f \in C (V ); then [19]

(2.5) \Delta df (v) =
\sum 

w\in V,dist(v,w)=d

(f (v) - f (w)) , v \in V.

Notice that if we consider only dist (v, w) = 1 in the above definition, this operator
becomes the graph Laplacian \Delta 1 = L = K - A, where K is a diagonal matrix of node
degrees and A is the adjacency matrix of the graph. The transformation of the \Delta d

operators through the coefficients cd allows one to tune the hopping of the diffusive
particle between nearest and nonnearest neighbors in the graph. For instance, let

(2.6) \Delta Mf :=

dmax\sum 
d=1

d - s\Delta df

designate the Mellin-transformed d-path Laplacians of the graph where dmax is the
diameter of the graph.. Then, when s\rightarrow \infty , the transformed operator tends to \Delta 1 =
L = K - A. However, when s is relatively small the diffusive particle can hop not only
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to nearest neighbors but also to distant nodes with a certain probability that decays
with the shortest path distance separating the origin and destination of the particle.
It was recently proved that in the one-dimensional lattice when s \in (1, 3) there is
a superdiffusive process on the graph [22]. The same happens for two-dimensional
lattices when s \in (2, 4) [23]. Other transforms, such as the exponential transform,
also known as the Laplace transform:

(2.7) \Delta ef :=

dmax\sum 
d=1

e - ds\Delta df,

can also be used in the generalized diffusion equation, but they have been proved to
show no superdiffusive processes on the graph [22].

In the analysis of diffusion processes on metaplexes we will refer to the rate
at which the diffusive particle reaches the steady state \=u as t \rightarrow \infty . The rate of
convergence of the diffusion on the metaplex is controlled by the standard deviation
of the density,

\sigma (t) =

\sqrt{}    1

N  - 1

\sum 
i

\biggl( \int 
\Omega i

ui (t,xi) - \=ui

\biggr) 2

,

where the summation is over all N nodes in V . In our examples the steady state \=u is
the uniform distribution on V .

3. Metaplexes: Structure and Dynamics. We defined informally a metaplex
above. Here we present a formal definition of a metaplex and of a dynamical system
on it. Let us start with the following definition.

Definition 3.1. A metaplex is a 4-tuple \Upsilon = (V,E, \scrI , \omega ), where (V,E) is a
graph, \omega = \{ \Omega j\} kj=1 is a set of locally compact metric spaces \Omega j with Borel measures
\mu j, and \scrI : V \rightarrow \omega .

For instance, let us consider a simple metaplex in which (V,E) is a path graph,
e.g., the path graph of three nodes with each node given by the unit disk B(0, 1) \subset \BbbR 2.
In this case \omega = \{ B(0, 1)\} and \scrI is constant. The resulting metaplex is illustrated in
Figure 2. The endostructure of this metaplex is given by the internal structure inside
the unit disk, and its exostructure is given by the connectivity of the three nodes in
the form of a path. In the current work we focus only on metaplexes in which the
internal structure of the nodes is continuous; that is, when \omega is a set of open domains
\Omega j \subset \BbbR n, each endowed with the Lebesgue measure. Other scenarios in which the
internal structure is a discrete space, not just a graph, should be considered in a
separate analysis and will not be treated in the current work. Now we can define a
dynamical system on a metaplex.

Definition 3.2. A dynamical system on a metaplex \Upsilon = (V,E, \scrI , \omega = \{ \Omega k\} )
is a tuple (\scrH , \scrT ). Here \scrH =

\bigl\{ 
Hv : L2(\Omega \scrI (v), \mu \scrI (v)) \rightarrow L2(\Omega \scrI (v), \mu \scrI (v))

\bigr\} 
v\in V

is a

family of operators such that the initial value problem \partial tuv = Hv(uv), uv| t=0 =
u0, is well-posed, and \scrT = \{ Tvw\} (v,w)\in E is a family of bounded operators Tvw :
L2(\Omega \scrI (v), \mu \scrI (v)) \rightarrow L2(\Omega \scrI (w), \mu \scrI (w)).

There are many possible dynamical systems that can be considered on a metaplex
under the previous general definition. In the current work we focus only on the study
of diffusive processes at the endo- and exostructures of the metaplexes. In this scenario
we consider a continuous diffusion equation inside the nodes where the evolution of
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624 ERNESTO ESTRADA, GISSELL ESTRADA-RODRIGUEZ, AND HEIKO GIMPERLEIN

the density of the diffusive particle is controlled by the fractional Laplacian operator
as described in section 2. At the exoskeleton we consider a diffusive process in which
the particle hops from one node to another controlled by the d-path Laplacian of the
graph also described in section 2. The in-and-out motion of the diffusive particle
between nodes is carried out through the so-called sources and sinks inside the nodes.
A source is a subdomain inside the node from which a diffusive particle can emerge
to the interior of the node. A sink is another (not necessarily different) subdomain
inside the node from which a diffusive particle can abandon the interior of the node
toward another node in the metaplex.

In the simplest case, diffusive particles move between different nodes through
such sinks and sources in the interior, corresponding to a coupled system of diffusion
equations for the density uj(t,x) of particles in the node vj \in V :

\partial tuj(t,x) = divJj(uj(t,x)) - 
\sum 

i:(vj ,vi)\in E

\alpha ij(x)uj(t,x)(3.1)

+
\sum 

i:(vi,vj)\in E

\alpha ji(\psi 
 - 1
ji (x))det(\nabla \psi  - 1

ji )ui(t, \psi 
 - 1
ji (x))

for (t,x) \in (0,\infty )\times \Omega j . Here Jj is the flux of particles and divJj is the generator of
the diffusion process in \Omega j , for example, divJj = \Delta in the case of a normal diffusion,
while divJj =  - ( - \Delta )s for the superdiffusive L\'evy process. The edges (vi, vj) \in E are
realized by a map \psi ji : \Omega j \rightarrow \Omega i that specifies the jumps between domains, and the
coefficients \alpha ji(x) are transition rates from \Omega i to \Omega j : Particles jump from x to \psi ji(x)
with amplitude \alpha ij(x) and from \psi ji(x) to x with amplitude \alpha ji(\psi 

 - 1
ji (x)). Physically,

the system (3.1) arises for nodes that correspond to spatially distant domains.
For the system of diffusion equations (3.1), Hvjuj = divJj(uj), while the Tvw

correspond to the entries of the transition matrix of the network given by the functions
\alpha ij .

Diffusion in a network may be studied from its generator, the graph Laplacian
\Delta 1. A dynamical system in a metaplex is similarly described by an operator matrix
\scrD . For diffusion processes like (3.1) it takes the abstract form

(3.2) \partial tu = \scrD u .

\scrD is an N \times N block operator matrix of unbounded operators on the product space\bigoplus N
j=1 L

2(\Omega j , \mu j) = L2(\Omega 1, \mu 1)\times \cdot \cdot \cdot \times L2(\Omega N , \mu N ), with N the number of nodes in V .
In line with Definition 3.2 we write \scrD = H + T , where

H =

\left(        

divJ1 0 0 \cdot \cdot \cdot 0
0 divJ2 0 \cdot \cdot \cdot 0
... 0

. . .
...

...
...

. . .
...

0 0 \cdot \cdot \cdot \cdot \cdot \cdot divJN

\right)        
is given by the operators Hvj

uj = divJj(uj) and

T =

\left(     
\alpha 11T11 \alpha 12T12 \cdot \cdot \cdot \alpha 1NT1N
\alpha 21T21 \alpha 22T22 \cdot \cdot \cdot \alpha 2NT2N

...
...

. . .
...

\alpha N1TN1 \alpha N2TN2 \cdot \cdot \cdot \alpha NNTNN

\right)     D
ow
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describes the network diffusion defined by \scrT . Provided the adjoint

T \ast 

\left(     
1
1
...
1

\right)     = 0,

particles are conserved. Here the Tij are transition operators between \Omega i and \Omega j , as
given by the sources and sinks, and \alpha ij are the transition probabilities.

For a network, spectral properties of the network Laplacian determine the long-
time behavior of diffusion. Analogously, the long-time behavior of the linear diffusion
equation (3.2) in the metaplex is determined by the spectral properties of \scrD [62].
While the spectrum of H is determined by the internal structure of the nodes, the
spectrum of T combines the details of the location and strength of sinks, respectively,
sources, with the external network structure.

In addition to the coupling of sinks and sources as in (3.1), numerous other types of
couplings can be considered within the framework of metaplexes. While their detailed
analysis is beyond the scope of this paper, we mention two important examples.

The first example is a special case of (3.1), with all nodes of the same geometry
\Omega = \Omega j for every j and local transitions \psi ji = Id, where Id is the identity operator
(matrix) of the appropriate dimension. In this case the density u may be interpreted
as a vector-valued function u = (u1, . . . , uN ) : [0,\infty ) \times \Omega \rightarrow \BbbR N , and the network
encodes the dynamics of the ``internal state"" of the particle described by a vector in
\BbbR N . In biology, such processes are of interest in describing the diffusion of complex
organisms [54, 18, 17].

In complex systems such as road systems or the transport of chemicals between
cells, the coupling between the nodes occurs through the boundary \partial \Omega j , not through
internal sinks and sources. Every edge (vi, vj) \in E is physically realized by open
entrances and exits \Gamma ij \subset \partial \Omega i and \Gamma ji \subset \partial \Omega j , together with a homeomorphism
\phi ij : \Gamma ij \rightarrow \Gamma ji identifying points between them. We define \Gamma i0 = \partial \Omega \setminus 

\bigcup 
j \Gamma ij . If

there is an edge between \Omega i and \Omega j , particles leave \Omega i through \Gamma ij and arrive at \Gamma ji

in \Omega j .
The resulting system of diffusion equations is coupled through the boundary con-

ditions with a Kirchhoff's law: For x \in 
\bigcup 

i \Gamma ji,

uj(t,x) =
\sum 

i:\bfx \in \Gamma ji

\alpha jidet(\nabla \partial \Omega \phi ji)ui(t, \phi ji(x)) ,

J(uj(t,x)) \cdot \nu j(x) =  - 
\sum 

i:x\in \Gamma ji

\alpha jidet(\nabla \partial \Omega \phi ji)J(ui(t, \phi ji(x))) \cdot \nu i(\phi ji(x)) ,

where \nu j is the exterior unit normal vector. The number of particles is preserved if
the transition probabilities satisfy

\sum 
i \alpha ji = 1 for every j.

4. Operators and Spectra for Metaplexes.

4.1. Variation of Eigenvalues with Fractional Exponent and Spatial Scale.
Note that H =

\bigoplus N
j=1Hj =

\bigoplus N
j=1 divJj is a block diagonal operator matrix act-

ing on L2(\Omega 1) \times \cdot \cdot \cdot \times L2(\Omega N ). A basis of eigenfunctions of H is constructed from
bases \{ uj,k\} k of eigenfunctions of divJj in \Omega j and is given by \{ uj,kej\} j,k, where the
subscripts denote the kth eigenfunction in the domain \Omega j . Here, ej denotes the jth
standard unit vector in \BbbR N .
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If Hj =  - ( - \Delta )snod is the fractional Laplacian in \Omega j with Neumann boundary
conditions, the eigenvalues of Hj are homogeneous functions of the spatial scale, i.e.,
if the spatial variable is scaled, then so also is the function, f(\alpha x) = \alpha px, where p is
the degree of homogeneity. More precisely, the bilinear form of Hj is homogeneous
under scaling \Omega j \mapsto \rightarrow \Lambda \Omega j , \Lambda > 0. For instance, if \Omega j = B(0, 5) is a ball of radius 5,
then the scaling of the domain can be interpreted as \Lambda \Omega j = B(0,\Lambda 5).

From their characterization in terms of a Rayleigh quotient, the eigenvalues in
\Lambda \Omega j are given by \{ \Lambda  - 2snod\lambda j,k\} \infty k=1, if \{ \lambda j,k\} \infty k=1 are the eigenvalues of Hj in \Omega [13].
Only the lowest eigenvalue \lambda j,1 = 0 is fixed under this scaling.

We see that for small domains, \Lambda \rightarrow 0, the spectral gap \lambda j,2  - \lambda j,1 in the node
\Omega j increases with snod, and therefore Brownian motion in the nodes gives the fastest
convergence to equilibrium. For large domains, \Lambda \rightarrow \infty , the spectral gap \lambda j,2  - \lambda j,1
in the nodes \Omega j decreases with snod, and therefore the long jumps of the fractional
diffusion lead to equilibration faster than Brownian motion inside each node.

In a later section (see section 6) we will illustrate these findings computationally.

4.2. Weakly and Strongly Interacting Limits. The spectral properties of \scrD \varepsilon =
H + \varepsilon T are most easily understood in the limit \varepsilon \rightarrow 0 of weak network interactions
between the nodes, and in the strong network interactions for \varepsilon \rightarrow \infty . In the former
case, a particle is trapped for a long time inside the domain in which it was initially
placed. The time scale of the slow global equilibration is determined by T . In the
latter case, the transient dynamics is governed by the dynamics of the network and
the geometry of the sinks and sources, i.e., T , but the dynamics H inside the nodes
determines the long-time approach to equilibrium.

From standard perturbation theory, for general, symmetric interactions T the
stationary states corresponding to \lambda j,1 = 0, j \in \{ 1, . . . , N\} , split into eigenvalues

\varepsilon \widetilde \lambda k + o(\varepsilon ) according to the eigenvalues \widetilde \lambda of T restricted to the kernel of H. The
kernel of H is spanned by the constant functions 1 in \Omega j , j = 1, . . . , N . Hence,
(T | ker H)ij = 1\surd 

| \Omega i| | \Omega j | 

\int 
\Omega j
\alpha ijTij1 dx, i, j = 1, . . . , N , is given by an effective graph

Laplacian for the metaplex, in which the internal structure has been integrated out.
The eigenvalues \widetilde \lambda k of this matrix determine the spectral gap \varepsilon (\widetilde \lambda 2  - \widetilde \lambda 1) in terms of
the spectral gap of the effective graph Laplacian T | ker H , independent of H. Higher
eigenvalues will depend on the location of the sources and sinks and the eigenfunctions
of Hj .

Multiple eigenvalues arise, in particular, when several of the Hj coincide. In this
case the eigenvalues are determined by the restriction Tr of T to the subnetwork of
those nodes where the internal diffusion has the eigenvalue \lambda j,k.

Higher eigenvalues depend on the location of the sources and sinks. The spectral
gap of the network is \varepsilon \lambda 2 and thus independent of the diffusion process H.

Local equilibration within the nodes, however, happens on faster time scales, with
little effect of the coupling. For small \varepsilon , the gap between the higher bands \lambda j,k + \varepsilon \lambda rn
and the equilibrium is determined by the diffusion H, up to terms of order \varepsilon , where
\{ \lambda rk\} are the eigenvalues of Tr.

The case where Tij = Id is discussed in the Supplementary Material (Note 3).
For general Tij the spectrum of the network interaction operator T will be considered
elsewhere.

4.3. Numerical Results of the Spectral Properties. We illustrate the spectral
gap of \scrD \varepsilon for a linear network of 11 unit disks \Omega = \Omega j = B(0, 1) \subset \BbbR 2. The lowest
10 nonzero eigenvalues are considered as a function of \varepsilon , the coupling operator T ,
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Fig. 3 Comparison of eigenvalues for the case of different discretizations h of the mesh: a coarse
mesh (347 degrees of freedom) (\circ ) and a finer mesh (1325 degrees of freedom) (\times ). Here
snet = 0.8 and snod = 0.4 and we consider different coupling points.

and the diffusion H. We choose the generator Hj of the diffusion process inside \Omega j

as a fractional Laplacian  - ( - \Delta )snod with L\'evy exponent snod and approximate it by
finite elements on quasi-uniform spatial meshes. See Figure 6 for a plot of the mesh
and [24] for the approximation of the fractional Laplacian.

The network coupling Tij is taken to be a d-path Laplacian (2.7) with hopping
between \Omega i and \Omega j proportional to an exponential 2 - snet| i - j| .

As H is unbounded, the eigenvalues of its discretization extend over several orders
of magnitude, while the spectral gap is tiny. To resolve this, the discretization of the
mesh h needs to be small compared to the strength of the coupling, and standard
MATLAB routines do not identify the bounded branches of eigenvalues obtained in
subsection 4.2 for large \varepsilon . Discretization errors significantly increase as snod \rightarrow 0
because the smoothness of the solutions in \Omega decreases.

Figure 3 indicates the complications inherent in approximating the spectrum of
a large system of differential operators. The lowest ten nonzero eigenvalues of \scrD \varepsilon 

are depicted for the exponential coupling as a function of the coupling strength \varepsilon \in 
[2 - 10, 210] for meshes of 347 and 1325 degrees of freedom, snet = 0.8, snod = 0.4. We
consider a prototypical metaplex coupling as depicted in Figure 2 for \alpha ij = 10. While
results agree for large coupling strengths, the spectral gap is significantly smaller
for the finer mesh at small coupling. Nevertheless, the qualitative behavior from
subsection 4.2 is recovered: the gap increases linearly for small \varepsilon , and for large \varepsilon it
converges to the lowest eigenvalue of H.

Figure 4 connects the theory of subsection 4.2 with the numerical results from
section 6 and shows the effect of the geometry of the nodes on the dynamics of the
network. In the case of small nodes (Figure 4, left) when the coupling is weak, the
dynamics of the network is dominated by the diffusion process inside the nodes and
we have almost no hopping between domains. As we increase the coupling strength,
for snod = 0.8 the spectral gap is bigger than that for snod = 0.2, in agreement with
subsection 4.1. Similar to the case of multiplex networks, the first nonzero eigenvalue
of \scrD \varepsilon is related to the equilibration time in the whole network, i.e., t = \lambda  - 1

2 [61]. From
Figure 4 (left), the equilibration time for the case snod = 0.2 is much longer than for
the normal diffusion case inside the nodes. In section 6 we obtain computational
results that confirm these findings.
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Fig. 4 Eigenvalues for small (left) and big (right) nodes. In both cases, snet = 0.8 with snod = 0.2
(crosses) and snod = 0.8 (circles).

In the case of big nodes (Figure 4, right), the spectral gap decreases as we increase
the parameter snod. This means that, contrary to the small node case, a metaplex
with superdiffusion inside the nodes (snod = 0.2) reaches equilibrium faster than for
internal Brownian motion.

5. Analysis of Diffusion in Metaplexes. In this section we show how PDE tech-
niques allow for the analysis of the time-dependent diffusion introduced in section 3
in a metaplex of bounded domains \omega = \{ \Omega j \subset \BbbR n\} kj=1, as illustrated in Figure 2.
We compare the interaction of diffusion, respectively, superdiffusion, in the nodes
with either short or long range coupling in the external network. While for gen-
eral complex networks the connectivity and large scale geometry of the network
will crucially influence the dynamics, here we focus on simple linear metaplexes
V = \scrQ = \{ . . . , - 2, - 1, 0, 1, 2, . . . \} and short times.

More precisely, we assume that the diffusion process in each node \Omega j is governed
by either a fractional Laplacian Hj =  - ( - \Delta )snod or a self-adjoint elliptic differential
operator of second order like the Laplacian, Hjuj = div(a\nabla uj), a \in C\infty (\Omega j), with
Neumann boundary conditions. The network coupling Tij consists of disjoint sinks and
sources, as in Figure 2. The amplitude is chosen according to the d-path Laplacian
(2.6)--(2.7), with hopping between \Omega v and \Omega w proportional to dist(v, w) - snet (long
range coupling), respectively, 2 - snetdist(v,w) (short range coupling).

When we consider a metaplex we are dealing with the endodynamics occurring
inside the nodes and the exodynamics occurring between them. Inside each node \Omega j

the solution etHjuj,0 to the diffusion equation for Hj with initial condition u(t = 0) =
uj,0 is an integral operator

\bigl( 
etHju0

\bigr) 
(t,x) =

\int 
\Omega 
KHj (t,x,y)u0(y) dy. The integral

kernel KHj describes the evolution of a Dirac point mass in y at time t = 0. For
ordinary diffusion away from the boundary \partial \Omega j it satisfies the Gaussian estimate

(5.1) | KHj
(t,x,y)| \leq Ct - n/2e - C

| \bfx  - \bfy | 2
t

for some C > 0, analogous to the explicit solution formula for the diffusion equation
on \BbbR n [53]. Similar bounds are known for ordinary diffusion on metric measure spaces
\Omega j [32]. Fractional diffusion, on the other hand, exhibits slow algebraic decay in the
form of a Poisson estimate

(5.2) | KHj
(t,x,y)| \leq Ct

\Bigl( 
| x - y| + t1/(2snod)

\Bigr)  - n - 2snod
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away from \partial \Omega j [28]. In a convex domain the estimate is sharp for short times, and it
allows us to estimate the diffusion between nodes across the network.

Consider the linear network in Figure 2, with an initially uniform density localized
in \Omega 1. From (3.1) we calculate the change of the total density in node j:

\partial t

\bigm| \bigm| \bigm| 
t=0

\int 
\Omega j

uj(t,x) dx =  - \delta j1
| \Omega 1| 

\sum 
i

\int 
\Omega j

\alpha ij(x)dx+
1

| \Omega 1| 

\int 
\Omega j

\alpha j1(\psi 
 - 1
j1 (x)det(\nabla \psi  - 1

j1 ) dx .

(5.3)

Thus, initially particles hop from node 1 to node j according to the transition proba-
bilities \alpha ij of the network, from x to \psi j1(x). From Duhamel's formula for the solution
of the inhomogeneous diffusion equation, they then evolve inside \Omega j according to KHj

before jumping back to node 1, or further to a different node k. Both processes only
enter into the following quadratic term of the Taylor expansion in t. These formal
arguments are made rigorous in terms of an asymptotic expansion for t \rightarrow 0 of the
heat kernel K\scrD for the network of interacting domains; see, e.g., [45].

Compared to nodes without internal structure, hopping to node k is reduced by
the rate KHj

(\tau , \psi j1(x),y) of diffusing from \psi j1(x) to a point y in the region of the
sink to node k within time \tau . The internal diffusion thus always slows down the
network dynamics if sources and sinks are disjoint.

The exit time \tau jsource, sink taken to get from source to sink is well studied for both
normal and fractional diffusion [2]. It satisfies a (fractional) Fokker--Planck equation
and satisfies the estimate (5.1), respectively, (5.2), for short times. For long times,
\tau jsource, sink decays exponentially fast in time.

For short times, the dependence on the internal diffusion Hj , the geometry of \Omega j ,
and the location of sinks and sources are well described by (5.1) and (5.2). For sources
and sinks that are far apart, in the case of normal diffusion (5.1) shows a faster than
exponential suppression of the transition rate due to the internal structure. Fractional
diffusion suppresses the transition rate algebraically in the distance between sink and
source, according to (5.2). The smaller snod is, the faster the equilibration and the
smaller the suppression in \Omega j .

Similarly, if Tij is nonzero only for | i  - j| \leq 1, hopping to the next jth nearest
neighbors is suppressed j times by the internal diffusion. Starting from an initial
density localized in node 1, the total density in node j will be exponentially small:\int 
\Omega j
uj(t,x) dx \leq Ce - C| j - 1| for some C = C(t) > 0 depending on the endostructure.

6. Numerical Analysis of Diffusion in Metaplexes. This section investigates the
influence of the internal structure of the nodes on the global metaplex dynamics using
numerical experiments for the toy example of a linear metaplex. For the localized
coupling Tij in a given area (Figure 5) we show the rich dependence on the internal
structure in a metaplex, such as the geometry of the nodes and the nature of the
coupling, and we place the results, which were obtained in certain limits, into a wider
perspective. For example, a superdiffusive process in the nodes may slow down equili-
bration in the metaplex; see Experiment 1. On the other hand, the network diffusion
dominates the qualitative global behavior: In subsection 6.3.1 we show that network
superdiffusion due to long range hopping survives independently of the internal struc-
ture. This section illustrates the rich phenomena that arise from the interplay of the
exo- and endostructures of the metaplex. See the supplementary material for numer-
ical and analytical results for the case Tij = Id. The conclusions are not restricted to
the linear metaplex, but will be studied in what follows for some real-world examples.
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(a) (b)

Fig. 5 Density profile for different coupling points between nodes.

(a) (b) (c)

Fig. 6 Mesh inside the nodes for the different coupling areas in Experiment 1(a) and Experiment
2(b, c).

6.1. Setup of Numerical Experiments. Here we analyze a simple metaplex con-
sisting of 51 identical circular domains \Omega = \Omega j \subset \BbbR 2 connected in the form of a linear
chain, i.e., a path graph. The nodes are labeled in consecutive order starting with
one. Starting from a uniform distribution in node 1, we study the evolution of the
density in the nodes depending on the network and the internal diffusion processes,
the size of the nodes, and the strength and nature of the coupling between the nodes.

Two different sizes of nodes are considered, \Omega s = B(0, 1) and \Omega b = B(0, 100).
These different sizes will also be used when we move to the analysis of real-world
metaplexes. The diffusion equation (3.1) inside each node with L\'evy exponent snod
is approximated by finite elements in space on a quasi-uniform spatial mesh with 347
degrees of freedom. See Figure 6 for a plot of the mesh and [24] for the numeri-
cal approximation of the fractional Laplacian. For the time discretization we use a
backward Euler method in time with a sufficiently small, fixed time step dt = 0.01.

Unless stated otherwise, the network coupling between nodes (i, j) is taken to
be of short range, according to the Laplace-transformed d-path Laplacian (2.7). The
coupling strength between nodes (i, j) is thus proportional to 2 - snet| i - j| for different
exponents snet.
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Fig. 7 Density equilibration in node 1 for central coupling region.

6.2. Experiment 1: Central Coupling Region. For different values of the net-
work exponent snet = 0.4, 0.8, we compare close to normal diffusion (L\'evy exponent
snod = 0.8) to superdiffusion (snod = 0.2) inside a metaplex of small nodes \Omega s. In
this experiment we consider that the nodes of the metaplex are connected by means
of a central region of the node, as depicted in Figure 5(a), which simultaneously as
a sink and as a source. See the supplementary material (Note 2) for a more detailed
description of sinks and sources. The coupling strength is fixed to be \alpha = 10.

Figure 7 shows the time at which the density in node 1 reaches the equilibrium
given by | 

\int 
\Omega 1
u1(t,x)dx - 1

N

\int 
\Omega 1
u0(x)dx| , where u(t,x) is the density in the node at a

given time t and u0(x) is the initial density in the metaplex. The figure illustrates the
strong effect of the dynamics inside the nodes on the diffusion process, even though
the network dynamics dominates. We see that superdiffusion inside each node slows
down the diffusion in the network: Due to the nature of the L\'evy process, particles
quickly diffuse far away from the sink. As they take time to return and hop to the next
node, diffusion between nodes in the whole network is slowed down. In subsection 6.3
we discuss how the size of the nodes affects this behavior.

The spatial localization of the sinks and sources decreases the total strength of
the coupling, resulting in a slower equilibration of the densities in the node compared
to the uniform coupling discussed in the supplementary material (Note 3). Changing
the strength of a sufficiently strong localized coupling does not significantly affect this
behavior, since the equilibration time saturates: independent of the coupling strength,
particles that are located away from the sink cannot hop to a neighboring node.

In Figure 8 we show the evolution in time of the total density
\int 
\Omega j
uj(t,x)dx

in each node \Omega j . While superdiffusion inside the nodes has only limited effect on
the equilibration of the densities in the network, it speeds up hopping to distant
nodes. From Figure 8 we observe that when the network dynamics is dominated by
superdiffusion (snet = 0.4), only for short times does the superdiffusion inside the
nodes (red crosses) overtake normal diffusion, while for longer times the equilibrium
is attained faster for snod = 0.8.
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Fig. 8 Density distribution for central coupling region, snet = 0.8 (\circ ), resp., 0.4 (\times ).

6.3. Experiment 2: Distant Coupling Regions. To study the effect of the ge-
ometry of the coupling and the node on the global dynamical process, we replace
the central coupling from subsection 6.2 with a prototypical metaplex coupling as de-
picted in Figure 2: For the odd nodes the coupling region is located as in Figure 5(b),
while for even nodes the coupling region is on the opposite side. Similar to the central
coupling, the coupling regions act as sinks and as sources at the same time. The
coupling areas in both domains are equal; therefore, in the case of \Omega b, the areas are
more localized and distant.

For the network dynamics, we consider the short range coupling from Experiment
1 given by the Laplace-transformed d-path Laplacian (2.7) with coupling between
nodes (i, j) proportional to 2 - snet| i - j| , snet = 0.4, 0.8. The coupling strength is fixed
to be \alpha = 10 for \Omega s and \alpha = 100 for \Omega b. In subsection 6.3.1 we compare the
resulting dynamics to a long range coupling proportional to | i  - j|  - snet , with the
Mellin-transformed d-path Laplacian (2.6).

In this experiment, the distance between the sinks and sources also leads to a
delay; particles appear in the node and have to diffuse to find a sink to hop to another
node. Coupled with the exodynamics, the delay leads to small density oscillations
between neighboring nodes. For clearer illustration, in Figures 10 to 13 we only
consider the odd nodes of the metaplex.

Figure 9(a) shows the deviation of the density in node 1 from equilibrium, cor-
responding to Figure 7 in Experiment 1. Similar to Experiment 1, superdiffusion
inside the small nodes \Omega s slows down equilibration. However, the evolution in time
of the total density

\int 
\Omega j
uj(t,x)dx in nodes \Omega i is depicted in Figure 10 at times

t = 10, 100, 1000. One observes that superdiffusion in the nodes allows particles to
reach distant nodes more efficiently than approximately normal diffusion snod = 0.8.
This confirms the interpretation in section 4. The case snet = 0.4 in Figure 10 exhibits
similar dynamics as in Experiment 1, where snod = 0.8 equilibrates the metaplex's
density faster on long time scales.

We conclude that particles undergoing approximately normal diffusion (snod =
0.8) are slower, but more precise. Superdiffusing particles (snod = 0.2) explore the
metaplex faster, but take more time to equilibrate the density across the whole meta-
plex. Similar observations have been made in [44], where the targeting efficiency of
E. coli bacteria was studied in simulations. They observed that bacteria with higher
motility, following a superdiffusion process, found targets faster, but were also at
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Fig. 9 Density equilibration in node 1 for disjoint sinks and sources (a) \Omega s, (b) \Omega b.
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Fig. 10 Density distribution for small nodes \Omega s, snet = 0.8 (\circ ), resp., 0.4 (\times ).
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Fig. 11 Density distribution for big nodes \Omega b, snet = 0.8 (\circ ), resp., 0.4 (\times ).

risk of moving rapidly away from the target due to the nature of their L\'evy walk.
Individuals with lower motility were slower but more precise.

The following figures compare these conclusions to those obtained for a network
of big nodes \Omega b.

In Figure 9(b) we observe that superdiffusion inside big nodes speeds up the
equilibration of the densities considerably: For snod = 0.2 particles require a much
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smaller time to reach their distant target, the sink, than for snod = 0.8. This is in
agreement with the discussion in subsection 4.1.

In Figure 11 we plot the density as a function of the node, in a log-log plot at
times t = 1000, 5000, 10000. Note that because of the large distance between sources
and sinks for nodes \Omega b, the time scale to approach equilibrium increases significantly.
We observe that superdiffusion inside the nodes accelerates the equilibration over the
whole metaplex in all cases, unlike for the small nodes \Omega s (Figure 10). For snet = 0.4
in Figure 11 we observe the accelerated diffusion clearly, with a density distribution
that is far from a Gaussian parabola in the log-log plot.

6.3.1. Metaplex Superdiffusion. From the discussion of Experiments 1 and 2
so far, we conclude that for the short range network diffusion (2.7), proportional to
2 - snet| i - j| , superdiffusion in the nodes can accelerate the equilibration in the meta-
plex, but it cannot lead to global superdiffusion. This is in line with the discussion in
section 5. We now consider a long range network coupling proportional to | i - j|  - snet

given by the Mellin-transformed d-path Laplacian (2.6) for snet = 1.5, 2, 2.5, and 4.
In the case of this linear metaplex we count on the advantage that previous

analytic results exist for the diffusion on its exoskeleton using the d-path Laplacians
[19]. In this case it was proved analytically that the use of the Mellin transform may
produce a superdiffusive regime in an infinite linear chain of nodes for snet \in (1, 3).

As in Figure 11, Figure 12 plots the density at times t = 10, 100, 1000, 10000 as a
function of the node of the network in a log-log plot. The linear decay of the density
and the peaked behavior at node 1 indicate superdiffusion irrespective of the internal
dynamics. Because of the strong network diffusion, for the big nodes \Omega b the structure
of the nodes proves irrelevant to the metaplex dynamics.

In Figure 13 we exhibit the absence of superdiffusion for large Mellin exponents
snet = 4 and snod = 0.8: The density distribution recovers a Gaussian shape, char-
acteristic of normal diffusion, as is clearly visible for longer times. Note that for the
illustration of the Gaussian shape we have symmetrically reflected the network with
respect to the y-axis.

Finally, Figure 14 shows the equilibration of the density in node 1 with time. It
confirms the interplay of the nodal diffusion process and the size of the node, as is
observed for the short range network diffusion in Figure 9 above.

In closing, after all the analyses carried out in this section we can conclude that
for the path graph \scrQ and for Tij given by the d-path Laplacian (2.7), there exists
C > 0 such that

\int 
\Omega j
uj(t, x) dx \leq Ce - C| j - 1| for j \in \scrQ . In particular, superdiffusion

is not possible for the considered internal diffusion \{ Hk\} k.
In the case of the Mellin-transformed d-Laplacian (2.6), the numerical results

indicate that superdiffusion in the network may persist even for nodes with distant
sinks and sources. While, in general, the range of Mellin exponents snet that allow
superdiffusion may shrink, for certain experiments in the linear network V = \scrQ we
numerically recover superdiffusion for snet \in (1, 3), as in the absence of internal
structure [22].

7. Real-World Metaplexes. In this section we study diffusion in two real-world
metaplexes of very distinctive types. The first, a landscape metaplex representing
a fragmented forest from the south of Madagascar, shares some of the large-world
properties of the linear metaplex in section 6. A metaplex representing the cortical
region of a macaque, used as a second example, illustrates the dominance of the
endodynamics in an ultra small-world network.
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Fig. 12 Density distribution for long range network coupling, snod = 0.2 (\circ ) and snod = 0.8 (+).
Top panel: \Omega s. Bottom panel: \Omega b
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Fig. 13 Gaussian shape of density distribution for snet = 4 and snod = 0.8 at t = 10 (red), t = 100
(blue), and t = 1000 (black).

Here we focus on the diffusive processes on both systems. The analogies between
brain and ecological anomalous diffusion seem to be more than casual. Costa et
al. [12] have coined the term ``foraging brain"" to refer to these similarities, and the
connection between animal foraging and cognitive foraging was considered by Hills
[33] on an evolutionary basis.
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Fig. 14 Density equilibration in node 1 for the Mellin-transformed d-path Laplacian for \Omega s (a) and
\Omega b (b).

In the following subsections we consider either small \Omega s or big \Omega b disks for all the
nodes in the metaplex, exactly as defined for the toy model. The goal of this is to
analyze whether the size of the nodes has any influence on the global dynamics of the
metaplex. Thus, we can consider that \Omega s and \Omega b are average sizes of the regions in the
corresponding metaplex, and such an average is either relatively small or relatively
big. The coupling strength is given by \alpha = 10 for the small nodes \Omega s and \alpha = 100
for the big nodes \Omega b. The nature of the coupling, as for the toy model in section 6,
is considered to be long range, proportional to dist(i, j) - snet according to the Mellin
transformed d-path Laplacian (2.6). The results for the short range coupling can be
found in the supplementary material (Note 4).

For the landscape metaplex we discretize each node using a finite element method
with 95 degrees of freedom, while for the metaplex of the cortical regions of a macaque
we use a mesh of 347 degrees of freedom

The study of real-world metaplexes imposes some limits on the models in use
which were not needed for the idealistic toy model studied above. The first is that the
consideration of a unique source and sink at the center of each node seems unreason-
able. For both cases, the landscape and the visual cortex, we consider spatial regions
that can be connected to each other by disjoint sources and sinks as in Figure 5(b).

7.1. Landscape Metaplex. The first example considered represents a landscape
in the south of Madagascar that has been fragmented into 183 patches, corresponding
to the nodes of a metaplex, as a result of agricultural activity [6]. These patches
are connected by 529 narrow corridors that create the exostructure of the metaplex.
Such patches are vital for the survival of the ecosystem because they are now the
main habitat for the Lemur catta, which plays a fundamental role as a major seed
propagator in this environment [5, 21].

Here we assume that all the patches have the same geometry. The network has
relatively low edge density---the number of edges divided by the maximum possible
number of edges---\delta \approx 0.032 with about 45\% of nodes having degrees 2 and 3, and
only two nodes having degree 16. The average separation between two patches in
terms of the shortest path distance is approximately 11.88 with at least one pair of
patches separated at dmax = 32. The average degree of the patches is approximately
5.78 and the maximum number of nearest neighbors that a patch has is 16.
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Fig. 15 Illustration of the exoskeleton of the landscape (a) and the macaque metaplex (b) studied
here. The nodes are drawn with size and color proportional to their degree.
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Fig. 16 Density as a function of distance for disjoint coupling point at t = 100. (a) Low connectivity
nodes. (b) High connectivity nodes.

Also, we can observe that most of the hubs---high degree nodes---are clumped
together in a certain region of the landscape (see Figure 15(a)), while the low degree
nodes are relatively spread out across the landscape. Consequently, we have initialized
the diffusive process by placing the initial condition either into a randomly selected
hub or into a randomly selected low degree node.

The next experiment allows us to investigate whether the degree of the node at
which the diffusion starts has an important influence on the global metaplex diffusion.

In Figure 16 we plot the density of the diffusive particle as a function of the
shortest path distance from the initial condition when the diffusion starts at a low
(Figure 16(a)) or at a high (Figure 16(b)) degree node. Here we averaged all the
densities for nodes at exactly the same shortest path distance from the initial condi-
tion, where three different nodes with high (resp., low) connectivity were chosen to
initialize the process. We observe that there are no significant differences between
Figure 16(a) and Figure 16(b): Only when snet = 4 are there any differences between
the processes initiated at low and at high degree nodes. In this particular case, it
seems that when the process starts at a low degree node the density at nodes close
to the initial condition shares more concentration than those more distant from it.
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Fig. 17 Density as a function of distance for disjoint coupling points and snod = 0.8 (+), snod = 0.2
(\circ ). (a) and (c) correspond to \Omega s and (b) and (d) correspond to \Omega b.

This localization effect can be the consequence not of the degree of the node but of
the relative geographic isolation that such nodes can display in this landscape; that
is, one low degree node is essentially surrounded by other low degree nodes (see Fig-
ure 15(a)). However, in all the other cases it is important to note that the profiles
of the density at different distances from the initial conditions are almost exactly the
same for processes starting at low or high degree nodes. Consequently, we conclude
that in this metaplex the place at which the diffusion is initiated is not relevant for
the evolution of the global process. Therefore, in the rest of this section we discuss
the results for the process started from low degree nodes.

We now explore the influence of the geometry of the nodes. In Figure 17 we
plot the change in the density for nodes at different shortest path distances from
the initial condition, for a small (Figure 17(a)) and a big node (Figure 17(b)) using
the same value of snet = 0.4. The first clear observation from these plots is that
when the nodes are small, superdiffusion inside the nodes slows down the rate to the
equilibration of the diffusion in the metaplex (notice that crosses are over the circles
in Figure 17(a)). However, when the nodes are big, the reverse occurs, and relatively
high values of snod = 0.8 slow down the equilibration of the diffusion in the metaplex
(the circles are over the crosses in Figure 17(b).) The same results are reproduced
when a much bigger value of snet = 4 is used, as can be seen in Figures 17(c) and 17(d).
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(a)

(b)

Fig. 18 Time evolution of the diffusion dynamics for \Omega s (a) and \Omega b (b) with disjoint sinks and
sources inside the node of the landscape metaplex.

The reason for this apparently counterintuitive behavior has been previously dis-
cussed for the toy model: in a small node it is counterproductive to make long jumps
inside the node, since the diffusive particle will rarely find the sink to escape from the
node. In a similar fashion, inside a big node it is counterproductive to make small
jumps as that will slow down the mobility of particles away from the source to reach
the sink and leave the node. We again conclude that the size of the nodes influences
the global dynamics of the metaplex. Also, importantly, the nature of the internal
structure can significantly change the rate of convergence of the process and can make
it faster or slower depending on the size of the nodes and the nature of the diffusive
processes inside them.

Let us now consider the combined influence of the endo- and exodynamics on the
global metaplex diffusion. We start by considering the time evolution of the diffusive
particle across the metaplex after initiating the process at a randomly selected node.

In Figure 18(a) we illustrate the time evolution of the density (in logarithmic
scale) of the diffusive particle. In the left panel of Figure 18(a) we observe that the
diffusion with snod = 0.8 converges to the steady state at an earlier time than that for
snod = 0.2 when the same value of snet = 4 is used. The same is observed, even more
clearly, in the right panel where the process for snod = 0.8 and snet = 0.4 converges
significantly faster to the steady state than that for snod = 0.2 and snet = 0.4. See
Table 1 for the values of the standard deviation introduced in section 2.

Making the nodes bigger shows the same behavior as is discussed above. The
slower dynamics, compared to the small nodes (see Figure 18(b)), is expected from
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Table 1 Standard deviation at t = 5000 for the landscape metaplex.

snet = 4 snet = 0.4

snod = 0.2 snod = 0.8 snod = 0.2 snod = 0.8

\Omega s 0.0265 0.0088 3.9\cdot 10 - 4 1.8\cdot 10 - 11

\Omega b 0.034 0.059 0.028 0.059

the fact that now the diffusive particle has more area to diffuse in before finding its
way out of the node. However, the most interesting observation is that now, as we
have previously pointed out, the order of convergence rates is reversed. For the bigger
node, the global diffusion equilibrates faster when we have superdiffusion inside the
nodes than when snod = 0.8 (compare values in Table 1 for \Omega b). Similar results are
observed for the case snet = 0.4.

From Figure 18(a) we observe that varying snet and snod changes the rate of
convergence of the diffusion in the metaplex. So we conclude that, although the
landscape metaplex has a large-world exoskeleton, it displays a trade-off between the
exo- and endodynamics that determines the global convergence of the diffusion in the
metaplex. It is neither the exostructure nor the endostructure alone, but a complex
interrelation of both that controls the global dynamics in the metaplex.

7.2. Visual Cortex Metaplex of Macaque. The second metaplex consists of 30
regions of the macaque visual cortex. These cortex regions are functionally connected
by 190 edges, which makes the exostructure of this system very dense, with density
\delta \approx 0.437. As a consequence of this high edge density the network is an ``ultrasmall-
world"" with average shortest path distance between cortex regions of \=d \approx 1.54 and
a maximum separation between two of these regions of only dmax = 3 steps. This
makes the exoskeleton of this metaplex an ``ultra small-world."" The average degree is
approximately 12.67 with a maximum number of connections at a given node is 22.

This network displays an almost uniform degree distribution, particularly for
degrees between 4 and 16. Therefore, we just pick at random the nodes to initiate
the diffusion on the metaplex since most of the nodes are degree-equivalent. We then
proceed with a similar analysis for the case of the landscape metaplex by studying
the effects of the endo- and exodynamics on the global diffusion.

When the nodes are small as in Figure 19(a), we observe the same effect as in
the previous cases, namely, that larger values of snod favor the convergence of the
dynamics to the steady state (see Table 2 for the standard deviation values). The
results for the big nodes (Figure 19(b)) are similar to those for the toy model and
landscape metaplex, i.e., superdiffusion inside the nodes favors the convergence of the
dynamics to the steady state.

For the macaque visual cortex metaplex the change of snet changes practically
nothing in the global dynamics. For instance, we see from Figure 19(a) that keeping
constant snod = 0.8 and dropping snet from 0.8 (blue lines in the left panel) to
snet = 0.4 (black lines in the right panel) leaves the time evolution of the diffusion
almost unaffected. The standard deviations at t = 5000 time units are in Table 2.
We observe similar behavior for the case of big nodes (see Figure 19(b)).

These results are in clear contrast with the ones previously discussed for the
landscape metaplex. In the previous case it was observed that a trade-off between the
exo- and endodynamics controls the global diffusion at the metaplexic scale. Here,
the exodynamics does not play any significant role in the global dynamics of the
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Fig. 19 Time evolution of the diffusion process on the macaque visual cortex metaplex using different
parameters for the endo- and exodynamics (see text for details).

Table 2 Standard deviation at t = 5000 for the macaque visual cortex metaplex.

snet = 0.8 snet = 0.4

snod = 0.2 snod = 0.8 snod = 0.2 snod = 0.8

\Omega s 0.0064 1.378\cdot 10 - 9 0.0064 1.3283\cdot 10 - 9

\Omega b 0.0983 0.1567 0.0983 0.1567

metaplex. The factor which determines such global dynamics is the endostructure of
the nodes in the metaplex. The reasons for this extreme case of dependence of the
global dynamics almost exclusively is two-fold. First, the exoskeleton of the macaque
visual cortex analyzed here is an ultra small-world, where long range hops are not
possible. The second is the almost-complete nature of this exostructure, i.e., its high
density and uniformity of degree distribution. It is intuitively clear that in a complete
network there are no topological effects that can affect the dynamics. In this case
only the endodynamics has a significant influence on the metaplexic global dynamics.

Most real-world metaplexes are expected to have exostructures that are not as
dense and uniform as that of the macaque visual cortex. Although they certainly
display small-world properties, they show a larger variability of shortest path distances
than the macaque cortex. Thus, it is expected that they display certain trade-offs
between the endo- and the exostructures such as that observed here for the landscape
metaplex in determining the global dynamics of the system.
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8. Summary. The concept of metaplex introduced in this work allows us to study
the trade-off between the internal structure and dynamics of/in the nodes. Here we
provide the basic notions and motivations for the study of metaplexes with continuous
internal structure of the nodes and discrete internode dynamics. Additionally, we
provide theoretical and computational support for a series of results related to the
study of diffusive dynamics on metaplexes. In particular, we present examples in which
the endostructure of the metaplex determines almost uniquely the global dynamics:
in the macaque visual cortex the exostructure plays no fundamental role. On the
other hand, in the linear metaplex chain there is a trade-off between the endo- and
exodynamics to determine the global diffusion. This is reflected in the Madagascar
metaplex landscape. We have also studied here the effect of the geometry, such as
the size of nodes, location of sinks and sources, and the nature and strength of the
coupling between nodes.

Our numerical results show that superdiffusion due to long range hopping in the
linear network \scrQ = \{ . . . , - 2, - 1, 0, 1, 2, . . . \} , as in [22], survives irrespective of the
internal structure of the nodes (Figure 12). The parameter range of Mellin exponents
for which superdiffusion is observed, snet \in (1, 3), is the same as for ordinary networks
of point nodes without internal structure. The conclusion extends to certain networks
from applications of a large diameter, here studied for the landscape network of habi-
tats of L. catta (Figure 17). The combined influence of the endo- and exostructures
determines the global diffusion in such networks.

The endostructure, on the other hand, dominates at shorter distances and there-
fore becomes crucial for diffusion in small-world metaplexes. This was illustrated for
the cortical metaplex of the macaque in Figure 19. The effect of the internal dynamics
in the whole metaplex depends strongly on the geometry of the nodes and the nature
of the coupling. When sinks and sources overlap, internal superdiffusion may slow
down the metaplex dynamics, and normal diffusion is faster on small scales. When
sinks and sources are in separate, distant locations, superdiffusion in the nodes allows
particles to explore the entire metaplex much faster than classical diffusion. While it
accelerates diffusion, the internal superdiffusion cannot, by itself, induce superdiffu-
sion in the metaplex.

Our results can be understood from the local description we provide of the dis-
tribution of particles inside each node. The combination of analytical methods for
the PDE description in the node, and network methods for their interconnection in
the exoskeleton, gives a new perspective not only on classical complex network de-
scriptions, but also on the study of PDEs describing physical systems which can be
either split into continuous regions interconnected in a discrete way or which involve a
network of internal degrees of freedom. This illustrates how the study of metaplexes
draws tools from a wide range of areas, such as the geometric analysis of coupled
PDEs and interface problems, spectral theory of operator matrices, high-dimensional
stochastic processes, etc. Conversely, it suggests the relevance of network theory for
old problems in these fields, such as the problem of finding effective descriptions of
interacting many-particle systems with high-dimensional internal degrees of freedom.

From a computational point of view, numerical experiments for large metaplexes
become a challenge, due to the new internal degrees of freedom in each node. For ap-
plications to real-world networks, future work should explore methods that represent
this internal dynamics efficiently. Model order reduction or generalized finite element
methods [52] are examples that have been used already in related settings to achieve
a reasonable accuracy for small degrees of freedom.
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