FURTHER GENERALIZATIONS OF THE PARALLELOGRAM LAW

ANTONIO M. OLLER-MARCÉN

ABSTRACT. In recent work [2], a generalization of the parallelogram law in any dimension $N \geq 2$ was given by considering the ratio of the quadratic mean of the measures of the N-1-dimensional diagonals to the quadratic mean of the measures of the faces of a parallelotope. In this paper, we provide a further generalization considering not only (N-1)-dimensional diagonals and faces, but the k-dimensional ones for every $1 \le k \le N - 1$.

1. INTRODUCTION

If we consider the usual Euclidean space $(\mathbb{R}^n, \|\cdot\|)$, the well-known identity

(1)
$$||a+b||^2 + ||a-b||^2 = 2(||a||^2 + ||b||^2)$$

is called the *parallelogram law*.

This identity can be extended to higher dimensions in several ways. For example, it is straightforward to see that

(2)
$$||a+b+c||^2 + ||a+b-c||^2 + ||a-b+c||^2 + ||a-b-c||^2 = 4(||a||^2 + ||b||^2 + ||c||^2)$$

with subsequent analogue identities arising inductively. There are, in fact, many works devoted to provide generalizations of (1) in many different contexts [1, 3, 4]Note that if we rewrite (1) as

(3)
$$\frac{\|a+b\|^2 + \|a-b\|^2}{2} = 2\frac{(\|a\|^2 + \|b\|^2 + \|a\|^2 + \|b\|^2)}{4}$$

it just means that in any parallelogram, the ratio of the quadratic mean of the lengths of its diagonals to the quadratic mean of the lengths of its sides equals $\sqrt{2}$. With this interpretation in mind, Alessandro Fonda [2] has recently proved the following interesting generalization.

Theorem 1. Given linearly independent vectors $a_1, \ldots, a_N \in \mathbb{R}^n$, it holds that

$$\sum_{i < j} \left(\left\| (a_i + a_j) \wedge \bigwedge_{k \neq i, j} a_k \right\|^2 + \left\| (a_i - a_j) \wedge \bigwedge_{k \neq i, j} a_k \right\|^2 \right) = (N-1) \sum_{k=1}^N 2 \left\| a_1 \wedge \dots \wedge \widehat{a_k} \wedge \dots \wedge a_N \right\|^2.$$

In other words, for any N-dimensional parallelotope, the ratio of the quadratic mean of the (N-1)-dimensional measures of its diagonals to the quadratic mean of the (N-1)-dimensional measures of its faces is equal to $\sqrt{2}$.

In this work we extend this result considering the faces of dimension k for every $1 \le k \le N-1$ and a suitable definition of k-dimensional diagonal of a parallelotope. Then, Theorem 1 will just be a particular case of our result for k = N-1. Indeed, our result can be stated as follows.

Theorem 2. Let us consider an N-dimensional parallelotope and let $1 \le k \le N-1$. The ratio of the quadratic mean of the k-dimensional measures of its k-dimensional diagonals to the quadratic mean of the k-dimensional measures of its k-dimensional faces is equal to $\sqrt{N-k+1}$.

In fact, our generalization goes in the line of the work [3] but considering the definition of diagonal face given in [2].

2. NOTATION AND PRELIMINARIES

In this section we are going to introduce some notation and to present some basic facts that will be useful in the sequel. Let us consider a parallelotope \mathcal{P} generated by a family of linearly independent vectors $\mathcal{B} = \{a_1, a_2, \ldots, a_N\} \subseteq \mathbb{R}^n$. This means that

$$\mathcal{P} = \left\{ \sum_{i=1}^{N} \alpha_i a_i : \alpha_i \in [0,1] \right\}.$$

Let us fix $1 \leq k \leq N-1$. Then, given k different vectors $S = \{a_{i_1}, \ldots, a_{i_k}\} \subseteq B$, we can consider the face generated by them:

$$\mathcal{F}(\mathcal{S}) = \left\{ \sum_{v \in \mathcal{S}} \alpha_v v : \alpha_v \in [0, 1] \right\}$$

This face can now be translated by one or more of the remaining vectors thus obtaining a face

$$\mathcal{F}^{I}(\mathcal{S}) = \left\{ \sum_{v \in \mathcal{S}} \alpha_{v} a_{v} + \sum_{w \in \mathcal{B} \setminus \mathcal{S}} \alpha_{w} w \in \mathcal{P} : \alpha_{w} \in \{0, 1\} \right\},\$$

where $I = (\alpha_v)_{v \notin S} \in \{0,1\}^{N-k}$. Since each choice of a set $S \subseteq \mathcal{B}$ and a vector $I \in \{0,1\}^{N-k}$ leads to a different face and every face can be obtained in this way, it follows the well-known result that \mathcal{P} has exactly $2^{N-k} {N \choose k} k$ -dimensional faces. Moreover, it is clear that all the 2^{N-k} different faces $\mathcal{F}^I(S)$ are congruent to the set generated by $S, \mathcal{F}(S)$.

Now, we focus on the k-dimensional diagonals which will be defined following the ideas in [2]. Let us consider N - k + 1 different vectors $\mathcal{T} = \{a_{i_1}, \ldots, a_{i_{N-k+1}}\} \subseteq \mathcal{B}$ and let $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$ be any partition. Then, the following set

$$\mathcal{D}(\mathcal{T}_1, \mathcal{T}_2) = \left\{ \alpha \sum_{v \in \mathcal{T}_1} v + (1 - \alpha) \sum_{v \in \mathcal{T}_2} v + \sum_{w \in \mathcal{B} \setminus \mathcal{T}} \alpha_w w : \alpha, \alpha_w \in [0, 1] \right\}.$$

is called the k-dimensional diagonal associated to $(\mathcal{T}, \mathcal{T}_1, \mathcal{T}_2)$. Clearly each choice of a set $\mathcal{T} \subseteq \mathcal{B}$ and a partition of \mathcal{T} leads to a different diagonal. Thus, it readily follows that \mathcal{P} has exactly $2^{N-k} \binom{N}{N-k+1}$ different k-dimensional diagonals. Moreover, if we define the vector

$$V(\mathcal{T}_1, \mathcal{T}_2) = \sum_{v \in \mathcal{T}_1} v - \sum_{v \in \mathcal{T}_2} v,$$

we have that

$$\mathcal{D}(\mathcal{T}_1, \mathcal{T}_2) = \left\{ \alpha V(\mathcal{T}_1, \mathcal{T}_2) + \sum_{v \in \mathcal{T}_2} v + \sum_{w \in \mathcal{B} \setminus \mathcal{T}} \alpha_w w : \alpha, \alpha_w \in [0, 1] \right\}$$

and, consequently, it is clear that the diagonal $\mathcal{D}(\mathcal{T}_1, \mathcal{T}_2)$ is just a translation of the set generated by $\{V(\mathcal{T}_1, \mathcal{T}_2), w : w \in \mathcal{B} \setminus \mathcal{T}\}$ and, hence, it is congruent to it.

3. Proof of Theorem 2

After introducing the notation and the main objects involved in thie work, we are now in the condition to proof the main result of the paper.

Let \mathcal{P} be a parallelotope generated by $\mathcal{B} = \{a_1, a_2, \ldots, a_N\} \subseteq \mathbb{R}^n$. We first compute the quadratic mean of the k-dimensional measures of its k-dimensional faces. To do so, we first note that, for every $\mathcal{S} = \{a_{i_1}, \ldots, a_{i_k}\} \subseteq \mathcal{B}$, the kdimensional measure of the face $\mathcal{F}(\mathcal{S})$ is $||a_{i_1} \wedge \cdots \wedge a_{i_k}||$. In the previous section we have seen that \mathcal{P} has exactly $2^{N-k} {N \choose k}$ k-dimensional faces and, moreover, that there are exactly 2^{N-k} copies of each face $\mathcal{F}(\mathcal{S})$. Consequently, the quadratic mean of the k-dimensional measures of the k-dimensional faces of \mathcal{P} is:

(4)
$$\frac{2^{N-k} \sum \|a_{i_1} \wedge \dots \wedge a_{i_k}\|^2}{2^{N-k} \binom{N}{k}}.$$

Now we have to compute the quadratic mean of the k-dimensional measures of the k-dimensional diagonals of \mathcal{P} . First of all, recall that \mathcal{P} has exactly $2^{N-k} \binom{N}{N-k+1}$ different k-dimensional diagonals. Each of them is the translation of the set generated by $\{V(\mathcal{T}_1, \mathcal{T}_2), w : w \in \mathcal{B} \setminus \mathcal{T}\}$ for exactly one choice of $(\mathcal{T}, \mathcal{T}_1, \mathcal{T}_2)$. The k

dimensional measure of this latter set is $\left\| V(\mathcal{T}_1, \mathcal{T}_2) \wedge \bigwedge_{w \in \mathcal{B} \setminus \mathcal{T}} w \right\|$. Consequently, the

quadratic mean of the k-dimensional measures of the k-dimensional diagonals of \mathcal{P} is:

(5)
$$\frac{\sum_{\mathcal{T},\mathcal{T}_1,\mathcal{T}_2} \left\| V(\mathcal{T}_1,\mathcal{T}_2) \wedge \bigwedge_{w \in \mathcal{B} \setminus \mathcal{T}} w \right\|^2}{2^{N-k} \binom{N}{N-k+1}}$$

Now, using the bilinearity of the scalar product and taking into account the definition of $V(\mathcal{T}_1, \mathcal{T}_2)$, it can be easily seen that when we vary $(\mathcal{T}, \mathcal{T}_1, \mathcal{T}_2)$, we get the term $||a_{i_1} \wedge \cdots \wedge a_{i_k}||^2$ exactly $2^{N-K}k$ times for every possible choice of $\{a_{i_1}, \ldots, a_{i_k}\} \subseteq \mathcal{B}$. This implies that the quadratic mean of the k-dimensional measures of the kdimensional diagonals of \mathcal{P} (5) can in fact be written as:

(6)
$$\frac{2^{N-k}k\sum \|a_{i_1}\wedge\dots\wedge a_{i_k}\|^2}{2^{N-k}\binom{N}{N-k+1}}.$$

Finally, in order to obtain Theorem 2 it is enough to divide (6) by (4):

$$\frac{\binom{6}{4}}{\binom{N}{k}} = \frac{\binom{N}{k}}{\binom{N}{N-k+1}} = N - k + 1.$$

References

- [1] Eeciolu, . Parallelogram-law-type identities. Linear Algebra Appl., 225:1–12, 1995.
- [2] Fonda, A. A generalization of the parallelogram law to higher dimensions. Ars Mathematica Contemporanea, 16(2):411–417, 2019.
- [3] A generalized parallelogram law Nash, A. Amer. Math. Monthly, 110:52–57, 2003.
- [4] Penico, A.J.; Stanojevi, .V. An integral analogue to parallelogram law. Proc. Amer. Math. Soc., 79(3):427-430, 1980.

Centro Universitario de la Defensa de Zaragoza, Ctra. Huesca s/n, 50090 Zaragoza, Spain

E-mail address: oller@unizar.es