# FURTHER GENERALIZATIONS OF THE PARALLELOGRAM LAW 

ANTONIO M. OLLER-MARCÉN


#### Abstract

In recent work [2], a generalization of the parallelogram law in any dimension $N \geq 2$ was given by considering the ratio of the quadratic mean of the measures of the $N$-1-dimensional diagonals to the quadratic mean of the measures of the faces of a parallelotope. In this paper, we provide a further generalization considering not only $(N-1)$-dimensional diagonals and faces, but the $k$-dimensional ones for every $1 \leq k \leq N-1$.


## 1. Introduction

If we consider the usual Euclidean space $\left(\mathbb{R}^{n},\|\cdot\|\right)$, the well-known identity

$$
\begin{equation*}
\|a+b\|^{2}+\|a-b\|^{2}=2\left(\|a\|^{2}+\|b\|^{2}\right) \tag{1}
\end{equation*}
$$

is called the parallelogram law.
This identity can be extended to higher dimensions in several ways. For example, it is straightforward to see that
(2) $\|a+b+c\|^{2}+\|a+b-c\|^{2}+\|a-b+c\|^{2}+\|a-b-c\|^{2}=4\left(\|a\|^{2}+\|b\|^{2}+\|c\|^{2}\right)$
with subsequent analogue identities arising inductively. There are, in fact, many works devoted to provide generalizations of (1) in many different contexts [1, 3, 4]

Note that if we rewrite (1) as

$$
\begin{equation*}
\frac{\|a+b\|^{2}+\|a-b\|^{2}}{2}=2 \frac{\left(\|a\|^{2}+\|b\|^{2}+\|a\|^{2}+\|b\|^{2}\right)}{4} \tag{3}
\end{equation*}
$$

it just means that in any parallelogram, the ratio of the quadratic mean of the lengths of its diagonals to the quadratic mean of the lengths of its sides equals $\sqrt{2}$. With this interpretation in mind, Alessandro Fonda [2] has recently proved the following interesting generalization.

Theorem 1. Given linearly independent vectors $a_{1}, \ldots, a_{N} \in \mathbb{R}^{n}$, it holds that

$$
\begin{aligned}
& \sum_{i<j}\left(\left\|\left(a_{i}+a_{j}\right) \wedge \bigwedge_{k \neq i, j} a_{k}\right\|^{2}+\left\|\left(a_{i}-a_{j}\right) \wedge \bigwedge_{k \neq i, j} a_{k}\right\|^{2}\right)= \\
& =(N-1) \sum_{k=1}^{N} 2\left\|a_{1} \wedge \cdots \wedge \widehat{a_{k}} \wedge \cdots \wedge a_{N}\right\|^{2} .
\end{aligned}
$$

In other words, for any $N$-dimensional parallelotope, the ratio of the quadratic mean of the $(N-1)$-dimensional measures of its diagonals to the quadratic mean of the ( $N-1$ )-dimensional measures of its faces is equal to $\sqrt{2}$.

In this work we extend this result considering the faces of dimension $k$ for every $1 \leq k \leq N-1$ and a suitable definition of $k$-dimensional diagonal of a parallelotope. Then, Theorem will just be a particular case of our result for $k=N-1$. Indeed, our result can be stated as follows.

Theorem 2. Let us consider an $N$-dimensional parallelotope and let $1 \leq k \leq N-1$. The ratio of the quadratic mean of the $k$-dimensional measures of its $k$-dimensional diagonals to the quadratic mean of the $k$-dimensional measures of its $k$-dimensional faces is equal to $\sqrt{N-k+1}$.

In fact, our generalization goes in the line of the work [3] but considering the definition of diagonal face given in [2].

## 2. Notation and preliminaries

In this section we are going to introduce some notation and to present some basic facts that will be useful in the sequel. Let us consider a parallelotope $\mathcal{P}$ generated by a family of linearly independent vectors $\mathcal{B}=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \subseteq \mathbb{R}^{n}$. This means that

$$
\mathcal{P}=\left\{\sum_{i=1}^{N} \alpha_{i} a_{i}: \alpha_{i} \in[0,1]\right\} .
$$

Let us fix $1 \leq k \leq N-1$. Then, given $k$ different vectors $\mathcal{S}=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq \mathcal{B}$, we can consider the face generated by them:

$$
\mathcal{F}(\mathcal{S})=\left\{\sum_{v \in \mathcal{S}} \alpha_{v} v: \alpha_{v} \in[0,1]\right\}
$$

This face can now be translated by one or more of the remaining vectors thus obtaining a face

$$
\mathcal{F}^{I}(\mathcal{S})=\left\{\sum_{v \in \mathcal{S}} \alpha_{v} a_{v}+\sum_{w \in \mathcal{B} \backslash \mathcal{S}} \alpha_{w} w \in \mathcal{P}: \alpha_{w} \in\{0,1\}\right\}
$$

where $I=\left(\alpha_{v}\right)_{v \notin \mathcal{S}} \in\{0,1\}^{N-k}$. Since each choice of a set $\mathcal{S} \subseteq \mathcal{B}$ and a vector $I \in\{0,1\}^{N-k}$ leads to a different face and every face can be obtained in this way, it follows the well-known result that $\mathcal{P}$ has exactly $2^{N-k}\binom{N}{k} k$-dimensional faces. Moreover, it is clear that all the $2^{N-k}$ different faces $\mathcal{F}^{I}(\mathcal{S})$ are congruent to the set generated by $\mathcal{S}, \mathcal{F}(\mathcal{S})$.

Now, we focus on the $k$-dimensional diagonals which will be defined following the ideas in [2]. Let us consider $N-k+1$ different vectors $\mathcal{T}=\left\{a_{i_{1}}, \ldots, a_{i_{N-k+1}}\right\} \subseteq \mathcal{B}$ and let $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$ be any partition. Then, the following set

$$
\mathcal{D}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\left\{\alpha \sum_{v \in \mathcal{T}_{1}} v+(1-\alpha) \sum_{v \in \mathcal{T}_{2}} v+\sum_{w \in \mathcal{B} \backslash \mathcal{T}} \alpha_{w} w: \alpha, \alpha_{w} \in[0,1]\right\}
$$

is called the $k$-dimensional diagonal associated to $\left(\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}\right)$. Clearly each choice of a set $\mathcal{T} \subseteq \mathcal{B}$ and a partition of $\mathcal{T}$ leads to a different diagonal. Thus, it readily follows that $\mathcal{P}$ has exactly $2^{N-k}\binom{N}{N-k+1}$ different $k$-dimensional diagonals. Moreover, if we define the vector

$$
V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\sum_{v \in \mathcal{T}_{1}} v-\sum_{v \in \mathcal{T}_{2}} v
$$

we have that

$$
\mathcal{D}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\left\{\alpha V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)+\sum_{v \in \mathcal{T}_{2}} v+\sum_{w \in \mathcal{B} \backslash \mathcal{T}} \alpha_{w} w: \alpha, \alpha_{w} \in[0,1]\right\}
$$

and, consequently, it is clear that the diagonal $\mathcal{D}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ is just a translation of the set generated by $\left\{V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right), w: w \in \mathcal{B} \backslash \mathcal{T}\right\}$ and, hence, it is congruent to it.

## 3. Proof of Theorem 2

After introducing the notation and the main objects involved in thie work, we are now in the condition to proof the main result of the paper.

Let $\mathcal{P}$ be a parallelotope generated by $\mathcal{B}=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \subseteq \mathbb{R}^{n}$. We first compute the quadratic mean of the $k$-dimensional measures of its $k$-dimensional faces. To do so, we first note that, for every $\mathcal{S}=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq \mathcal{B}$, the $k$ dimensional measure of the face $\mathcal{F}(\mathcal{S})$ is $\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|$. In the previous section we have seen that $\mathcal{P}$ has exactly $2^{N-k}\binom{N}{k} k$-dimensional faces and, moreover, that there are exactly $2^{N-k}$ copies of each face $\mathcal{F}(\mathcal{S})$. Consequently, the quadratic mean of the $k$-dimensional measures of the $k$-dimensional faces of $\mathcal{P}$ is:

$$
\begin{equation*}
\frac{2^{N-k} \sum\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|^{2}}{2^{N-k}\binom{N}{k}} \tag{4}
\end{equation*}
$$

Now we have to compute the quadratic mean of the $k$-dimensional measures of the $k$-dimensional diagonals of $\mathcal{P}$. First of all, recall that $\mathcal{P}$ has exactly $2^{N-k}\binom{N}{N-k+1}$ different $k$-dimensional diagonals. Each of them is the translation of the set generated by $\left\{V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right), w: w \in \mathcal{B} \backslash \mathcal{T}\right\}$ for exactly one choice of $\left(\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}\right)$. The $k$ dimensional measure of this latter set is $\left\|V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \wedge \bigwedge_{w \in \mathcal{B} \backslash \mathcal{T}} w\right\|$. Consequently, the quadratic mean of the $k$-dimensional measures of the $k$-dimensional diagonals of $\mathcal{P}$ is:

$$
\begin{equation*}
\frac{\sum_{\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}}\left\|V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \wedge \bigwedge_{w \in \mathcal{B} \backslash \mathcal{T}} w\right\|^{2}}{2^{N-k}\binom{N}{N-k+1}} . \tag{5}
\end{equation*}
$$

Now, using the bilinearity of the scalar product and taking into account the definition of $V\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$, it can be easily seen that when we vary $\left(\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}\right)$, we get the term $\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|^{2}$ exactly $2^{N-K} k$ times for every possible choice of $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq \mathcal{B}$. This implies that the quadratic mean of the $k$-dimensional measures of the $k$ dimensional diagonals of $\mathcal{P}$ (5) can in fact be written as:

$$
\begin{equation*}
\frac{2^{N-k} k \sum\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|^{2}}{2^{N-k}\binom{N}{N-k+1}} \tag{6}
\end{equation*}
$$

Finally, in order to obtain Theorem 2 it is enough to divide (6) by (4):

$$
\begin{gathered}
\frac{(6)}{(41)}=\frac{k\binom{N}{k}}{\binom{N}{N-k+1}}=N-k+1 . \\
\text { REFERENCES }
\end{gathered}
$$

[1] Eeciolu, . Parallelogram-law-type identities. Linear Algebra Appl., 225:1-12, 1995.
[2] Fonda, A. A generalization of the parallelogram law to higher dimensions. Ars Mathematica Contemporanea, 16(2):411-417, 2019.
[3] A generalized parallelogram law Nash, A. Amer. Math. Monthly, 110:52-57, 2003.
[4] Penico, A.J.; Stanojevi, .V. An integral analogue to parallelogram law. Proc. Amer. Math. Soc., 79(3):427-430, 1980.

Centro Universitario de la Defensa de Zaragoza, Ctra. Huesca s/n, 50090 Zaragoza, Spain

E-mail address: oller@unizar.es

