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FURTHER GENERALIZATIONS OF THE PARALLELOGRAM

LAW

ANTONIO M. OLLER-MARCÉN

Abstract. In recent work [2], a generalization of the parallelogram law in any
dimension N ≥ 2 was given by considering the ratio of the quadratic mean of
the measures of the N − 1-dimensional diagonals to the quadratic mean of the
measures of the faces of a parallelotope. In this paper, we provide a further
generalization considering not only (N − 1)-dimensional diagonals and faces,
but the k-dimensional ones for every 1 ≤ k ≤ N − 1.

1. Introduction

If we consider the usual Euclidean space (Rn, ‖ · ‖), the well-known identity

(1) ‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2)
is called the parallelogram law.

This identity can be extended to higher dimensions in several ways. For example,
it is straightforward to see that

(2) ‖a+ b+ c‖2+ ‖a+ b− c‖2+ ‖a− b+ c‖2+ ‖a− b− c‖2 = 4(‖a‖2+ ‖b‖2+ ‖c‖2)
with subsequent analogue identities arising inductively. There are, in fact, many
works devoted to provide generalizations of (1) in many different contexts [1, 3, 4]

Note that if we rewrite (1) as

(3)
‖a+ b‖2 + ‖a− b‖2

2
= 2

(‖a‖2 + ‖b‖2 + ‖a‖2 + ‖b‖2)
4

it just means that in any parallelogram, the ratio of the quadratic mean of the
lengths of its diagonals to the quadratic mean of the lengths of its sides equals√
2. With this interpretation in mind, Alessandro Fonda [2] has recently proved

the following interesting generalization.

Theorem 1. Given linearly independent vectors a1, . . . , aN ∈ R
n, it holds that

∑

i<j




∥∥∥∥∥∥
(ai + aj) ∧

∧

k 6=i,j

ak

∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
(ai − aj) ∧

∧

k 6=i,j

ak

∥∥∥∥∥∥

2

 =

= (N − 1)
N∑

k=1

2 ‖a1 ∧ · · · ∧ âk ∧ · · · ∧ aN‖2 .

In other words, for any N -dimensional parallelotope, the ratio of the quadratic mean

of the (N − 1)-dimensional measures of its diagonals to the quadratic mean of the

(N − 1)-dimensional measures of its faces is equal to
√
2.
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In this work we extend this result considering the faces of dimension k for every
1 ≤ k ≤ N−1 and a suitable definition of k-dimensional diagonal of a parallelotope.
Then, Theorem 1 will just be a particular case of our result for k = N − 1. Indeed,
our result can be stated as follows.

Theorem 2. Let us consider an N -dimensional parallelotope and let 1 ≤ k ≤ N−1.
The ratio of the quadratic mean of the k-dimensional measures of its k-dimensional

diagonals to the quadratic mean of the k-dimensional measures of its k-dimensional

faces is equal to
√
N − k + 1.

In fact, our generalization goes in the line of the work [3] but considering the
definition of diagonal face given in [2].

2. Notation and preliminaries

In this section we are going to introduce some notation and to present some basic
facts that will be useful in the sequel. Let us consider a parallelotope P generated
by a family of linearly independent vectors B = {a1, a2, . . . , aN} ⊆ R

n. This means
that

P =

{
N∑

i=1

αiai : αi ∈ [0, 1]

}
.

Let us fix 1 ≤ k ≤ N−1. Then, given k different vectors S = {ai1 , . . . , aik} ⊆ B,
we can consider the face generated by them:

F(S) =
{∑

v∈S

αvv : αv ∈ [0, 1]

}
.

This face can now be translated by one or more of the remaining vectors thus
obtaining a face

FI(S) =




∑

v∈S

αvav +
∑

w∈B\S

αww ∈ P : αw ∈ {0, 1}



 ,

where I = (αv)v 6∈S ∈ {0, 1}N−k. Since each choice of a set S ⊆ B and a vector
I ∈ {0, 1}N−k leads to a different face and every face can be obtained in this way,

it follows the well-known result that P has exactly 2N−k
(
N
k

)
k-dimensional faces.

Moreover, it is clear that all the 2N−k different faces FI(S) are congruent to the
set generated by S, F(S).

Now, we focus on the k-dimensional diagonals which will be defined following the
ideas in [2]. Let us consider N − k+1 different vectors T = {ai1 , . . . , aiN−k+1

} ⊆ B
and let T = T1 ∪ T2 be any partition. Then, the following set

D(T1, T2) =



α

∑

v∈T1

v + (1− α)
∑

v∈T2

v +
∑

w∈B\T

αww : α, αw ∈ [0, 1]



 .

is called the k-dimensional diagonal associated to (T , T1, T2). Clearly each choice of
a set T ⊆ B and a partition of T leads to a different diagonal. Thus, it readily fol-
lows that P has exactly 2N−k

(
N

N−k+1

)
different k-dimensional diagonals. Moreover,

if we define the vector
V (T1, T2) =

∑

v∈T1

v −
∑

v∈T2

v,
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we have that

D(T1, T2) =



αV (T1, T2) +

∑

v∈T2

v +
∑

w∈B\T

αww : α, αw ∈ [0, 1]





and, consequently, it is clear that the diagonal D(T1, T2) is just a translation of the
set generated by {V (T1, T2), w : w ∈ B \ T } and, hence, it is congruent to it.

3. Proof of Theorem 2

After introducing the notation and the main objects involved in thie work, we
are now in the condition to proof the main result of the paper.

Let P be a parallelotope generated by B = {a1, a2, . . . , aN} ⊆ R
n. We first

compute the quadratic mean of the k-dimensional measures of its k-dimensional
faces. To do so, we first note that, for every S = {ai1 , . . . , aik} ⊆ B, the k-
dimensional measure of the face F(S) is ‖ai1 ∧ · · · ∧ aik‖. In the previous section

we have seen that P has exactly 2N−k
(
N

k

)
k-dimensional faces and, moreover, that

there are exactly 2N−k copies of each face F(S). Consequently, the quadratic mean
of the k-dimensional measures of the k-dimensional faces of P is:

(4)
2N−k

∑
‖ai1 ∧ · · · ∧ aik‖2

2N−k

(
N

k

) .

Now we have to compute the quadratic mean of the k-dimensional measures of
the k-dimensional diagonals of P . First of all, recall that P has exactly 2N−k

(
N

N−k+1

)

different k-dimensional diagonals. Each of them is the translation of the set gen-
erated by {V (T1, T2), w : w ∈ B \ T } for exactly one choice of (T , T1, T2). The k

dimensional measure of this latter set is

∥∥∥∥∥∥
V (T1, T2) ∧

∧

w∈B\T

w

∥∥∥∥∥∥
. Consequently, the

quadratic mean of the k-dimensional measures of the k-dimensional diagonals of P
is:

(5)

∑

T ,T1,T2

∥∥∥∥∥∥
V (T1, T2) ∧

∧

w∈B\T

w

∥∥∥∥∥∥

2

2N−k

(
N

N − k + 1

) .

Now, using the bilinearity of the scalar product and taking into account the defini-
tion of V (T1, T2), it can be easily seen that when we vary (T , T1, T2), we get the term
‖ai1∧· · ·∧aik‖2 exactly 2N−Kk times for every possible choice of {ai1 , . . . , aik} ⊆ B.
This implies that the quadratic mean of the k-dimensional measures of the k-
dimensional diagonals of P (5) can in fact be written as:

(6)
2N−kk

∑
‖ai1 ∧ · · · ∧ aik‖2

2N−k

(
N

N − k + 1

) .
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Finally, in order to obtain Theorem 2 it is enough to divide (6) by (4):

(6)

(4)
=

k
(
N
k

)
(

N
N−k+1

) = N − k + 1.
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