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We study a prototypical model of two coupled two-level systems, where the competition between coherent
and dissipative coupling gives rise to a rich phenomenology. In particular, we analyze the case of asymmetric
coupling, as well as the limiting case of chiral (or one-way) coupling. We investigate various quantum optical
properties of the system, including its steady-state populations, power spectrum, and second-order correlation
functions, and outline the characteristic features which emerge in each quantity as one sweeps through the
nontrivial landscape of effective complex couplings. Most importantly, we reveal instances of population
trapping, unexpected spectral features, and strong emission correlations.
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I. INTRODUCTION

Chirality (or handedness) is an important concept across
modern science. Originally used to describe an object which
is not identical to its mirror image, chirality now encompasses
asymmetries in various guises, including chemical reactions
and subnuclear processes. The fact that nature is inherently
chiral has profound consequences, from the chemistry of
primordial biomolecules to the electroweak interaction in the
standard model [1–3].

The nascent field of chiral quantum optics is concerned
with systems where forward- and backward-propagating pho-
tons interact differently with a quantum emitter [4–6]. The
most extreme case is chiral (or one-way) coupling [7–9].
Exploiting chiral light-matter interactions is predicted to lead
to a host of exciting applications in quantum communication,
information, and computing, including nonreciprocal single-
photon devices [10–12], optical isolators [13], optical circu-
lators [14,15], integrated quantum optical circuits [16–19],
and quantum networks [20–23]. Concurrently, new horizons
in more fundamental aspects are expected, such as in quantum
entanglement [24], unconventional many-body states [25],
and emergent quasiparticles [26].

Novel phenomena stemming from asymmetric coupling
have been studied theoretically in a range of systems, includ-
ing spin networks [27], cavity-based photonic devices [28,29],
quantum emitters coupled to plasmonic waveguides [30,31],
nanophotonic ring resonators [32,33], synthetic phonons [34],
and Janus dipoles [35]. Recently, it was shown that chiral
coupling at the nanoscale naturally arises in the system of
two circularly polarized quantum emitters held above a metal
surface, where the surface plasmons mediating the emitter-
emitter interactions can be controlled in a manifestation
of reservoir engineering [36]. The earliest works in chiral
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nanophotonics and chiral plasmonics are reviewed in detail
in Refs. [37–39].

The theoretical frameworks behind a number of the models
of chiral coupling are inextricably linked to the formalism of
cascaded quantum systems, as independently developed by
Gardiner [7] and Carmichael [8] to describe distant source-
target quantum systems. In such setups, chiral coupling ap-
pears by construction, with the first body (the source) coupling
to the second body (the target) while completely forbidding
coupling in the reverse direction [9]. As such, one may use
cascaded theory to posit a well-defined criterion for chiral
coupling [28,36,40]. Meanwhile, a number of papers have
appeared recently successfully employing the cascaded for-
malism to uncover nontrivial photon correlations [41–44].

In this work we introduce a general model of two cou-
pled two-level systems (2LSs) [45]. The theory has a wide
variety of applications, with similar formalisms being used to
describe superconducting qubits [46], atomic and molecular
spectroscopy [47,48], plasmonic dimers [49], and waveg-
uides [50,51]. The utility of the theory has allowed for a
range of phenomena to be investigated, including entangle-
ment [52–57], decoherence [58], quantum processing [59],
and coherent energy transfer [60,61].

Our simple model, which importantly includes dissipative
coupling [62] via an open quantum system approach, en-
compasses regimes of coherent, dissipative, chiral, and asym-
metric coupling. To achieve this rich variety, we allow the
coherent and dissipative coupling parameters to be complex
quantities. Permitting complex phase degrees of freedom via
the coupling parameters is known to greatly increase the depth
of physics in quantum systems [29,63], most famously in the
Haldane model (where adding complex next-nearest-neighbor
hoppings leads to topological nontrivialities [64]). Here we
show how modulating the relative strength and the relative
phase of the coherent and dissipative couplings allows one
to navigate through the landscape of effective couplings, in
a manner reminiscent of reservoir engineering [65].
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Our elementary model allows us to calculate analytically
the steady-state populations of the coupled system, which
act as the simplest indicator of chiral coupling and reveals
an unconventional population trapping effect (in the limit of
strong dissipative coupling). We further calculate the optical
spectrum, which showcases different narrow spectral features
and significant frequency shifts depending on the coupling
regime. We also uncover strong emission correlations via
exact expressions for the second-order cross-correlation func-
tions, exposing the quantum nature of the system. Taken
together, we provide a systematic analysis of several funda-
mental quantum optical properties, highlighting how different
features are characteristic of each coupling regime.

The rest of this work is organized as follows. We introduce
our open quantum system model in Sec. II and underscore
its important limiting case of chiral coupling. We then study
the mean populations, power spectrum, and second-order
correlation functions of all possible coupling regimes, namely,
coherent coupling (Sec. III), dissipative coupling (Sec. IV),
chiral coupling (Sec. V), and asymmetric coupling (Sec. VI).
We summarize in Sec. VII. We relegate to the Appendixes
some supporting calculations and technical details.

II. MODEL

Our theory is based upon the simple model of two cou-
pled 2LSs originally developed in Ref. [66] and extended to
include dissipative coupling and to allow for complex param-
eters. The model allows us to provide unique physical insight
into prototypical chiral and asymmetric quantum systems due
to its analyticity. For a comprehensive review of the rich
theory of two-atom systems, see Ref. [67].

In this section we first introduce the Hamiltonian, and
with it the coherent coupling (Sec. II A), before unveiling
the master equation and the associated dissipative coupling
(Sec. II B). We conclude by surveying the coupling landscape
of the system (Sec. II C), which arises due to the interplay
between the coherent and dissipative coupling.

A. Hamiltonian

We work with the Hamiltonian

H = H0 + Hc, (1)

with the noninteracting part (h̄ = 1 throughout the paper)

H0 = ω0(σ †
1 σ1 + σ

†
2 σ2), (2)

where ω0 defines the natural resonance frequency of each
2LS. The two 2LSs interact linearly through the dipole-dipole
coupling Hamiltonian

Hc = g12σ
†
1 σ2 + g21σ

†
2 σ1, (3)

where the coherent coupling constants, which are in gen-
eral complex quantities, satisfy g12 = g∗

21. This property is
necessary to ensure Hermiticity and consequently guarantees
reciprocal coupling (which we seek to break later on by
introducing dissipation). The lowering (raising) operators of
the 2LSs are σi (σ †

i ), with i = {1, 2}, which are subject to the

intrinsic condition σiσi = σ
†
i σ

†
i = 0. The commutation and

anticommutation relations are

[σi, σ
†
j ] = [σi, σ j] = 0 with i �= j, (4a)

{σi, σ
†
i } = 1, (4b)

which define an algebra of two distinguishable systems. The
truncated Hilbert space is four dimensional, encompassing the
ground state |0, 0〉 with zero excitations; the excited state of
each 2LS |0, 1〉 and |1, 0〉, which each host a single excitation;
and the doubly excited state |1, 1〉. Explicitly, it follows from
these eigenstates that the lowering operators may be written
as

σ1 = |0, 1〉〈1, 1| + |0, 0〉〈1, 0|, (5a)

σ2 = |1, 0〉〈1, 1| + |0, 0〉〈0, 1| (5b)

and the set {|i, j〉} is complete, so that
∑

i, j |i, j〉〈i, j| = 1.
The Hamiltonian of Eq. (1) is straightforwardly diagonal-

ized by a Bogoliubov transformation as

H = ωG‖G〉〉〈〈G‖ + ω−‖−〉〉〈〈−‖
+ ω+‖+〉〉〈〈+‖ + ωX ‖X 〉〉〈〈X‖, (6)

where we have used double (single) brackets for the eigen-
states in the coupled (uncoupled) regime. The ground ‖G〉〉 and
doubly excited ‖X 〉〉 eigenstates are given by

‖G〉〉 = |0, 0〉, ‖X 〉〉 = |1, 1〉 (7)

and the upper and lower dressed eigenstates are

‖±〉〉 = 1√
2

(|0, 1〉 ± eiθ |1, 0〉). (8)

Here we have introduced the polar decompositions for the
coherent coupling constants [appearing in Eq. (3)]

g12 = geiθ , g21 = ge−iθ , (9)

where g � 0, thus explicitly accounting for a phase θ in the
coherent interaction. The eigenfrequencies associated with the
eigenstates of Eqs. (7) and (8) are

ωG = 0, ω± = ω0 ± g, ωX = 2ω0, (10)

revealing that the dressed levels ω± are separated by the Rabi
splitting 2g, while the ground and doubly excited levels are
unshifted (and g independent). The energy ladder is sketched
in the weak- and strong-coupling regimes in Fig. 1(a). No-
tably, while the dressed-state eigenfrequencies ω± are insen-
sitive to the phase θ , the eigenstates of Eq. (8) (and thus any
quantity dependent on them) are influenced by this complex
argument. For example, in the simplest case of θ = 0 (π )
the interaction of Eq. (9) is repulsive (attractive), giving rise
to markedly different behaviors of the dipole moments: The
higher-frequency state ω+ is associated with in-phase (out-
of-phase) dipole moments and the lower-frequency state ω−
corresponds to out-of-phase (in-phase) dipole moments [68].

013723-2



ASYMMETRIC COUPLING BETWEEN TWO QUANTUM … PHYSICAL REVIEW A 102, 013723 (2020)

(a) (b)rung

N = 2

N = 1

N = 0

2ω0

ω0

0

|1, 1

|1, 0 0, 1

|0, 0

||X

||+

||G

2ω0

ω0 + g

ω0 − g

0

weak coupling strong coupling

geiθ ge−iθ

γeiφ γe−iφγ0 γ0

P1 P2

2LS − 1 2LS − 2

FIG. 1. (a) Sketch of the energy ladder of two coupled 2LSs, which is necessarily restricted to three rungs N = {0, 1, 2}, in the weak-
coupling regime (left) and the strong-coupling regime (right) [cf. Eq. (10)]. On the right the four red arrows label the two transitions between
the N = 2 and N = 1 rungs (called A and B) and the two transitions between the N = 1 and the N = 0 rungs (called C and D). (b) Cartoon
of the system under investigation: a pair of 2LSs (labeled 1 and 2) with coherent coupling (red arrows), incoherent pumping (orange arrows),
dissipative coupling (light green arrows), and self-damping decay (dark green arrows) [cf. Eq. (11)].

The effect of dissipation on the system, which as well as
introducing finite excitation lifetimes leads to a renormaliza-
tion of the levels of Eq. (10) [as follows from the fluctuation-
dissipation theorem], is discussed next.

B. Master equation

We assume that the couplings of the system to its environ-
ment are weak, so the master equation of the system’s density
matrix ρ is in the standard Lindblad form [9,69,70]

∂tρ = i[ρ, H] +
∑

i, j=1,2

γi j

2
Li jρ +

∑
i=1,2

Pi

2
(Liiρ)†, (11)

with the Liouvillian superoperator

Li jρ = 2σ jρσ
†
i − σ

†
i σ jρ − ρσ

†
i σ j . (12)

In Eq. (11), the Hamiltonian H is given by Eq. (1), γi j are
the self- (i = j) and collective (i �= j) damping decay rates,
and the incoherent pumping rate Pi populates 2LS-i. Each
emitter has its own independent bath, which can correspond
to radiation into free space, for example, and they also share a
common bath [as denoted by the green rectangle in Figs. 2(b)
and 2(d)], which allows for the dissipative coupling.

Assuming the (real-valued) self-damping decay rates to
be identical and utilizing polar decompositions for the (in
general, complex-valued) dissipative coupling constants, we
write the four damping constants appearing in the second term

(a) (b) (c) (d)

I

II1 2

FIG. 2. Sketches of the system of two coupled two-level systems,
denoted by 1 and 2, in different coupling regimes [cf. Eqs. (14)]. We
denote coherent (dissipative) coupling by red (green) arrows and the
common bath by a green rectangle. We consider (a) coherent [cf.
Eq. (14a)], (b) dissipative [cf. Eq. (14b)], (c) chiral I and II (top and
bottom, respectively) [cf. Eqs. (14c) and (14d)], and (d) asymmetric
coupling.

on the right-hand side of Eq. (11) as

γ11 = γ22 = γ0, γ12 = γ eiφ, γ21 = γ e−iφ, (13)

where γ � 0 and we note that in order to have physical
dynamics γ � γ0 [9]. We thus explicitly account for a phase
φ in the dissipative coupling in the same manner as for the
coherent coupling [cf. Eq. (9)]. This completes the setup of
our combined pumped-dissipative system, which is sketched
in Fig. 1(b).

We would like to mention that the form of the parameters
of Eqs. (9) and (13) arises naturally in the electromagnetic
setup proposed in Ref. [36], whereby two circularly polarized
quantum emitters are held above a metal surface hosting
plasmons. In the framework of macroscopic quantum elec-
trodynamics, the coherent and dissipative coupling constants
{gi j, γi j} describing this system can be directly related to the
electromagnetic dyadic Green’s function of the system [71].
The circular polarization of the quantum emitters gives rise
to the complex phase degrees of freedom {θ, φ}; otherwise
the parameters of Eq. (13) are wholly real quantities [50,51].
Changing the relative positions of the emitters, or their height
above the metallic surface, allows one to tune the emitter-
emitter interactions. In doing so, one can traverse the coupling
landscape defined by the four fundamental quantities of our
model {g, γ , θ, φ}.

C. Coupling landscape

In the rest of this work, we will look in detail at the
quantum optical properties of the four limiting cases of our
model, which reveals the coupling landscape

g �= 0, γ = 0 (coherent coupling), (14a)

g = 0, γ �= 0 (dissipative coupling), (14b)

g

γ
= 1

2
, θ − φ = π

2
(chiral I coupling), (14c)

g

γ
= 1

2
, θ − φ = 3π

2
(chiral II coupling), (14d)

as depicted in Figs. 2(a)–2(c). We also analyze the asymmetric
coupling case shown in Fig. 2(d), which has no restrictions
on the parameters of the model. Notably, the asymmetric
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regime was recently shown to include an interesting qua-
sichiral regime, where the magnitude condition g/γ = 1/2 of
Eqs. (14c) and (14d) is met but the phase condition on θ − φ

is not [36]. We derive the twin chiral coupling conditions of
Eqs. (14c) and (14d) in Appendix A (see also Refs. [28,36]
for more details).

III. COHERENT COUPLING

In this section we focus on the simplest nontrivial case,
that of purely coherent (co) coupling between the two quan-
tum emitters [as sketched in Fig. 2(a)]. We will consider
how the mean populations (Sec. III A), correlation functions
(Sec. III B), and optical spectrum (Sec. III C) behave due to
the interplay of the coherent coupling g and the two pumping
rates P1 and P2.

A. Mean populations

When considering the mean populations, we make special
reference to the steady state (SS) population of a single 2LS
in isolation (iso),

niso = 〈σ †σ 〉SS = P1

P1 + γ0
, (15)

where P1 and γ0 are the incoherent pump rate and self-decay
decay rate, respectively (see Appendix B for the background
theory). Throughout this work, we will be interested in how
the coupling regime of the pair of coupled 2LSs changes the
baseline result of Eq. (15), which describes a solitary 2LS with
lowering (raising) operator σ (σ †).

In the steady state [72], the mean population of the state
|i, j〉 in the coherent coupling regime is ρco

i j = 〈i j|ρco|i j〉,
which is obtained from the master equation of Eq. (11). The
resulting expressions are (see Appendix C for details)

ρco
0,0 =

γ 2
0

(
1 + g2


2+

)

1
2 + 4g2

, (16a)

ρco
1,0 =

γ0P1 + γ0P+g2

2
2+


1
2 + 4g2
, (16b)

ρco
0,1 =

γ0P2 + γ0P+g2

2
2+


1
2 + 4g2
, (16c)

ρco
1,1 =

P1P2 + ( gP+
2
+

)2


1
2 + 4g2
. (16d)

Here and in what follows, we make use of the effective
pumping and damping rates

P± = P1 ± P2, (17a)


1,2 = γ0 + P1,2, (17b)


± = 1
4 (
1 ± 
2). (17c)

In the symmetric pump case (P1 = P2), the populations of
Eqs. (16) take on particularly simple forms, being universal
functions of the ratio P1/γ0, and thus independent of the co-
herent coupling strength g. In terms of the isolated 2LS result
of Eq. (15), one finds the ground-state population ρco

0,0 = (1 −

niso)2, the singly excited populations ρco
1,0 = ρco

0,1 = niso(1 −
niso), and the doubly excited population ρco

1,1 = n2
iso. This

elementary case is displayed in Fig. 3(a), where one notes
the symmetric (about P1 = γ0) evolution of the populations
of all of the states as a function of the pumping rate P1,
starting from a wholly occupied ground state |0, 0〉 (thin
blue line) and ending with a wholly occupied doubly excited
state |1, 1〉 (thick red line), and with a balanced population
across all four states at P1 = γ0. These properties for this
high-symmetry case suggest the found g independence, which
is guaranteed by the vanishing coherence between the two
2LSs, 〈σ †

1 σ2〉SS = 0 (as derived in Appendix C).
For the case of asymmetric pumping (P1 �= P2) a g de-

pendence arises in the mean populations of Eqs. (16) and
there is an asymmetry in the populations of the singly ex-
cited states |1, 0〉 and |0, 1〉 (medium green and orange lines,
respectively), as shown in Fig. 3(b). In this figure, where
P2 = 0 and g = γ0, the limiting case with large pumping
P1 � γ0 in the system is a wholly occupied singly excited
state |1, 0〉 (medium green line) that is being incoherently
pumped. Clearly, the population imbalance between the two
singly excited states increases with increasingly pumping rate
P1, in stark contrast to Fig. 3(a). The population imbalance
induced by different incoherent pumping rates is crucial in
order to obtain nontrivial correlations, as we now discuss.

B. Correlations

In order to quantify the correlations in the coupled system,
we discuss the normalized second-order cross-correlation
function in the steady state, defined by [70]

g(2)
12 (0) = 〈σ †

1 σ1σ
†
2 σ2〉SS

〈σ †
1 σ1〉SS〈σ †

2 σ2〉SS
. (18)

This cross correlator quantifies the density of probability of si-
multaneous emissions in the two different systems 2LS-1 and
2LS-2. When g(2)

12 (0) = 1 the 2LSs emit independently, while
g(2)

12 (0) = 0 suggests it is impossible to have two simultaneous
emissions in the coupled system. Aside from these extremes,
g(2)

12,co(0) < 1 describes emission antibunching, reflecting the

quantum nature of the system, while g(2)
12,co(0) > 1 implies

emission bunching. In the coherent coupling regime, we find
the cross correlator (see Appendix C for details)

g(2)
12,co(0) = (4g2 + 
1
2)(g2P2

+ + 4P1P2

2
+)

4(g2P+ + P2
1
+)(g2P+ + P1
2
+)
, (19)

where P+, 
1,2, and 
+ are defined in Eqs. (17).
With symmetric pumping (P2 = P1), Eq. (19) collapses

into g(2)
12,co(0) = 1, describing an effectively independent sys-

tem, due to the vanishing coherence between the two 2LSs,
〈σ †

1 σ2〉SS = 0 [as is consistent with the highly symmetric
mean populations of Fig. 3(a)]. When the incoherent pumping
is asymmetric (P2 �= P1) much richer correlations arise due
to the inherent population imbalances, as shown in Fig. 4.
In the figure P2 = 0, and g(2)

12,co(0) is shown as a function
of P1, where increasingly strong coherent coupling strengths
g are denoted by increasingly thick colored lines. Most no-
tably, the quantum nature of the setup leads to the displayed
antibunching g(2)

12,co(0) < 1, which is increasingly significant
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FIG. 3. Mean populations in the coherent coupling regime, as a function of the pumping rate P1, in units of the damping rate γ0 [cf.
Eqs. (16)]. (a) Case of symmetric pumping (P2 = P1), which is independent of the coherent coupling strength g. (b) Asymmetric pumping case
(P2 = 0), with g = γ0. The labeling of the mean population of the state |i, j〉 is displayed in the legend in (a) and states with N = {0, 1, 2}
excitations are shown with increasingly thick lines.

for small pumping rates P1 	 γ0. The minimum value of
g(2)

12,co(0) = 1/2 is obtained for vanishingly small coherent
coupling g → 0, since it corresponds to the case of maximal
population imbalance (here the order of limits is important;
g → 0 is the final limit to be taken). Larger pumping rates
P1 � γ0 wash out any correlations, since the system simplifies
into supporting the singly excited state |1, 0〉 only, with the
other states unoccupied, as follows from the mean populations
of Fig. 3(b).

C. Spectrum

A fundamental quantity enabling one to characterize the
coupling regime is the spectrum of the system. The normal-
ized optical spectrum of 2LS-1 reads [66]

S1(ω) = 〈σ †
1 (ω)σ1(ω)〉
〈σ †

1 σ1〉SS
(20)

0.01 0.1 1 10 100
0.4

0.6

0.8

1

P1/γ0

g
(2

)
1
2
,c

o
(0

) g → 0

g = γ0/4

g = γ0/2

g = 3γ0/4

g = γ0

P2 = 0

FIG. 4. Second-order cross correlator in the coherent coupling
regime at zero delay g(2)

12,co(0), as a function of the pumping rate
P1, in units of the decay rate γ0 [cf. Eq. (19)]. We show results
with asymmetric pumping (P2 = 0) for increasingly strong coherent
coupling strengths g (increasingly thick colored lines).

and is formally derived in Refs. [70,73–77]. The optical
spectrum of Eq. (20) may be written as

S1(ω) =
∑

p=A,B,C,D

Sp
1 (ω), (21)

which has been decomposed into four line shapes, labeled by
the index p, given by

Sp
1 (ω) = 1

π

γp

2 Lp − (ω − ωp)Kp( γp

2

)2 + (ω − ωp)2
, (22)

due to the four possible transitions in the system, as fol-
lows from the four-dimensional Hilbert space of Eq. (6).
These transitions {A, B,C, D} are denoted by red arrows
in Fig. 1(a), which is sketched for the coherently coupled
regime [36,66,73,74]. In Eq. (22), the Lorentzian (Lp) and dis-
persive (Kp) weighting coefficients are real numbers, while ωp

and γp define the effective frequency shifts and broadenings of
the system (for further details see Appendix D). The spectrum
S2(ω) of the second 2LS, as well as generalizations of Eq. (20)
for operators such as (σ1 + σ2)/

√
2, may be calculated in the

same manner [36], but are not presented here due to their
bulky nature and our focus in this work on the fundamental
analytical theory.

In what follows we consider Eq. (21) in the vanishing
pump limit (P1, P2 	 γ0) and we make special reference to
the spectrum of a single 2LS in isolation (see Appendix B for
the derivation)

Siso(ω) = 1

π

γ0/2

(γ0/2)2 + (ω − ω0)2
. (23)

This Lorentzian expression for the optical spectrum of course
displays no frequency shifts from ω0 or renormalization ef-
fects from the bare broadening γ0. Deviations from Eq. (23)
as one traverses the coupling landscape allow for the charac-
terization of various coupling regimes of interest.

For the coherent coupling parameters of Eq. (14a), we
obtain the following simple expressions for the frequencies ωp
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and damping rates γp appearing in Eq. (22) (the calculation is
performed in Appendix D):

1
2γ co

A + iωco
A = 3

2γ0 + i(ω0 + g), (24a)

1
2γ co

B + iωco
B = 3

2γ0 + i(ω0 − g), (24b)

1
2γ co

C + iωco
C = 1

2γ0 + i(ω0 + g), (24c)

1
2γ co

D + iωco
D = 1

2γ0 + i(ω0 − g). (24d)

Equations (24), which are essentially the eigenvalues of
the Liouvillian, describe a pair of peaks with broadenings
γ co

A = γ co
B = 3γ0 and a pair of peaks with broadenings γ co

C =
γ co

D = γ0. Each pair of peaks is split by the Rabi frequency 2g,
as is consistent with the Hamiltonian dynamics of Eq. (10).
We also obtain the equal Lorentzian weighting coefficients
(corresponding to transitions to the ground state)

Lco
C = 1

2 , (25a)

Lco
D = 1

2 , (25b)

since we are in a highly symmetrical reciprocal case. The
coefficients associated with the labels A and B are zero.
This is because they correspond to the two transitions from
the upper energy level |1, 1〉, which is unpopulated in the
vanishing pump limit in which we work, to the hybridized
states involving |0, 1〉 and |1, 0〉. This fact is rigorously proved
in Ref. [66] and is implied by the red arrows indicating the
transitions in system in Fig. 1(a). The coefficients of Eqs. (25)
also reveal that the spectrum is purely Lorentzian with no
dispersive components (Kco

p = 0).
Substitution of Eqs. (24) and(25) into Eq. (21) yields the

optical spectrum in the coherent coupling regime

Sco
1 (ω) = 1

2π

∑
τ=±1

γ0/2(
γ0

2

)2 + (ω − ω0 + τg)2
. (26)

Of course, Eq. (26) recovers the uncoupled result of Eq. (23)
for vanishing coherent coupling (g → 0).

We plot the spectrum of Eq. (26) in Fig. 5 for increas-
ingly strong coherent coupling strengths g (increasingly thick
colored lines). One notices that the twin Lorentzian con-
tributions give rise to a Rabi doublet shape distinctive of
strong coupling, which only becomes hidden when the peaks
(symmetric about ω0) merge for smaller ratios of g/γ0 < 1/2.
The effects of non-negligible pumping rates on the spectrum,
which may be either symmetric or asymmetric, are described
in detail in Ref. [66].

IV. DISSIPATIVE COUPLING

In this section we contemplate the simplest case with
nontrivial dissipation, namely, where there is dissipative (ds)
coupling between the two quantum emitters but no coherent
coupling [as drawn in Fig. 2(b)]. We will investigate how the
populations (Sec. IV A), correlation functions (Sec. IV B), and
optical spectrum (Sec. IV C) change due to the competition
between the dissipative coupling strength γ and the pumping
rates P1 and P2.
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FIG. 5. Spectrum of 2LS-1 in the coherent coupling regime
Sco

1 (ω), in units of the inverse damping rate γ −1
0 , for increasingly

strong coherent coupling strengths g (increasingly thick colored
lines) [cf. Eq. (26)].

A. Mean populations

The mean population ρds
i j of the state |i, j〉 may be found

from the master equation of Eq. (11) (see Appendix C). The
results are given by

ρds
00 = 4
2

+(γ 2
0 − γ 2) + γ 2

(
γ0P+ + P2

1 +6P1P2+P2
2

4

)
γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)

, (27a)

ρds
10 = P1(4γ0


2
+ + P−γ 2) − P−γ 2

(

+ + P−

4

)
γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)

, (27b)

ρds
01 = P2(4γ0


2
+ − P−γ 2) + P−γ 2

(

+ − P−

4

)
γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)

, (27c)

ρds
11 = 4P1P2


2
+ + (

γ P−
2

)2

γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)
, (27d)

where the effective rates P±, 
1, 
2, and 
+ are defined in
Eqs. (17).

We plot the mean populations of Eqs. (27) in Fig. 6 as
a function of the incoherent pumping P1 into 2LS-1, for
asymmetric pumping (P2 = 0). In Fig. 6(a), where the dissi-
pative coupling strength γ = 3γ0/4, the population evolutions
are reminiscent of the asymmetric coherent coupling case of
Fig. 3(b). The principle difference is the lower populations
of the states |0, 1〉 and |1, 1〉 (medium orange line and thick
red line, respectively) at intermediate pumping rates P1 � γ0.
However, in Fig. 6(b), with maximal dissipative coupling γ =
γ0, there is a striking population trapping effect in the limit of
weak pumping P1 	 γ0, which has no analog in the coherent
coupling regime. Remarkably, here the mean population of
the ground state ρds

00 � 1/2 when P1 	 γ0 (thin blue line),
due to the nonzero populations of the two singly excited states
with ρds

10 = ρds
01 � 1/4 (medium green and orange lines). This

trapping phenomenon has arisen due to the quenching, with
large dissipative coupling, of transitions from the intermediate
states on the N = 1 rung of the energy ladder [cf. Fig. 1(a)]
to the ground state on the N = 0 rung (the weights of such
processes are proportional to γ0 − γ ).
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FIG. 6. Mean populations in the dissipative coupling regime as a function of the pumping rate P1, in units of the damping rate γ0 [cf.
Eqs. (27)]: (a) dissipative coupling strength γ = 3γ0/4 and (b) maximal coupling γ = γ0. The labeling of the mean population of the state
|i, j〉 is displayed in the legend in (a) and states with N = {0, 1, 2} excitations are shown with increasingly thick lines. In the figure, we consider
asymmetric pumping, with P2 = 0.

Population trapping has been noticed before in other con-
texts, such as in driven three-level systems [78–80] and for
two atoms with different resonance frequencies [81]. In our
driven-dissipative setup, its effects have already been shown
to be important for quantum entanglement [50,51]. We will
see shortly in Sec. IV C that this effect also impacts greatly on
the optical spectrum of the system.

Finally, we note that the symmetric pumping configuration
(P2 = P1) in the dissipative coupling regime only presents
obvious changes to the results presented in Fig. 6. Namely,
the results of Fig. 6 become symmetrized in the same manner

as in going from Fig. 3(a) to Fig. 3(b). Therefore, we relegate
this supplementary plot to Appendix E.

B. Correlations

The second-order coherence allows one to adjudicate the
probability of simultaneous emissions from 2LS-1 and 2LS-2
[cf. Eq. (18)]. We find, in the dissipative coupling regime,
the expression for the cross correlator at zero delay (see
Appendix C for the calculations)

g(2)
12,ds(0) =

[
4P1P2


2
+ + (

γ P−
2

)2]
[γ 2(P1
1 + P2
2) − 4
2

+(γ 2 − 
1
2)]

[P−γ 2(P1 − 
+) + 4P1
2

2+][P−γ 2(
+ − P2) + 4P2
1


2+]
, (28)

where the quantities P±, 
1, 
2, and 
+ are given by Eqs. (17).
We plot Eq. (28) in Fig. 7, with symmetric pumping

(P2 = P1) in Fig. 7(a) and with asymmetric pumping (P2 =
0) in Fig. 7(b). In the figure, increasingly strong dissipative
coupling strengths γ are denoted by increasingly thick colored
lines. In the symmetric regime of Fig. 7(a), Eq. (28) collapses
into g(2)

12,ds(0) = 1 + γ 2(P1 − γ0)/(P1 + γ0)3. Therefore, in
the absence of any dissipative coupling γ → 0, the system
behaves effectively independently and g(2)

12,ds(0) = 1, as shown
by the thin red line in Fig. 7(a). Once there is some nonzero
dissipative coupling γ �= 0 (thicker colored lines) antibunch-
ing is displayed with weak coupling P1 	 γ0, a manifestation
of the quantum nature of the system. Surprisingly, bunching
g(2)

12,ds(0) > 1 is also possible for stronger dissipative coupling
and reaches its maximum value when P1 = 2γ0. See, for
example, the case of maximal dissipative coupling γ = γ0

(thick orange line) and the bunching displayed when P1 � γ0.
In Fig. 7(b), with asymmetric pumping (P2 = 0), the sit-

uation is quite different. Now antibunching g(2)
12,ds(0) < 1 is

always exhibited, even in the limit of vanishing dissipa-
tive coupling γ → 0 (thin red line) when g(2)

12,ds(0) = (P1 +
γ0)/(P1 + 2γ0). Of course, in the strong pumping limit P1 �

γ0 the correlations are washed out and g(2)
12,ds(0) � 1, since

only the state |1, 0〉 is supported [medium green line in
Fig. 6(b)]. These results, as well as their stark contrast to
those of the coherent coupling regime in Fig. 4, suggest
emission correlations and quantum spectroscopy as important
instruments to discriminate the coupling landscape [82].

C. Spectrum

We now consider the optical spectra achievable with dissi-
pative coupling only. With the dissipative coupling parameters
of Eq. (14b), we obtain the following simple expressions for
the frequencies ωp and damping rates γp appearing in Eq. (22)
(the calculation is performed in Appendix D):

1
2γ ds

A + iωds
A = 1

2 (3γ0 − γ ) + iω0, (29a)

1
2γ ds

B + iωds
B = 1

2 (3γ0 + γ ) + iω0, (29b)

1
2γ ds

C + iωds
C = 1

2 (γ0 − γ ) + iω0, (29c)

1
2γ ds

D + iωds
D = 1

2 (γ0 + γ ) + iω0. (29d)
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FIG. 7. Second-order cross correlator in the dissipative coupling regime at zero delay g(2)
12,ds(0) as a function of the pumping rate P1, in

units of the decay rate γ0 [cf. Eq. (28)]. Increasingly strong dissipative coupling strengths γ are denoted by increasingly thick colored lines.
We show results with (a) symmetric pumping (P2 = P1) and (b) asymmetric pumping (P2 = 0).

Equations (29) describe energy levels completely unshifted
in frequency (ωds

p = ω0), due to the lack of any coherent
coupling. Instead, the dissipative coupling acts to induce
superradiant (γ ds

D = γ0 + γ ) and subradiant (γ ds
C = γ0 − γ )

broadening contributions to the spectrum.
The spectral decomposition of Eq. (22) is defined by the

unequal weighting coefficients

Lds
C = γ0 + γ

2γ0
, (30a)

Lds
D = γ0 − γ

2γ0
. (30b)

The coefficients associated with A and B labeling are
zero, as in the coherently coupled case of Eqs. (25), since
we are working in the vanishing pumping rate limit where
transitions from the unpopulated doubly excited state |1, 1〉 do
not contribute (as was shown in Ref. [66]). Most notably, in
the maximally dissipatively coupled limit of γ → γ0, there is
only one nonzero contribution to the spectrum since Lds

C →
1 and Lds

D → 0 from Eqs. (30). This is a manifestation of
the population trapping effect found in Fig. 6(b), where a
transition from a singly populated level to the ground state
has been suppressed. Population trapping has a long history
(see, for example, Refs. [83–85]) and its appearance via this
dissipative mechanism was alluded to before in Refs. [50,51].

The coefficients of Eqs. (30) and expressions of Eqs. (29)
lead to the optical spectrum

Sds
1 (ω) = 1

4πγ0

∑
τ=±1

γ 2
0 − γ 2(

γ0+τγ

2

)2 + (ω − ω0)2
. (31)

Of course, in the uncoupled limit (γ → 0) one recovers the
single 2LS result of Eq. (23). In the opposite, maximally
dissipative limit (γ → γ0) there is just a single contribution
(Lds

C → 1 and Lds
D → 0) and Eq. (31) tends towards becoming

a δ spectral peak

Sds
1 (ω) = δ(ω − ω0), γ → γ0, (32)

where δ(x) is the Dirac delta function.

We plot the spectrum of Eq. (31) in Fig. 8, where increas-
ingly strong dissipative coupling strengths γ are denoted by
increasingly thick colored lines. The plot shows the tendency
towards a δ peak (thick orange line) with increasing dissipa-
tive coupling and the characteristic singlet structure pinned at
the unshifted resonance frequency ω0.

V. CHIRAL COUPLING

Here we ruminate on the special limiting case of chi-
ral coupling, which is when the coupling between the two
quantum emitters goes in one direction only [as pictured in
Fig. 2(c)]. This nonreciprocal situation occurs due to the exact
compensation of the backaction from one of the quantum
emitters, which arises due to a careful balance between both
the relative magnitudes and relative phases of the coherent
and dissipative coupling, as discussed in detail in Appendix A
and Refs. [28,36]. Controlling the directionality of coupling
is important for the realization of nonreciprocal nanopho-
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FIG. 8. Spectrum of 2LS-1 in the dissipative coupling regime
Sds

1 (ω), in units of the inverse damping rate γ −1
0 , for increasingly

strong dissipative coupling strengths γ (increasingly thick colored
lines) [cf. Eq. (31)].
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FIG. 9. Mean populations in the chiral-1 coupling regime as a function of the pumping rate P1, in units of the damping rate γ0 [cf. Eqs. (33)].
We show results with (a) symmetric pumping (P2 = P1) and (b) asymmetric pumping (P2 = 0) for the dissipative coupling strength γ = γ0/2.
The labeling of the mean population of the state |i, j〉 is displayed in the legend in (a) and states with N = {0, 1, 2} excitations are shown with
increasingly thick lines.

tonic devices, such as unidirectional waveguides and circu-
lators [86,87], and our dimer model represents the simplest
system which can exhibit such chirality.

In what follows we ponder how the mean populations
(Sec. V A), correlation functions (Sec. V B), and optical
spectrum (Sec. V C) change due to the contest between the
dissipative coupling strength γ and the pumping rates P1

and P2, when the system is chirally coupled according to the
relations of Eq. (14c).

A. Mean populations

The mean population ρch,I
i j of the state |i, j〉, in the steady

state, is obtained from the master equation of Eq. (11) (see
Appendix C). The resultant expressions, when Eq. (14c) are
fulfilled, read

ρch,I
00 = P1P2γ

2 + P+γ 3
0 + γ 4

0 + (
γ0P+

2

)2

2
1(P1γ 2 + 2
2

2+)

, (33a)

ρch,I
10 = P1

2
1

P1γ
2 + 4γ0


2
+

P1γ 2 + 2
2

2+

, (33b)

ρch,I
01 = 4P1γ

2
+ + 4P2γ0

2
+ − γ 2P1(P1 + 2P2)

2
1(P1γ 2 + 2
2

2+)

, (33c)

ρch,I
11 = P1

2
1

P1γ
2 + 4P2


2
+

P1γ 2 + 2
2

2+

, (33d)

where the effective rates P±, 
1, 
2, and 
+ are defined in
Eqs. (17).

Most importantly, the sum ρch,I
1,0 + ρch,I

1,1 = nch,I
1 = P1/
1,

meaning that the probability for the 2LS-1 to be excited (that
is, the system is either in the state |1, 0〉 or |1, 1〉) is exactly
the same as in an isolated system, as given by Eq. (15). This
is a hallmark of the chiral coupling regime at the fundamental
level of the populations of the system.

We plot the mean populations of Eqs. (33) in Fig. 9 as
a function of the incoherent pumping P1 into 2LS-1, for
symmetric pumping (P2 = P1) in Fig. 9(a) and asymmetric
pumping (P2 = 0) in Fig. 9(b). While θ − φ = π/2 and g =

γ /2 necessarily in this chiral case, the dissipative coupling
strength is chosen as γ = γ0/2 in both panels. The effect of
introducing the asymmetry in the pumping is similar to in the
coherent coupling case of Fig. 3, and no population trapping
may occur (even in the limit of maximal dissipative coupling,
γ → γ0) in contrast to the purely dissipative case of Fig. 6.
Thus the mean populations look superficially similar to other
coupling regimes and one is forced to look at other quantities
to find distinguishing features for chiral coupling.

B. Correlations

We now investigate the second-order coherence in the
chiral coupling I regime [cf. Eq. (18)]. The cross correlator
reads (see Appendix C for details)

g(2)
12,ch,I (0) = 
1(P1γ

2 + 4P2

2
+)

4P2
1

2+ − 2P1γ 2(P2 − 2
+)

, (34)

where P±, 
1, 
2, and 
+ are effective rates, as introduced in
Eqs. (17).

We plot Eq. (34) in Fig. 10, with symmetric pump-
ing (P2 = P1) demonstrated by the solid lines and with
asymmetric pumping (P2 = 0) described by the dashed line.
For symmetric pumping, increasingly strong dissipative cou-
pling strengths γ are denoted by increasingly thick colored
lines. The symmetric case is similar to the results in the
dissipatively coupled regime, as shown in Fig. 7, where an-
tibunching is dominant when P1 	 γ0 and the correlations are
washed out such that g(2)

12,ch,I (0) → 1 when P1 � γ0. How-
ever, the asymmetric case (dashed line) is independent of
the dissipative coupling strength γ . It universally presents
antibunching behavior bounded by g(2)

12,ch,I (0) ∈ [1/2, 1] and

is governed by the expression g(2)
12,ch,I (0) = (P1 + γ0)/(P1 +

2γ0). The chirality of the setup here is not immediately
obvious in these correlations, due to their similarity to the
purely dissipatively coupled case of Fig. 7, but chirality is
most apparent when considering the optical spectrum as we
now do.
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FIG. 10. Second-order cross correlator in the chiral-1 coupling
regime g(2)

12,ch,I (0) at zero delay as a function of the pumping rate P1,
in units of the decay rate γ0 [cf. Eq. (34)]. Solid lines show symmet-
ric pumping (P2 = P1) for increasingly strong dissipative coupling
strengths γ (increasingly thick colored lines). The dashed line shows
an asymmetric pumping case (P2 = 0), which is independent of γ .

C. Spectrum

The optical spectrum is perhaps the easiest way to identify
chiral coupling. For the chiral (ch) coupling parameters of
Eqs. (14c) and (14d), of cases I and II, respectively, we find the
effective frequencies and broadenings appearing in Eq. (22)
(see Appendix D for details),

1
2γ ch

A + iωch
A = 3

2γ0 + iω0, (35a)

1
2γ ch

B + iωch
B = 3

2γ0 + iω0, (35b)

1
2γ ch

C + iωch
C = 1

2γ0 + iω0, (35c)

1
2γ ch

D + iωch
D = 1

2γ0 + iω0. (35d)

Equations (35) describe four frequency unshifted (ωch
p =

ω0) transitions, which are either superradiant (γ ch
A = γ ch

B =
3γ0) or radiant (γ ch

C = γ ch
D = γ0).

We now consider chiral case I, corresponding to 2LS-1
coupling to 2LS-2 in a one-way manner [see the upper sketch
in Fig. 2(c)]. We find the simplest possible result for the
Lorentzian weighting coefficient

Lch,I
D = 1, (36)
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FIG. 11. Spectrum of 2LS-1 in the chiral I coupling regime
Sch,I

1 (ω), in units of the inverse damping rate γ −1
0 [cf. Eq. (37)].

while all of the other coefficients are zero. It immediately
follows that the spectrum of Eq. (21) is identical to that of
a single 2LS in isolation, explicitly [cf. Eq. (23)]

Sch,I
1 (ω) = Siso(ω), (37)

which is of course independent of both the coherent g and
dissipative coupling γ strengths, due to their exact compen-
sation by design. The remarkably simple result of Eq. (37)
is a signature of chiral coupling and is shown in Fig. 11 for
completeness.

VI. ASYMMETRIC COUPLING

In this section we examine the coupling between the two
quantum emitters in the most general manner, as sketched in
Fig. 1(b). We present how the mean populations (Sec. VI A),
correlation functions (Sec. VI B), and optical spectrum
(Sec. VI C) evolve across the coupling landscape, which is
formed by the coherent coupling strength g, the dissipative
coupling strength γ , and crucially the phase difference θ − φ

between these two quantities. Tuning these parameters allows
one to induce asymmetry into the coupling and thus traverse
the entire coupling landscape (cf. Fig. 2).

A. Mean populations

The most general expressions for the steady-state correlators, those without any restrictions on the system parameters, read
(see Appendix C for the theory)

n1 = 4P1
2

2
+ + γ 2P1P− + 
+(4g2P+ − γ 2P−) + 2gγ (P1P+ − 2P2
+) sin(θ − φ)

g2γ 2P+/
+ + γ 2(P1
1 + P2
2 − 2g2) + 4
2+(
1
2 + 4g2 − γ 2) + gγ Q
, (38a)

n2 = 4P2
1

2
+ − γ 2P2P− + 
+(4g2P+ + γ 2P−) − 2gγ (P2P+ − 2P2
+) sin(θ − φ)

g2γ 2P+/
+ + γ 2(P1
1 + P2
2 − 2g2) + 4
2+(
1
2 + 4g2 − γ 2) + gγ Q
, (38b)
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n12 = eiφ−2θg2P+γ (P+/
+ − 2)/2 − ieiθ−2φgγ 2P−(P+/
+ − 2)/4 + F + G

g2γ 2P+/
+ + γ 2(P1
1 + P2
2 − 2g2) + 4
2+(
1
2 + 4g2 − γ 2) + gγ Q
, (38c)

nX = g2P2
+ + ( γ P−

2 )2 + 4P1P2

2
+ + gγ P+P− sin(θ − φ)

g2γ 2P+/
+ + γ 2(P1
1 + P2
2 − 2g2) + 4
2+(
1
2 + 4g2 − γ 2) + gγ Q
, (38d)

where we have introduced the auxiliary functions

Q = gγ (P+/
+ − 2) cos(2θ − 2φ)

+ 2(P1
1 − P2
2) sin(θ − φ), (39a)

F = −ie−iθ g

4
[γ 2P−P+/
+ − 2γ 2P−

+ 8
+(P1
2 − P2
1)], (39b)

G = e−iφ γ

2
[g2P+(P+/
+ − 2)

+ 2
+(4P1P2 − P2
1 − P1
2)] (39c)

and the effective rates P±, 
1, 
2, and 
+ are given by
Eqs. (17). We note that n1 = 〈σ †

1 σ1〉SS and n2 = 〈σ †
2 σ2〉SS

refer to the steady-state populations of 2LS-1 and 2LS-2,
respectively, rather than referring to the population ρi j of
a certain state |i, j〉. The coherence reads n12 = 〈σ †

1 σ2〉SS

and the joint probability that both 2LSs are excited is nX =
〈σ †

1 σ1σ
†
2 σ2〉SS = ρ11. The probabilities of having only 2LS-1

or 2LS-2 excited are found via the relations ρ1,0 = n1 − nX
and ρ0,1 = n2 − nX , respectively, while the population of the
ground state with zero excitations is given by ρ0,0 = 1 +
nX − n1 − n2.

We plot the 2LS-1 population n1 of Eq. (38a) as a function
of θ − φ in Fig. 12, with symmetric pumping (P2 = P1) in
Fig. 12(a) and asymmetric pumping (P2 = 0) in Fig. 12(b).
We show results for increasingly strong coherent coupling
strengths g with increasingly thick lines, while the dissipative
coupling strength γ = γ0/2 and pumping rate P1 = γ0/10 are
both held constant. We plot as a guide to the eye niso, the
population of an isolated 2LS from Eq. (15), as the gray
dashed line. Most apparent in both panels is the equivalence of
n1 and niso precisely at the chiral coupling conditions of θ −
φ = π/2 and g = γ /2 (medium blue line at θ − φ = π/2).
The intersection of n1 and niso at other points in parameter
space (nonblue lines) in Fig. 12(a) is not associated with a
mapping to a cascaded master equation describing a source
and a target.

In the symmetric pumping configuration of Fig. 12(a), with
vanishing coherent coupling g = 0 (thin red line), the popula-
tion n1 is of course independent of the relative phase θ − φ.
Increasing the coherent coupling up to the chiral magnitude
condition of g/γ = 1/2 (medium blue line) results in n1 �
niso for all phases. However, for coupling ratios g/γ > 1/2
(the green, purple, and orange thicker lines) one notices that
while n1 is usually greater than niso, there is a region of relative
phases near the chiral phase condition of θ − φ = π/2 at
which n1 � niso.

The asymmetric pumping setup of Fig. 12(b) exhibits
different behavior for larger coupling ratios g/γ > 1/2 (the
thicker green, purple, and orange lines), which always satisfy
n1 < niso because there is not enough pumping into the sys-
tem to reach the isolated 2LS result of niso. Figure 12(b) is

symmetric about θ − φ = π because there is no pump being
passed from 2LS-2 from 2LS-1 to be adjusted by the relative
phase, whereas Fig. 12(a) presents an asymmetry in θ − φ

because the coupling directionality is important when there
is nonzero pumping P2 �= 0 into 2LS-2, which can then be
redistributed in the system.

B. Correlations

The most general second-order coherence function of the
system is found by simply dividing Eq. (38d) by Eqs. (38a)
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n
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niso

g = 0

g = γ0/4

g = γ0/2

g = 3γ0/4

g = γ0

0
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π 2π
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n
1
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P2 = P1

P2 = 0

FIG. 12. Mean population n1 of the first 2LS as a function of
the relative phase θ − φ for increasingly strong coherent coupling
strengths g (increasingly thick solid lines) [cf. Eq. (38a)]: (a) case
of symmetric pumping rates (P2 = P1) and (b) asymmetric pumping
case (P2 = 0). The dashed gray line shows the population of an
isolated 2LS niso [cf. Eq. (15)]. In the figure, P1 = γ0/10 and the
dissipative coupling strength γ = γ0/2, so the blue line fulfills the
chiral magnitude condition of g/γ = 1/2.
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FIG. 13. Second-order cross correlator in the asymmetric cou-
pling regime at zero delay g(2)

12 (0) as a function of the relative phase
θ − φ. We show results with (a) symmetric pumping rates (P2 = P1)
and (b) asymmetric pumping rates (P2 = 0) for increasingly strong
coherent coupling strengths g (increasingly thick colored lines) [cf.
Eq. (40)]. In the figure, P1 = γ0/10 and the dissipative coupling
strength γ = γ0/2, so the blue line fulfills the chiral magnitude
condition of g/γ = 1/2.

and (38b), leading to the normalized cross correlator at zero
delay

g(2)
12 (0) = [g2P2

+ + γ 2P2
−/4+ 4P1P2


2
+ + gγ P+P− sin(θ− φ)]

× [g2γ 2P+/
+ + γ 2(P1
1 + P2
2 − 2g2)

+ 4
2
+(4g2 − γ 2 + 
1
2) + gγ Q]

× [4g2P+
+ + P1P−γ 2 − γ 2P−
+ + 4P1
2

2
+

+ 2gγ (P1P+ − 2P2
+) sin(θ − φ)]−1

× [4g2P+
+ − P2P−γ 2 + γ 2P−
+ + 4P2
1

2
+

− 2gγ (P2P+ − 2P1
+) sin(θ − φ)]−1, (40)

where the auxiliary function Q is defined in Eq. (39a). We
plot in Fig. 13 the second-order cross correlator of Eq. (40),
as a function of the relative phase θ − φ. We show results
with symmetric pumping rates (P2 = P1) in Fig. 13(a) and
asymmetric pumping rates (P2 = 0) in Fig. 13(b), for in-
creasingly strong coherent coupling strengths g (increasingly
thick colored lines). The incoherent pumping rate P1 = γ0/10

and the dissipative coupling strength γ = γ0/2 are both held
constant.

In the regime of Fig. 13(a) and with vanishing coher-
ent coupling g → 0 (thin red line), Eq. (40) reduces to
g(2)

12 (0) = 1 − γ 2(γ0 − P1)/(γ0 + P1)3 and defines the mini-
mum of g(2)

12 (0) for nonzero g. With nonvanishing coherent
coupling (nonred lines), the degree of antibunching may be
tuned as a function of the relative phase, with local maxima
at the nonreciprocal relative phases of θ − φ = {π/2, 3π/2}
and minima at the reciprocal phases θ − φ = {0, π, 2π}. This
behavior arises because at the nonreciprocal phases the system
is close to chiral coupling such that the system behaves most
similarly to an independent system with g(2)

12 (0) = 1, while
the opposite is true for phases far from the chiral phase
condition.

The asymmetric pumping case of Fig. 13(b) displays a
similar behavior, but there is no longer equivalence in g(2)

12 (0)
of all coupling strengths (all lines) at the reciprocal relative
phases of θ − φ = {0, π, 2π}. As in Fig. 13(a), stronger
coherent coupling strengths lead to a greater variety in the
magnitude of the coherence as one sweeps across the relative
phases θ − φ.

C. Spectrum

We now consider the optical spectrum in the most general
coupling case, which allows for a full consideration of asym-
metric coupling effects. The frequencies ωp and broadenings
γp defining the spectrum of 2LS-1, as decomposed like in
Eq. (22), read (see Appendix D for details)

1
2γA + iωA = 3

2γ0 + i(ω0 + ∗), (41a)

1
2γB + iωB = 3

2γ0 + i(ω0 − ∗), (41b)

1
2γC + iωC = 1

2γ0 + i(ω0 + ), (41c)

1
2γD + iωD = 1

2γ0 + i(ω0 − ), (41d)

where we have introduced the complex frequency

 =
√

g2 −
(γ

2

)2
− igγ cos(θ − φ). (42)

Of course, the most general parameters of Eqs. (41) recover
the previously addressed special cases of Eqs. (24), (29), and
(35) under the appropriate conditions. Equations (41) also
naturally arise from a non-Hermitian Hamiltonian approach,
as is detailed in Appendix F. Furthermore, we note that
while throughout this work we have neglected cross-Kerr-type
interactions, they do not lead to meaningful changes to the
results presented in Eqs. (41), a fact which is justified in
Appendix G.

In general, the complex frequency  as given by Eq. (42)
may contribute to both the frequency shifts ωp and broad-
enings γp making up the spectral curves comprising the full
spectrum of Eq. (22). One notices that dissipative coupling
γ only leads to frequency shifts ωp if the coherent coupling
g is nonzero, while the coherent coupling g only modifies
the collective damping rates γp if the dissipative coupling γ

is nonzero, due to the form of Eq. (42). Furthermore, the
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FIG. 14. Relative (a) frequencies ωp − ω0 and (b) broadenings γp, both in units of the damping rate γ0, as a function of the relative
phases θ − φ, with g/γ = 1/2 [cf. Eqs. (41)]. The thin pink lines show the dissipative (coherent) coupling strength γ = γ0/2 (g = 3γ0/8).
Thick orange lines show γ = γ0 (g = γ0/2). Solid (dashed) lines show the index p = C (D) [cf. Eq. (22)]. (c) and (d) Spectrum of 2LS-1 in
the asymmetric coupling regime S1(ω), in units of the inverse damping rate γ −1

0 [cf. Eq. (21)]. We show results for θ − φ = {0, π/4, π/2}
(increasingly thin lines) and (c) γ = 3γ0/4 and g = 3γ0/8, corresponding to the pink lines in (a) and (b), and (d) γ = γ0 and g = γ0/2,
corresponding to orange lines in (a) and (b).

complex frequency of Eq. (42) vanishes for the specific cases
where the chiral conditions of Eq. (14c) or (14d) are satisfied.

We plot the key quantities {ωp, γp} of Eqs. (41) as a func-
tion of the relative phase θ − φ in Figs. 14(a) and 14(b), where
the chiral magnitude condition of g = γ /2 is satisfied but the
phase condition is not necessarily fulfilled; this is the so-called
quasichiral regime of Ref. [36]. The thin pink lines denote
when the dissipative (coherent) coupling strength γ = 3γ0/4
(g = 3γ0/8), while the thick orange lines mark the case of
maximal dissipative (coherent) coupling γ = γ0 (g = γ0/2).
Solid (dashed) lines are associated with the index p being
equal to C (D), which corresponds to the two parts of the
spectral decomposition entering the spectrum [cf. Eq. (21)].
The quantities linked to p = {A, B} are not shown since they
have zero spectral weight in the vanishing pump limit in which
we work [66].

Figure 14(a) shows how the frequencies ωp entering the
spectrum decomposition of Eq. (22) change as a function of
the relative phase. Most notably, ωC = ωD = ω0 at the chiral

phase conditions of θ − φ = {π/2, 3π/2}, since the spectrum
of an isolated 2LS must be recovered. Otherwise, ωp presents
both redshifts (ωp < ω0) and blueshifts (ωp > ω0) from the
resonance frequency of a single 2LS ω0, which are stronger
with increasing γ (orange lines as compared to pink), giving
remarkable freedom for the positions ωp of the resultant
spectral peaks.

Figure 14(b) displays the associated broadenings γp which
enter Eq. (22). Figure 14(b) shows how both superradiant
(γp > γ0) and subradiant (γp < γ0) transitions are possible.
Of course, at the chiral phase conditions γC = γD = γ0, ensur-
ing the spectrum of an isolated 2LS arises. Most interestingly,
vanishingly small broadenings γp 	 γ0 arise at the nonrecip-
rocal phases θ − φ = {0, π, 2π} for the maximal dissipative
coupling case (orange lines), suggesting the creation of ex-
tremely sharp spectral features.

Taken together, Figs. 14(a) and 14(b) imply that a thin
spectral peak, defined by γp 	 γ0, can be associated with
either a redshifted (ωp < ω0) or a blueshifted (ωp > ω0)
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frequency change from ω0. This feature should be highly
apparent in the full spectrum S1(ω) for strong dissipative
coupling γ � γ0 as the relative phase approaches a reciprocal
phase difference θ − φ = {0, π, 2π}.

We plot the spectrum S1(ω) [cf. Eq. (21)] in Figs. 14(c)
and 14(d) for three relative phases θ − φ = {0, π/4, π/2},
which are marked by increasingly thin lines. In Figs. 14(c)
we choose the parameters γ = 3γ0/4 and g = 3γ0/8, which
correspond to the thin pink lines in Fig. 14(a) and 14(b).
Most notably, while the spectrum in Fig. 14(c) is comprised
of two peaks associated with the indices p = {C, D}, this
fact is most pronounced for the case θ − φ = 0 (thick pink
lines). This is because here the redshifted (ωD < ω0) narrow
spectral peak is highly subradiant (γD 	 γ0), as follows from
the dashed pink lines in Figs. 14(a) and 14(b) at θ − φ = 0.
Meanwhile, the p = C broad contribution to the spectrum is
superradiant (γC > γ0) and presents a blueshift (ωC > ω0), as
is captured by the solid pink lines in Figs. 14(a) and 14(b)
at θ − φ = 0.

With the increased phase difference of θ − φ = π/4
(medium pink line) in Fig. 14(c), this extremely sharp spec-
tral feature begins to be lost. This behavior can be traced
back from the dashed pink lines in Figs. 14(a) and 14(b) at
θ − φ = π/4, which show an increased broadening γD and
decreased redshift ωD − ω0. Finally, in the chiral coupling
limit of θ − φ = π/2 in Fig. 14(c) (thin pink line) a standard
Lorentzian spectrum is recovered, since the coupling is purely
unidirectional. This is congruent with the constituent param-
eters ωC = ωD = ω0 and γC = γD = γ0, as follows from the
solid and dashed pink lines in Figs. 14(a) and 14(b) at θ − φ =
π/2.

In Fig. 14(d) the same result is of course produced for the
chirally coupled case (thin orange line), where θ − φ = π/2.
However, in Fig. 14(d) the narrow peak is much more notice-
able at the intermediate phase θ − φ = π/4 (medium orange
line), due to the maximal coupling constants considered (γ =
γ0 and g = γ0/2), which correspond to the thick orange lines
in Figs. 14(a) and 14(b). When θ − φ = 0 (thick orange line),
the narrow peak is lost with maximal dissipative coupling
since the p = D contribution to the spectrum has zero spectral
weight (LD = KD = 0) in this limit. The narrow peak appears
with any nonzero relative phase (as illustrated by the medium
orange line).

The modulation of the optical spectrum as a function of
the relative phase, as well as the emergence of a narrow
peak as illustrated in Figs. 14(a) and 14(b), is a remarkable
manifestation of asymmetric coupling between the pair of
2LSs and offers the opportunity for the experimental de-
tection of the diverse coupling landscape in the coupled
system.

VII. CONCLUSION

We have introduced an analytic model of two coupled
two-level systems, where the phases of both the coher-
ent and dissipative couplings are of paramount importance.
Depending on both the relative strength and phase differ-
ence between the coherent and dissipative couplings, we
have shown that the model evolves through a rich cou-
pling landscape, including coherent, dissipative, chiral (or

one-way), and asymmetric couplings. The required phases
attached to the complex coupling parameters between two
bodies may be realized in a range of systems, such as
with ultracold atoms [88,89] or photonic resonators [90–92],
where tunable synthetic magnetic fields have been imple-
mented by, for example, harmonically modulating in time
the coupling or using laser-assisted tunneling in optical
potentials.

We have analyzed several fundamental quantum optical
properties of the model as a function of the type of coupling,
namely, the steady-state populations, optical spectrum, and
second-order correlation functions. We have found some re-
markable properties including unexpected spectral features,
population trapping, and strong emission correlations, all of
which may act as signatures of chiral and asymmetric cou-
pling in future experiments.

Our work on the simplest possible coupled system, that
of a dimer, helps to provide insight into more complicated
systems, such as chirally coupled chains [93–99]. Our results
also pave the way for future work on chirally coupled meta-
surfaces, as the young field of chiral quantum optics continues
to evolve.
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APPENDIX A: CHIRAL COUPLING CONDITIONS

In this Appendix we derive the conditions for chiral cou-
pling, following the prescription of Metelmann and Clerk as
described in Ref. [28].

The master equation of a cascaded quantum system, where
system 2 (1) is being driven from the output from system 1 (2)
[cf. Fig. 1(b)], is given by [7–9]

∂tρ = i[ρ, H0] + γ0

2
L11ρ + γ0

2
L22ρ

+ βγ0(eiη[σ1 (2)ρ, σ
†
2 (1)] + e−iη[σ2 (1), ρσ

†
1 (2)]),

(A1)

where H0, the noninteracting part of the Hamiltonian of
the coupled 2LSs, is given by Eq. (2) and the Liouvillian
superoperator Li j by Eq. (12). In Eq. (A1) the subscripts i
( j) refer to the two directions of driving, which we label case
I (II), β is a non-negative real number, and η is an arbitrary
phase. Notably, in the original derivations of Refs. [7,8] these
quantities were chosen as β = 1 (to describe the maximum
possible chiral coupling strength) and η = 0.

Let us now consider the joint decay operator [9,42,43]

ξ = √
ν1γ0eiησ1 + √

ν2γ0σ2, (A2)
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where ν1,2 parametrize the strength of the collective damping
decay rate γ such that 0 � ν1,2 � 1. Upon employing the
operator of Eq. (A2) in the master equation of Eq. (A1), one
obtains the Lindblad form

∂tρ = i[ρ, H0] + 1

2
Lξ ρ

+ (1 − ν1)γ0

2
L11ρ + (1 − ν2)γ0

2
L22ρ

+ βγ0

2
(eiη[ρ, σ

†
2 (1)σ1 (2)] − e−iη[ρ, σ

†
1 (2)σ2 (1)]).

(A3)

Here β = √
ν1ν2, which implies that 0 � β � 1. Upon ex-

panding the general and specific master equations of Eqs. (11)
and (A1), respectively, and assigning all of the like terms (see
also Refs. [28,36]) one readily finds the conditions on the
system parameters to be in the chiral coupling regime

g

γ
= 1

2
, (A4a)

θ − φ =
{

π
2 for case I: 2LS-1 drives 2LS-2
3π
2 for case II: 2LS2-2 drives 2LS-1,

(A4b)

where we considered the vanishing pump limit (P1, P2 → 0)
and used η = ∓φ in Eq. (A1). We also have the physical
condition γ = βγ0, or equivalently [due to Eq. (A3)] the
inequality

0 � γ � γ0, (A5)

which ensures the magnitude of the dissipative coupling is
never greater than the self-decay rate. Notably, the limiting
case of maximal dissipative coupling (β = 1 or γ = γ0) leads
to peculiar effects such as population trapping and is therefore
of special interest throughout this work.

APPENDIX B: A SINGLE 2LS WITH
INCOHERENT PUMPING

In this Appendix we briefly detail some results for a single
2LS subject to incoherent pumping. The derived expressions
are used as comparisons to the behavior of the system of two
coupled 2LSs studied throughout the main text.

The Hamiltonian and master equation of an isolated (iso)
2LS read [42]

Hiso = ω0σ
†σ, (B1a)

∂tρiso = i[ρ, H] + γ0

2
(2σρσ † − σ †σρ − ρσ †σ )

+ P1

2
(2σ †ρσ − σσ †ρ − ρσσ †), (B1b)

with the 2LS resonance frequency ω0, the self-damping decay
rate γ0, and the incoherent pumping rate P1. The master
equation of Eq. (B1b) directly leads to the equation of motion
for the population correlator

∂t 〈σ †σ 〉 = P1 − (P1 + γ0)〈σ †σ 〉. (B2)

When t → ∞ the system reaches its steady state, and setting
∂t 〈σ †σ 〉 = 0 in Eq. (B2) intermediately yields the expression
for the steady-state population of a single 2LS. This result is
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FIG. 15. (a) Mean population niso of an isolated 2LS as a function
of the pumping rate P1, in units of the damping rate γ0 [cf. Eq. (15)],
and (b) spectrum Siso(ω) of an isolated 2LS, in units of the inverse
damping rate γ −1

0 , as a function of the frequency ω (which is
measured from the 2LS resonance frequency ω0) [cf. Eq. (23)].

given as Eq. (15), where we redefine 〈σ †σ 〉SS = niso. We plot
niso in Fig. 15(a), showing the evolution of the population as a
function of the pumping rate P1.

Application of the quantum regression formula [9,70],
along with the master equation of Eq. (B1b), yields the
two-time equation of motion for a single 2LS

∂τ 〈σ †(τ + t )σ (t )〉 = −(
iω0+ 1

2 [P1+ γ0]
)〈σ †(τ + t )σ (t )〉.

(B3)
Upon integrating Eq. (B3) and using the Wiener-Khinchin
theorem [70,77], one finds the optical spectrum of a single
2LS. The result is Siso(ω), the normalized spectrum given in
Eq. (23) (in the limit of vanishing pumping, P1 → 0). We plot
Siso(ω) in Fig. 15(b), displaying the standard Lorentzian line
shape centered at ω0 and with broadening γ0.

APPENDIX C: SINGLE-TIME DYNAMICS

In this Appendix we derive the single-time dynamics of
the correlators associated with the mean populations of the
two coupled 2LSs, in the spirit of Refs. [75–77,100–104]. In
particular, we exploit the quantum regression theorem, which
allows us to find the dynamics of a desired correlator from
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the mean values of some observable in time [9,70]. Specifi-
cally, we calculate the steady-state populations of the coupled
system in the manner of Ref. [66] and investigate how the
various coupling regimes (see Fig. 2) affect the populations of
the system.

1. Equation of motion

Using the master equation (11) and the relation ∂t 〈O〉 =
Tr(O∂tρ) for any operator O, we arrive at the equation of
motion

d

dt
u = P − Mu (C1)

for the 5-vector of correlators u and drive term P, with

u =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈σ †
1 σ1〉

〈σ †
2 σ2〉

〈σ †
1 σ2〉

〈σ †
2 σ1〉

〈σ †
1 σ1σ

†
2 σ2〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎝

P1

P2

0
0
0

⎞
⎟⎟⎟⎠. (C2)

In Eq. (C1), the one-time regression matrix is given by

M =

⎛
⎜⎜⎜⎝


1 0 g̃+ g̃∗
+ 0

0 
2 g̃− g̃∗
− 0

g̃∗
− g̃∗

+ 2
+ 0 −2γ e−iφ

g̃− g̃+ 0 2
+ −2γ eiφ

−P2 −P1 0 0 4
+

⎞
⎟⎟⎟⎠, (C3)

where 
1,2 and 
+ are given by Eqs. (17) and the generalized
coupling constants are defined via

g̃± = ±igeiθ + 1
2γ eiφ. (C4)

In the steady state, we directly obtain five quantities from the
derived equation of motion (C1) via the formal solution

uSS = M−1P. (C5)

Namely, we find the probabilities of having the first and sec-
ond 2LSs excited n1 = 〈σ †

1 σ1〉SS and n2 = 〈σ †
2 σ2〉SS, respec-

tively, the coherence between the two 2LSs n12 = 〈σ †
1 σ2〉SS

and n21 = n∗
12, and the joint probability that both 2LSs are

excited nX = 〈σ †
1 σ1σ

†
2 σ2〉SS. Indirectly, we also have access

to the probabilities of having only 2LS-1 or 2LS-2 excited
ρ1,0 = n1 − nX and ρ0,1 = n2 − nX and the population of the
ground state with zero excitations ρ0,0 = 1 + nX − n1 − n2.
Of course, unitarity is always observed since ρ0,0 + ρ1,0 +
ρ0,1 + ρ1,1 = 1, where ρ1,1 = nX .

The most general solutions from Eq. (C5) are given by
Eqs. (38). We now go on to investigate the aforementioned
steady-state populations for several limiting cases, namely,
for coherent coupling (Appendix C 2), dissipative coupling
(Appendix C 3), and chiral coupling (Appendix C 4).

2. Coherent coupling

With the coherent coupling parameters of Eq. (14a), we
obtain from Eq. (C5) the simple expressions

nco
1 =

P1
2 + g2 P+

+


1
2 + 4g2
, (C6a)

nco
2 =

P2
1 + g2 P+

+


1
2 + 4g2
, (C6b)

nco
12 = ige−iθ

2
+


1P2 − 
2P1


1
2 + 4g2
, (C6c)

nco
X =

P1P2 + ( gP+
2
+

)2


1
2 + 4g2
. (C6d)

When one substitutes θ = 0 into the complex-valued co-
herence of Eq. (C6c), one recovers Eqs. (14) and (15)
of Ref. [66], where real-valued coupling parameters were
considered. Furthermore, dividing Eq. (C6d) by Eqs. (C6a)
and (C6b) yields the cross correlator given as Eq. (19).

3. Dissipative coupling

When the dissipative coupling parameters of Eq. (14b) are
fulfilled, we obtain from Eq. (C5) the compact expressions

nds
1 = P−γ 2(P1 − 
+) + 4P1
2


2
+

γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)
, (C7a)

nds
2 = P−γ 2(
+ − P2) + 4P2
1


2
+

γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)
, (C7b)

nds
12 = 
+γ e−iφ (4P1P2 − P1
2 − P2
1)

γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)
, (C7c)

nds
X = 4P1P2


2
+ + (

γ P−
2

)2

γ 2(P1
1 + P2
2) + 4
2+(
1
2 − γ 2)
. (C7d)

The cross correlator (28) is found by dividing Eq. (C7d) by
Eqs. (C7a) and (C7b).

4. Chiral coupling

At the chiral parameters, we obtain for case I [cf. Eq. (14c)]
the following expressions from Eq. (C5):

nch,I
1 = P1


1
, (C8a)

nch,I
2 = 2P2


2
+ − P1γ

2(P2 − 2
+)/
1

P1γ 2 + 2
2

2+

, (C8b)

nch,I
12 = e−iφγ P1
+


1

2P2 − 
2

P1γ 2 + 2
2

2+

, (C8c)

nch,I
X = P1

2
1

P1γ
2 + 4P2


2
+

P1γ 2 + 2
2

2+

. (C8d)

Most importantly, Eq. (C8a) showcases that the population
of the first 2LS is identical to that of a single 2LS in isolation
[cf. Eq. (15)], a hallmark of chiral coupling. The second
2LS population in Eq. (C8b) is in general enhanced due to
the one-way nature of the coupling in favor of 2LS-2 [see
Fig. 2(c)]. Dividing Eq. (C8d) by Eqs. (C8a) and (C8b) yields
the normalized cross correlator (34).

The expressions for case II [cf. Eq. (14d)] are found by
interchanging the indices (1 � 2) everywhere such that it is of
course also possible to have one-way coupling in the opposite
direction, characterized by nch,II

2 = P2/
2.
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FIG. 16. Mean populations in the dissipative coupling regime as a function of the pumping rate P1, in units of the damping rate γ0 [cf.
Eqs. (27)], for (a) dissipative coupling strength γ = 3γ0/4 and (b) maximal coupling γ = γ0. The labeling of the mean population of the
state |i, j〉 is displayed in the legend in (a) and states with N = {0, 1, 2} excitations are shown with increasingly thick lines. In the figure, we
consider symmetric pumping (P2 = P1).

APPENDIX D: TWO-TIME DYNAMICS

In this Appendix we calculate various two-time correla-
tors of interest, which gives us access to both the power
spectrum of the coupled system and its underlying structure
(via its spectral decomposition). We use the same theoretical
framework as in Refs. [105–107]. Our modus operandi is
underpinned by the quantum regression theorem [9,70], in the
same manner as Appendix C.

Similar to Ref. [66], we focus on the spectrum S1(ω) of the
first emitter 2LS-1, since all the expressions for 2LS-2 may
be found by natural interchanges of 1 and 2. Furthermore, the
theory may be generalized to analyze other modes of inter-

est [36]. The equation of motion for the pertinent correlators
reads

∂

∂τ
v(t, t + τ ) + Qv(t, t + τ ) = 0, (D1)

where the correlators are contained in the 4-vector

v =

⎛
⎜⎜⎜⎜⎝

〈σ †
1 (t ) σ1(t + τ )〉

〈σ †
1 (t ) σ2(t + τ )〉

〈σ †
1 (t ) σ

†
1 σ1σ2(t + τ )〉

〈σ †
1 (t ) σ1σ

†
2 σ2(t + τ )〉

⎞
⎟⎟⎟⎟⎠. (D2)

The two-time regression matrix in Eq. (D1) reads

Q =

⎛
⎜⎜⎝

iω0 + 1
2
1 g̃+ −2g̃+ 0

g̃∗
− iω0 + 1

2
2 0 −2g̃∗
−

0 −P1 iω0 + 
1 + 1
2
2 g̃∗

+
−P2 0 g̃− iω0 + 
2 + 1

2
1

⎞
⎟⎟⎠, (D3)

where the effective broadenings 
1 and 
2 and coupling
constants g̃± are given by Eqs. (17) and (C4), respectively.
The exact solution of Eq. (D1) reads

v(t, t + τ ) =
∑

p=A,B,C,D

cpvE
p e−(iωp+γp/2)τ , (D4)

where the pth complex eigenvalue of −Q is λp, with as-
sociated eigenvector vE

p . The complex eigenfrequencies λp

may be decomposed as the damping rates γp = −2 Re(λp)
and the frequency shifts ωp = −Im(λp), producing the ex-
ponent in Eq. (D4). The four constants cp are obtained
from the boundary conditions

∑
p vE

p cp = (n1, n12, 0, nX )T,
where the required steady-state expressions ni are given in
Eqs. (38).

With regard to the optical spectrum decomposition of
Eq. (22), the coefficients Lp and Kp may be found via
the relation Lp + iKp = cpvE

p [1]/n1, where x[1] refers to
the first element of the column vector x and n1 is given

in its most general form by Eq. (38a). In the various
limiting cases we have focused on throughout, the eigen-
values of Eq. (D3) are given by Eqs. (24), (29), (35),
and (41).

APPENDIX E: SUPPLEMENTARY RESULTS FOR THE
MEAN POPULATIONS IN THE DISSIPATIVE

COUPLING REGIME

In Sec. IV A we noted that the results for the mean
populations in the dissipative coupling regime with symmet-
ric pumping (P2 = P1) are not surprising, at least once the
asymmetrically pumped results are known (cf. Fig. 6). We
show explicitly the symmetric pumping configuration results
in Fig. 16, with high (maximal) dissipative coupling γ =
3γ0/4 (γ = γ0) displayed in Fig. 16(a) [Fig. 16(b)]. Most
importantly, there is a population trapping effect in Fig. 16(b),
in the limit of vanishing pumping, in exactly the same man-
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ner as in Fig. 6(b). Broadly, the key features in Fig. 16
are simply symmetrized analogs of the behavior shown in
Fig. 6.

APPENDIX F: FIRST MOMENTS OF THE DIMER

The calculation of Appendix D may be used to im-
mediately write down the equation of motion for the first
moments of the dimer, which are encapsulated by the
equation

i∂t ψ̂ = Hψ̂, (F1)

where the first moments are contained within the four-
dimensional object [cf. Eq. (D2)]

ψ̂ =

⎛
⎜⎜⎜⎝

〈σ1〉
〈σ2〉

〈σ †
1 σ1σ2〉

〈σ1σ
†
2 σ2〉

⎞
⎟⎟⎟⎠. (F2)

The first moments matrix H in Eq. (F1) reads [cf. Eq. (D3)]

H =

⎛
⎜⎜⎝

ω0 − i 
1
2 −ig̃+ 2ig̃+ 0

−ig̃∗
− ω0 − i 
2

2 0 2ig̃∗
−

0 iP1 ω0 − i
(

1 + 
2

2

) −ig̃∗
+

iP2 0 −ig̃− ω0 − i
(

2 + 
1

2

)

⎞
⎟⎟⎠, (F3)

where the generalized coupling constants g̃± are defined in
Eq. (C4) and the generalized damping rates 
1 and 
2 by
Eqs. (17). The Hamiltonian-like matrix H is in general non-
Hermitian and therefore has four complex eigenvalues. In the
limit of vanishing pumping (P1, P2 → 0), the four eigenvalues
εi of Eq. (F3) are given by

ε1 = ω0 +
√

g2 −
(γ

2

)2
+ igγ cos(θ − φ) + i

3γ0

2
, (F4)

ε2 = ω0 −
√

g2 −
(γ

2

)2
+ igγ cos(θ − φ) + i

3γ0

2
, (F5)

ε3 = ω0 +
√

g2 −
(γ

2

)2
− igγ cos(θ − φ) + i

γ0

2
, (F6)

ε4 = ω0 −
√

g2 −
(γ

2

)2
− igγ cos(θ − φ) + i

γ0

2
. (F7)

The eigenenergies εi of Eqs. (F4)–(F7) may be readily split
into real and imaginary parts, which allows for their inter-
pretation as energy levels and inverse lifetimes, as was done
in the spectral calculation of Appendix D and its associated
result of Eqs. (41). Equations (F4)–(F7) highlight how the
interplay of the coherent coupling g and dissipative coupling
γ crucially determines fundamental properties of the system
and how their relative phase difference θ − φ is of the utmost
importance.

APPENDIX G: CROSS-KERR INTERACTIONS

In what follows we briefly account for the introduction
of an interaction term between the two quantum emitters
via cross-Kerr coupling. We supplement the Hamiltonian
of Eq. (1) with the interaction term HI so that it reads

H = H0 + Hc + HI, where

HI = −χσ
†
1 σ1σ

†
2 σ2, (G1)

where χ is the nonlinear cross-Kerr frequency. This interac-
tion leads to a renormalization of the doubly occupied energy
level from ωX = 2ω0 [cf. Eq. (10)] to

ωX = 2ω0 − χ. (G2)

Equation (G2) breaks the symmetry of the energy ladder
about ω0; the most symmetric case with χ = 0 is sketched
in Fig. 1(a).

The mean populations and the cross correlator are unaf-
fected by the extra term of Eq. (G1), since the cross-Kerr
coupling χ does not enter the matrix M in the one-time
equation of motion given by Eq. (C1). However, the optical
spectrum is influenced by χ . Generalized to account for inter-
actions, the two-time equation of motion of Eq. (D1) sees four
additions to the matrix Q. Explicitly, four matrix elements Qi, j

in Eq. (D3) need to be updated: Q1,4 → Q1,4 − iχ , Q2,3 →
Q2,3 − iχ , Q3,3 → Q3,3 − iχ , and Q4,4 → Q4,4 − iχ . The
resulting eigenvalues of Q yield the frequencies ωp and broad-
enings γp which shape the spectrum [cf. Eqs. (41)],

1
2γA + iωA = 3

2γ0 + i(ω0 − χ + ∗), (G3a)

1
2γB + iωB = 3

2γ0 + i(ω0 − χ − ∗), (G3b)

1
2γC + iωC = 1

2γ0 + i(ω0 + ), (G3c)

1
2γD + iωD = 1

2γ0 + i(ω0 − ), (G3d)

where  is defined in Eq. (42). Notably, the effect of inter-
actions is only felt through the replacement ω0 → ω0 − χ

in the frequency shifts associated with the labels A and B
in Eq. (G3), as follows from Eq. (G2). Since these contri-
butions to the spectrum describe optical transitions from the
doubly excited level ωX , those which are unpopulated in the
vanishing pumping limit we consider, we can safely neglect
interactions of the form of Eq. (G1) without loss of generality.
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[67] Z. Ficek and R. Tanaś, Entangled states and collective non-
classical effects in two-atom systems, Phys. Rep. 372, 369
(2002).

[68] C. A. Downing, E. Mariani, and G. Weick, Radiative fre-
quency shifts in nanoplasmonic dimers, Phys. Rev. B 96,
155421 (2017).

[69] V. E. Lembessis, A. Al Rsheed, O. M. Aldossary, and Z. Ficek,
Two-atom system as a nanoantenna for mode switching and
light routing, Phys. Rev. A 88, 053814 (2013).

[70] C. Gardiner and P. Zoller, The Quantum World of Ultra-Cold
Atoms and Light, Book I: Foundations of Quantum Optics
(Imperial College Press, London, 2014).

[71] H. T. Dung, L. Knoll, and D.-G. Welsch, Resonant dipole-
dipole interaction in the presence of dispersing and absorbing
surroundings, Phys. Rev. A 66, 063810 (2002).

[72] E. del Valle, F. Laussy, F. Troiani, and C. Tejedor, The steady
state of two quantum dots in a cavity, Superlatt. Microst. 43,
465 (2007).

[73] M. Schrapp, E. del Valle, J. J. Finley, and F. P. Laussy, Quan-
tum dynamics of damped and driven anharmonic oscillators,
Phys. Status Solidi C 9, 1296 (2012).

[74] E. del Valle, Microcavity Quantum Electrodynamics (VDM,
Saarbrücken, 2010).

[75] E. del Valle, F. P. Laussy, and C. Tejedor, in Proceedings of the
International Conference on Transport and Optical Properties
of Nanomaterials, Allahabad, 2009, edited by M. R. Singh and
R. H. Lipson, AIP Conf. Proc. No. 1147 (AIP, Melville, 2009),
p. 238.

[76] E. del Valle and F. P. Laussy, Regimes of strong light-matter
coupling under incoherent excitation, Phys. Rev. A 84, 043816
(2011).

[77] A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities, 2nd ed. (Oxford University Press, Oxford,
2017).

[78] P. M. Radmore and P. L. Knight, Population trapping and
dispersion in a three-level system, J. Phys. B 15, 561 (1982).

[79] B. J. Dalton and P. L. Knight, The effects of laser field
fluctuations on coherent population trapping, J. Phys. B 15,
3997 (1982).

[80] S. Swain, Conditions for population trapping in a three-level
system, J. Phys. B 15, 3405 (1982).

013723-20

https://doi.org/10.1126/sciadv.1602735
https://doi.org/10.1103/PhysRevA.95.013837
https://doi.org/10.1103/PhysRevA.94.063825
https://doi.org/10.1103/PhysRevA.94.063826
https://doi.org/10.1038/s41598-018-24975-y
https://doi.org/10.1088/1361-6455/aaf68d
https://doi.org/10.1007/s11128-009-0101-5
https://doi.org/10.1103/PhysRevA.57.2072
https://doi.org/10.1103/PhysRevLett.124.203601
https://doi.org/10.1364/JOSAB.36.000323
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevB.84.235306
https://doi.org/10.1088/1464-4266/6/6/022
https://doi.org/10.1103/PhysRevB.76.235317
https://doi.org/10.1103/PhysRevA.84.013831
https://doi.org/10.1364/JOSAB.28.000228
https://doi.org/10.1103/PhysRevA.83.052110
https://doi.org/10.1103/PhysRevA.96.022308
https://doi.org/10.1103/PhysRevLett.94.040506
https://doi.org/10.1103/PhysRevLett.89.207902
https://doi.org/10.1103/PhysRevA.82.052109
https://doi.org/10.1103/PhysRevB.83.165101
https://doi.org/10.1063/1.5144202
https://doi.org/10.1103/PhysRevLett.123.217401
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevA.81.053811
https://doi.org/10.1016/S0370-1573(02)00368-X
https://doi.org/10.1103/PhysRevB.96.155421
https://doi.org/10.1103/PhysRevA.88.053814
https://doi.org/10.1103/PhysRevA.66.063810
https://doi.org/10.1016/j.spmi.2007.07.001
https://doi.org/10.1002/pssc.201100195
https://doi.org/10.1103/PhysRevA.84.043816
https://doi.org/10.1088/0022-3700/15/4/009
https://doi.org/10.1088/0022-3700/15/21/019
https://doi.org/10.1088/0022-3700/15/19/010


ASYMMETRIC COUPLING BETWEEN TWO QUANTUM … PHYSICAL REVIEW A 102, 013723 (2020)

[81] U. Akram, Z. Ficek, and S. Swain, Decoherence and coherent
population transfer between two coupled systems, Phys. Rev.
A 62, 013413 (2000).

[82] K. E. Dorfman, F. Schlawin, and S. Mukamel, Nonlinear
optical signals and spectroscopy with quantum light, Rev.
Mod. Phys. 88, 045008 (2016).

[83] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C.
Cohen-Tannoudji, Laser Cooling below the One-Photon Re-
coil Energy by Velocity-Selective Coherent Population Trap-
ping, Phys. Rev. Lett. 61, 826 (1988).

[84] C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal,
R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S.
Prawer, F. Jelezko, and P. Hemmer, Coherent Population Trap-
ping of Single Spins in Diamond under Optical Excitation,
Phys. Rev. Lett. 97, 247401 (2006).

[85] G. S. Agarwal and K. T. Kapale, Subwavelength atom local-
ization via coherent population trapping, J. Phys. B 39, 3437
(2006).

[86] I. D’Amico, D. G. Angelakis, F. Bussieres, H. Caglayan, C.
Couteau, T. Durt, B. Kolaric, P. Maletinsky, W. Pfeiffer, P.
Rabl, A. Xuereb, and M. Agio, Nanoscale quantum optics, Riv.
Nuovo Cimento 42, 153 (2019).

[87] L. Huang, L. Xu, M. Woolley, and A. E. Miroshnichenko,
Trends in quantum nanophotonics, Adv. Quantum Technol. 3,
1900126 (2020).

[88] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B.
Paredes, and I. Bloch, Realization of the Hofstadter Hamil-
tonian with Ultracold Atoms in Optical Lattices, Phys. Rev.
Lett. 111, 185301 (2013).

[89] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B.
Spielman, G. Juzeliunas, and M. Lewenstein, Synthetic Gauge
Fields in Synthetic Dimensions, Phys. Rev. Lett. 112, 043001
(2014).

[90] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field
for photons by controlling the phase of dynamic modulation,
Nat. Photon. 6, 782 (2012).

[91] K. Fang and S. Fan, Controlling the Flow of Light us-
ing the Inhomogeneous Effective Gauge Field that Emerges
from Dynamic Modulation, Phys. Rev. Lett. 111, 203901
(2013).

[92] L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson,
Non-reciprocal phase shift induced by an effective magnetic
flux for light, Nat. Photon. 8, 701 (2014).

[93] I. M. Mirza, J. G. Hoskins, and J. C. Schotland, Chirality, band
structure, and localization in waveguide quantum electrody-
namics, Phys. Rev. A 96, 053804 (2017).

[94] H. H. Jen, Selective transport of atomic excitations in a driven
chiral-coupled atomic chain, J. Phys. B 52, 065502 (2019).

[95] I. M. Mirza, J. G. Hoskins, and J. C. Schotland, Dimer chains
in waveguide quantum electrodynamics, Opt. Commun. 463,
125427 (2020).

[96] G. Buonaiuto, R. Jones, B. Olmos, and I. Lesanovsky, Dynam-
ical creation and detection of entangled many-body states in a
chiral atom chain, New J. Phys. 21, 113021 (2019).

[97] H. H. Jen, M.-S. Chang, G.-D. Lin, and Y.-C. Chen, Subra-
diance dynamics in a singly excited chirally coupled atomic
chain, Phys. Rev. A 101, 023830 (2020).

[98] H. H. Jen, Steady-state phase diagram of a weakly driven
chiral-coupled atomic chain, Phys. Rev. Research 2, 013097
(2020).

[99] H. H. Jen, Quantum-coherence-enhanced subradiance in a
chiral-coupled atomic chain, arXiv:1903.05352.

[100] F. P. Laussy, E. del Valle, and C. Tejedor, Strong Coupling of
Quantum Dots in Microcavities, Phys. Rev. Lett. 101, 083601
(2008).

[101] F. P. Laussy, E. del Valle, and C. Tejedor, Luminescence
spectra of quantum dots in microcavities. I. Bosons, Phys. Rev.
B 79, 235325 (2009).

[102] E. del Valle, F. P. Laussy, and C. Tejedor, Luminescence
spectra of quantum dots in microcavities. II. Fermions, Phys.
Rev. B 79, 235326 (2009).

[103] F. P. Laussy, A. Laucht, E. del Valle, J. J. Finley, and J. M.
Villas-Boas, Luminescence spectra of quantum dots in micro-
cavities. III. Multiple quantum dots, Phys. Rev. B 84, 195313
(2011).

[104] E. del Valle and F. P. Laussy, Effective cavity pumping from
weakly coupled quantum dots, Superlatt. Microstruct. 49, 241
(2011).

[105] E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh,
Optical spectra of a quantum dot in a microcavity in the
nonlinear regime, Phys. Rev. B 78, 085304 (2008).

[106] P. Degenfeld-Schonburg, E. del Valle, and M. J. Hartmann,
Signatures of single-site addressability in resonance fluores-
cence spectra, Phys. Rev. A 85, 013842 (2012).

[107] E. del Valle and A. Kavokin, Terahertz lasing in a polariton
system: Quantum theory, Phys. Rev. B 83, 193303 (2011).

013723-21

https://doi.org/10.1103/PhysRevA.62.013413
https://doi.org/10.1103/RevModPhys.88.045008
https://doi.org/10.1103/PhysRevLett.61.826
https://doi.org/10.1103/PhysRevLett.97.247401
https://doi.org/10.1088/0953-4075/39/17/002
https://doi.org/10.1393/ncr/i2019-10158-0
https://doi.org/10.1002/qute.201900126
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1103/PhysRevLett.111.203901
https://doi.org/10.1038/nphoton.2014.177
https://doi.org/10.1103/PhysRevA.96.053804
https://doi.org/10.1088/1361-6455/ab04c1
https://doi.org/10.1016/j.optcom.2020.125427
https://doi.org/10.1088/1367-2630/ab4f50
https://doi.org/10.1103/PhysRevA.101.023830
https://doi.org/10.1103/PhysRevResearch.2.013097
http://arxiv.org/abs/arXiv:1903.05352
https://doi.org/10.1103/PhysRevLett.101.083601
https://doi.org/10.1103/PhysRevB.79.235325
https://doi.org/10.1103/PhysRevB.79.235326
https://doi.org/10.1103/PhysRevB.84.195313
https://doi.org/10.1016/j.spmi.2010.05.005
https://doi.org/10.1103/PhysRevB.78.085304
https://doi.org/10.1103/PhysRevA.85.013842
https://doi.org/10.1103/PhysRevB.83.193303

