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for Autonomic Reactivity Assessment in Depression
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Pablo Laguna, and Raquel Bailón

Abstract—Objective: In the present study, a photoplethysmo-
graphic (PPG) waveform analysis for assessing differences in au-
tonomic reactivity to mental stress between patients with Major
Depressive Disorder (MDD) and healthy control (HC) subjects
is presented. Methods: PPG recordings of 40 MDD and 40 HC
subjects were acquired at basal conditions, during the execution
of cognitive tasks, and at the post-task relaxation period. PPG
pulses are decomposed into three waves (a main wave and two
reflected waves) using a pulse decomposition analysis. Pulse
waveform characteristics such as the time delay between the
position of the main wave and reflected waves, the percentage of
amplitude loss in the reflected waves, and the heart rate (HR)
are calculated among others. The intra-subject difference of a
feature value between two conditions is used as an index of
autonomic reactivity. Results: Statistically significant individual
differences from stress to recovery were found for HR and the
percentage of amplitude loss in the second reflected wave (A13)
in both HC and MDD group. However, autonomic reactivity
indices related to A13 reached higher values in HC than in
MDD subjects (Cohen’s d =−0.81, AUC = 0.74), implying that
the stress response in depressed patients is reduced. A statistically
significant (p < 0.001) negative correlation (r = −0.5) between
depression severity scores and A13 was found. Conclusion: A
decreased autonomic reactivity is associated with higher degree
of depression. Significance: Stress response quantification by
dynamic changes in PPG waveform morphology can be an aid
for the diagnosis and monitoring of depression.

Index Terms—Depression Monitoring, Stress Response,
PPG Pulse Decomposition Analysis, Autonomic Nervous System,
Arterial Stiffness
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I. INTRODUCTION

DEPRESSION is a serious mental disorder causing the

affected person to suffer from sadness, loss of inter-

est, poor concentration, and feelings of tiredness [1]. Major

depressive disorder (MDD) is a leading cause of disability

worldwide, and it has an enormous socioeconomic impact both

due to the direct costs of treatment and the productivity losses

associated to it [2].

MDD is a major contributor to the overall global burden of

disease in combination with cardiovascular diseases [2]. Sev-

eral studies indicate that both diseases may share underlying

pathophysiological disturbances such as systemic inflamma-

tion, endothelial dysfunction, hypothalamic–pituitary–adrenal

axis hyperactivity, and autonomic imbalance [3]–[5].

The link between psychological stress and depression can be

found in the diathesis-stress model [6]. As the predisposition

to depression (diathesis) increases, which can be attributed

to either biological or psychological factors, a patient be-

comes psychologically more vulnerable, and thus the level

of stress needed to precipitate an episode of depression

decreases [7], [8]. Prolonged stress is a crucial factor under-

lying MDD considering that more than 40% of all depressed

patients suffer from cooccurring anxiety. Negative emotions,

such as depressive mood, could have adverse effects on neu-

rohormonal regulatory circuits in a similar way to prolonged

stress [3]. Thus, the comorbidity of anxiety and depressive

disorders has been associated with poorer trajectories of de-

pressive symptoms [9]. These observations highlight the need

of assessing the individual variation in stress susceptibility,

resilience, and reactivity [4].

In the short term, the physiological response to acute

stress is associated with changes in the autonomic nervous

system (ANS). The variation in ANS activity during stress-

ful experiences, which is known as autonomic reactivity, is

particularly important for adaptive stress responses, since it

reflects the ability of an individual to cope with a challenging

situation. Maladaptive responses may have a negative impact

on cognitive, emotional, and behavioral processes, thereby

leading to development of depression [10], [11]. Current

research on stress response in MDD patients is focused on

heart rate variability (HRV), which has been widely used for

assessing ANS in a noninvasive way. Recent reviews have

pointed out that individuals with greater levels of resting HRV

have greater emotion regulation and executive functioning,

while hypo-reactivity during stress, evidenced by blunted HRV
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reactivity, is related to depression [12], [13].

Although autonomic reactivity in MDD patients using HRV

indices derived from the electrocardiogram (ECG) has been

widely investigated, the use of photoplethysmography (PPG)

in this application remains largely unexplored. In [14], MDD

patients showed a reduced high frequency component of the

pulse rate variability (PRV) compared to healthy control sub-

jects during a stressful stimuli. Similar results were reported

by [15], where HRV indices derived from a PPG signal were

studied before, during, and after executing a mental task.

However, a PPG signal does not only contain information

about heart rate (HR). Pulse pressure propagation in arteries

causes alterations in blood volume and accordingly changes

in the PPG pulse shape and temporal characteristics [16].

Thus, PPG can provide a great amount of information about

the cardiovascular system including autonomic function and

vascular characteristics. One of the very few studies involving

MDD patients investigated the association between autonomic

dysregulation and arterial stiffness measured by PPG wave-

form characteristics but only during resting conditions [17].

The novelty of the present study consists in the use of

morphological PPG changes for assessing autonomic reactivity

induced by cognitive tasks in MDD and healthy subjects.

Pulse waveform characteristics are calculated based on a pulse

decomposition analysis (PDA) that consists of modeling the

PPG pulse as a main wave superposed with several reflected

waves [18]. The main hypothesis tested in the present study

is that the stress response quantified by dynamic changes

in vascular characteristics is useful for the diagnosis and

monitoring of depression.

II. MATERIALS

A. Participants

A database of 40 MDD patients (white males and

females) recruited from consultation as well as from

the psychiatric inpatient ward was recorded at the

Hospital Clı́nico Lozano Blesa (Zaragoza, Spain) and the

Mental Health Unit of the Parc Sanitari Sant Joan de

Deú (Barcelona, Spain). The MDD group consists of subjects

with clinically significant depression. The selection was

based on the diagnostic and statistical manual of mental

disorders (DSM-5) [19]. Depression severity was assessed

with the Hamilton depression rating scale (HDRS) [20] and

the Beck’s depression inventory-II (BDI) [21]. Recordings

of 40 healthy control (HC) subjects matched by age,

sex, race, and body mass index (BMI) were acquired.

Only participants without other comorbidities such as

cardiovascular, endocrinological or neurological disorders

were selected. Table I shows the demographic data and

medication of the subjects.

B. Experimental protocol and data acquisition

The experimental protocol had a duration of about 2 hours

(starting time between 09:00 a.m. and 11:00 a.m. to avoid

circadian rhythm changes) and it consists of three stages. The

first stage consists in a basal condition (B), where the subjects

were filling psychometric tests including state-trait anxiety

TABLE I
DEMOGRAPHIC DATA (MEAN±SD) AND MEDICATION OF THE

PARTICIPANTS

MDD HC

Number of subjects 40 40
Female subjects 24 24

Unmedicated subjects 3 40
Subjects with AD and BZ 26 0

Subjects with only AD 7 0
Subjects with only BZ 4 0

Age (years) 45.4± 13.35 44.3± 12.2 n.s.

BMI (kg/m2) 27.14± 5.16 24.78± 4.64 n.s.
HDRS 22.2± 6.5 2.1± 2.6 **
BDI 27.5± 12.2 3.7± 3.7 **

* p < 0.01, ** p < 0.001, n.s. not significant; AD: Antidepressants,
BZ: Benzodiazepines

inventory test, scale of stress symptoms, perceived stress scale,

and visual analogue stress scale [22].

Then, in the second stage, stress was induced to participants

by applying two cognitive tasks widely-used in the neuropsy-

chological field for assessing executive function: first the trail

making test (ST) followed by the stroop color task (SC), con-

sisting in a non-verbal and verbal stressor, respectively [23],

[24]. The ST consists of two parts. In Part A, the subjects are

required to connect, by drawing a line, consecutive numbers,

while in Part B, they are required to connect numbers and

letters in an alternating progressive sequence. In SC, subjects

are required to read, as fast as possible in 45 secs, from three

different lists, the names of: (a) color-words printed in black

ink, (b) different color patches, (c) ink color of color-words

printed in an inconsistent color ink (incongruent condition).

In the third stage, subjects were requested to relax and

to remain silent. During this recovery stage (R), of about

5 minutes, individuals were supposed to achieve a resting state.

The duration (mean±SD) of each protocol stage was

11.5 ± 5.0 min (B), 3.5 ± 1.4 min (ST), 4.3 ± 1.2 min

(SC), 5.2 ± 0.5 min (R). During the whole experimental

protocol, a non-dominant hand fingertip PPG signal was

continuously recorded at a sampling frequency of 250 Hz for

each participant using the Medicom system (ABP10 module

of Medicom MTD, Ltd, Russia).

This study was carried out in accordance with the rec-

ommendations of “Comité Ético de Investigación Clı́nica de

Aragón (CEICA)” and the Ethical Committee of “Fundació

Sant Joan de Déu” under clinical studies PI16-0156 and PIC-

148-16, respectively, including written informed consent from

all subjects in accordance with the Declaration of Helsinki.

III. METHODS

A. Pulse decomposition analysis

Intervals of the PPG signal containing artifacts are sup-

pressed using the energy-based approach proposed in [25].

Then, PPG pulse detection is carried out using a low-pass

differentiator (transition band from 7.7 Hz to 8 Hz) and a

time-varying threshold [26]. For the i:th pulse, the fiducial

point nF(i) consists in the maximum up-slope point of the

low-pass differentiator filtered signal.

A pulse decomposition analysis (PDA) technique based

on [18] is applied for pulse waveform modeling. Prior to PDA,
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Fig. 1. Pulse decomposition algorithm. Recursive computation of inner waves for two different pulse morphologies of xi(n) in (a)-(c), and (d)-(f). (g)-(l) The
result of decomposition for the same pulse morphologies taking into account the first derivative of the running residual x̃i,j(n) (x̃′

i,j(n)). The inner waves

xi,1(n), xi,2(n), xi,3(n) are marked in red, green, and purple, respectively; the up-slope is marked with solid line, while the horizontally flipped up-slope
with dashed line.

the raw PPG signal is subjected to low-pass filtering (forth

order bidirectional IIR with cut-off frequency of 5 Hz) for

attenuating high frequency noise, with xPPG(n) denoting the

filtered signal. In this study, due to low-pass filter operations,

a percentage relative to the maximum up-slope value of the

first derivative of xPPG(n) (x′
PPG(n)) is used for defining the

pulse basal point (nB(i)). The point nB(i) is searched in the

interval Ω = [nU(i)− 0.3Fs, nU(i)] around the maximum up-

slope point of x′
PPG(n) (nU(i)):

nB(i) = argmin
n∈Ω

{|x′
PPG(n)− 0.05 · x′

PPG(nU(i))|} , (1)

where x′
PPG(n) = xPPG(n) − xPPG(n − 1). The point nU(i)

is defined as the absolute maximum of x′
PPG(n) in a sym-

metrical fixed window of 10 msec around the time instant

associated with nF(i). Linear interpolation of xPPG(nB(i))
series is subtracted from xPPG(n), yielding x̌PPG(n). Thus,

each pulse xi(n) begins and ends with zero amplitude:

xi(n)= x̌PPG(n+ nB(i)) n∈ [0, . . . , nB(i+1)− nB(i)] . (2)

The i:th pulse wave xi(n) is decomposed into J symmetrical

waves xi,1(n), . . . , xi,J(n), and a residual signal. The j:th

inner wave xi,j(n) is obtained by concatenating the up-slope

of the running residual signal x̃i,j(n) (x̃i,1(n) = xi(n)) with

itself horizontally flipped, assuming that the reflected waves

arrive after half of the incident pulse is over:

xi,j(n)=







x̃i,j(n), n ∈ [nOj
, nEj

],
x̃i,j(−n+2nEj

), n ∈ (nEj
, 2nEj

−nOj
],

0, otherwise,

(3)

where nOj
and nEj

denote the up-slope onset and end

of x̃i,j(n), respectively; the dependence of i in the up-

slope onset nOj
and end nEj

is omitted for simplicity. Af-

ter the up-slope interval has been defined, the j:th inner

wave xi,j(n) is subtracted from the running residual x̃i,j(n),
i.e., x̃i,j+1(n) = x̃i,j(n)− xi,j(n), and the (j +1):th inner

wave is computed recursively from x̃i,j+1(n); J is set to 3.

Figure 1 illustrates an example of PDA for two different

pulse waveform morphologies. The up-slope end nEj
is the

position of the first relative maximum of x̃i,j(n) and the

up-slope onset nOj
(nOj

<nEj
) is the first non-negative-

amplitude sample of x̃i,j(n) [18], e.g., for the main wave

nO1
= nB (see Fig. 1(a)). However, relative maxima with low

amplitude (see Fig. 1(c)), can lead to erroneous definition of

inner waves. Thus, in this work, an inner wave is considered

to exist only if the absolute maximum value of x̃i,j(n),
i.e., x̃i,j(nEj

), exceeds the fixed (for the i:th pulse) amplitude

threshold AP = 0.05 ·max
n

{xi(n)}.

Furthermore, slope changes prior to the first relative max-

imum can lead to erroneous decomposition (see Fig. 1(e)).

When xi(n) is decomposed to inner waves, the up-slope of

the running residual x̃i,j(n) might not be a strictly increasing

function in [nOj
, nEj

], i.e., the first derivative of x̃i,j(n)
(

x̃′
i,j(n)

)

is not always positive (see Fig. 1(i)) or has more

than one inflection points (see Fig. 1(k)). This is either due

to the presence of a relative maximum with amplitude lower

than AP at the beginning of the up-slope interval (see Fig. 1(i)),

or due to a slope change at the end of up-slope interval

which, however, does not appear as a relative maximum

in x̃i,j(n) (see Fig. 1(k)). Thus, nOj
is redefined as the next

sample after the last negative-amplitude sample of x̃′
i,j(n), so

that x̃′
i,j(n)≥0. Then, nEj

is redefined as the position of the
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Fig. 2. Block diagram of the pulse decomposition algorithm.

first relative minimum of x̃′
i,j(n) for which x̃i,j(nEj

)>AP is

fulfilled ensuring that the j:th inner wave can be defined.

Figure 2 illustrates a block diagram with the PDA steps.

B. Pulse waveform characteristics

Several morphological features associated with systolic arte-

rial pressure and vascular compliance measures are extracted

from each PDA based modeled PPG pulse. The amplitude

Aj(i) and the position Tj(i) of an inner wave are defined as

the amplitude and the position of the absolute maximum of

xi,j(n), respectively. The width of xi,j(n), denoted by Wj(i),
is estimated by the full-width at half maximum.

The time delay between the position of the main wave

and the first reflected wave T12 = T2 − T1 as well as

the percentage of amplitude loss in the first reflection

A12 = 100 · (A1 −A2)/A1 are calculated (the dependence

of i is omitted for simplicity). Similarly, T13 and A13 are

calculated for the second reflected wave. The position T1

and the width W1 of the main wave are also subjected to

analysis. Finally, the instantaneous HR is calculated using

the fiducial points nF(i). Figure 3 shows an example of

pulse waveform characteristics. The pulse-to-pulse interval

for the pulses that were considered in PDA is given by

TBB(i) = (nB(i+ 1)− nB(i)) /Fs.

In this study, distorted pulses are discarded. They are

considered as such when at least one of the following criteria

are satisfied: (a) the pulse wave is decomposed to less than

3 waves, (b) the amplitude of the main wave is not the

largest of the three waves, i.e., A2 > A1 or A3 > A1,

(c) the second wave is located at the end of the pulse

interval, i.e., T2>0.8TBB, or (d) the third wave occurs earlier

than 0.35TBB, i.e., T3 < 0.35TBB. For each feature, outlier
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Fig. 3. Pulse waveform characteristics. Morphological features derived from
amplitude Aj , position Tj , and width Wj values of the J=3 inner waves.

rejection is complemented with a median absolute deviation

(MAD)-based rule [27]; the threshold is defined as 5 times the

running MAD of the previous 50 pulses.

C. Statistical analysis

The median value of a pulse waveform characteristic is ob-

tained for each subject and condition C, C ∈ {B,ST,SC,R}.

In this study, only the first 5 minutes of B are taken into

account since the time required for filling the psychometric

tests can differ among subjects or groups.

Individual differences are assessed separately for HC and

MDD group. A non-parametric Friedman test of differences

among repeated measures is conducted for evaluating the

individual differences across the stages of the experimental

protocol. To identify which data come from a different dis-

tribution, a multi-comparison test (post hoc analysis) with

Bonferroni correction is carried out using the paired t-test,

and the Wilcoxon signed rank test when appropriate.

Differences in autonomic reactivity between MDD patients

and HC subjects are assessed using the Cohen’s d param-

eter and the area under the curve (AUC) of the receiver

operating characteristic curve, which measure the size of an

effect (depression) and the degree of separability between

groups, respectively. The intra-subject difference of a fea-

ture F , F ∈ {HR,W1, T1, T12, T13, A12, A13}, between two

conditions C1 and C2, denoted as ∆(F)
C2

C1
, is used as an index

of autonomic reactivity. The reactivity indices are calculated

by subtracting the value of the feature F in C1 from C2.

The changes from basal to stress, from stress to recovery

or from basal to recovery stage are studied for assessing

autonomic reactivity.

Correlation (Pearson) analyses are carried out for testing

bivariate associations between the most significant autonomic

reactivity indices and depression severity scores assessed ei-

ther with HDRS or BDI scores. Differences in demographic

data between groups are assessed with the t-test for indepen-

dent samples, and the Mann-Whitney U non-parametric test
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when appropriate. The significance threshold in this study is

set to p < 0.01.

IV. RESULTS

The percentage (mean±SD) of discarded pulses for

each stage was 2.3% ± 4.8% (B), 4.4% ± 6.6% (ST),

4.0% ± 6.7% (SC), and 3.6% ± 5.7% (R) suggesting that

few distorted pulses are present in the PPG recordings. The

number of analyzed pulses (mean±SD) was 370 ± 102 (B),

262 ± 137 (ST), 317 ± 105 (SC), and 369 ± 102 (R).

As can be seen from the boxplots in Fig. 4, patients with de-

pression show higher values of HR and vascular compliance-

related parameters A12 and A13 compared to healthy controls.

In contrast to that, the healthy controls show higher values for

the pulse transit time surrogates T12 and T13 and the temporal

parameters related to the main wave, i.e, W1 and T1.

Friedman tests indicated that there are statistically signifi-

cant differences in HR and A13 for both groups, while only

the HC group showed significant differences in the rest of

parameters across the different stages. The post hoc analysis

revealed which stage in particular differs from each other.

Table II illustrates the statistical significance of the multi-

comparison paired tests. Results show that HC subjects exhibit

statistical differences in all characteristics during the verbal

stressor compared either to basal (B vs SC) or to recovery

stage (SC vs R). On the other hand, statistically significant

(p<0.001) individual differences were found in MDD patients

mainly for HR and A13 indices, which were associated with

changes from stress to recovery, i.e., ST vs R and SC vs R.

An example of average pulse waveforms for a HC and a MDD

subject (matched by sex, age and BMI) is shown in Fig. 5.

For each stage, prior to averaging operation, the pulses are

aligned to the position of the pulse start (basal point). This

figure highlights the fact that across different stages within

TABLE II
STATISTICAL SIGNIFICANCE OF HC / MDD INDIVIDUAL DIFFERENCES

ALONG DIFFERENT STAGES

B vs ST B vs SC B vs R ST vs R SC vs R
HR ∗∗ / n.s. ∗∗ / n.s. ∗∗ / ∗ ∗∗ / ∗∗ ∗∗ / ∗∗
W1 n.s. / n.s. ∗∗ / n.s. n.s. / n.s. n.s. / n.s. ∗∗ / n.s.
T1 n.s. / n.s. ∗∗ / n.s. n.s. / n.s. n.s. / n.s. ∗∗ / n.s.
T12 n.s. / n.s. ∗∗ / n.s. n.s. / n.s. n.s. / n.s. ∗∗ / n.s.
T13 n.s. / n.s. ∗∗ / n.s. n.s. / n.s. n.s. / n.s. ∗∗ / ∗
A12 ∗ / n.s. ∗∗ / n.s. n.s. / n.s. ∗∗ / n.s. ∗∗ / n.s.
A13 ∗ / ∗ ∗ / n.s. ∗∗ / n.s. ∗∗ / ∗∗ ∗∗ / ∗∗

* p < 0.01, ** p < 0.001, n.s. not significant

the same subject minimal changes of waveform characteristics,

including HR, T13, and A13, are observed for the MDD

compared to the HC subject.

Results of the differences in autonomic reactivity between

MDD and HC subjects are summarized in Table III. Results

show that the amplitude loss in the second A13 reflection

is associated with larger effect sizes compared to HR or

other pulse waveform characteristics. A higher degree of

separability between groups is observed when changes from

either basal (B) or stressful stages (ST, SC) to recovery phase

(R) are considered, yielding AUC values of 0.72, 0.77, and

0.74 for ∆(A13)
B

R
, ∆(A13)

ST

R
∆(A13)

SC

R
, respectively.

The results of the correlation analysis in Table IV indicate

that there is a statistically significant negative correlation

between depression severity scores and autonomic reactivity

indices. Comparing the results between the most promising

features, it can be seen that ∆(A13)
SC

R
is associated with higher

(absolute) correlation values; r = −0.50 and r = −0.43
for HDRS and BDI scores, respectively. Note that depression

severity scores are transformed using the squared root (log

transformation is avoided due to zeros in HDRS) to increase

the linear relationship with the autonomic reactivity indices.
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Fig. 5. Average pulse waveforms for two subjects. Average pulse waveforms
for (a)-(d) a HC, and (e)-(h) a MDD subject. Each row corresponds to one
of the experimental protocol stages, i.e., B, ST, SC, and R. The blue lines
and shaded areas represent the ensemble average and standard deviation,
respectively, while the ensemble average for the three inner waves are marked
with red, green, and purple lines. The waveform characteristics HR, T13, and
A13 are illustrated at the top right of each graph.

TABLE III
AUC / COHEN’S d VALUES OF AUTONOMIC REACTIVITY INDICES

BETWEEN MDD AND HC GROUP

F ∆(F)ST

B ∆(F)SC

B ∆(F)BR ∆(F)ST

R ∆(F)SC

R

HR 0.65 / -0.51 0.65 / -0.53 0.57 / -0.24 0.69 / -0.67 0.71 / -0.67

W1 0.66 / 0.51 0.70 / 0.61 0.59 / -0.17 0.59 / 0.26 0.62 / 0.48

T1 0.64 / 0.50 0.70 / 0.62 0.61 / -0.29 0.54 / 0.16 0.59 / 0.42

T12 0.65 / 0.57 0.72 / 0.66 0.55 / -0.11 0.62 / 0.37 0.67 / 0.61

T13 0.64 / 0.56 0.65 / 0.55 0.52 / 0.06 0.62 / 0.51 0.67 / 0.59

A12 0.68 / -0.60 0.70 / -0.60 0.51 / -0.07 0.67 / -0.58 0.67 / -0.60

A13 0.56 / -0.35 0.58 / -0.35 0.72 / -0.68 0.77 / -0.85 0.74 / -0.81

Note: in bold are marked the indices with AUC> 0.7

Figure 6 shows the scatter plots of
√

HDRS and ∆(A13) pairs

together with the line of best fit (least-squares minimization).

V. DISCUSSION

The present paper investigates the differences in autonomic

reactivity to mental stress between MDD and healthy subjects

by measuring changes in PPG morphology. The response to

stress, induced by verbal and non-verbal cognitive tasks, is

evaluated by means of PDA.

The intra-subject difference of PDA-derived features be-

tween two conditions, e.g., basal and stress, are considered

as indices of autonomic reactivity. Results show that the

stress response of MDD compared to HC subjects is differ-

ent (Table III). Changes in PPG morphology quantified by

∆(A13) show a higher degree of separability between groups,

i.e., larger AUC values, compared to all the indices considered

TABLE IV
CORRELATION COEFFICIENT r BETWEEN DEPRESSION SEVERITY SCORES

AND AUTONOMIC REACTIVITY INDICES

∆(F)B
R

∆(F)ST
R

∆(F)
SC
R

r(
√

HDRS ,∆(HR)) -0.09 -0.39∗∗ -0.40∗∗

r(
√

HDRS ,∆(A12)) -0.01 -0.33∗ -0.37∗

r(
√

HDRS ,∆(A13)) -0.37∗∗ -0.45∗∗ -0.50∗∗

r(
√

BDI ,∆(HR)) -0.07 -0.34∗ -0.31∗

r(
√

BDI ,∆(A12)) 0.05 -0.27∗ -0.30∗

r(
√

BDI ,∆(A13)) -0.33∗ -0.43∗∗ -0.43∗∗

* p < 0.01, ** p < 0.001
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Fig. 6. Scatter plot of depression severity scores assessed with HDRS

and autonomic reactivity index ∆(A13) for all subjects. (a) ∆(A13)
B

R
,

(b) ∆(A13)
ST
R

, and (c) ∆(A13)
SC
R

. Least-squares reference lines are superim-
posed on the scatter plots. Correlation coefficients between depression severity
scores and autonomic reactivity indices are displayed at the top right of each
graph. The group of HC and MDD subjects are marked in blue and red,
respectively.

in the study. This implies that vascular characteristics could

provide complementary information about autonomic function.

Elevated HR values and increased amplitude loss in

wave reflections, e.g. A13, are observed during stress condi-

tions (Fig. 4(a)-(c)) and they are associated with higher levels

of sympathetic activity. Acute mental stress may increase aor-

tic stiffness [28]. An increased arterial stiffness implies that the

stroke volume flows through the arterial system and peripheral

tissues mainly during systole due to the reduced distensibility

of the elastic arteries and the aorta [29]. This causes both a

larger peak in systolic part and a larger decline during diastolic

part. Thus, an increment of A13 values during stressful tasks

can be related to the inverse relationship between systolic (in-

creased) and diastolic blood pressure (decreased).

An increased vagal tone following the stress induction

may enhance differences in ANS regulation between MDD

and HC subjects taking into consideration that ∆(A13) in-

dices (Table III) yielded to large effect sizes, i.e., |d| > 0.8.

On the contrary, changes in autonomic reactivity from basal to

stress show lower AUC and effect sizes compared to changes

from stress to recovery. These results are suggestive of a

higher sympathetic tone in B compared to R stage. Filling

psychometric tests, during B stage, does not imply a cognitive

stressor, but it may require the attention and effort of the

subject, which could affect the ANS state. Indeed, statistically

significant (Table II) lower values of HR and A13 are observed

for HC subjects in R compared to B (Fig. 4(a) and 4(c)).

Furthermore, a higher degree of depression is associated
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with a decreased autonomic reactivity. The autonomic reac-

tivity indices and depression severity scores are negatively

correlated (Table IV). Taking into account that the range of

depression severity scores (Fig. 6) covers all types of de-

pressive symptoms (mild, moderate, severe, and very severe),

stress response quantified by dynamic changes in vascular

characteristics might be useful for depression monitoring.

Blunted autonomic reactivity to stress might reflect suboptimal

functioning of the cortical and limbic brain regions that

are involved in motivation and cognitive ability [30]. Thus,

deviations from an optimal response, in the face of challenge,

may indicate that MDD patients are less capable than healthy

subjects, to adjust their mental state to abrupt behavioral

changes.

These results are in agreement with previous studies which

showed that patients with depression are associated with

blunted cardiovascular reactivity to psychological stressors.

Reduced HR and systolic blood pressure reactivity during a

speech task and less HR recovery in depressed patients com-

pared to healthy control subjects was reported in [31]. Other

studies pointed out that high scores of depression or anxiety

symptomatology are associated with blunted blood pressure

and HR reactivity to psychological stressors [32], [33].

Decreased autonomic reactivity in depression has been

documented in a growing number of studies using HRV

indices [34], [35]. Moreover, joint analyses of respiration

and HRV showed less stressor-induced suppression of cardiac

parasympathetic activity in MDD patients compared to healthy

subjects [36]. In [37], entropy measures of cardiorespiratory

coupling showed an increasing trend with depression severity.

Although PPG signal has been widely used for quantifying

mental stress [38]–[40], few studies have explored the ability

of PPG-derived indices to assess autonomic reactivity in MDD

patients. It should be noted that short-term variability is

often overestimated by PRV and, in addition, it has been

reported that some mental stressors reduce the accuracy of

PRV as a surrogate of HRV [41]–[43]. The PRV is affected by

measurement errors related to lower accuracy of fiducial point

detection, and physiological factors such as respiration [42].

Changes in respiratory patterns imposed by the exposure to

stressful stimuli may mask the vagal withdrawal [44], [45].

One of the very few studies which analyzed morphological

PPG features in MDD patients showed that entropy indices

of systolic and diastolic amplitude of pulse waveform were

positively correlated with suicidal score [17]. Higher entropy

values imply a more uniform distribution of PPG amplitudes

in depressed patients with suicidal ideation, fact that could be

related to minimal changes in ANS state. Seldenrijk et al. [46]

showed that the early wave reflection in depressive or anxiety

disorders was associated with higher arterial stiffness, which

agrees with the findings of the present study. Altered vasomo-

tor tone in MDD patients, owing to the autonomic imbalance

(increased sympathetic activity), has been related to changes in

endothelial function, which is considered a gauge of vascular

health [47]. Systematic reviews have shown that depressive

symptoms are associated with subclinical atherosclerosis [48],

[49]. Arterial stiffness may increase the risk for structural

abnormalities in the mood regulatory centers of the brain

due to small vessel lesions, contributing to the development

of late-life depression (vascular depression hypothesis) [50]–

[52]. Irrespective of whether depression is a cause or effect of

arterial stiffness, impaired arterial compliance might constitute

a biomarker of mental health and might contribute to the

increased frequency of cardiovascular diseases observed in

MDD patients [53], [54].

In [18], the PDA-based inner waves of a PPG pulse were

modeled as Gaussian waves using a Trust-Region algorithm

for the fitting procedure, while, in this work, waveform

characteristics are derived from the inner waves without the

use of fitting. Similar results (not shown) are obtained for

both approaches, thereby suggesting a faster feature extraction,

which seems appealing for a future integration of PDA into

wearable devices. A low sampling frequency might be also

required for implementation in wearables, however, it may

produce a jitter in fiducial point estimation [55]. To reduce

the effect of jitter, an algorithm of interpolation (up-sampling)

is commonly used for refining the fiducial point [56]. Based on

additional analyses (not shown), where the PPG signal xPPG(n)
was up-sampled from Fs = 250 Hz to 1000 and 2000 Hz, the

effect of Fs on morphological indices was minimal leading

to changes in the order of 1% for AUC values. Although

up-sampling is crucial in PRV analyses, since the effect of

jitter can alter spectral indices considerably [57], PPG signals

recorded at low sampling frequency, e.g. Fs = 250 Hz, may

suffice for deriving morphological indices. Note also that if

after up-sampling the same tendency for the raw values across

conditions is observed, the study of individual differences

through autonomic reactivity indices can be affected at even

less extent. Further studies can be done by fusing information

from different waveform characteristics to further improve the

assessment of autonomic reactivity.

The main difference of the present technique with respect

to other PDA techniques in the literature is that both main

and reflected waves are assumed to be symmetrical and they

are extracted one-by-one, instead of obtaining a modeled PPG

by fitting several waves at once [58], [59]. This facilitates

the interpretation of model parameters based on the pulse

wave propagation physiology. Moreover, this decomposition

is based on the hypothesis that half of the incidence pulse

does not overlap with the reflected one, and same with the

following pulses. However, in cases where fast propagation

occurs, there might be overlapping between waves, but it

should be minimum since it is an overlap of the maximum

incident pulse with the lower tails of the reflected one. This

point deserves a simulation study for evaluating hemodynamic

responses to controlled fluxes, which, however, is out of the

scope of this study.

A limitation of the present study is that the performance

of PDA was studied mainly on a fingertip PPG signal. PPG

signals recorded at different places on the body (wrist, fore-

head, ear) exhibit quite different morphologies from that of

the fingers. Therefore, the current methodology can not be

generalized automatically to all PPG signals. However, the

database did not include PPG recordings at a second location

on the body. Further studies, where PPG signals acquired from

various sites of the body are available, should be conducted
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for evaluating the effect of the recording site on the PDA

performance.

Another limitation is that most of MDD patients were in

antidepressant treatment. Results of a recent cross-sectional

study have shown that there is no association between arterial

stiffness and longitudinal exposure to antidepressants [60]. In

[61], [62], it was found that depressed patients who responded

to antidepressant treatment presented sustained improvement

in vascular function. Moreover, in a large cohort study, Dregan

et al. [63] showed that the association of depression with

arterial stiffness in midlife was mediated via both metabolic

syndrome and inflammatory processes rather than antidepres-

sant medication. The hypothesized bidirectional relationship

between depression and arterial stiffness can be also mediated

by the lack of physical activity and poor diet, rather than

the use of antidepressants [64], [65]. However, the reduced

number of MDD patients without medication (3 out of 40, see

Table I) do not allow the impact of drug treatment on pulse

waveform characteristics to be assessed. Furthermore, there

are also differences in medication (types, doses, and duration),

due to the severity of the depressive symptoms, which further

complicate such an analysis.

VI. CONCLUSIONS

In this study, the autonomic reactivity to stressful stimuli

in patients with depression and healthy subjects is assessed

by quantifying dynamic changes in PPG morphology using

a pulse decomposition analysis. Results show that the stress

response of MDD compared to healthy subjects is differ-

ent and a decreased autonomic reactivity is associated with

higher degree of depression. Vascular characteristics such as

the percentage of amplitude loss in wave reflections have a

potential to become digital biomarkers for the diagnosis and

monitoring of depression.
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