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Abstract: We analyze the kinematics of electron-positron production in a photon-photon interaction
when one has a modification of the special relativistic kinematics as a power expansion in the inverse
of a new high-energy scale. We derive the equation for the threshold energy of this reaction to
first order in this expansion, including the effects due to a modification of the energy-momentum
conservation equation. In contrast with the Lorentz invariance violation case, a scale of the order of a
few TeV is found to be compatible with the observations of very high-energy cosmic gamma rays in
the case of a modification compatible with the relativity principle.
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1. Introduction

The detection of high-energy photons as cosmic messengers does not only provide information
about the source that originated them, but also about the medium in which they propagate and the
interactions they have suffered in their way to us. Because of this, their observation (or non-observation)
offers the opportunity to test non-conventional physics that might alter the standard analysis of
these processes.

Specifically, the flux of high-energy gamma rays suffers attenuation as a result of their interaction
with the photons of the extragalactic background light (EBL), the radiation emitted by stars, galaxies,
and active galactic nuclei since the reionization period, now present mainly in the optical and infrared
bands (but also at lower wavelengths). Such interaction takes place for gamma rays with energies
above the threshold of pair production, which could be altered by new physics.

In particular, quantum gravity models generically predict [1–15] deformations of the kinematics
of special relativity in processes involving particles of sufficiently high energy, where this energy has
to be compared with the high-energy scale Λ that controls this deformation (disappearing in the limit
Λ→ ∞), which is a parameter of the model. Such a deformation of the kinematics will generically alter
the threshold of pair production, leading to a change in the expected gamma-ray flux, or an apparent
failure in the estimate of the transparency of the universe to high-energy photons.

A modified dispersion relation with conventional conservation laws is the most prominent
example of a deformed kinematics. It implies a violation of Lorentz invariance (LIV), since the
deformed kinematics is defined and only valid in a specific set of reference frames related by rotations.

Modified dispersion relations in a LIV scenario are constrained by the time of flight of photons
coming from gamma-ray bursts (GRBs) [16–18], active galactic nuclei [19], or pulsars [20]. In the
framework of the standard model extension [21], a linear (proportional to 1/Λ) variation of the speed
of light also implies a birefringence effect, that may be tested in optical polarization measurements [22].
For a review on LIV phenomenology, see Reference [23].
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Previous studies of LIV effects on the kinematics of electron–positron pair creation [24–27] have
shown that indeed such effects shift the energy threshold of the pair-production process with respect
to the case of special relativity, what may be used to constrain the scale Λ of the LIV at the Planck-scale
level. The effect can even be invoked as an explanation for anomalies in the absorption of high-energy
gamma rays [28,29] (an apparent excess of transparency of the universe to them), although a LIV
explanation of these anomalies is disfavored with respect to other type of new physics [30], mainly
because the strong LIV needed would have been discarded by other observations, such as those
involving atmospheric showers [31] or ultra-high energy cosmic rays [32].

However, LIV is not the only fate for a deformation of the kinematics of special relativity. Doubly
special relativity models (DSR) emerged at the beginning of the century as quantum-gravity-inspired
deformations of special relativity compatible with a relativity principle, that is, without a privileged
system of reference, in which a length (the Planck scale) was observer-invariant [33–36]. DSR theories
are an example of the general notion of a relativistic deformed kinematics (RDK), which does not only
involve a modified dispersion relation, but also a modification of the energy-momentum composition
rules that define the conservation laws [37–40]. This new ingredient, which is imposed by the existence
of a relativity principle, makes the phenomenology of a RDK very different from that of a LIV scenario,
invalidates many of the bounds for Λ obtained in the LIV case, and leads to the possibility to have
a high-energy scale for the deformed kinematics much smaller than the Planck scale [41,42].

In the present work we investigate the implications of a RDK on the threshold of electron-positron
pair production, and, therefore, on the transparency of the universe to high-energy photons.
The compatibility of experimental observations with these implications will allow us to put bounds on
the high-energy scale Λ of the RDK. As we will see, they are many orders of magnitude lower than in
the case of LIV, which makes the RDK scenario much harder to exclude. This also indicates that the
arguments disfavouring a deformation of special relativity as an explanation of possible anomalies
in the transparency of the universe should be re-evaluated. On the other hand, it is interesting that
these bounds are in the TeV regime, and could then be explored in other contexts, such as in future
accelerator experiments. The transparency of the universe would therefore constitute a possible
window to the TeV scale complementary to high-energy physics experiments.

The structure of the paper is as follows. In Section 2, we review the basics of a relativistic deformed
kinematics and explain the main differences with respect to the LIV case. Then, in Section 3 we compare
the calculation of the threshold of pair production for the special-relativistic and LIV cases with that of
the RDK case, and obtain a relevant bound for the latter. Finally, in Section 4 we provide a discussion
of the results. Detailed calculations indicated in the main text are given in the Appendix A.

2. Relativistic Deformed Kinematics

As commented in the Introduction, a deformed kinematics can either be compatible with a
relativity principle (RDK), or represent a violation of the Lorentz invariance (LIV). While a deformed
dispersion relation with standard conservation laws implies LIV, in a RDK there exists a second
kinematic ingredient besides the deformed dispersion relation—a deformed composition law for the
momenta, that needs to satisfy certain compatibility conditions with the deformed dispersion relation,
known as “golden rules” [38,39]. Moreover, in order to maintain a relativity principle, deformed
Lorentz transformations in the two-particle system are required [39,40].

While in both scenarios a deformed kinematics can be considered as a consequence of quantum
gravity effects, its phenomenological implications are quite different. In LIV, the deformed dispersion
relation is a way to take into account the propagation of a particle in a “quantum” spacetime; however,
in DSR, besides this ingredient, there is also a lack of locality of interactions, known as relative
locality [43]. These nonlocal effects are due to the deformed composition law—viewing the total
momentum as the generator of translations, since the total momentum is a nonlinear function of the
individual momenta, translations are different for each particle involved in the interaction, implying
that only an observer placed at the interaction point sees the interaction as local. The lack of a notion
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of absolute locality modifies completely the definition of space-time points thought by Einstein [44]
as events given by the exchange of light pulses (emission and detection of photons). It is an open
question whether this modified implementation of translations on a multi-particle system leads to
observable effects in time-of-flight measurements [41,45,46]. If this is not the case then one has to look
for effects of a RDK elsewhere.

Thresholds of reactions are also differently affected in a LIV or RDK scenario [42,47]. While
thresholds in the decay of a particle cannot appear when going from SR kinematics to a relativistic
deformed kinematics (the stability character of a particle cannot depend on its energy, since energy is
not a relativistic invariant), they can indeed appear in a LIV theory. Also, thresholds of reactions are
much more strongly affected in the case of LIV that in the case of RDK, as we will explicitly see in the
present paper. As a consequence, the LIV and RDK scenarios lead to completely different bounds on
the high-energy scale parametrizing the deviation from special relativity (SR).

To illustrate this, we will consider the simple case of an isotropic relativistic deformed kinematics
at first order in an expansion in the inverse of the energy scale Λ of the deformation, with a deformed
dispersion relation parametrized by two dimensionless coefficients α1, α2:

C(p) = p2
0 − ~p2 +

α1

Λ
p3

0 +
α2

Λ
p0~p2 = m2 , (1)

and a deformed composition law parametrized by four adimensional coefficients β1, β2, γ1, γ2:

[p⊕ q]0 = p0 + q0 +
β1

Λ
p0q0 +

β2

Λ
~p ·~q , [p⊕ q]i = pi + qi +

γ1

Λ
p0qi +

γ2

Λ
piq0 , (2)

where the following condition is implemented

(p⊕ q)|q=0 = p , (p⊕ q)|p=0 = q . (3)

This model was studied in Reference [39], where deformed Lorentz transformations laws were
constructed. The relativity principle imposes the invariance of the deformed dispersion relation under
the one-particle deformed Lorentz transformation T(p),

C(p) = C(T(p)) . (4)

Non-linearity of the deformed composition law also forces to consider deformed Lorentz
transformations in the two-particle system such that the transformation of the momentum of one
particle depends on the momentum of the other particle, TL

q (p) and TR
p (q), where the superscripts L, R

indicate the relevance of the order in the composition of the momenta, since the composition law (2)
is in general noncommutative. Imposing the relativity principle for a simple process (a particle with
momentum (p⊕ q) decaying into two particles of momenta p and q) leads to

T(p⊕ q) = TL
q (p)⊕ TR

p (q) . (5)

Equations (4) and (5) relate the deformed Lorentz transformations with the deformed dispersion
relation and the deformed composition law. As a result (see Reference [39]), one obtains a relation
between the dimensionless coefficients of the deformed dispersion relation and composition law,
the “golden rules” we mentioned at the beginning of the section

α1 = −β1 , α2 = γ1 + γ2 − β2 . (6)

As it was shown in Reference [40], there is a simple trick to obtain the previous relations without
having to explicitly construct the deformed Lorentz transformations as it was done in Reference [39].
We can consider a change of basis from the momentum variables P of SR, that is, a transformation in the
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one-particle system (P0, ~P)→ (p0,~p), where the new momentum variables are just a function of the
old ones (preserving rotational invariance),

p0 = P0 +
δ1

Λ
P2

0 +
δ2

Λ
~P2 ,

pi = Pi +
δ3

Λ
P0Pi .

(7)

This change of basis reproduces (at first order in the expansion in the inverse of the scale Λ) the terms
in the dispersion relation and the coefficients of a symmetric composition law. In particular, we have

α1 = −2δ1, α2 = −2δ2 + 2δ3, β1 = 2δ1, (8)

β2 = 2δ2, γ1 = γ2 = δ3 . (9)

Moreover, we can also apply a change of variables, which is a transformation in the two-particle
system which preserves the separation of momentum variables in the deformed dispersion relation.
If (P, Q) are variables that transform and compose linearly (the standard variables of SR), a change of
variables (P, Q)→ (p, q) with this property at order 1/Λ, generating different coefficients γ1 and γ2

in the composition law of the variables (p, q), is

P0 = p0 +
ε1

Λ
~p ·~q , Pi = pi +

ε1

Λ
p0qi ,

Q0 = q0 +
ε2

Λ
~p ·~q , Qi = qi +

ε2

Λ
q0 pi .

(10)

Combining the change of variables with the change of basis, Equation (9) is replaced by

β2 = 2δ2 + ε1 + ε2, γ1 = δ3 + ε1, γ2 = δ3 + ε2 . (11)

From Equations (8) and (11), we can directly derive the “golden rules” (6).

3. Threshold of Pair Production

In this section we are going to focus on the kinematics of electron-positron pair production,
computing the threshold energy of the process under different kinematic considerations. That is,
we want to find out the minimum energy of a high-energy photon which interacts with a low-energy
photon belonging to the EBL to produce an electron-positron pair,

γ + γEBL → e− + e+ . (12)

We will denote energy and momentum by (E,~k) for the high-energy photon and (ε,~k′) for the
low-energy photon, leaving (p0,~p) and (q0,~q) for the electron and the positron, respectively.

First of all, we include a quick reminder (see Appendix A.1 for details) of the result obtained
considering the dispersion relation and composition law of SR,

C(p) = p2
0 − ~p2 = m 2 , (13)

[p⊕ q]0 = p0 + q0 , [p⊕ q]i = pi + qi . (14)

The threshold situation is reached when the momenta of all the particles are parallel, with~k′

pointing in the opposite direction to the other momenta, and |~q| = |~p|. Hence, the minimum energy
for the high-energy photon takes the form

ESR
th =

m2
e

ε
. (15)
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We can now concentrate on a LIV situation with a deformed dispersion relation

C(p) = p2
0 − ~p2

[
1− s

p0

Λ

]
= m2 . (16)

The coefficient s that appears in Equation (16) takes into account the possibility that a particle
can travel faster (s = −1) or slower (s = +1) than their relativistic counterpart. This can result in
a decrease or increase, respectively, of the threshold energy as we will see later in this section.

The threshold situation (see Appendix A.2 for details) is also reached when the momenta of all
the particles are parallel with~k′ pointing in the opposite direction to the other momenta and with
|~q| = |~p| as in the case of special relativity kinematics. The modification of the dispersion relation
leads to a modified equation for the threshold energy

− s
E3

th
8Λ

+ Ethε−m2
e = 0 , (17)

where s = −1 would imply a decrease in the threshold energy with respect to the SR situation, and
s = +1 corresponds to an increase in the threshold energy needed to produce the electron-positron
pair, for a given energy ε of the low-energy photon.

One can obtain an expression for the modification of the threshold if it is assumed that such
modification is small, by substituting the special-relativistic threshold, ESR

th = m2
e /ε, in the term

proportional to 1/Λ (this assumption will only hold for large enough values of Λ):

ELIV
th ≈ m2

e
ε

[
1 + s

(m2
e )

2

ε3
1

8Λ

]
. (18)

We can now proceed to discuss the case of a RDK scenario. Here we need to consider both a
deformed dispersion relation and a deformed composition law (see Equations (1) and (2)) where the
new coefficients αi, βi, γi that parametrize the deviations from SR are related to each other by means of
the “golden rules” shown in Equation (6), so that the relativity principle is maintained.

One can generalize (see Appendix A.3 for details) the equation for the threshold energy including
the effects due to a modification of the composition law of momenta. One then sees that, contrary to
what happened in the SR and the LIV cases, the energies of the electron and positron at the threshold
situation are not equal in the RDK case, owing to a non-symmetric (γ1 6= γ2) deformed composition
law. When one uses the same approximations as in the case of LIV, one finds

γ1 + γ2 − β1 − β2 − α1 − α2

8Λ
E3

th + Ethε−m2
e = 0 . (19)

This correction shows a cubic equation for the threshold energy, the same order obtained in
Equation (17) for a LIV situation. In fact, the generalized equation for the threshold energy Equation (19)
reduces to Equation (17) in the case of LIV (γi = βi = 0) with a redefinition of the energy scale Λ,
such that (α1 + α2)/Λ → s/Λ. However, when the coefficients of the deformed dispersion relation
and composition law in a RDK are forced to fulfill the “golden rules” of Equation (6) by the relativity
principle, one has a cancellation of the contribution proportional to E3

th in Equation (19) for the
threshold energy.

We then look for the first corrections proportional to 1/Λ where the contributions from the
different terms do not cancel when considering the “golden rules”, giving a quadratic equation,

3γ1 + γ2 − β1 − 5β2

4Λ
E2

thε +
2β2 − γ1 − 2γ2

2Λ
Ethm2

e + Ethε−m2
e = 0 . (20)
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We can now substitute the relativistic solution for Eth given by Equation (15) in the terms
proportional to 1/Λ. The result for the threshold energy in the context of a relativistic deformed
kinematics is

ERDK
th ≈ m2

e
ε

[
1 +

β1 + β2 + 3γ2 − γ1

4Λ
m2

e
ε

]
=

m2
e

ε

[
1 +

m2
e

εΛeff

]
, (21)

where Λeff is the effective deformation scale for pair-production, defined as a function of the
high-energy scale Λ and the parameters β1, β2, γ1, and γ2. Comparison with Equation (18) shows
the difference with the modification of the threshold in the LIV case by the large factor (m2

e )/ε2.
The alteration of the kinematics of SR is then substantially different in the LIV and the RDK cases.

The approximations used throughout this section are based on the hypothesis that the modification
of the threshold energy due to RDK is much smaller than the threshold energy in special relativity,
|ERDK

th − ESR
th | � ESR

th . We can quantify this by considering that their difference is, for example,

ERDK
th − ESR

th

ESR
th

< 0.1 . (22)

Then, the previous equation will give ERDK
th < 1.1ESR

th . From Equations (15) and (21), we obtain a
bound for the effective QG modification scale, Λeff,

Λeff >
10m2

e
ε

. (23)

If we take, for example, an EBL photon of wavelenght λ = 1µm and energy ε = 1.24 eV, the effective
scale would take a value of Λeff > 2.1 TeV. Hence, we can infer the order of the modification scale
knowing the characteristics of the low-energy photon.

4. Conclusions and Outlook

We have applied a general modification of special relativistic kinematics, proportional to the
inverse of a new energy scale Λ, to the determination of the threshold of the production of an
electron-positron pair in the interaction of a high-energy (E) photon with a low-energy (ε) photon
in the extra-galactic background. In the general case, one finds corrections proportional to the ratio
(E3/m2

e Λ) in a cubic equation for the threshold energy so that one can have large corrections to the
threshold energy even when Λ� E. This situation is the one commonly discussed in the literature.
However, when the modification of the kinematics includes terms proportional to the inverse of the
scale Λ in the composition law of momenta, such that the deformed kinematics is compatible with
the relativity principle, one finds that the dominant correction term in the equation of the threshold
energy is absent and the correction turns out to be proportional to the ratio (E/Λ). An upper bound
on a possible deviation of the threshold energy from the result derived with SR kinematics can then
be used to put a lower bound on the scale Λ. Interestingly, this bound (TeV scale) is many orders of
magnitude lower than in the more conventional case of a Lorentz invariance violation.

An analysis based on the modification of the threshold energy in the electron-positron pair
production to consider the problem of the transparency of the Universe to high-energy gamma rays is
of course incomplete and can only give qualitative indications. A more detailed analysis, taking into
account specific models for the EBL and a determination of the optical depth, as in References [19,26],
should be performed. Such study will require to go beyond the determination of the threshold energy
considering all the effects of the deformation of the kinematics in the determination of the VHE
gamma-ray spectrum. One could even consider a situation where the accuracy in the determination
of the gamma-ray spectrum requires to go beyond the terms proportional to the inverse of the scale
Λ in the modification of the kinematics. There is at present a wealth of data from H.E.S.S., HAWC
or MAGIC, where this analysis could be carried out, and we will have more data in the near future
with CTA. Such analysis can be used to get stringent bounds on the scale Λ for a relativistic deformed
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kinematics if one does not find a conflict with special relativistic kinematics. Alternatively, one could
find a spectrum which is not compatible with the predictions based on SR kinematics, and one should
see whether the incompatibility could be adjusted with an appropriate choice of the scale Λ.

In this sense, the discussion of the gamma-ray spectrum in relation to the transparency of the
Universe presented in this work should be considered together with other observations which can also
be affected by a deformation of SR kinematics, including the end of the UHECR spectrum, observations
of cosmogenic neutrinos, and high-energy collider physics (see Reference [48] as an example), where
new data are also expected in the near future. Consistency with these other observations will also
indirectly contribute to a better knowledge about the physics of the transparency of the Universe
to gamma rays, by constraining the role of new physics in the origin of possible anomalies in the
detected gamma-ray spectrum or tracing them down to a lack of understanding of the EBL spectrum.
The low-energy bounds obtained in the present work for a relativistic deformed kinematics makes this
a promising approach with important astrophysical consequences.
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Appendix A. Equation for the Threshold Energy of Pair Production

In this Appendix we display some details regarding the derivation of the expression for the
threshold energy of pair production in different cases: SR kinematics, a LIV scenario with a modification
of the dispersion relation, and a relativistic deformed kinematics with modifications in the composition
of momenta and in the dispersion relation compatible with the relativity principle.

Appendix A.1. Threshold in SR

In the first place, we compute the result obtained for the minimum energy of the high-energy
photon in the process according to special relativity kinematics. The dispersion relation and the
composition law are

C(p) = p2
0 − ~p2 = m 2 , (A1)

[p⊕ q]0 = p0 + q0 , [p⊕ q]i = pi + qi . (A2)

In special relativity, the following quantity is found to be invariant for different inertial observers
(i.e., under Lorentz transformations):

s = E2
tot − |~ptot|2 , (A3)

which will be useful to solve the problem by considering different frames of reference. We begin with
the center of mass reference frame for the pair produced in the process, where the momenta of each of
the two particles is zero in the threshold situation,

sf = 4m2
e . (A4)

On the other hand, we can compute the previous invariant for the initial state in the laboratory
frame, using Equation (A2) to calculate the total energy and momentum of the two-photon system,

si =
(
Ei
)2 − |~pi|2 = (E + ε)2 −

∣∣∣~k + ~k′
∣∣∣2 . (A5)
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Since the relativistic invariant s is conserved in the interaction, we can now equate Equations (A4)
and (A5), simplifying the expression that remains by the use of the dispersion relation Equation (A1),

2Eε− 2~k · ~k′ = 4m2
e . (A6)

Therefore, the energy of the high-energy photon in this situation depends on the angle θ between
the two initial momenta of the photons,

E =
2m2

e
ε(1− cos θ)

. (A7)

Finally, the minimum energy corresponding to the threshold of the process is obtained when the
two initial momenta are pointing in opposite directions (θ = π),

ESR
th =

m2
e

ε
. (A8)

Appendix A.2. Threshold Equation with LIV

In a scenario with Lorentz invariance violation, there is a modification in the dispersion relation
of a particle (here we consider it only up to first order in 1/Λ), while the composition law remains as
in special relativity,

C(p) = p2
0 − ~p2

[
1− s

p0

Λ

]
= m2 , (A9)

[p⊕ q]0 = p0 + q0 , [p⊕ q]i = pi + qi . (A10)

It is important to note that we are facing an optimization problem, as we are searching for
the minimum possible energy of the high-energy photon. Therefore, it can be solved using the
methodology of Lagrange multipliers, looking for the minimization of E, subject to the constraints
given by the conservation laws of energy and momenta. The auxiliary function we use for that is

F(~k,~p,~q, µ,~λ) = E− µ

[
p0 + q0 − E− ε

]
−∑

i
λi

[
pi + qi − ki − k′i

]
, (A11)

where µ and λi are the so-called Lagrange multipliers. The next step in the optimization method would
be to compute the derivatives of the new function F so that its minimum can be found,∇ · F = 0.

One has

∂F
∂pi

= −µ
dp0

d|~p| ·
pi
|~p| − λi = 0 , (A12)

∂F
∂qi

= −µ
dq0

d|~q| ·
qi
|~q| − λi = 0 , (A13)

∂F
∂ki

= (1 + µ)
dE
d|~k|
· ki

|~k|
+ λi = 0 , (A14)

∂F
∂µ

= p0 + q0 − E− ε = 0 , (A15)

∂F
∂λi

= pi + qi − ki − k′i = 0 . (A16)

Matching the expressions for the multiplier λi obtained from Equations (A12)–(A14), we get

µ
dp0

d|~p| ·
pi
|~p| = µ

dq0

d|~q| ·
qi
|~q| = (1 + µ)

dE
d|~k|
· ki

|~k|
. (A17)
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This equation shows that the unit vectors defining the directions of the momenta involved in the pair
production process are proportional to each other. Hence, the problem at hand can be simplified to
one dimension.

The first equality in Equation (A17) shows that the electron and the positron move in the same
direction (pi/|~p|) and with the same velocity (dp0/d|~p|), so that they both have the same momentum
and, consequently, the same energy. Indeed, we can obtain the velocity of each particle from the
dispersion relation, Equation (A9), with m = me. Taking into account that we are working up to order
1/Λ, the term ~p2 can be substituted by its relativistic expression in the 1/Λ term:

p2
0 ≈ |~p|2 − s

(
p2

0 −m2
e
) p0

Λ
+ m2

e . (A18)

Since we are considering the ultra-relativistic limit me � p0 � Λ, we get (neglecting terms
proportional to m2n

e with n > 1)

|~p| ≈ p0 + s
p2

0
2Λ
− s

m2
e

2Λ
− m2

e
2p0

, (A19)

so that
dp0

d|~p| =
1

d|~p| / dp0
=

1
1 + sp0/Λ + m2

e /2p2
0
≈ 1− s

p0

Λ
− m2

e

2p2
0

. (A20)

Then, the equality of velocities dp0/d|~p| = dq0/d|~q| in Equation (A17) becomes

1− s
p0

Λ
− m2

e

2p2
0
= 1− s

q0

Λ
− m2

e

2q2
0

, (A21)

|~p| = |~q| , p0 = q0 . (A22)

Considering the second equality in Equation (A17), we can clear the Lagrange multiplier µ.
We then observe that it will always take a positive value with |µ| < 1, as me � E� Λ,

µ
dq0

d|~q| = (1 + µ)
dE
d|~k|

, µ

(
1− s

q0

Λ
− m2

e

2q2
0

)
= (1 + µ)

(
1− s

E
Λ

)
, (A23)

µ =
1− sE/Λ

s(E− q0)/Λ−m2
e /2q2

0
. (A24)

This result shows that the initial high-energy photon momenta~k points in the same direction
as the momenta ~p and ~q of the electron and positron. With this knowledge, we can now write the
conservation of energy and momentum (Equations (A15) and (A16)) as

2p0 = E + ε , (A25)

2|~p| = |~k| ± |~k′| . (A26)

It is easy to note that the scenario leading to the minimum energy E corresponds to the minus
sign in Equation (A26), since in this case |~p|, and then p0 in Equation (A25), takes its minimum value.
Equations (A25) and (A26) are in fact the same as in SR, where we already saw that the threshold
situation was at θ = π, that is, when ~k′ is opposite to~k, ~p and~q, so that

2|~p| = |~k| − |~k′| . (A27)

Using now the dispersion relation (A9), or better, its approximation (A19), for the different
particles, into Equation (A27), and substituting p0 by using Equation (A25), we finally find an
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expression for the energy E of the high-energy photon in terms of the energy ε of the low-energy
photon. Taking into account that ε� E, the equation for the threshold energy in the LIV case is

− s
E3

th
8Λ

+ Ethε−m2
e = 0 , (A28)

where s = +1 corresponds to the high-energy photon being subluminal, and s = −1 relates to the
superluminal situation.

Appendix A.3. Threshold Equation with a RDK

The last set of calculations presented in this appendix refers to a relativistic deformed kinematics
situation. While this scenario maintains the relativity principle, it is defined by a deformed dispersion
relation and a deformed composition law,

C(p) = p2
0 − ~p2 +

α1

Λ
p3

0 +
α2

Λ
p0~p2 = m2 , (A29)

[p⊕ q]0 = p0 + q0 +
β1

Λ
p0q0 +

β2

Λ
~p ·~q , [p⊕ q]i = pi + qi +

γ1

Λ
p0qi +

γ2

Λ
piq0 , (A30)

whose dimensionless coefficients are related by means of the “golden rules” (6),

α1 = −β1 , α2 = γ1 + γ2 − β2 . (A31)

It can be noticed that the deformed composition law for momenta does not take the same
expression under an exchange of the involved momenta, [p⊕ q]i 6= [q⊕ p]i, if γ1 6= γ2, so we must
specify the composition order when applying Equation (A30).

As in the previous case, we will follow the Lagrange multipliers method in order to find the
minimum energy E for the process to occur. We define the auxiliary function F as

F(~k,~p,~q, µ,~λ) = E− µ
(

Efin − Eini

)
−∑

i
λi

[
(pfin)i − (pini)i

]
, (A32)

which allows one to minimize E under the constraints given by energy and momentum conservation
in the pair production process.

The initial and final expressions for the total energy and momenta, according to the composition
law (A30), are the following:

Eini = E + ε +
β1

Λ
Eε +

β2

Λ ∑
i

kik′i , (A33)

Efin = p0 + q0 +
β1

Λ
p0q0 +

β2

Λ ∑
i

piqi , (A34)

(pini)i = ki + k′i +
γ1

Λ
Ek′i +

γ2

Λ
εki , (A35)

(pfin)i = pi + qi +
γ1

Λ
p0qi +

γ2

Λ
q0 pi . (A36)

The next step in the Lagrange multipliers method, is to cancel the different derivatives obtained
from the auxiliary function F:
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∂F
∂pi

= −µ
∂Efin
∂pi
− λi

∂
(

pfin
)

i
∂pi

= 0 , (A37)

∂F
∂qi

= −µ
∂Efin
∂qi
− λi

∂
(

pfin
)

i
∂qi

= 0 , (A38)

∂F
∂ki

=
dE
dki

+ µ
dEini

dki
+ λi

d
(

pini
)

i
dkl

= 0 , (A39)

∂F
∂µ

= Efin − Eini = 0 , (A40)

∂F
∂λi

= (pfin)i − (pini)i = 0 . (A41)

The explicit expressions of Equations (A37)–(A39) are

∂F
∂pi

= −µ

[(
1 +

β1

Λ
q0

)
dp0

d|~p| +
β2

Λ
qi
|~p|
pi

]
pi
|~p| − λi

[
1 +

γ2

Λ
q0 +

γ1

Λ
qi

dp0

dpi

]
= 0 , (A42)

∂F
∂qi

= −µ

[(
1 +

β1

Λ
p0

)
dq0

d|~q| +
β2

Λ
pi
|~q|
qi

]
qi
|~q| − λi

[
1 +

γ1

Λ
p0 +

γ2

Λ
pi

dq0

dqi

]
= 0 , (A43)

∂F
∂ki

=

[(
1 + µ + µ

β1

Λ
ε

)
dE
d|~k|

+ µ
β2

Λ
k′i
|~k|
ki

]
ki

|~k|
+ λi

[
1 +

γ2

Λ
ε +

γ1

Λ
k′i

dE
dki

]
= 0 . (A44)

The previous equations indicate that the unit vectors pi/|~p|, qi/|~q| and ki/|~k| are proportional to
each other, that is, the momenta of the high-energy photon and of the electron-positron pair are parallel.
From momentum conservation, the momentum of the low-energy photon will also share the same
direction and, therefore, the problem can be reduced to one dimension, the direction of the momenta.
Moreover, the zeroth-order correction in 1/Λ, that is, the case of special relativity, indicates that the
momentum of the low-energy photon points in opposite direction to the other momenta involved in
the pair-production, so that conservation of energy and momentum can be written as:

E + ε +
β1

Λ
Eε− β2

Λ
k · k′ = p0 + q0 +

β1

Λ
p0q0 +

β2

Λ
p · q , (A45)

k− k′ − γ1

Λ
Ek′ +

γ2

Λ
εk = p + q +

γ1

Λ
p0q +

γ2

Λ
q0 p . (A46)

As we did in the previous section, the dispersion relation (A29) can be written, in the
ultrarelativistic limit me � p0 � Λ, as

|~p| ≈ p0 +
α1 + α2

2Λ
p2

0 −
α2

2Λ
m2

e −
m2

e
2p0

. (A47)

Using this and Equations (A42) and (A43), we get that, in opposition to what happened in the SR and
LIV cases, the energies of the electron and positron are not the same, but they are related by

q0 ≈ p0 +
γ1 − γ2

Λ
p2

0 +
3(γ2 − γ1)

4Λ
m2

e . (A48)

Writing in Equations (A45) and (A46) the momenta of the particles as a function of their energies
[Equation (A47)] and the expression of q0 in terms of p0 [Equation (A48)], one gets

β1 + β2 + γ1 − γ2

Λ
p2

0 + 2p0 +
3γ2 − 3γ1 − 4β2

4Λ
m2

e = E + ε +
β1 − β2

Λ
Eε , (A49)

α1 + α2 + 2γ1

Λ
p2

0 + 2p0 −
m2

e
p0
− γ2 + 3γ1 + 4α2

4Λ
m2

e = E− ε +
α1 + α2

2Λ
E2 +

γ2 − γ1

Λ
Eε . (A50)
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We can also approximate p0 in the terms proportional to 1/Λ to the SR result, (E + ε)/2.
Then we have:

β1 + β2 + γ1 − γ2

4Λ
(
E + ε

)2
+ 2p0 +

3γ2 − 3γ1 − 4β2

4Λ
m2

e =

= E + ε +
β1 − β2

Λ
Eε ,

(A51)

α1 + α2 + 2γ1

4Λ
(
E + ε

)2
+ 2p0 −

m2
e

p0
− γ2 + 3γ1 + 4α2

4Λ
m2

e =

= E− ε +
α1 + α2

2Λ
E2 +

γ2 − γ1

Λ
Eε .

(A52)

From Equation (A51), we obtain the energy p0 of the electron as a function of the energy E of the
high-energy photon up to first order in 1/Λ,

p0 ≈
E + ε

2
+

β1 − β2

2Λ
Eε +

3γ1 − 3γ2 + 4β2

8Λ
m2

e −
β1 + β2 + γ1 − γ2

8Λ
(
E + ε

)2 . (A53)

Using the previous result into Equation (A52), we obtain an equation for the first correction to the
threshold energy for the high-energy photon:

γ1 + γ2 − β1 − β2 − α1 − α2

8Λ
E3 + Eε−m2

e = 0 . (A54)

Now, we note that the first term in the previous equation is automatically cancelled, since the
“golden rules” (A31) must be satisfied in a relativistic theory. This means that in a RDK theory, the first
correction to the threshold energy E will not be given by a cubic equation, as it was the case in the
LIV scenario.

Therefore, the threshold energy in a relativistic deformed kinematics suffers a lower modification
from the SR result than in a LIV scenario. Its expression can be found by considering the next correction
(proportional to ε/Λ or to m2

e /Λ) in Equation (A52),

3γ1 + γ2 − β1 − 5β2

4Λ
E2ε +

2β2 − γ1 − 2γ2

2Λ
Em2

e + Eε−m2
e = 0 . (A55)

We can now replace E by its relativistic result (m2
e /ε) in the terms inversely proportional to the

quantum gravity scale Λ. Then one finds:

ERDK
th ≈ m2

e
ε

[
1 +

β1 + β2 + 3γ2 − γ1

4Λ
m2

e
ε

]
=

m2
e

ε

[
1 +

m2
e

εΛeff

]
. (A56)

The coefficients of the deformed composition law and the modification scale Λ define an effective
deformation scale, Λeff = (β1 + β2 + 3γ2 − γ1)/4Λ, which can be useful to estimate the threshold
energy difference with respect to the SR result.

As indicated previously, the order of the composition of momenta is relevant in a RDK
scenario. Had we considered the combination [q⊕ p]i instead of [p⊕ q]i for the electron-positron pair,
the coefficients γ1 and γ2 would be exchanged in the deformed composition law, and also in the final
expression obtained for the threshold energy:

ERDK′
th ≈ m2

e
ε

[
1 +

β1 + β2 + 3γ1 − γ2

4Λ
m2

e
ε

]
=

m2
e

ε

[
1 +

m2
e

εΛ′eff

]
. (A57)
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