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Reaching and grasping is an essential part of everybody’s life, it allows meaningful
interaction with the environment and is key to independent lifestyle. Recent
electroencephalogram (EEG)-based studies have already shown that neural correlates
of natural reach-and-grasp actions can be identified in the EEG. However, it is
still in question whether these results obtained in a laboratory environment can
make the transition to mobile applicable EEG systems for home use. In the
current study, we investigated whether EEG-based correlates of natural reach-
and-grasp actions can be successfully identified and decoded using mobile EEG
systems, namely the water-based EEG-VersatileTM system and the dry-electrodes
EEG-HeroTM headset. In addition, we also analyzed gel-based recordings obtained
in a laboratory environment (g.USBamp/g.Ladybird, gold standard), which followed
the same experimental parameters. For each recording system, 15 study participants
performed 80 self-initiated reach-and-grasp actions toward a glass (palmar grasp) and
a spoon (lateral grasp). Our results confirmed that EEG-based correlates of reach-and-
grasp actions can be successfully identified using these mobile systems. In a single-trial
multiclass-based decoding approach, which incorporated both movement conditions
and rest, we could show that the low frequency time domain (LFTD) correlates were
also decodable. Grand average peak accuracy calculated on unseen test data yielded
for the water-based electrode system 62.3% (9.2% STD), whereas for the dry-electrodes
headset reached 56.4% (8% STD). For the gel-based electrode system 61.3% (8.6%
STD) could be achieved. To foster and promote further investigations in the field of EEG-
based movement decoding, as well as to allow the interested community to make their
own conclusions, we provide all datasets publicly available in the BNCI Horizon 2020
database (http://bnci-horizon-2020.eu/database/data-sets).

Keywords: electroencephalogram, Brain-Computer Interface, reach-and-grasp, movement-related cortical
potential, EEG systems, mobile EEG, dry electrodes, BCI data set

INTRODUCTION

The ability to reach-and-grasp is imperative for mastering any actions of daily life and represents
the basis of personal independence. It changes for the worse when this ability is taken away, e.g.,
by a motor vehicle incident, causing a traumatic spinal cord injury (SCI) at cervical level. Needless
to say, affected persons, e.g., with a high SCI, seek intervention to regain basic grasping functions
(Anderson, 2004; Snoek et al., 2004).
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A possible way to regain natural control could be a brain-
computer interface (BCI) (Wolpaw et al., 2002; Millán et al.,
2010). It enables its users to potentially control any assistive
device via voluntary modulation of the users’ own brain
signals. Brain signals are directly recorded e.g., non-invasively
via electroencephalography (EEG) at the scalp of the user
and circumvent any damaged parts of the spinal cord. It
has been shown that BCIs can be successfully applied for
communication (Birbaumer et al., 1999; Kaufmann et al., 2014;
Halder et al., 2015; Pinegger et al., 2015; Scherer et al., 2015),
however, they can also be used to generate control signals for
assistive devices such robotic arms (Meng et al., 2016) or even
upper limb motor neuroprostheses (Pfurtscheller et al., 2003;
Müller-Putz et al., 2005, 2019; Rohm et al., 2013).

Though control of the designated device could often be
successfully established, a major setback was that the control
strategies relied on rather abstract mental imaginations and
often did not have any direct connection to the intended
movement. For instance, Pfurtscheller et al. (2003) relied on
the repeated imagery of foot movements and right hand
motor imagery to control the study participants’ neuroprosthesis
attached on the left forearm. We believe that a more natural
control strategy is necessary to support an intuitive control for
end users (Müller-Putz et al., 2016). Ideally, a future control
paradigm consists of one singular non-repetitive task which
is similar to the task that has to be performed with such a
neuroprosthesis or robotic arm.

Recent investigations have shown that brain patterns of
singular upper limb movements can be identified and decoded
from EEGs’ low frequency time domain (LFTD) signals. These so
called movement-related cortical potentials (MRCPs) (Shibasaki
et al., 1980) have been shown to hold discriminable information
of upper limb movements (Ofner et al., 2017), different grasps
(Agashe et al., 2015; Jochumsen et al., 2016), different reach-
and-grasp actions (Randazzo et al., 2015; Iturrate et al., 2018;
Schwarz et al., 2018, 2019) and can even be decoded online
(Ofner et al., 2019; Schwarz et al., 2020).

However, it is still unclear whether the transition from
a controlled laboratory environment and its high channel
density recording systems to end users’ homes utilizing
small, mobile EEG systems can be made successfully. The
requirements of mobile EEG systems operated at end users’
homes are manifold: They need to be (i) easy to handle
with the help of a non-expert caregiver and (ii) low in
cost and maintenance. From a technical aspect, their (iii)
performance needs to be in the same range as their laboratory
counterparts, moreover, they (iv) need to operate in a non-
laboratory environment. Studies have evaluated usability and
performance of emerging mobile systems and compared them
to laboratory systems considered “gold standard” (Guger et al.,
2012; Pinegger et al., 2016; Di Flumeri et al., 2019). Recently,
Jochumsen et al. (2020a,b) evaluated not only the performance
of several mobile EEG systems with respect to movement
intention detection from the LFTD, but also evaluated their
usability with regards to patients, relatives and therapists.
Nevertheless, datasets eligible for quantifying different electrode
sets are rather scarce.

One of our goals of the Horizon 2020 Project MoreGrasp1

was to develop a grasp neuroprosthesis for people with SCI
which could be operated via a BCI at their homes. As such, we
took decisive efforts in designing mobile, state-of-the-art EEG
recording systems to provide MoreGrasp end users with BCI
technology at their homes (Müller-Putz et al., 2019). Based on
these developments, we were able to introduce two market ready
recording systems: the water-based electrodes EEG-VersatileTM

and the dry electrodes EEG-HeroTM.
The goals of the current study were threefold: Firstly, we

wanted to determine whether EEG based correlates of reach-and
grasp actions could be extracted. Secondly, we wanted to evaluate
whether the LFTD correlates could be successfully decoded and,
if so, the potential performance loss due to the transition from a
gel-based, gold-standard system to mobile, non gel-based EEG
systems. At last, we provide a substantial dataset of 45 study
participants recorded with three different EEG systems to the
scientific community to foster and promote the research on
EEG-based movement decoding.

For this, we assessed the feasibility of the developed recording
systems when recording natural reach-and-grasp actions. We
performed an experiment in which 45 able bodied participants
performed self-initiated reach-and-grasp actions on objects
of daily life. Fifteen participants were measured using the
mobile and water-based electrodes EEG-VersatileTM system
and 15 using the dry-electrodes EEG-HeroTM headset in an
office environment. In addition, we provide the recordings of
additional 15 able bodied study participants who used a gel
based (gold standard) system, who performed the same tasks in a
laboratory environment.

MATERIALS AND METHODS

Participants and Recordings
In total, 45 participants took part in the experiment. They were
able-bodied and right handed. All gave written informed consent
and received monetary compensation for their participation.

Gel-Based Electrodes Recordings
This study was approved by the Medical University of Graz
(EK: 30-439 ex 17/18). Recordings using the gel-based recording
system (g.tec USBamp/g.tec Ladybird system, g.tec medical
engineering GmbH, Austria) were performed at the Institute
of Neural Engineering at Graz University of Technology (see
Figure 1, left). We measured EEG of 15 able bodied, right handed,
study participants (10 male, 5 female, aged between 15 and
30, median 26 years) with 58 active electrodes positioned over
frontal, central, and parietal areas according to the 5% grid system
provided by Oostenveld and Praamstra (2001). Furthermore
we recorded the electrooculogram (EOG) using six additional
electrodes positioned infra and superior orbital to the left and
right eye and on the outer canthi. For reference we used the
right earlobe and for ground the channel AFz. All signals were
recorded using a sampling frequency of 256 Hz and prefiltered

1www.moregrasp.eu
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FIGURE 1 | Experimental setup for the three recording systems. Left image shows the recordings using the gel-based system (g.tec USBamp/g.tec Ladybird
system, g.tec medical engineering GmbH, Austria). Center image shows the water-based EEG-VersatileTM (Bitbrain, Spain). Right image shows the dry-electrodes
EEG-HeroTM system (Bitbrain, Spain). Upper right corner shows the electrodes layout. EOG was recorded in the gel- and water-based electrodes systems (six
additional electrodes positioned infra and superior orbital to the left and right eye and on the outer canthi).

using an 8th order Chebyshev filter from 0.01 to 100 Hz. We
used a notch filter at 50 Hz to suppress the power noise. All
data was synchronized using the TOBI Signal server (Breitwieser
et al., 2010). The gel based recordings provided for this study
were part of another extended study incorporating also bimanual
reach-and-grasp actions, which are not part of the current study.
Further details can be found in Schwarz et al. (2019). Force-
sensing resistor (FSR) sensors were used to record the movement
onset and the grasping time point to each object. Sensor output
was digitized using a battery operated Arduino microcontroller.

Water-Based Electrodes Recordings
(EEG-VersatileTM)
The recordings with the EEG-VersatileTM system (Bitbrain,
Spain) were conducted in the office environment of Bitbrain
(Zaragoza, Spain), guided by personnel of the Institute of Neural
Engineering, Graz University of Technology. We measured
the EEG of 15 able bodied, right handed study participants
(aged between 15 and 30, median 24 years; 8 females) using
32 water-based electrodes positioned over frontal, central and
parietal positions (see Figure 1, center). Additionally we used
six electrodes positioned infra and superior orbital and the outer
canthi to measure EOG. For reference we used the left earlobe
and for ground the channel AFz. These signals were recorded
using a sample frequency of 256 Hz and prefiltered using a 3rd
order anti-aliasing Butterworth filter with pass-band frequency
from DC to 100 Hz. Photodiode sensors were used to record
the movement onset and the grasping time point to each object.
The three photodiodes were digitized using a BiosensingTM

amplifier (Bitbrain, Spain) at a sampling rate of 256 Hz, which
was placed on the table. Time synchronization between the EEG-
EOG signals and photodiodes was made via a TTL output of the
BiosensingTM amplifier. All data was streamed via Bluetooth to
the computational unit using Bitbrain proprietary software, and
backed-up to an internal SD card to avoid data loss due to the
wireless connection.

Dry Electrodes Recordings (EEG-HeroTM)
The recordings with the EEG-HeroTM headset (Bitbrain, Spain)
were also performed in the office environment of Bitbrain

(Zaragoza, Spain), guided by personnel of the Institute of Neural
Engineering, Graz University of Technology (see Figure 1, right).
We measured 15 able bodied, right handed study participants
(aged between 15 and 30, median 27 years; 7 females) using
11 dry electrodes located over sensorimotor areas according to
the international 10/20 system (FC3, FCz, FC3, C3, C1, Cz, C2,
C4, CP3, CPz, CP4). For reference and ground we used the left
earlobe. These signals were recorded using a sample frequency of
256 Hz and prefiltered using a 3rd order anti-aliasing Butterworth
filter with pass-band frequency from DC to 100 Hz. Photodiode
sensors were used to record the movement onset and the grasping
time point to each object. The three photodiodes were digitized
using a BiosensingTM amplifier (Bitbrain, Spain) at a sampling
rate of 256 Hz, which was placed on the table. All data was
streamed via Bluetooth to the computational unit using Bitbrain
proprietary software, and backed-up to an internal SD card to
avoid data loss due to the wireless connection.

Experimental Setup and Paradigm
All recordings were performed using the same experimental
setup and followed closely the approach presented in Schwarz
et al. (2019). However for gel based recordings, the experiment
took place in a laboratory environment, where participants were
seated in a noise and electromagnetically shielded room. For
water-based and dry-electrode based recordings, the experiment
took place in a non-shielded office room. Participants were seated
on a chair in front of a table and instructed to rest their right hand
on a sensorized base position which was positioned in front of
them. On the table, we placed an empty jar and a jar with a spoon
stuck in it. Both objects were in a comfortable reaching distance
equidistant to the study participants’ right hand. Participants
were instructed to perform reach-and-grasp actions using their
right hand towards the objects placed on the table. In case of the
empty jar they grasped the objects using a palmar grasp. In case of
the spoon, they were instructed to grasp the spoon with a lateral
grasp. Though participants performed the tasks in a self-initiated
manner, we instructed them to focus their gaze on the designated
object for 2 s before initiating the reach-and-grasp action. Once
they completed the grasp, they held the object for at least 1–2 s
(see Figure 2). When they returned their hand to the starting
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FIGURE 2 | Experimental paradigm and trial timeline. Participants were instructed to gaze at the object for at least 2 s. Then they performed the reach-and-grasp
action toward a jar (palmar grasp) or a jar with a spoon stuck in it (lateral grasp), and hold the grasp for at least 1–2 s. Then they returned the hand to the sensorized
base position and prepared for the next trial.

position, a small insert on a screen showed them the number of
grasps they had already performed on the designated object. In
case of the gel-based recordings, the screen was integrated in the
table, for the other recording sessions, the screen was positioned
in front of them. Lastly, participants paused at least for 4 s before
starting a new trial (inter trial interval).

In this way we recorded 80 trials per condition (TPC)
distributed over 4 runs á 20 trials. After each run, we switched the
position of the objects presented on the table, so that each object
was on each position equally.

We also recorded 3 min of rest at the start, after the second
movement run (at half time) and at the end of the experiment,
where participants were tasked to focus their gaze on a fixation
point in the middle of the table. In addition, we recorded

horizontal and vertical eye movements as well as blinks following
the paradigms used in (Kobler et al., 2018; Schwarz et al., 2019).

Data Preprocessing and Artifact
Handling
We filtered all available data using a zero-phase 4th order
Butterworth bandpass filter with a cut-off frequency of 0.3 and
60 Hz. For gel-based and water-based recordings, we used all
available EEG and EOG channels and applied the extended
infomax ICA algorithm on the data. We removed components
associated with eye movements and blinks by visual inspection
(Lee et al., 1999; Delorme and Makeig, 2004). Note that we
refrained to apply an ICA algorithm on the dry-electrode based
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recording due to the unfavorable number of channels available
(n = 11).

We defined a window of interest (WOI) for each movement
trial of [−2 3] s with respect to the movement onset at second 0.
In addition, we extracted 81 trials from the rest recordings. The
rest trials had a duration of 5 s (i.e., similar to the duration of the
movement trials).

Subsequently we rejected potentially artifact contaminated
data by statistical parameters (Faller et al., 2012; Schwarz et al.,
2015, 2018). For each participant’s data set, regardless of the
recording system, we filtered the data between 0.3 and 35 Hz.
We rejected trials by (1) amplitude threshold (amplitude exceeds
125 µV), (2) abnormal joint probability, and (3) abnormal
kurtosis by threshold of four times the standard deviation. Trials
marked for rejection were excluded from subsequent analysis. As
a result, the following trials were rejected for each system: Gel-
based sensors (16.0%), Water-based sensors (13.2%), and Dry
sensors (8.5%).

Power Spectral Density and Time
Frequency Analysis
For each study participant, we applied a common average
reference (CAR) filter on the preprocessed EEG data.

For calculating the power spectral density (PSD) estimates,
we epoched all trials from (0 1.5) s with respect to the
movement onset. Using Welch’s method of an overlapping
segment averaging estimator, we calculated the PSD using a
1 s window and 25% overlap. We calculated the PSD average
per condition and a confidence interval using non-parametric
t-percentile bootstrap statistics (alpha = 0.05). To obtain the
grand-average PSD, we calculated the mean over the participant-
specific average and its respective confidence intervals.

For the time frequency analysis we calculated event-related
(de)synchronization (ERD/S) maps in the range from 2 to 40 Hz
(1 Hz resolution) as shown by Graimann et al. (2002). The
analysis was performed for each movement condition separately
using a specific reference interval of (−2 −1) s with respect
to the movement onset. To obtain grand-average ERD/S maps
(Pfurtscheller and Lopes da Silva, 1999), we calculated for
each frequency bin the mean over the participants ERD/S time
points and calculated confidence intervals using non-parametric
t-percentile bootstrap statistics (alpha = 0.05). The resulting
ERD/S maps show only the significant time-frequency points per
recording system.

Movement-Related Cortical Potentials
We resampled all preprocessed EEG signals to 16 Hz to save
computational load and applied a CAR filter. Thereafter, we
applied a 4th order, zero-phase Butterworth lowpass filter with
a cut-off frequency of 3 Hz. To allow meaningful comparison
across study participants we introduced a normalization step: For
each participant, we calculated the global field power (GFP) as the
standard deviation across all channels and normalized all scalp
potentials by the average GFP of the rest condition (Skrandies,
1990). We epoched all movement trials and the rest recordings
according to the WOI (−2 3) s and calculated condition specific

averages. In addition, we determined a 95% confidence interval
for each condition using non-parametric t-percentile bootstrap
statistics. We accumulated a grand average per EEG system by
calculating the mean over the participant-specific averages.

Multiclass Single-Trial Classification
The classification approach follows closely the approach
presented in Schwarz et al. (2019) and is adapted to the current
data set. We resampled all preprocessed EEG signals to 16 Hz to
save computational load and applied a CAR filter. Thereafter, we
applied a 4th order, zero-phase Butterworth lowpass filter with a
cut-off frequency of 3 Hz.

For each study participant, regardless of the recording system,
we divided all preprocessed trials of the movement conditions as
well as the rest condition in a calibration set, which consisted of
the first 66% of all recorded TPC and an unseen test set consisting
of the remaining 34% of all recorded TPC.

Using the calibration data set, we assessed the best time point
in terms of classification accuracy for training a classification
model within the WOI. For that we used a 10 times five fold cross
validation approach to divide the calibration set into training and
evaluation sets. For each time point within the WOI, we trained
an individual shrinkage based linear discriminant classification
model (sLDA) (Blankertz et al., 2011). As features, we took nine
amplitude values of all available EEG channels (Gel: 58, Water:
32, Dry: 11), from the preceding second of the actual time point
in causal steps of 0.125 s (−1:0.125:0) s. This yielded in total
522 features (9 × 58 channels) for the gel-based setup, 288
features (9 × 32 channels) for the water-based setup, and 99
(9 × 11 channels) for the dry electrodes setup. This classification
approach was applied on each time point within the WOI yielding
in 80 classification models (16 time points × 5 s WOI). To assess
the best training time point, we averaged the performance results
of all calculated folds and chose the time point with the best
average performance. The adjusted chance level was at 45.8%
[adjusted Wald interval, alpha = 0.05, (Breitwieser et al., 2012;
Müller-Putz et al., 2008)] and corrected for multiple comparisons
(n = 80 time points) using Bonferroni correction.

Thereafter, we applied the best performing classification
model on previously unseen test data, using the same
preprocessing pipeline as before. In this case, the adjusted chance
level for the test set lies at 42.8% (adjusted Wald interval,
alpha = 0.05). We show the mean classification performance of
all trials over the whole WOI.

In addition, we repeated this classification approach for
gel- and water-based recording systems with a subset of 11
channels covering the sensorimotor electrode positions of the dry
electrodes system (EEG-HeroTM).

RESULTS

Gel Based Recordings
Figure 3 (left) shows the grand average time-frequency maps
of the gel-based recordings for channels C3, Cz, and C4 with
respect to a reference interval (−2 −1) s prior to the movement
onset. Significant ERD can be seen on the three channels,
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FIGURE 3 | Frequency analysis of the gel-based recordings. (Left): Grand average of the time-frequency maps (Graimann et al., 2002) for movement conditions for
positions C3, Cz, and C4 with respect to the reference period (–2 –1) s. The black vertical line represents the movement onset. Hot colors show significant ERD (cold
colors represent significant relative increase in power [event-related synchronization (ERS)]. Significant differences with respect to the reference period were
calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05). (Right): Grand average of the PSD calculation of the reaching phase [0 1.5] s.
Colored lines represent the PSDs of the movement conditions, gray lines show the PSD of the rest condition. The shaded areas show 95% confidence intervals
which were calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05).

FIGURE 4 | Movement related cortical potentials (MRCPs) of the gel-based recordings. Grand averages (bold lines) and 95% confidence intervals (shaded areas) for
palmar (green) and lateral (blue) grasp conditions. Channels shown are FCz, C1, Cz, and C2. The black perpendicular line represents the movement onset.
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most prominent in alpha (8–12 Hz) and beta frequency range
(∼20 Hz). Alpha (mu) activity shows the most prominent ERD
on the ipsilateral side to the executing hand, whereas beta
activity shows the most prominent ERD on the contralateral
side. Figure 3 (right) shows the PSD estimates of the reaching
phase (0 1.5) s for channels C3, Cz, and C4 for both the
movement conditions and the rest condition. When comparing
the movement conditions to the rest condition, significant power
decreases can be observed mainly in the alpha and beta range.
This power decrease is stronger on the contralateral side to the
executing hand, especially for the beta frequency range.

Analysis of the MRCPs in the LFTD (see Figure 4) shows
the grand average for the palmar and lateral grasp conditions.

A negative deflection (Bereitschaftspotential, Shibasaki et al.,
1980) can be observed (time = 0 s), which starts up to one second
before the movement onset. This deflection is pronounced
strongest first over the central motor cortex at channel position
Cz, and contralateral to the executing right hand second. About
300 ms after the movement onset, a positive deflection (reafferent
potential) can be observed. Thereafter, around 1 s after the
movement onset, a second positive peak occurs before the
potential returns to baseline. On group level, no significant
differences between movement conditions could be observed.

Figure 5 summarizes the results of the single trial multiclass
decoding of both movement conditions and the rest condition
(gel-based recordings). Figure 5 (top) shows the grand average

FIGURE 5 | Single trial decoding performance of the gel-based recordings. (Top left) Grand average for the calibration data set. Black crosses show the mean
performances for the designated time point. On average, best classification performance could be reached 1 s after the movement onset (perpendicular golden line).
(Top right) Row wise normalized confusion matrix for grand average peak performance. (Bottom left) Participant-specific classification results (gray lines) and
grand average (black bold line) of the best performing classification model applied on the unseen test data set. Golden dots show participant-specific peak
performances. (Bottom right) Row wise normalized confusion matrix for the individual peak performances.
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obtained on the calibration data set and the corresponding
confusion matrix of the grand average peak performance.
On average, highest calibration performance could be reached
about 1 s after the movement onset with an average peak accuracy
of 61.1%. This is lower than the average of the participant-specific
(63.9%) peak performance, since the time of peak performance
varies between participants. Analysis of the confusion matrix
shows that the true positive rate (TPR) for the rest condition
is highest with 72.2%, exceeding the TPRs of the movement
conditions by more than 12%. In contrast, false positive rates
(FPR) for movement versus movement conditions are between
26 and 29%, exceeding FPRs of movement versus rest conditions
more than twice. Figure 5 (bottom) shows the results of the
participant-specific best performing classification models applied
on the previously unseen test data set and its corresponding
confusion matrix of the grand average of the peak performances.
Participant-specific peak performances reached on average 61.3%
around 1.1 s after the movement onset. The corresponding
confusion matrix shows again higher TPRs for classification of
the rest versus movement conditions and are within the same
range as the results of the calibration data set. However, TPRs
for movement versus movement conditions decreased, especially
for the lateral grasp condition. Table 1 depicts the participant-
specific classification results.

Water Based Recordings
Figure 6 (left) shows the grand average time-frequency maps
of the water-based recordings for channels C3, Cz, and C4
with respect to a reference interval (−2 −1) s prior to the
movement onset. Significant ERD can be found for the three
channels, especially in alpha (8–12 Hz) and beta (∼20 Hz)
band frequencies. The differences are pronounced weakest at
central electrode position Cz. Alpha (mu) activity shows the most
prominent ERD on the ipsilateral side (C4), with the strongest

TABLE 1 | Participant-specific classification results of the gel-based recordings.

Calibration set Test set

# Peak (%) STD (%) Time (s) Peak (%) STD (%) Time (s)

G01 71.2 7.6 0.2 62.3 8.2 0.3

G02 57.0 8.6 1.1 65.7 8.9 1.2

G03 57.0 7.6 1.7 54.1 7.5 1.8

G04 73.6 8.0 0.9 57.1 8.6 0.8

G05 59.9 6.8 1.3 62.2 10.4 1.2

G06 56.4 7.6 0.7 55.7 7.1 0.7

G07 53.6 8.6 0.8 56.0 7.5 1.4

G08 71.6 6.7 1.4 70.4 10.0 1.4

G09 72.0 7.9 1.1 61.8 8.9 1.1

G10 72.0 6.5 0.9 65.3 8.6 0.9

G11 60.3 9.4 0.8 58.2 6.2 0.8

G12 64.9 7.6 1.0 70.8 10.3 1.0

G13 63.8 10.1 1.4 55.2 8.7 1.3

G14 58.1 9.7 0.4 64.1 9.7 0.6

G15 66.5 7.8 1.4 60.0 7.9 1.4

Average 63.9 8.0 1.0 61.3 8.6 1.1

beta at bilateral positions (C3 and C4). Figure 6 (right) shows the
PSD estimates of the reaching phase (0 1.5) s for channels C3,
Cz, and C4 for the movement conditions and the rest condition.
Significant differences between movement conditions and rest
condition can be observed on channels in the alpha band and on
the contralateral side (C3 location) in the beta band.

Figure 7 shows the analysis of the MRCPs for channels
FCz, C1, Cz, and C2. Around 1 s before the movement onset,
the negative deflection of the BP starts and peaks around
movement onset (time = 0 s). The BP is strongest pronounced
over the central electrode position first, and contralateral to
the executing right hand second. It is clearly recognizable the
reafferent potential around 300 ms after the movement onset
followed by a second positive deflection around 1–1.5 s after the
movement onset before the potentials return back to baseline.
The morphologies of both movement conditions are similar and
bear no significant difference on group level.

Figure 8 summarizes the results of the multiclass single trial
decoding. Figure 8 (top) shows the grand average obtained on
the calibration data set and the corresponding confusion matrix
of the grand average peak performance. Grand average peak
performance reached 63.6% around 0.9 s after the movement
onset. Participant-specific peak accuracies were slightly higher
with 65.4%. The confusion matrix shows high TPRs for rest
versus movement conditions, exceeding TPRs for movement
versus movement conditions by 20%. Figure 8 (bottom) depicts
the participant-specific classification results when applying the
best performing classification model trained on the calibration
data on the unseen test set. Participant-specific peak performance
reaches on average 62.3% around 0.9 s after the movement
onset. The corresponding confusion matrix shows an even
more favorable TPR for rest versus movement conditions
with 81.4%. However, TPRs for movement versus movement
conditions decreased, especially for the palmar grasp condition.
Table 2 depicts the participant-specific classification results for
calibration and test set in detail.

Dry Electrode Recordings
Figure 9 (left) shows the grand average time-frequency maps
of the dry electrodes recordings for channels C3, Cz, and C4
with respect to a reference interval (−2 −1) s prior to the
movement onset. Significant ERD can be found on the three
channels, especially in alpha (8–12 Hz) and beta band (∼20 Hz).
Differences are weakest on central channel location Cz. Alpha
(mu) activity shows the stronger ERD on the ipsilateral side
(C4), and beta presents a stronger ERD on bilateral locations
(C3 and C4). Figure 9 (right) depicts the PSD estimates of the
reaching phase [0 1.5] for channels FCz, C1, Cz, and C2. When
looking at both movement conditions against the rest condition,
a significant power decrease for the movement conditions in
alpha and beta can be observed. This power decrease is more
pronounced bilaterally than on the central electrode position Cz.

Figure 10 shows the analysis of the MRCPs for channels
FCz, C1, Cz, and C2. A negative deflection can be observed at
movement onset (time = 0 s), which starts about 0.5 s before the
movement onset. It is strongest on the central position first and
on the contralateral side to the executing hand second. Around
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FIGURE 6 | Frequency analysis of the water-based recordings. (Left): Grand average of the time-frequency maps (Graimann et al., 2002) for movement conditions
for positions C3, Cz, and C4 with respect to the reference period (–2 –1) s. The black vertical line represents the movement onset. Hot colors show significant ERD
[cold colors represent significant relative increase in power (event-related synchronization (ERS)]. Significant differences with respect to the reference period were
calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05). (Right): Grand average of the PSD calculation of the reaching phase [0 1.5] s.
Colored lines represent the PSDs of the movement conditions, gray lines show the PSD of the rest condition. The shaded areas show 95% confidence intervals
which were calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05).

FIGURE 7 | Movement related cortical potentials (MRCPs) of the water-based recordings. Grand averages (bold lines) and 95% confidence intervals (shaded areas)
for palmar (green) and lateral (blue) grasp conditions. Channels shown are FCz, C1, Cz, and C2. The black perpendicular line represents the movement onset.
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FIGURE 8 | Single trial decoding performance of the water-based recordings. (Top left) Grand average for the calibration data set. Black crosses show the mean
performances for the designated time point. On average, best classification performance could be reached 0.9 s after the movement onset (perpendicular blue line).
(Top right) Row wise normalized confusion matrix for grand average peak performance. (Bottom left) Participant-specific classification results (gray lines) and
grand average (black bold line) of the best performing classification model applied on the unseen test data set. Blue dots show participant-specific peak
performances. (Bottom right) Row wise normalized confusion matrix for the individual peak performances.

300 ms after the movement onset, at least for electrode positions
Cz and C2, a reafferent potential can be seen before the potential
returns back to base level about 1–1.5 s after the movement
onset. The morphologies of both movement conditions show no
significant difference on group level.

Figure 11 shows the results of the multiclass single trial
decoding. Figure 11 (top) depicts the grand average performance
of the calibration data set and the confusion matrix of the
participant specific grand average peak performance. On average,

56.6% around 1 s after the movement onset could be reached.
The participant-specific peak accuracy yielded at 58.3% and
is higher due to the variation in timing of reaching peak
performance of the participants. The corresponding confusion
matrix shows increased TPRs for rest versus movement
conditions of 67.5%, whereas TPRs for movement versus
movement conditions yielded about 54%. When applying the
best performing classification model on the unseen data set
(Figure 11, bottom), participant-specific peak accuracies still
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TABLE 2 | Participant-specific classification results of the water-based recordings.

Calibration set Evaluation set

# Peak (%) STD (%) Time (s) Peak (%) STD (%) Time (s)

V01 68.2 7.9 0.9 69.0 11.1 0.9

V02 74.4 8.2 0.8 72.2 11.3 0.9

V03 60.1 8.9 0.8 56.9 7.7 0.8

V04 59.4 7.4 0.6 64.5 8.3 0.6

V05 60.7 7.3 0.8 58.1 8.5 0.8

V06 76.4 7.4 0.9 75.3 11.1 1.1

V07 68.3 8.2 1.3 66.7 11.1 1.0

V08 74.1 6.8 1.1 55.1 7.7 1.1

V09 59.7 7.5 0.8 63.4 11.5 0.9

V10 62.8 8.3 0.8 62.5 6.9 0.8

V11 68.0 8.0 0.9 64.9 10.3 1.0

V12 60.7 8.9 0.5 55.6 8.2 0.6

V13 60.9 7.6 0.4 60.0 6.9 0.3

V14 65.0 8.6 1.6 57.1 9.0 1.5

V15 61.9 7.7 0.9 53.7 8.5 0.8

Average 65.4 7.9 0.9 62.3 9.2 0.9

Columns 2–4 show peak performance (%), standard deviation (%), and time of
occurrence (s) with respect to the movement onset for the calibration set. Columns
5–7 show the same for the test set.

yielded on average 56.4%. Table 3 depicts participant-specific
performance results in detail.

Comprehensive Analysis
Behavioral Analysis
We analyzed the duration of the reach-and-grasp actions
(see Figure 12). The time information was provided by the

instrumentalized objects and extracted from all trials. Then, for
each participant and grasp type (palmar, lateral) the average
duration was calculated. We were interested in testing, for
each grasp type, the possible time differences among the three
recording systems. To do so, we computed two separate one-way
ANOVAs (for each grasp type) with three levels (gel, water, dry).

A significant effect was found in the lateral grasp
[F(2,42) = 4.6; p = 0.016]. Post hoc pairwise multiple comparison
tests using the Tukey–Kramer criterion showed a significant
effect between the gel- and water-based recordings (p = 0.015).

Performance Analysis
We used a one-way ANOVA to compare the differences in
classification accuracies among the three EEG recordings. We
used separate ANOVAs for the training and test data. We
found a significant effect in the training data [F(2,42) = 5.86;
p = 0.006]. Post hoc pairwise comparisons revealed a significant
performance decrease in the dry-electrodes recordings with
respect to the gel- (p = 0.037) and water-based recordings
(p = 0.006). Similarly, we found a significant effect in
the test data [F(2,42) = 4.14; p = 0.023], and post hoc
pairwise comparisons revealed a significant performance
decrease in the dry-electrodes recordings with respect
to the gel- (at statistical trend, p = 0.08) and water-based
(p = 0.026) recordings.

Finally, we repeated the previous statistical analysis with
the classification accuracies obtained when only using
the sensorimotor channels for classification (n = 11). The
ANOVAs testing showed no significant effects (in either
training or test data) among the three EEG recordings.
Participant specific performance results can be found in the
Supplementary Tables S1, S2.

FIGURE 9 | Frequency analysis of the dry-electrodes recordings. (Left): Grand average of the time-frequency maps (Graimann et al., 2002) for movement conditions
for positions C3, Cz, and C4 with respect to the reference period (–2 –1) s. The black vertical line represents the movement onset. Hot colors show significant ERD
(cold colors represent significant relative increase in power [event-related synchronization (ERS)]. Significant differences with respect to the reference period were
calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05). (Right): Grand average of the PSD calculation of the reaching phase [0 1.5] s.
Colored lines represent the PSDs of the movement conditions, gray lines show the PSD of the rest condition. The shaded areas show 95% confidence intervals
which were calculated using non-parametric t-percentile bootstrap statistics (alpha = 0.05).
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FIGURE 10 | Movement related cortical potentials (MRCPs) of the dry-electrode recordings. Grand averages (bold lines) and 95% confidence intervals (shaded
areas) for palmar (green) and lateral (blue) grasp conditions. Channels shown are FCz, C1, Cz, and C2. The black perpendicular line represents the movement onset.

DISCUSSION

This study confirmed that EEG based correlates of reach-
and-grasp actions can be successfully identified from the
LFTD and time-frequency domain using the water-based
EEG-VersatileTM system and the dry-electrodes EEG-HeroTM

headset. In addition, we provided a gel-based recording in
a laboratory environment (gold standard), which followed
the same experimental parameters. In a single-trial multiclass
based decoding approach, which incorporated both movement
conditions and rest, we could show that the LFTD correlates
were also decodable. Grand average peak accuracy calculated on
unseen test data yielded for the water-based electrode system
62.3% (9.2% STD), whereas for the dry-electrodes headset
reached 56.4% (8% STD). For the gel-based electrode system
61.3% (8.6% STD) could be achieved. The adjusted chance level
for this decoding approach was 45.7%, adjusted Wald interval,
alpha = 0.05 (Müller-Putz et al., 2008; Breitwieser et al., 2012).

A quantifying comparison between the individual systems
is hardly possible due to inter-subject variations and technical
factors such as the number of channels for calculating the spatial
filters in preprocessing (Gel: 58; Water: 32; Dry: 11) that might
influence the outcome. Taking this consideration into account,
the gel-based and the water-based system yielded comparable
decoding performances and, despite the decreased number of
channels of the dry-electrodes headset, the average performance

decreased only by less than 6%. Apart from these investigations,
we leave it open to the reader to compare systems. For this
we provide the complete data sets of all recordings so that the
interested community can make their own conclusions.

Time Frequency and PSD Analysis
Calculated ERD/S maps (Graimann et al., 2002) show significant
relative power changes for all recording systems. In general, the
relative power decrease (ERD) starts already up to 1 s before
the actual movement onset and is most prominent in the alpha
(mu) and beta frequency bands (Andrew and Pfurtscheller, 1995;
Florian and Pfurtscheller, 1995). For the grand average of the
gel-based recordings this power decrease is also pronounced
stronger, i.e., in terms of frequency range on the contralateral
side to the executing right hand than on central or ipsilateral
locations. Gel-based recordings showed a more pronounced ERD
on the contralateral side in beta frequency bands, which is
an expected effect reported in numerous studies (Pfurtscheller
and Lopes da Silva, 1999; Pfurtscheller and Neuper, 2001;
Müller-Putz et al., 2010). However, this phenomenon was not
visible for the water-based and dry electrodes, rather showing a
pronounced bilateral ERD (Zaepffel et al., 2013). Moreover, the
ERD, especially in the alpha band around 8–12 Hz is pronounced
stronger on the ipsilateral side in all three types of recordings
(see Supplementary Figure S1). The grand average results of the
PSD analysis show for all three investigated systems significant

Frontiers in Neuroscience | www.frontiersin.org 12 August 2020 | Volume 14 | Article 849

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00849 August 11, 2020 Time: 15:56 # 13

Schwarz et al. Reach and Grasp: 3 Datasets

FIGURE 11 | Single trial decoding performance of the dry-electrodes recordings. (Top left) Grand average for the calibration data set. Black crosses show the mean
performances for the designated time point. On average, best classification performance could be reached 1s after the movement onset (perpendicular purple line).
(Top right) Row wise normalized confusion matrix for grand average peak performance. (Bottom left) Participant-specific classification results (gray lines) and
grand average (black bold line) of the best performing classification model applied on the unseen test data set. Purple dots show participant-specific peak
performances. (Bottom right) Row wise normalized confusion matrix for the individual peak performances.

power decreases for movement conditions when compared to
the rest condition. These differences manifest again in the alpha
and beta band range and are pronounced strongest on the
contralateral side for the gel- and water-based recordings, thus
indicating a lateralization effect measured in absolute power.
Regarding the dry electrodes, this lateralization phenomenon was
not found as a similar power decrease was measured in both
bilateral sides.

Movement-Related Cortical Potentials
Analysis of the MRCPs reveal on a grand average basis
a strong similarity between the gel-based and the water-
based recordings. Around 1 s before the movement onset a

negative deflection can be seen, most pronounced over the
central motor cortex (Bereitschaftspotential) (Kornhuber and
Deecke, 1964; Shibasaki et al., 1980; Shibasaki and Hallett,
2006). This deflection reaches its peak at the movement onset
(time = 0 s). It is strongest over central channel Cz and
on the contralateral side to the executing right hand. For
both systems, a reafferent positive potential around 300 ms
after the movement onset can be observed. It has already
been found in previous studies concerning reach-and-grasp
actions (Schwarz et al., 2018, 2019). Around 1–1.5 s, a second
positivity occurs before the potentials return to baseline. In
contrast, the MRCPs of the dry electrode recordings are on
grand average smaller and their characteristics, such as the
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FIGURE 12 | Behavioral analysis. Box-plots of the reach-and-grasp durations for all the systems. The left part shows the palmar grasp durations, whereas the right
part shows the lateral grasp ones. Statistical comparisons were carried out for each grasp type separately and significant differences are marked with an asterisk.

TABLE 3 | Participant-specific classification results of the dry-electrodes
recordings.

Calibration set Evaluation set

# Peak (%) STD (%) Time (s) Peak (%) STD (%) Time (s)

H01 63.4 8.2 1.9 53.2 7.5 1.8

H02 53.8 9.6 0.8 58.2 8.0 0.4

H03 56.4 8.2 1.1 58.2 9.2 0.9

H04 55.1 8.2 0.9 54.4 7.3 1.0

H05 54.1 8.5 0.8 48.8 6.6 0.9

H06 55.3 7.7 0.9 53.0 7.1 0.6

H07 64.5 7.5 0.6 64.6 8.1 0.8

H08 49.8 8.0 1.6 45.0 4.9 1.6

H09 65.9 8.0 0.9 62.3 7.9 1.1

H10 63.3 7.7 0.9 65.0 11.4 0.9

H11 62.3 8.4 0.7 64.6 7.8 0.8

H12 62.1 6.7 0.8 51.3 8.3 0.9

H13 56.8 6.7 1.8 51.8 8.7 2.1

H14 54.8 9.1 0.5 56.2 8.9 0.9

H15 57.5 8.2 0.7 59.5 8.5 0.9

Average 58.3 8.1 1.0 56.4 8.0 1.0

Columns 2–4 show peak performance (%), standard deviation (%) and time of
occurrence (s) with respect to the movement onset for the calibration set. Columns
5–7 show the same for the test set.

BP or the reafferent potential, although clearly identifiable, are
attenuated in comparison.

Single-Trial Decoding
The offline classification followed closely the approach initially
described in Schwarz et al. (2019) and was primarily designed
to simulate a BCI scenario. Using 66% of all available data, we
attempted to find the best performing classification model within
a WOI. Thereafter, we applied the best performing model on the
previously unseen last third of the recorded trials. Regardless of
the recording system, all study participants scored significantly
higher than the adjusted chance level (calibration set: 45.8%; test
set: 42.8%) on both calibration and test. Comprehensive statistical
analysis of the participant-specific peak performances showed
no significant differences between gel-based and water-based
recordings in both sets. Regarding the dry-electrodes headset, a
significant decreased performance was found in comparison to
the gel- and water-based systems on the calibration set, as well as
to the water-based system on the test set.

This decrease in performance for the dry-electrode system was
not unexpected, since the number of available electrodes in the
dry electrodes (n = 11) is many times smaller than for gel-based
(n = 58) or the water-based (n = 32) systems. In a previous study
we have already investigated the effect of decreasing the number
of (gel based) electrodes available for decoding (Schwarz et al.,
2018): We could show that the difference in performance between
61 gel-based electrodes (covering frontal, central, and parietal
areas of the scalp) and only 25 gel-based covering sensorimotor
areas is minimal. However, further reducing the available
electrodes to 15 led to a performance decrease comparable to the
dry-electrodes recordings in the current study.
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This goes in line with our second classification approach,
where we used only the same 11 electrodes in all recording
systems, positioned over sensorimotor areas. For both gel-based
and water-based electrode systems, the performance was in the
same range as for the dry-electrodes headset (see Supplementary
Tables S1, S2). No significant differences in performance between
recording systems could be found anymore. Unfortunately, a
direct comparison to other reach-and-grasp studies such as
(Agashe et al., 2015; Randazzo et al., 2015; Iturrate et al., 2018)
is difficult due significant differences in experimental setup and
paradigm and hence cannot be made in a serious manner.

Corresponding Data Sets
The current manuscript is accompanied by a data set of in
total 45 study participants, 15 per EEG system. In addition
to reproducibility, these datasets will allow analyses beyond
the basic analysis steps presented in this manuscript and we
encourage the scientific community to try and evaluate new
approaches. The datasets are publicly available in the BNCI
Horizon 2020 database2.

Study Limitations
In the current study, we investigated whether EEG-based
correlates of reach-and-grasp actions can be successfully
identified and decoded from three different EEG systems.
However, due to differences in the amount of available EEG
and EOG channels, preprocessing and artifact handling could
not be performed uniformly. We applied an extended Infomax
algorithm on gel-based and water-based recordings and removed
ocular based components by visual inspection. This approach
could not be performed on the dry electrode recordings, due
to the unfavorable number of channels and subsequent number
of ICA components, which did not allow a clean separation
between ocular and brain activity. Due to the multicentric design
of the study, we did not perform the evaluation of the EEG
systems on one participant population. Instead, we performed the
experiments for each EEG system on an independent group of 15
study participants. Furthermore, the object positions between the
gel-based and the water-dry electrodes systems were not exactly
replicated and is considered a minor deviation from the original
experimental protocol.

CONCLUSION

We presented an EEG dataset on natural reach-and-grasp actions
recorded with three different EEG systems – gel-based, water-
based and with dry electrodes.

The accompanying study confirmed that reach-and-grasp
actions can be successfully identified from MRCPs and time-
frequency domain using a water-based EEG-VersatileTM system
and a dry electrodes EEG-HeroTM headset. In addition, we
provided results from a gel-based recording in a laboratory
environment (gold standard), which followed the same
experimental parameters.

2http://bnci-horizon-2020.eu/database/data-sets

In a single-trial multiclass based decoding approach, which
incorporated both movement conditions and rest, we could show
that the MRCPs were also decodable. Although a quantifying
comparison between the individual systems is hardly possible
due to inter-subject variations and technical factors such as
the different number of channels among systems, the gel-
based and the water-based system yielded comparable decoding
performances. Despite the decreased number of channels of the
dry electrodes recordings, the average performance decreased
only by less than 6%. Apart from these investigations, we also
provide the complete data sets of in total 45 study participants so
that the interested community can make their own conclusions.
The data set is open access and available at the BNCI Horizon
2020 data base2.
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