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Abstract: The information contained in an n-dimensional (nD) density matrix ρ is parametrized and
interpreted in terms of its asymmetry properties through the introduction of a family of components
of purity that are invariant with respect to arbitrary rotations of the nD Cartesian reference frame
and that are composed of two categories of meaningful parameters of different physical nature: the
indices of population asymmetry and the intrinsic coherences. It is found that the components of
purity coincide, up to respective simple coefficients, with the intrinsic Stokes parameters, which are
also introduced in this work, and that determine two complementary sources of purity, namely the
population asymmetry and the correlation asymmetry, whose weighted square average equals the
overall degree of purity of ρ. A discriminating decomposition of ρ as a convex sum of three density
matrices, viz. the pure, the fully random (maximally mixed) and the discriminating component, is
introduced, which allows for the definition of the degree of nonregularity of ρ as the distance from
ρ to a density matrix of a system composed of a pure component and a set of 2D, 3D, . . . and nD
maximally mixed components. The chiral properties of a state ρ are analyzed and characterized
from its intimate link to the degree of correlation asymmetry. The results presented constitute a
generalization to nD systems of those established and exploited for polarization density matrices in a
series of previous works.

Keywords: density matrices; nonregularity; indices of purity; the degree of purity; symmetry;
asymmetry

1. Introduction

Density matrices play a key role in both quantum mechanics and classical treatment of mixed
states [1], as for instance in the characterization of the second-order polarization properties of
electromagnetic waves [2,3]. In this paper, the concepts of discriminating decomposition, intrinsic density
matrix, sources of purity (population and correlation asymmetry), intrinsic Stokes parameters, degree of
randomness and nonregularity are introduced and analyzed in terms of certain types of asymmetry
exhibited by density matrices representing n-dimensional systems. The fact that these notions
have proven to be very fruitful for the study and interpretation of polarization density matrices
(three-dimensional systems), supports their generalization to n-dimensional (nD) density matrices.
The sections of the paper are organized in the following manner. Main notations and the framework
for the decompositions of a density matrix are introduced below, within the present introductory
section. The concepts of n-dimensional Stokes parameters and Bloch vector are formulated in Section 2,
as required for some results presented in further sections. Section 3 is devoted to the discriminating
decomposition of a density matrix into a convex sum of three density matrices, namely the pure, the
fully random (maximally mixed), and the discriminating components; the asymmetry features of the
last one determining critical aspects of the physical properties of the whole density matrix. Appropriate
parameters characterizing the degree of purity (statistical asymmetry) and randomness (statistical
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symmetry) are considered in Section 4, which together with the notion of the intrinsic density matrix
introduced in Section 5, lead to the definition in Section 6 of two complementary sets of invariant
descriptors of asymmetry, namely the indices of population asymmetry and the intrinsic coherences,
whose contributions to the overall purity of the state are studied in Section 7. By taking advantage
of the results of the previous sections, the concept of nonregularity of a density matrix is introduced
in Section 8, where its intimate link to the correlation asymmetry and to the chiral properties of the
discriminating component is shown. Finally, Section 9 includes a summary and discussion on the main
results presented.

Let us consider an n-dimensional system whose state is characterized by a set of n random
variables vi (i = 1, . . . , n) that can be arranged into a vector v = (v1, . . . , vn)

T of the n-dimensional
complex vector space Cn, where the superscript “T” indicates transpose. In the special case that vi do
not fluctuate (i.e., the vector state v is fixed), such a state is pure. Nevertheless, in general, uncertainties
or fluctuations on the components of v should be considered, and the corresponding mixed state, which
necessarily involves a certain increase of symmetry, is represented by the associated density matrix ρ

whose elements ρi j are the ensemble averages ρi j =
〈
v∗i v j

〉
over the realizations of the components of v.

From a mathematical point of view, a given n×n matrix ρ can be considered a density matrix if and
only if ρ is a trace-normalized positive semidefinite Hermitian matrix, i.e., trρ = 1, ρ = ρ† (where the
dagger indicates conjugate transpose and “tr” stands for the trace), while the real n eigenvalues of ρ
are nonnegative. Therefore, ρ can always be expressed as ρ = U Λ U†, where U is a unitary matrix and
Λ ≡ diag(λ1, . . . ,λn) is the diagonal matrix whose diagonal elements are the eigenvalues of ρ taken in
decreasing order (λ1 ≥ λ2 ≥ . . . ≥ λn). The diagonalization of ρ leads to its spectral decomposition

ρ =
n∑

k=1

λk U LkU† =
n∑

k=1

λk
(
uk ⊗ u†k

)
, Lk ≡ diag

0, . . . , 0, 1
k

, 0, . . . , 0
n−k

, (1)

where ⊗ stands for the Kronecker product, uk are the unit eigenvectors of ρ (which in turn are the
vector-columns of U, and represent the pure eigenstates of ρ) and Lk are diagonal matrices whose only
nonzero component is lk = 1. By denoting r ≡ rankρ and considering an arbitrary generalized basis of
Cn, being composed of (a) a set of r independent unit vector states wi generating rangeρ (rangeρ being
the subspace of Cn generated by the r eigenvectors u1, . . . , ur with corresponding nonzero eigenvalues
λ 1, . . . ,λ r), and (b) a set of n− r independent unit vector states w j generating kerρ (kerρ being the
subspace of Cn generated by the n− r eigenvectors ur+1, . . . , un with corresponding zero eigenvalues
λ r+1 = . . . = λn = 0), the density matrix ρ can be expressed as a convex sum of the r pure density
matrices ρ = wi ⊗w†i (i = 1, . . . , r), through the arbitrary decomposition of ρ [4–8].

ρ =
r∑

i=1

pi
(
wi ⊗w†i

)
, pi =

1
r∑

q = 1

1
λq

∣∣∣∣∣(U†ŵi
)
q

∣∣∣∣∣2 ,

 r∑
i=1

pi = 1

. (2)

From a statistical point of view, the most “symmetric” state is represented by ρu = In/n (In being
the n×n identity matrix, so that, the n eigenvalues of ρu are equal to 1/n). Conversely, the most
“asymmetric” situation corresponds to a pure density matrix ρ = u1 ⊗ u†1, which is characterized by
the fact that it has a single nonzero eigenvalue λ 1 = 1.

2. nD Stokes Parameters and Bloch Vector

Certain results to be considered in further sections concerning invariant descriptors of the
asymmetry properties of a density matrix ρ are closely linked to the concept of nD Stokes parameters,
which are defined as the (real) coefficients sk (i = 1, . . . , n− 1) of the expansion of ρ in terms of the
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basis of Hermitian matrices composed of the identity matrix In together with the n2
− 1 generalized

Pauli matrices Λk (also called generalized Gell-Mann matrices) [9]

ρ =
1
n

In +

√
n(n− 1)

2

n−1∑
k=1

sk Λk

, (3)

where the set Λk (k = 1, . . . , n− 1) of the elements of the Lie algebra of SU(n) is composed of the union
of (a) n(n− 1)/2 symmetric (nondiagonal) matrices Wkl (1 ≤ k < l ≤ n) whose elements are zero except
for (Wkl)kl = (Wkl)lk = 1; (b) n(n− 1)/2 antisymmetric matrices Ωkl (1 ≤ k < l ≤ n) whose elements
are zero except for (Ωkl)kl = −(Ωkl)lk = −i, and (c) the n− 1 diagonal matrices.

Λ1 = diag

1,−1, 0, . . . , 0︸  ︷︷  ︸
n−2

, Λ2 =
√

1
3 diag

1, 1,−2, 0, . . . , 0︸  ︷︷  ︸
n−3

,

Λk =
√

2
k(k+1)diag

1, . . . , 1︸  ︷︷  ︸
k

,−k, 0, . . . , 0︸  ︷︷  ︸
n−k−1

 ,

Λn−1 =
√

2
(n−1)n diag

1, . . . , 1︸  ︷︷  ︸
n−1

,−(n− 1)

.

(4)

The nD Stokes parameters sk =
√

n/[2(n− 1)]tr(ρ Λk), together with s0 = 1 are the components of
the nD normalized Stokes vector (1, s1, . . . , sn−1)

T. Note that the non-normalized version Φ (coherency
matrix) of ρ is Φ = s0 ρ, with s0 = trΦ, which is equivalent to using the non-normalized form of the
Stokes vector. The nD Bloch vector (or coherence vector [9]) associated withρ is s = (s1, . . . , sn−1)

T [9–12].
Here we have followed the criterion of Byrd and Khaneja [9] for the definition of parameters sk, in
such a manner that the absolute value |s| of the Bloch vector equals 1 for pure states and, as shown in
Section 4, in general coincides with the degree of purity of the state represented by ρ.

3. Discriminating Decomposition of a Density Matrix

Given an nD (n-dimensional) density matrix ρ, its spectral decomposition (1) can be rearranged
into the characteristic decomposition (also called trivial decomposition) [4]

ρ =
n∑

k=1

(Pk − Pk−1)U DkU†, Dk ≡
1
k

diag

1, 1, . . . , 1

k

, 0, . . . , 0

n−k

, (5)

where the coefficients are determined by the indices of purity Pk (hereafter IPP) [13], defined as follows
in terms of the ordered eigenvalues of ρ.

Pk =
k∑

j=1

λ j − kλk+1,

1 ≤ k ≤ n− 1, λ1 ≥ λ2 ≥ . . . ≥ λn,
n∑

j=1

λ j = 1

. (6)
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By grouping the addends of (5) involving U DkU† for k = 2, 3, . . . , n − 1 into an aggregate
component ρd, the characteristic decomposition becomes the discriminating decomposition

ρ = P1 ρp + (Pn−1 − P1)ρd + (1− Pn−1)ρu,

ρp ≡ diag(1, 0, . . . , 0), ρu ≡
1
n In,

ρd ≡

n−1∑
k=2

(Pk−Pk−1)U DkU†

Pn−1−P1
=

ρ−P1 ρp−(1−Pn−1)ρu
Pn−1−P1

,

(7)

which provides an expansion of ρ into a convex composition of the density matrices ρp, ρd and ρu,
which are associated, respectively, with the pure component ρp (which has a single nonzero eigenvalue
and is generated by the single eigenstate u1), the discriminating component ρd (whose peculiar features
will be analyzed in Section 9), and the fully random (or unpolarized) component ρu = In/n, where
In is the identity matrix, which corresponds to a maximally mixed state, i.e., to an equiprobable
mixture of the n orthonormal eigenstates of ρ. The IPP, which determine the coefficients of the
characteristic and discriminating decompositions of ρ is a set of n− 1 invariant parameters that provide
complete quantitative information on the structure of purity of ρ and satisfy the nested inequalities
0 ≤ P1 ≤ . . . ≤ Pk ≤ . . . ≤ Pn−1 ≤ 1 [13]. The 3D and 4D formulations of the IPP have proven to be
useful to address certain problems in polarization optics [7,14,15].

As the larger IPP take consecutively their maximal values equal to 1 (1 = Pn−1 = Pn−2 = . . .Pn−1−r),
the number of nonzero eigenvalues is reduced correspondingly from n to r (with r ≡ rankρ), that is
to say, the n− r upper dimensions collapse because the number of nonvanishing components of the
arbitrary and characteristic decompositions becomes r, and the system can be treated mathematically
as having r effective dimensions. Nevertheless, as shown in Section 4, the n − r extra dimensions
(corresponding to kerρ, also called the null space of ρ) have a non-neutral effect on the overall purity
of ρ.

4. Degrees of Purity and Randomness of a Density Matrix

A proper overall measure of the degree of purity (or degree of asymmetry) of a state ρ is given
by [16,17]

PnD =

√
1

n− 1
[ntrρ2 − 1] =

√√√
1

n− 1

n
n∑

k=1

λ2
k − 1

 = |s|, (8)

where |s| stands for the magnitude of the associated nD Bloch vector (see Section 2). PnD gives a
measure of the distance from a state ρ to a maximally mixed one (fully random) and can also be
expressed as follows in terms of the IPP [13],

PnD =

√√√
n

n− 1

n−1∑
k=1

P2
k

k(k + 1)

. (9)

As a counterpart of PnD, the distance from the system to a pure one is given by the degree of
randomness (or degree of statistical symmetry), which we define as:

RnD =
√

1− P2
nD =

√
n− trρ2

n− 1
=

√√√
1

n− 1

n−
n∑

k=1

λ2
k

 =
√√√

1−
n

n− 1

n−1∑
k=1

P2
k

k(k + 1)

. (10)

Pure systems (i.e., r = 1), are characterized by PnD = 1, or equivalently RnD = 0, which correspond
to the case where all the IPP take their maximal values Pk = 1. Intermediate values 1 > PnD > 0 are
taken by PnD for mixed states, while the minimal value PnD = 0 corresponds to the limiting case of
maximally mixed states (equiprobable mixtures of the eigenstates), which are also characterized by
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RnD = 1 and Pk = 0 (k = 1, . . . , n− 1). Therefore, the expressions of PnD and RnD in terms of the IPP
make explicit the role played by Pk in the quantitative structure of purity of ρ; that is to say, each Pk
leads to a particular contribution nP2

k /[(n − 1)k(k + 1)] to P2
nD, and the lower and upper values of each

Pk are limited by Pk−1 and Pk+1 respectively (0 ≤ P1 ≤ . . . ≤ Pk ≤ . . . ≤ Pn−1 ≤ 1). Observe also that,
although the number n − r of IPP equal to 1 (Pr = Pr+1 = . . . = Pn−1 = 1) entails that the apparent
effective dimensions of the system are r instead of n (i.e., the last n− r eigenvalues of ρ are zero), the
apparent excess of dimensions results in a significant contribution to purity. This interesting feature
has been studied in Ref. [18] for the particular case of 3D polarization matrices.

The fact that purity is realized if and only if trρ2 = 1 motivated use of the term purity of
ρ for the quantity trρ2 [19]. Maximally mixed states satisfy trρ2 = 1/n, so that 1/n ≤ trρ2

≤ 1.
Nevertheless, an interesting feature of using PnD instead of trρ2 as a measure of the degree of purity is
that it takes the more natural limiting value PnD = 0 for maximally mixed states (maximal statistical
symmetry). In addition, the overall measure of purity provided by PnD can be expressed, as in (9),
as a weighted square average of the IPP, which in turn provides detailed and complete quantitative
information on the structure of purity of ρ. The parameter PnD was first introduced by Samson under
the scope of ultra low-frequency magnetic fields [16], and later by Barakat [17] (with a different, but
equivalent mathematical expression). PnD was also considered implicitly by Byrd and Khaneja [9] as the
magnitude of the coherence vector (or Bloch vector) associated with an nD density matrix. The ability
of P3D to represent the degree of polarization (or degree of polarimetric purity) for electromagnetic
waves, as well as some important features, have been studied by Setälä et al. [18,20,21], Luis [22]
and by Gil et al. [4,23,24]. Furthermore, P4D was independently introduced by Gil and Bernabéu as
the depolarization index [25] associated with Mueller matrices representing the transformation of
polarization states by the action of a material medium.

Another well-known measure of purity is the von Neumann entropy,

SnD = S3D = −tr
(
ρ logn ρ

)
= −

n∑
i=1

(
λi logn λi

)
. (11)

Note that, as suggested by Cloude for polarization density matrices [26], although the Napierian
logarithm (ln) is commonly used for the definition of the von Neumann entropy, the use of the base n
logarithm for the definition of the entropy of nD density matrices has the peculiarity of restricting
the values of SnD to the range 0 ≤ SnD ≤ 1. Observe also that, while SnD does not have an analytic
expression as a function of PnD (or RnD), the fact that λ i can be expressed in terms of the IPP [13]
implies that SnD admits an analytic expression in terms of the IPP (Pk). Maximal entropy SnD = 1
corresponds to a maximally mixed state (P1 = P2 = . . . = Pn−1 = 0, i.e., P3D = 0), while the minimum
achievable value S3D = 0 is reached for pure states (P1 = P2 = . . . = Pn−1 = 1, i.e., P3D = 1). The
concept of von Neumann entropy has been considered under the context of polarization optics for 2D,
3D and 4D density matrices in a number of works, like in Refs. [2,27–35], as well as its comparison to
the degree of polarization [2] and to the depolarization index [32,33,35].

5. The Intrinsic Density Matrix

Given a density matrix ρ, it has n− 1 quantities that are invariant with respect to unitary similarity
transformations V ρ V† (with V unitary). An interesting set of such invariant quantities is that
constituted by the IPP [13] because they determine the quantitative (but not qualitative) structure of
purity in a hierarchical and meaningful manner. To get a more qualitative view of the information
contained in ρ, it is also interesting to explore its invariants with respect to changes of the n-dimensional
Cartesian reference frame taken for its representation. Such changes correspond to orthogonal similarity
transformations QTρ Q, so that the density matrix of a given physical system adopts a particular form
for each Cartesian coordinate system X1, X2, . . .Xn considered. Among them, the intrinsic reference
frame X1O, X2O, . . .XnO is defined as the one for which the real part Re(ρO) of the corresponding
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form ρO of the same state that is represented by ρ with respect to X1, X2, . . .Xn becomes diagonal,
Re(ρO) = diag(a1, . . . , an), with a1 ≥ a2 ≥ . . . ≥ an. Observe that, from the very definition of the density
matrix, the equalities trρ = trρO = trRe(ρO) =

∑n
k=1 ak = 1 are satisfied. The transformation from ρ to

ρO through the rotation of the coordinate system from X1, X2, . . .Xn to X1O, X2O, . . .XnO is performed
by means of the corresponding orthogonal similarity transformation ρO = QT

O ρ QO, where QO is a
proper orthogonal matrix (QT

O = Q−1
O ,detQO = +1). Therefore, the intrinsic density matrix ρO has the

peculiar form
ρO = QT

OρQO = A + i 1
2 N ,[

A ≡ diag(a1, a2, . . . , an), a1 ≥ a2 ≥ . . . ≥ an, NT = −N
]
,

(12)

where N, whose components are denoted by ε ni j (with ε = ±1 depending on whether i + j is an odd
or even number respectively), is an antisymmetric matrix that encompasses all the imaginary part of
ρO. The coefficient 1/2 in the definition of N and the sign coefficient ε in its components have been
introduced for the sake of consistency with the components of the spin vector of polarization density
matrices [36–38].

The number l of scalar real invariants involved in ρ with respect to arbitrary n-dimensional
rotations of the Cartesian coordinate system is equal to the number n2

− 1 of real variables of ρ

(recall that it is Hermitian and trace-normalized) minus the number n(n− 1)/2 of parameters (angles)
associated with an n×n orthogonal matrix, which results in l = −1 + n(n + 1)/2, i.e., the n intrinsic
populations ai (i = 1, . . . , n), with the restriction

∑n
i=1 ai = 1, plus the n(n− 1)/2 intrinsic coherences

ni j (i = 1, . . . , n ; j > i) (hereafter denoted as IC). Note that, as usual when dealing with density
matrices of quantum mechanical systems, the terms populations and coherences are used in this work
to refer to the diagonal and off-diagonal elements of ρ respectively [39], while the adjective intrinsic
is used for quantities derived from the intrinsic density matrix. It is remarkable that in polarization
optics (n = 3) the pseudovector (−n23, n13,−n12)

T defined from the elements of N is precisely the spin
density vector of the state represented by the corresponding 3×3 polarization density matrix ρ [36,37].
Nevertheless, the fact that the number n(n− 1)/2 of intrinsic coherences equals the dimensions n is
not a general property but it is a genuine feature of three-dimensional systems. This is the reason why
the generalization of the concept of spin density vector, defined for the case n = 3, to density matrices
with dimensions n > 3 is not possible in a consistent manner.

The intrinsic representation ρO of a given ρ has the peculiar feature that the Stokes parameters
corresponding to the symmetric (nondiagonal) generators Wkl vanish, and therefore the intrinsic Bloch
vector contains no more than l = −1 + n(n + 1)/2 nonzero Stokes parameters.

Since ρ is positive semidefinite, and despite the fact that it is characterized by the nonnegativity of
its four eigenvalues, the nonnegativity of its principal minors implies certain restrictions on the values
of ai and ni j, among which we can mention 4 ai a j ≥ n2

i j and 4 ai a j ak ≥ ai n2
i + a j n2

j + ak n2
k , which will

be useful in further analyses.

6. Population and Correlation Asymmetries. Intrinsic Stokes Parameters

As with the n − 1 IPP, Pk, defined from the n eigenvalues of ρ, we introduce the n − 1
indices of population asymmetry (hereafter IP) defined from the n intrinsic populations of ρ in
the following manner.

Mk =
k∑

j=1

a j − kak+1, (k = 1, . . . , n− 1). (13)

The IP satisfy the nested inequalities 0 ≤ M1 ≤ M2, . . . ,≤ Mn−1 ≤ 1, and provide complete
information on the structure of the population asymmetry of the system represented by ρ. A state
for which all the intrinsic populations are equal a1 = a2 = . . . = an (full population symmetry, i.e.,
Reρ = In/n) is characterized by M1 = M2 = . . .= Mn−1 = 0, while the maximal population asymmetry
is reached when a1 = 1, a2 = . . . = an = 0, i.e., M1 = M2 = . . .= Mn−1 = 1.
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In analogy to the names used in polarization optics, we call the set composed of the IP plus the IC,
the components of purity (CP) of ρ. Therefore, the CP constitutes a proper complete set of l rotational
invariants of ρ. To go deeper into the physical significance of the CP, let us consider the expansion
of the intrinsic density matrix ρO in terms of the SU(n) generators Λk introduced in Section 2, which
adopts the form

ρO =
1
n


In +

√
n(n− 1)

2


n−1∑
k=1

(√
n

(n− 1)k(k + 1)
Mk

)
Λk +

n∑
i, j = 1

i < j

(√
n

2(n− 1)
ni j

)
Ωi j




, (14)

where the intrinsic Stokes parameters (i.e., the set of Stokes parameters corresponding to the intrinsic
representation ρO of ρ) are given by the set composed of the n− 1 intrinsic population-Stokes parameters

tk = ckMk,
[
ck ≡

√
n

(n− 1)k(k + 1)
, k = 1, . . . , n− 1

]
, (15)

together with the n(n− 1)/2 intrinsic correlation-Stokes parameters

ti j = c ni j,
[
c ≡

√
n

2(n− 1)
, 1 ≤ i < j ≤ n

]
, (16)

showing the remarkable result that, up to respective coefficients ck, Mk are not other than the intrinsic
Stokes parameters tk corresponding to the diagonal generators Λk, while the intrinsic correlation-Stokes
parameters ti j (associated with the antisymmetric generators Ωi j) are directly linked to the intrinsic
coherences ti j = c ni j. The difference between the physical nature of Mk and ni j, together with the fact
that a number of n(n− 1)/2 Stokes parameters become zero in the intrinsic representation, suggests the
appropriateness of the arrangement of the l = −1 + n(n + 1)/2 nonzero intrinsic Stokes parameters in
the form of the following upper triangular Stokes parameters matrix

S ≡ cn



1/cn n12 . . . n1k . . . n1n
0 M1 . . . n2k . . . n2n
...

...
. . .

...
...

...
0 0 . . .

√
2/[k(k + 1)] Mk . . . nkn

...
...

...
...

. . .
...

0 0 . . . 0 . . .
√

2/[(n− 1)n] Mk


,

cn ≡
√

n
2(n−1) ,

(17)

whose elements are denoted as skl (k, l = 0, 1, . . . , n− 1) with s00 = 1, skk = ck
√

2/[k(k + 1)] Mk
(k = 1, . . . , n− 1), and skl = cn nkl (1 ≤ k < l ≤ n− 1); in such a manner that the intrinsic
population-Stokes parameters are arranged along the diagonal of matrix S, while the intrinsic
correlation-Stokes parameters are arranged in its upper off-diagonal part. Obviously, when the
non-normalized version Φ = (trΦ) ρ of the coherency matrix is considered, then the corresponding
(non-normalized) Stokes parameters matrix is given by (trΦ) T. Observe also that PnD = ‖S‖22 − 1.

In summary, the information contained in the density matrix ρ can be grouped into three kinds of
parameters of different nature, (a) the n(n− 1)/2 angles determining the orthogonal matrix QO that
performs the rotation transformation from the intrinsic reference frame to the actual one; (b) the n− 1
IP, Mk, or equivalently, the intrinsic population-Stokes parameters, and (c) the n(n− 1)/2 intrinsic
coherences, ni j, or equivalently, the intrinsic correlation-Stokes parameters.



Symmetry 2020, 12, 1002 8 of 15

7. Structure of Purity of a Density Matrix

The Frobenius norm ‖ρ‖2 =
√

trρ2 of ρ is invariant under unitary similarity transformations
(hence it is also invariant under orthogonal similarity transformations), and can be expressed as follows
in terms of the CP

‖ ρ ‖22 = trρ2 =
n∑

i, j=1

∣∣∣ρi j

∣∣∣2 =
n∑

i=1

a2
i +

1
2

n∑
i, j = 1
I < J

∣∣∣ni j
∣∣∣2 =

1
n
+

n−1∑
k=1

M2
k

k(k + 1)
+

1
2

n∑
i, j = 1

i < j

∣∣∣ni j
∣∣∣2, (18)

and therefore the degree of purity PnD adopts the following expression

P2
nD=

1
n− 1

[
ntrρ2

− 1
]
=

1
n− 1


n

n∑
i=1

a2
i − 1 +

n
2

n∑
i, j = 1

i < j

∣∣∣ni j
∣∣∣2


=
n

n− 1


n−1∑
k=1

M2
k

k(k + 1)
+

1
2

n∑
i, j = 1

i < j

∣∣∣ni j
∣∣∣2

,

(19)

that is,

P2
nD = P2

p +
n

2(n−1)P2
c ,

P2
p ≡

n
n−1

(
n−1∑
k=1

M2
k

k(k+1)

)
=

n−1∑
k=1

t2
k , P2

c ≡
1
2‖ N ‖22 =

n∑
i, j = 1

i < j

∣∣∣ni j
∣∣∣2 =

2(n−1)
n

n∑
i, j = 1

i < j

ti j
2, (20)

where two separate sources of purity are identified, namely the degree of population asymmetry Pp and
the degree of correlation asymmetry Pc. Both descriptors are restricted to the intervals 0 ≤ Pp ≤ 1 and
0 ≤ Pc ≤ 1, whose limits correspond to the following kinds of states,

1. Pp = 0 when the state has full population symmetry, a1 = a2 = . . . = an = 1/n, so that the intrinsic
density matrix takes the form ρO = In/n + (i/2) N. Note that Pp = 0 does not necessarily imply
that PnD = 0, i.e., full population symmetry is compatible with a certain degree of correlation
asymmetry Pc ≤

√
2(n− 1)/n.

2. Pp = 1 when the state has full population asymmetry a1 = 1, a2 = . . . = an = 0, i.e.,
ρO = diag(1, 0, . . . , 0), which in turn implies PnD = 1 and Pc = 0.

3. Pc = 0 when the state lacks correlation asymmetry, in which case ρO = diag(a1, a2, . . . , an) and
all asymmetry is originated by Pp. The complete interval 0 ≤ PnD ≤ 1 of values for PnD are
achievable, PnD depending on the relative values of the intrinsic populations.
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4. Pc = 1 corresponds to pure states (PnD = 1) with maximal correlation asymmetry, in which case
ρO necessarily adopts the form,

ρOc =
1
2



1 ∓ i 0 . . . 0
± i 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 0


, (21)

with Pp =
√
(n/2− 1)/(n− 1). It is remarkable that, when dealing with polarization density

matrices n = 2, 3, Pc = 1 corresponds to a circularly polarized pure state [6], characterized by the
fact that its spin density vector takes its maximum achievable magnitude (maximal degree of
circular polarization) and lies along the intrinsic axis X3O, normal to the plane X1OX2O containing
the polarization ellipse of the state.

5. Pure states are characterized by 1 = P2
nD = P2

p + nP2
c /[2(n− 1)], where the full purity is reached

through the balanced contributions of the degrees of population and correlation asymmetry,
showing that the concept of purity of a state is identified with such a composition of asymmetries,
while, as expected, the symmetry appears as a result of the randomness. An analysis of these
features for the case n = 3 can be found in [38]. For a pure state (PnD = 1, i.e., P1 = P2 = · · · =

Pn−1 = 1), ρO has the generic form

ρOp =
1
2



1 + cos 2χ − i sin 2χ 0 . . . 0
i sin 2χ 1− cos 2χ 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 0 0


,

[
−π/4 ≤ χ ≤ π/4

M1 = cos 2χ, Pc = sin 2χ

]
, (22)

in such a manner that all the physical information is concentrated into the 2×2 upper-left corner of
the intrinsic density matrix, with Mk = 1 (k = 2, 3, . . . , n− 1) and 1 = M2

1 + P2
c . Thus, a pure state

admits a simple representation with respect to its effective intrinsic reference frame X1OX2OX3O
through the intrinsic polarization ellipse (where the term polarization is used in the generic sense of
asymmetry and not specifically for polarized light) (Figure 1). The only free parameter of a pure
state in its intrinsic representation is the ellipticity angle χ, which determines the shape of the
polarization ellipse. In particular, χ = 0 for linearly polarized states (M1 = 1, Pc = 0), χ = ∓π/4
for left-handed/right-handed (anticlockwise/clockwise handedness from the point of view of the
receiver) circularly polarized states (M1 = 0, Pc = 1) respectively.
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Figure 1. The polarization ellipse of a pure state ρ represented with respect to its intrinsic reference
frame X1OX2OX3O.

Thus, any pure state can be represented with respect to its effective intrinsic reference frame
X1OX2OX3O and exhibits a well-defined handedness H, given by H ≡ χ/|χ| = ±1 (with the convention
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H = 0 for χ = 0), H = +1 for right-handed states and H = −1 for left-handed ones. Observe that H
is an intrinsic property that involves chirality. In fact, by considering the spectral decomposition (1)
of a density matrix ρ, all the eigenstates uk have well-defined and intrinsic respective handedness,
so that it can properly be said that ρ involves intrinsic chiral properties associated with those of its
eigenstates. For a given pure state uk its chirality vanishes when χ = 0, while from an overall point of
view, ρ carries non-vanishing chirality as long as at least one of the eigenstates uk has nonzero spin
(i.e., χk , 0, or, equivalently Pc(uk) , 0). The features of the ellipticity angles and the associated spin
vectors of generic sets (u1, u2, u3) of orthonormal states for 3D polarization density matrices have been
studied in [40].

As the larger IP, Mn−1 ≥ Mn−2 ≥ · · · , take consecutively their maximal values equal to 1, the
effective dimensions of the intrinsic density matrix are reduced correspondingly from n to r (with
r ≡ rankρ), n− r is the number of IPP equal to 1 (1 = Pn−1 = Pn−2 = . . . = Pr), that is to say, the last
n− r intrinsic populations an, an−1, . . . ar+1 become zero, while the elements of the last n− r rows and
columns of ρ also become zero.

8. The Concept of Nonregularity of a Density Matrix

The discriminating decomposition (7) of a density matrix ρ is formulated as a convex composition
of three density matrices, namely (1) the pure component ρp, whose intrinsic form ρpO has been
described in Equation (22); (2) the symmetric component ρu = In/n (also called fully random, or
unpolarized component), and (3) the discriminating component ρd. In general, ρd has a complicated
structure, and it can have different interesting forms. When ρd is a real matrix, then it can be expressed
as a weighted sum of density matrices, each one corresponding to a respective equiprobable mixture of
a number of, 2, 3, . . . and n-1 mutually orthogonal pure states with zero spin

ρd =
n−1∑
k=2

(Pk − Pk−1)QDkQ† = Q
[

n−1∑
k=2

(Pk − Pk−1)Dk

]
Q†,

Dk ≡
1
k diag

1, 1, . . . , 1

k

, 0, . . . , 0

n−k

,
(23)

where the diagonalization matrix Q is orthogonal. Observe that the fact that ρd is a real matrix, (hence
it is symmetric and can be diagonalized through the orthogonal matrix Q) does not imply that the
matrix U that diagonalizes ρ is necessarily a real matrix; that is, there are cases for which there is
degeneracy for certain eigenvalues of ρd so that it can be diagonalized either by means of U (in general,
complex-valued) or Q (real-valued). In summary, from Equation (7), ρd is in general complex-valued
(in which case U is not real-valued), so that we can distinguish between regular states, defined as those
where either P1 = Pn−1 (in which case the coefficient of ρd in the discriminating decomposition (7)
vanishes), or ρd is a real matrix, and nonregular states, for which P1 , Pn−1 and Imρd , 0 [7,41]. Thus,
nonregularity occurs when the correlation asymmetry of ρd is nonzero, Pc(ρd) > 0, while regularity
appears as the limiting situation where Pc(ρd) = 0 (or, alternatively, where the equality P1 = Pn−1

is satisfied). Consequently, the maximal achievable value for Pc(ρd) should be inspected in order to
define a generalized degree of nonregularity (note that the version for n = 3 was already defined for
density polarization matrices in previous work [41]).

The discriminating density matrix ρd can be represented with respect to its own intrinsic
reference frame X1d, X2d, . . .Xnd (observe that, in general, Xd1, Xd2, . . .Xdn is different from the
intrinsic reference frame X1O, X2O, . . .XnO of ρ). The off-diagonal elements of the intrinsic form
ρdO = diag(ad1, . . . , adn) + (i/2) NdO are purely imaginary and their absolute values, together with the
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populations adk, are limited by the constraints of nonnegativity of all principal minors of ρdO, in such a
manner that the maximization of Pc(ρdO) =

(
1/
√

2
)
‖NdO‖2 requires that ρdO has the form

ρdO =
1
2



1 0 0 0 · · · 0
0 1/2 −i/2 0 · · · 0
0 i/2 1/2 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0


(24)

and therefore, Pc(ρdO) ≤ 1/2. Since Pc(ρdO) is invariant under orthogonal similarity transformations
of ρdO it follows that Pc(ρdO) = Pc(ρd) and we deduce that the degree of correlation asymmetry of the
discriminating component is limited by 0 ≤ Pc(ρd) ≤ 1/2, where the minimum Pc(ρd) = 0 corresponds
to regular states, and otherwise, ρ is a nonregular state, with a maximum Pc(ρd) = 1/2 for states with
maximal nonregularity, hereafter called perfect nonregular states.

The above results support the definition of the degree of nonregularity PN(ρd) of a discriminating
state ρd as PN(ρd) ≡ 2 Pc(ρd), with PN(ρd) = 0 for regular discriminating states and PN(ρd) = 1 for
perfect nonregular discriminating states, and by considering the weight (Pn−1 − P1) of the component
ρd in the discriminating decomposition (7), we define the degree of nonregularity of a density matrix ρ as

PN(ρ) ≡ 2(Pn−1 − P1)Pc(ρd), (25)

so that regular states are those that either satisfy Pn−1 = P1 or whose discriminating component is
regular (i.e., ρd lacks correlation asymmetry), while the degree of nonregularity of ρ is that of ρd but
scaled by the coefficient Pn−1 − P1, and therefore ρ represents a perfect nonregular state (PN(ρ) = 1)
when ρ itself has the form of a discriminating density matrix ρ = ρd with PN(ρd) = 1.

As discussed in Section 7, nonzero correlation asymmetry of a given density matrix ρ involves
necessarily certain chirality associated with the eigenstates of ρ, and by noting that the existence of
nonzero correlation asymmetry of the discriminating component ρd of ρ implies nonregularity, we
find an interesting and subtle link between the concepts of chirality and nonregularity of a given
ρ. Observe also that the complete interval of values 0 ≤ Pc(ρ) ≤ 1 is achievable for regular states;
in particular Pc(ρ) = 0 when ρ is a real matrix (hence regular) and Pc(ρ) = 1 when ρ represents a
circularly polarized pure state. Thus, Pc(ρ) may be interpreted as a measure of the degree of chirality
of the state ρ, while the degree of chirality Pc(ρd) of the discriminating component determines the
degree of nonregularity of ρ.

The definition of PN generalizes the results already obtained for the case n = 3 in previous
works dealing with polarization density matrices [7,41], which have been successfully applied to the
characterization of polarization of evanescent waves [42] and tightly focused fields [43].

9. Discussion and Conclusions

There are many problems in physics whose formulation becomes strongly simplified when a
specific reference frame is used. A well-known case is the definition of the tangential and normal
components of the acceleration associated with the classical motion of a particle by means of the choice
of an intrinsic coordinate system for each point of the trajectory. In this work, the definition of an
intrinsic coordinate system for each given n-dimensional density matrix ρ is exploited in order to
define a set of quantities (the components of purity -CP- of the state) that provide complete information
on the rotational invariant properties associated with ρ in a hierarchical and meaningful manner. In
fact, it is found that the CP coincide, up to respective simple coefficients, with the n-dimensional Stokes
parameters of the state in its intrinsic representation. These results generalize the obtainment of the
six intrinsic Stokes parameters for 3D polarization states, whose physical interpretation is as simple
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as the intensity, the degree of linear polarization, the degree of directionality and the three intrinsic
components of the spin density vector of the state [6,37]. Thus, any polarization density matrix can be
conceived as the intrinsic one (linked in a very simple way to the intrinsic Stokes parameters) and a
spatial rotation of the Cartesian reference frame (three angular parameters).

In the general case of a density matrix ρ representing an n-dimensional mixed state, which
depends on up to n2

− 1 free parameters, the situation is more involved than for 2D or 3D density
matrices and the generalization is not straightforward; in fact, as described in Section 5, when n > 3
the imaginary parts of the off-diagonal elements of ρ cannot be longer interpreted as the components
of the spin density vector.

Regarding the invariants of ρ with respect to unitary similarity transformations UρU†, a
parametrization based on the n− 1 indices of purity (IPP) was defined in previous work [13]. The IPP,
Pk (k = 1, . . . , n− 1) are constrained by the nested inequalities 0 ≤ P1 ≤ . . . ≤ Pn−1 and provide, in an
optimal and hierarchical manner, quantitative (but not qualitative) information on the structure of
purity of ρ. In fact, the degree of purity PnD (which represents the degree of statistical asymmetry) can
be obtained as a weighted square average of the IPP.

Nevertheless, more detailed and qualitative information can be obtained from ρ through the
introduction of the concept of intrinsic density matrix, which leads to the definition of a number of
l (with l = [n(n + 1)/2] − 1) invariants of ρ with respect to arbitrary rotations of the n-dimensional
Cartesian reference frame, i.e., with respect to orthogonal similarity transformations QρQT. In this case,
the total number l of invariants defined in this work and called the components of purity (CP) of ρ, can
be grouped into two meaningful sets, namely (a) the n− 1 indices of population asymmetry (IP), Mk
(k = 1, . . . , n− 1), (or, equivalently, the intrinsic population-Stokes parameters) which are constrained
by the nested inequalities 0 ≤M1 ≤ . . . ≤Mn−1 ≤ 1 and provide, in an optimal and hierarchical manner,
complete information on the structure of population asymmetry of ρ, and (b) the n(n− 1)/2 intrinsic
coherences (IC), ni j (i, j = 1, . . . , n; i < j), (or, equivalently, the intrinsic correlation-Stokes parameters)
that provide complete information on the correlation asymmetry of ρ.

From these sets of parameters, two complementary sources of purity, namely the degree of
population asymmetry, Pp, and the degree of correlation asymmetry, Pc, are defined as respective
square averages, in such a manner that PnD is, in turn, a weighted square average of Pp and Pc. All the
above descriptors are used to analyze the peculiar features of the discriminating decomposition of
a given density matrix ρ into a convex sum (or incoherent superposition) of three density matrices,
namely (1) a pure one, (2) a maximally mixed one, and (3) a discriminating one that holds certain
critical properties of ρ and leads to the definition of the degree of nonregularity, which is determined
by the degree of correlation asymmetry of the discriminating component, scaled by the difference
Pn−1 − P1 between the maximum and minimum IPP of ρ.

It should be stressed that, through the diagonalization of the intrinsic density matrix, the n− 1 IPP
can be calculated from the l = [n(n + 1)/2] − 1 components of purity, which agrees with the obvious
fact that orthogonal matrices constitute a type of unitary matrices (those that are real-valued), i.e.,
all invariants under transformations UρU† (with U unitary), are invariants under QρQT (with Q
orthogonal). Therefore, the set of CP is complete, because parametrizes all the l indicated rotational
invariants of ρ. Furthermore, the CP (hence, the intrinsic Stokes parameters) are physically meaningful
because they satisfy the following properties

(a) As shown in Equation (20), the degree of purity PnD is given by a weighted square average of the
CP. The degrees of population and correlation asymmetry constitute two complementary sources
of purity. Full population asymmetry PP = 1 entails full purity (PnD = 1) and zero correlation
asymmetry (Pc = 0), while full correlation asymmetry Pc = 1 implies full purity together with a
certain amount of population asymmetry Pp =

√
(n/2− 1)/(n− 1), in which case the state can

be represented by a circularly polarized state embedded into an n-dimensional space.
(b) The n − 1 indices of population asymmetry Mk are defined in a hierarchical manner

(0 ≤M1 ≤ . . . ≤Mn−1 ≤ 1), so that Mn−1 = 0 implies that the state is maximally mixed, while



Symmetry 2020, 12, 1002 13 of 15

M1 = 1 implies full population asymmetry (or population purity) Pp = 1 and full overall purity
PnD = 1, in which case the state can be represented by a linearly polarized state embedded into
an n-dimensional space.

(c) The n(n− 1)/2 intrinsic coherences ni j hold all information on the correlations among the random
variables that describe the system. Their values are constrained by those of Mk because of the
nonnegativity of the principal minors of ρ. Moreover, the inherent chirality associated with the
degree of correlation asymmetry, which has its origin in the handedness of the eigenstates of ρ,
has been analyzed and characterized.

(d) All the information contained inρ (n2
−1 free parameters) can be parametrized by an n-dimensional

rotation (non-invariant n(n− 1)/2 angular parameters) together with the n − 1 indices of
population asymmetry and the n(n− 1)/2 intrinsic coherences of ρ.

The general framework introduced provides invariant descriptors for n-dimensional density
matrices that, in turn, have been proven to be fruitful for the study of three-dimensional states
of polarization [4,6,7,13,23,24,27,28,30,36–38,40–48] and of the polarimetric properties of material
media [4,5,8,13,23–25,32–35,49–51], which supports a well-founded expectation for its useful application
to n-dimensional density matrices representing quantum or classical systems.
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