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Abstract: Two renovation strategies were considered and compared in this paper for the energy
renovation of social housing in condo buildings built in 1945–1969, situated in residential estates
that have been declared urban areas of interest. One of the strategies, named here the image
conservation approach, consists of renovating the building with very efficient solutions, except for
the brick-facing walls, which will only have insulation in the existing cavities. The other strategy,
the image coordination approach, consists of renovating the whole building with efficient solutions,
including external insulation for existing brick-facing walls, and drawing up coordination plans for
each of the residential estates in order to guarantee a coordinated new image of the residential estates.
By means of three case studies in the city of Zaragoza and four scenarios of improvement, the two
strategies are compared regarding the regulation compliance, the energy use, the emissions reduction,
the thermal comfort, and the cost-effectiveness of the measures. The results show that the image
coordination approach is the best strategy in regard to the studied aspects, achieving a 69%–79%
reduction of CO2 emissions and a 75%–97% reduction of heating use, as well as being the only one
capable of transforming these buildings into nearly zero energy buildings (nZEBs).

Keywords: social housing; major renovation; nZEB renovation; cultural value; condominium

1. Introduction

The European Union (EU) has set targets for reducing its greenhouse gas emissions progressively
up to 2050 by means of the 2020 climate and energy package, the 2030 climate and energy framework,
and the 2050 long-term strategy [1]. Sustainable construction is expected to play a big part in meeting
the European Union’s climate and energy goals since the built environment is estimated to account
for approximately 40% of energy consumption and 36% of CO2 emissions in the EU [2]. Sustainable,
climate-proofed buildings are needed on a massive scale to meet the objectives for 2020 and 2030,
and to achieve a climate-neutral Europe by 2050 [2]. Now, the EU is urging countries to bring the
building renovation wave into postpandemic recovery plans.

The majority of the building floor area in Spain is composed of residential buildings (82.67%
in 2013) [3]. Since the existing residential buildings at present will represent the major part of the
housing stocks of Spanish cities in 2050 [4,5], energy retrofit has become one of the most important
strategies for the decarbonization of the residential sector. The European Directive 2010/31/EU on
Energy Efficiency in Buildings introduced the need to transform buildings into nearly zero energy
(nZEB) by 2050, and the European Directive 2018/844/EU amended the existing Directive 2010/31/EU in
order to accelerate the decarbonization of the parks in the EU.

The energy retrofit of multifamily residential buildings built in 1945–1969 is of great importance in
Spain because it is one of the countries in Europe with the highest share of multifamily dwellings (70.78%
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in 2010) and due to the fact that this is the interval of years with the highest share of dwellings (18.62%
in 2014) in Spain among the thermally significant periods identified by the European Commission [3].
This stock of buildings was built after the wars and before the first thermal standard was introduced in
Spain in 1979, and therefore it is highly energy inefficient. In this period, the share of social housing
in Spain (understood as that which has been built with the support of the State) was significantly
higher than the mean value for the country (26.6% for the years 1952–2016 [6]). Specifically, the share of
social housing was 30%–50% between 1945–1958, 70%–90% between 1959–1965, and 30%–40% between
1966–1969 [6], i.e., 50% as mean value for the period 1945–1969.

The public administrations in Spain started to promote an energy retrofit of social housing
estates built in the mentioned period about fifteen years ago. This is the case, for example, of the
city of Zaragoza, where 19 multifamily social housing estates (including 7981 dwellings [7]) started
being studied in 2004 (together with another two residential estates of single-family houses) [8] and
demonstrative building renovation projects were developed in four of these estates in 2008–2011 [9].
These estates were designed in the period of 1942–1964 and built in the period of 1945–1965, except for
one of them (Balsas de Ebro Viejo), whose construction took place between 1964 and 1975. They had
been declared urban areas of interest (UAI, Conjuntos Urbanos de Interés in Spanish) in the General
Plan of Urban Planning of Zaragoza (PGOUZ) of 2001 and 2007 due to their character of unity,
bringing together representative environmental values of types of residential building and urban
areas characteristic of its time (Figure 1). These estates are characterized by buildings of poor quality
in the regimes of condominiums with walk-up free-market private apartments, public places with
poor quality environments, and selective population loss. It must be noted that social rental housing
parks are virtually nonexistent in Spain (1.5%) [6] and social private housing parks are freed from
10 to 30 years after their construction, depending on the autonomous community. For this reason,
the interventions on the common areas of the property in multifamily houses must be agreed by the
community of neighbors of each condominium. The pilot interventions included the improvement of
the envelope and systems, the installation of elevators, and, in given cases, the improvement of the
surrounding areas.

These pilot building renovation projects in the residential estates had important qualitative effects
for Zaragoza in terms of capacity building and visualization of the model. This positively contributed
to reach a deep renovation rate in the whole city of about 0.1% (300 dwellings per year [10] out of a total
of 277,411 main regular dwellings [11]) during the subsequent years, which the Zaragoza Municipal
Housing Company (ZMHC) aims to increase up to 1% by 2030.

At this moment, the ZMHC, with whom one of the authors has a close contact by means of a
collaboration agreement that has been running for eight years [12], is facing an important challenge
regarding its renovation strategies in the UAI, which has to do with the loss of character of unity of
these residential estates as a consequence of the major renovations. No specific restrictions had been
defined in the PGOUZ for the building renovations in UAI, and since the dwellings’ usable floor areas
are notably small (more of the 70% of dwellings have usable floor areas ranging between 34 m2 to
56 m2), the façades have been externally insulated in the interventions conducted so far, changing the
external appearance of the buildings (Figure 2). This can bring loss of the character of unity (Figure 2a)
when different interventions propose different visual solutions. In other occasions, the visual solution
has been carefully designed to remain very close to the original image (Figure 2b), and it is even difficult
to appreciate which buildings are externally renovated and which are original from a certain distance
(Figure 2(b2)). The character of unity loss is more likely to affect those renovated buildings whose
façades are composed of load-bearing walls of facing bricks. Sixteen out of the nineteen residential
estates have buildings with facing brick façades. The share of facing brick façades is about 74% for the
whole of the UAI [13].
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Figure 1. Example of social housing estate declared as urban area of interest (UAI) in Zaragoza: San 
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Figure 2. (a) Example of unity character loss after renovation with external insulation in Girón 

residential estate: (a0) original building image, (a1) example 1 of renovated building, (a2) example 2 

of renovated building; (b) example of unity character continuation after renovation with external 

insulation in Alférez Rojas residential estate: (b0) original building image, (b1) example of renovated 

building, (b2) renovated building in context. 
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Figure 2. (a) Example of unity character loss after renovation with external insulation in Girón residential
estate: (a0) original building image, (a1) example 1 of renovated building, (a2) example 2 of renovated
building; (b) example of unity character continuation after renovation with external insulation in
Alférez Rojas residential estate: (b0) original building image, (b1) example of renovated building,
(b2) renovated building in context.
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The tensions and conflicts between the sustainability goals and the preservation of the modern
built heritage have broadly been addressed in the literature [14–21]. Some authors took a stand
against the demolition of old housing buildings, arguing that important synergies can be found
between sustainability and conservation, e.g., [4,5,18,21]. Other authors focused on the design
challenge of finding an architectural balance between existing and newly added qualities when
designing the renovation of housing blocks with specific architectural heritage values, e.g., [14,15,19,20].
Oorschot et al. [20] considered the careful analysis of the architectural and cultural value of the original
building by recording which characteristics must be preserved and which could be modified to be of
great importance. In Amsterdam, buildings with historic and visual values were observed to offer
fewer possibilities for interventions on the outside, especially the façades and the roofs, whereas
inside insulation creates more inconvenience, especially if tenants stay in their homes during the
intervention [14]. Dowson et al. [16] estimated that in UK there are restrictions on external wall
insulation for a further 1.2 million dwellings in conservation areas and 300,000 listed dwellings [22]
because of the change of appearance. Ben and Steemers [17] argued that some measures are generally
not considered appropriate for listed buildings in UK, such as external wall insulation and double
(or triple) glazing, and proposed several viable improvement strategies, including cavity wall insulation,
roof insulation, secondary glazing, and draughtproofing, for the Brunswick Centre in London.

In the case of the UAI of Zaragoza, the main cons of inside insulation strategies discussed by the
technicians of the municipality and the researchers were the following:

• It reduces the already small usable floor areas. This disadvantage is very difficult to avoid by
merging different dwellings in one, as in the case of Amsterdam [14] because of the condominium
regime of the buildings, or by expanding the area of the dwellings because the floor additions
would affect the image as much as, or even more than, the insulation.

• It obliges occupants to temporarily leave their homes during the intervention. This is an
inconvenience that could be partially mitigated by carefully planning the stages with more impact
on the occupants’ daily life and reducing their duration as much as possible.

For these reasons, the internal insulation strategies were discarded in Zaragoza and this position
was accepted in this paper as a starting point. The disadvantage of external insulation is, as already
mentioned, the potential loss of the residential estates’ character of unity, and two possible options
were considered in this study and have been discussed with the ZMHC to overcome the problem:

• One of the options is to use image conservation-oriented energy retrofit strategies that do
not compromise the façades image, as in the case of the Brunswick Centre in London [17],
but without using inside insulation so that the usable floor area remains equal after the intervention.
This implies energy improvement of roofs, windows, plastered walls, and existing wall cavities.
Plastered walls are externally insulated, and brick-facing walls are improved by pumping
insulation into the existing wall cavities, which are 3 cm thick [13].

• The other option is to assume the preponderance of environmental matters and mitigate their
negative impact on cultural aspects as much as possible by drawing up coordination plans for
each of these areas in order that the individual interventions in each of the buildings follow some
common rules that ensure a final image of unity. This implies that the whole envelope is deeply
renovated. All façades, including brick-facing walls, are externally insulated.

This paper focused on comparing different energy retrofit strategies for the case of the UAI in
Zaragoza that do not reduce the usable floor area, with the aim to know if the image conservation
approach and the image coordination one can ensure comparable levels of performance regarding
the regulation compliance, the energy use, the emissions reduction, the thermal comfort, and the
cost-effectiveness of the measures, in order to support with data the decisions of the local administration.
The scientific contribution of this paper is in the field of design research [23,24], and focuses on the
improvement of the observed phenomenon in architectural design of dealing with the tensions between
the sustainability goals and the preservation of the modern built heritage.
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2. Materials and Methods

In order to compare the different energy retrofit strategies, three case studies were used of
real social housing buildings located in three of the 19 multifamily UAI of Zaragoza. The research
methodology is composed of the next steps, which we develop in the following sections:

1. Selection of cases studies
2. Scenarios definition
3. Definition of comparison criteria and simulation methods
4. Results analysis and discussion
5. Conclusions.

2.1. Selection of Cases Studies

In previous research works, we had cataloged the 19 multifamily residential estates of Zaragoza
declared as UAI [25], identified the construction characteristics of the buildings [13,26], done an
energy and acoustic characterization of their envelopes [27,28], and simulated the buildings energy
use through a simplified methodology [7,26,27]. Important conclusions from these previous studies
have been useful to define the criteria to select our case studies.

On the one hand, we tried to select cases studies representative of the most common energy
efficiency performances found among the buildings of the 19 residential estates. The energy performance
rating for the indicator of nonrenewable primary energy was found to be an E for 88.5% of the buildings,
F for 5.2%, and G for 3.1%, with the remaining 3.2% being renovated buildings in 2016 [29]. Regarding
the energy performance rating for the indicator CO2 emissions, the share was 80.9% of E and 15.9%
of D [29]. As can be seen, by far the majority of buildings had a rating of E for nonrenewable
primary energy and a rating of E for CO2 emissions. Our three case studies had an E estimation for
nonrenewable primary energy rating and an E estimation for CO2 emissions rating, except for one
of them (the Alférez Rojas case), which had an F estimation for nonrenewable primary energy rating
(Table 1).

Table 1. Construction characteristics of the case studies (the façade coding is the same as in [13]).

Case Study Social Housing Block in
Residential Estate Girón

Social Housing Block in
Residential Estate Alférez Rojas

Social Housing Block in Residential Estate Balsas
de Ebro Viejo

Year of Construction 1957 1960 1969

Nonrenewable Primary
Energy Rating [29] E F E

CO2 Emissions Rating [29] E E E

Ground Floor Façade
Façade type F1: 36 cm facing solid brick + 1 cm mortar cement

coating + 3 cm nonventilated air space + 4 cm hollow
brick + 1.5 cm plastering

Main solution (façade type F9): 12 cm facing solid
brick + 1 cm mortar cement coating + 3 cm air space

+ 4 cm hollow brick + 1.5 cm plastering
Solution below windows (façade type F10): 1.5 cm

mortar cement exterior coating + 9 cm hollow brick +
1 cm mortar cement coating + 3 cm nonventilated air

space + 4 cm hollow brick + 1.5 cm plastering

1st to 3rd Floor Façade
Façade type F2: 24 cm facing solid brick + 1 cm mortar cement

coating + 3 cm nonventilated air space + 4 cm
hollow brick + 1.5 cm plastering

4th Floor Façade
Façade type F3: 1.5 cm mortar cement exterior coating + 24 cm

hollow brick + 1 cm mortar cement coating + 3 cm
nonventilated air space + 4 cm hollow brick + 1.5 cm plastering

Roof Pitched roof with ventilated chamber

Ground Concrete slab-on-ground Suspended concrete floor Slab in contact with uninhabitable room

Windows Wood frame with single glass 3 mm. Dark shutter

On the other hand, we selected cases studies with different construction solutions observed in
the 19 residential estates in order to check whether these different solutions can make an important
difference or not regarding the energy performance of the renovated building:

• Most of the buildings presented façades with thick brick-bearing walls without thermal insulation,
and only some of the buildings, built at the end of the studied period, presented structures of
pillars with the corresponding thinning of the façade without thermal insulation [13]. Two of our
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case studies (the Alférez Rojas and Girón cases) presented thick brick-bearing walls, and one of
them presented thinner walls (the Balsas de Ebro Viejo case), as can be seen in Table 1.

• With regard to the grounds, most of the buildings (65% of them) presented concrete slab-on-grounds,
some of them (26%) had suspended reinforced concrete one-way floors, and the remaining part
(9%) had reinforced concrete one-way slabs in contact with uninhabitable rooms, such as storage
rooms [13]. Each of our case studies presented one of these three solutions (Table 1).

The general image and urban layout of each of these case studies can be observed in Figure 3.
The specific U-value of the different construction solutions for the envelope can be found in Appendix A.
Since the thermal mass is important in the energy retrofit of buildings from this period [30], the internal
areal heat capacity and periodic thermal transmittance for the different façades and grounds are
provided in Appendix A to evaluate their thermal inertia, as suggested by [31,32]. The calculations
were made according to EN ISO 13786:2017 [33].
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2.2. Scenarios Definition

Five scenarios were considered for each of the three case studies (Figure 4):

• Scenario 0: original state. The envelope is the original one, described in Table 1 and thermally
characterized in Appendix A. With regard to the heating and domestic hot water (DHW) systems,
all of them are individual, and so are the cooling systems when they exist. For the sake of
comparison, we considered, for the heating and DHW systems, an individual regular gas boiler
in each of the dwellings, since it is the most extensive system in Spain [34]. For the cooling
system, an electrical single zone system with a seasonal energy efficiency of 2.52 was considered,
as recommended by the user guide for the official tool for energy rating in Spain when the system
is not known or nonexistent [35].
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• Scenario 1: the envelope is improved, avoiding the external insulation of the façades made out of
facing bricks. Efficient solutions are considered for the rest of elements of the envelope, even when
installing very thick insulations is technically difficult, such as in the case of the external insulation
of plastered façades and grounds, in order to compensate the thin insulation of brick facing walls.
This scenario follows the image conservation approach. Specifically, the energy improvement of
the envelope is made by means of:

◦ Insulation of roofs by means of 25 cm thick mineral wool blankets installed in the air chamber.
According to the literature, efficient solutions for roofs have a U-value between 0.09 and
0.2 W/m2

·K [36,37]. As can be observed in Appendix A, the U-value of our renovated roofs is
0.12 W/m2

·K.
◦ Secondary glazing. Since in Spain the original windows are aligned with the inside surface

of the façade, the additional glazing is external. For the calculations, the inside glazing was
considered not to contribute to insulation, since many of them present serious problems
of permeability. According to the literature, very efficient solutions for windows have a
U-value between 0.80 and 1.26 W/m2

·K [36,37]. Our windows have a U-value of 1.04 W/m2
·K

(Appendix A). The permeability of the new window is 3 m3/h·m2 at 100 Pa (class 4, according
to EN 12207:2016).

◦ Grounds are improved for the case of suspended floors with 20 cm thick external Polyurethane
(PUR) insulation, and for the case of slabs in contact with uninhabitable rooms with 20 cm
thick external PUR insulation. According to the literature, efficient solutions for grounds have
a U-value between 0.2 and 0.25 W/m2

·K [37,38]. In our case studies, the U-value of these
two types of renovated grounds are considerably lower, specifically 0.16 and 0.15 W/m2

·K,
respectively (Appendix A). For the case of the slab-on-ground, perimeter insulation is installed
because insulating the whole slab would imply important interferences with occupants.

◦ External insulation of 16 cm thick for plastered walls. According to the literature, efficient
solutions for façades have a U-value between 0.15 and 0.3 W/m2

·K [36–38]. As can be observed
in Appendix A, the U-value of our renovated plastered façades is quite low, specifically
0.15 W/m2

·K.
◦ Cavity wall insulation of 3 cm thick for the brick facing walls. These walls have a U-value that

ranges from 0.60 to 0.73 W/m2
·K (Appendix A).

• Scenario 2: the envelope is improved, insulating externally the whole façade. Efficient solutions are
used for the elements of the envelope that they are technically easy to install (roofs and windows),
whereas for more problematic elements of the envelope (grounds and external insulation of walls)
more technically feasible solutions are considered. This scenario is thought to follow the image
coordination approach. Specifically, the improvement is made by means of:

◦ Same solutions for roofs and windows as in scenario 1.
◦ Grounds are improved for the case of suspended floors with 10 cm thick external PUR

insulation, and for the case of slabs in contact with uninhabitable rooms with 10 cm thick
external PUR insulation. The U-value of these two types of renovated grounds is 0.28 W/m2

·K
(Appendix A). For the slab-on-ground, perimeter insulation is used.

◦ External insulation of 10 cm thick for façades. The U-values of our renovated façades in this
scenario range from 0.21 to 0.23 W/m2

·K (Appendix A).

• Scenario 3: the envelope improvement is the same as in scenario 1, and additionally:

◦ The heating and DHW system is substituted by gas condensing boilers.
◦ Solar panels are installed in order to guarantee that at least 60% of the energy for DHW is

solar, as prescribed in the Spanish Technical Code for this location if the system is changed.
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• Scenario 4: the envelope improvement is the same as in scenario 2, and as in scenario 3 the heating
system is substituted by gas condensing boilers and 60% of the energy for DHW is solar.

The values for the parameters of the envelope and the heating, cooling, and DHW systems that
define their contribution to the buildings energy efficiency can be found in Appendix A.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 22 

external PUR insulation. The U-value of these two types of renovated grounds is 0.28 

W/m2·K (Appendix A). For the slab-on-ground, perimeter insulation is used. 

o External insulation of 10 cm thick for façades. The U-values of our renovated façades in this 

scenario range from 0.21 to 0.23 W/m2·K (Appendix A). 

 Scenario 3: the envelope improvement is the same as in scenario 1, and additionally: 

o The heating and DHW system is substituted by gas condensing boilers. 

o Solar panels are installed in order to guarantee that at least 60% of the energy for DHW is 

solar, as prescribed in the Spanish Technical Code for this location if the system is changed. 

 Scenario 4: the envelope improvement is the same as in scenario 2, and as in scenario 3 the 

heating system is substituted by gas condensing boilers and 60% of the energy for DHW is solar. 

The values for the parameters of the envelope and the heating, cooling, and DHW systems that 

define their contribution to the buildings energy efficiency can be found in Appendix A. 

 

Figure 4. Studied scenarios for each of the three case studies. 

2.3. Definition of Comparison Criteria and Simulation Methods 

The five scenarios of the three case studies were compared in terms of: energy regulation 

compliance; energy use, CO2 emissions, and thermal comfort performance; and cost-effectiveness of 

the measures. 

2.3.1. Methodology to Check the Energy Regulation Compliance 

In December 2019, a royal decree modifying the Basic Document on Energy Saving (DB-HE) of 

the Buildings Technical Code was approved in Spain. This recently updated regulation sets, on the 

one hand, more restrictive requirements for major renovations—which are compulsory when more 

than 25% of the envelope is improved, as is our case— and, on the other hand, defines for the first 

time specific requirements for the transformation of existing buildings into nZEBs—which are not 

mandatory, but must be met if an nZEB renovation is aimed for. 

In this paper, we checked the compliance or not of the five scenarios with the two set of 

requirements: the compulsory major renovation requirements and the optional nZEB renovation 

requirements. 

Figure 4. Studied scenarios for each of the three case studies.

2.3. Definition of Comparison Criteria and Simulation Methods

The five scenarios of the three case studies were compared in terms of: energy regulation
compliance; energy use, CO2 emissions, and thermal comfort performance; and cost-effectiveness of
the measures.

2.3.1. Methodology to Check the Energy Regulation Compliance

In December 2019, a royal decree modifying the Basic Document on Energy Saving (DB-HE) of
the Buildings Technical Code was approved in Spain. This recently updated regulation sets, on the
one hand, more restrictive requirements for major renovations—which are compulsory when more
than 25% of the envelope is improved, as is our case— and, on the other hand, defines for the first
time specific requirements for the transformation of existing buildings into nZEBs—which are not
mandatory, but must be met if an nZEB renovation is aimed for.

In this paper, we checked the compliance or not of the five scenarios with the two set of requirements:
the compulsory major renovation requirements and the optional nZEB renovation requirements.

For both levels of renovation (major renovation and nZEB), the main parameters that are
regulated are:

• The envelope global heat transfer coefficient K-value (W/m2
·K) must be less than a limit value

Klimit. The K-value depends on the U-values of the envelope elements and thermal bridges and it
is the heat transfer coefficient of ISO 14683:2017, divided by the exchange area [39]. The maximum
allowable Klimit depends on the climate zone and the compactness of the building and is the
same for major renovation and nZEB renovation.

• The value of the solar control of windows will be lower than 2 kW·h/m2
·month for the month

of July for households, for both major renovation and nZEB renovation. The solar control is the
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ratio between the solar gains in July of all windows of the envelope with their solar protections
activated and the useful floor area of the building.

• Nonrenewable primary energy (kW·h/m2
·year) and total primary energy (kW·h/m2

·year) use are
limited by a fixed value depending on the climate zone. The values for nZEB renovation are more
restrictive than for major renovation. Specifically, for our climate zone D, the limit values for
nonrenewable primary energy are 70 kW·h/m2

·year for major renovation and 38 kW·h/m2
·year for

nZEB renovation, and the limit values for total primary energy are 105 kW·h/m2
·year for major

renovation and 76 kW·h/m2
·year for nZEB renovation.

Additionally, the regulation sets other requirements, such as:

• A maximum U-value is set for each element of the envelope that is added, replaced, or modified
(Table 2). Our four scenarios of improvement fulfill these values except for the brick facing walls
in scenarios 1 and 3.

Table 2. Maximum U-value according to the Spanish Buildings Technical Code for climate zone D.

Part of the Envelope U-value lim (W/m2
·K)

Façade—Exterior Wall 0.41

Roof 0.35

Ground 0.65

Windows 1.80

• In our climate zone, at least 60% of the energy demand for DHW has to be obtained from renewable
sources, with local origin or nearby the building. This is applicable to those renovations that
change the building installations. We made scenarios 3 and 4 fulfil this requirement.

• The accepted permeability of the windows depends on the climate zone. In our location, class 3 or
higher, as defined in EN 12207:2017, is demanded. We chose class 4 with lower permeability and
therefore better energy performance.

We made our four scenarios of improvement fulfil the additional requirements (except for the
U-value of the brick-facing walls in scenarios 1 and 3), and afterwards we checked whether the main
requirements were met or not for major renovation and nZEB renovation. To check the compliance
of these main requirements, the official tool for energy certification of buildings in Spain was used,
named HULC version 2.0.1960.1156 [39].

2.3.2. Methodology to Estimate Energy Use, CO2 Emissions, and Thermal Comfort

To estimate energy use and CO2 emissions, we used the HULC version 2.0.1960.1156 software [37],
and to characterize the thermal comfort the Design Builder version 6 software [40]. This implies a total
of 30 simulations.

The same building models were introduced in the two software tools regarding the shapes and
orientations of the buildings, their construction solutions (Table 1 and Appendix A), and thermal
bridges (Appendix B). The linear thermal transmittances of thermal bridges were calculated using the
catalogue of thermal bridges of the HULC version 2.0.1960.1156 software [39], and the same values were
used in the Design Builder model. The use and climate conditions established by default in the HULC
software were used in the Design Builder software and can be found in Appendix C. The renewal
air flow was estimated according to the calculation method proposed in the Spanish Technical Code.
The result, 33 L/s, was the same for the five scenarios (scenarios 0–4), since it depends on the household
layout, which was kept the same in the improved scenarios. It includes the infiltrations plus the
ventilation through the use of the windows. Additionally, we considered the following values for the
infiltration air flow rate per internal volume through the envelope (n50), both in HULC and Design
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Builder: 5.72 h−1 for scenario 0 (original building), as reported by Fernández-Agüera et al. [41] for
multifamily social housing in Mediterranean Europe, and 4.91 h−1 for the improved scenarios (1 to 4),
since according to Almeida et al. [42], the average window contribution for the room permeability is
15% and we changed windows with air permeability of 50 m3/h·m2 to 3 m3/h·m2 (a reduction of 94%).
Night ventilation of four renovations per hour during summer was considered in the two software
tools, since all the studied buildings allow for crossed ventilation.

With regard to the solar control of windows, we defined two parameters:

• The total transmittance of solar energy of windows when all the solar devices are activated:
according to the support document of the Spanish Technical Code for calculation of envelope
parameters [43], it is of 0.15 for scenario 0 (characterized by a dark exterior shutter with single
glass) and 0.05 for the improved scenarios 1 to 4 (characterized by a light shutter and a window
with triple glass).

• The activation of the solar protection: the activation values by default in HULC, for 30% for the
summer period, were considered in both software tools. The way this parameter is introduced in
Design Builder can be seen in Appendix C.

To estimate the thermal comfort, we used the adaptative comfort approach according to the
ASHRAE55-2017 standard included in the Design Builder software for naturally ventilated buildings.
This method has been proven to be useful for mixed-mode buildings such as ours (i.e., a combination of
operable windows and mechanical conditioning) [44]. An annual simulation was run at intervals of one
hour. Once the simulation was done, the data (air temperature, mean radiant temperature, operative
temperature, exterior air temperature, renovations per hour by means of mechanical ventilation,
natural ventilation, and infiltrations) in csv format were exported to the software CONFADAPT-ASH55
version 1.0 [45], which allowed us to obtain the hours inside and outside the 80% and 90% acceptability
limits, indicating the percentage of occupants expected to be comfortable at the indicated indoor.
We used the 90% acceptability limit to do the estimations with a higher standard of thermal of comfort.

2.3.3. Methodology to Estimate the Cost-Effectiveness of the Scenarios

We first estimated the total investment renovation costs of the measures for each of the four
improvement scenarios of the three case studies by means of the CYPE software and database [46],
and afterwards we divided it by the total surface to obtain the renovation investment per m2 for each
case. To estimate the cost-effectiveness of each scenario of improvement, the costs-to-effectiveness
ratio [47] that we established divided the total investment costs by the saved kW·h of nonrenewable
primary energy for the five scenarios of the three case studies.

3. Discussion and Results

3.1. Energy Regulation Compliance

Only one of the scenarios complied with the nZEB renovation requirements, scenario 4, and two of
the scenarios, scenarios 2 and 4, complied with the major renovation requirements (Table 3). For the case
study of Balsas de Ebro Viejo, it was necessary to increase the percentage of solar energy for domestic
hot water (DHW) up to 65% in order to make it comply with the nZEB renovation requirements
(we name this scenario 4* in Tables 3 and 4 and Tables A1–A3). This building presented a worse energy
performance in all the scenarios (with 27%–59% more nonrenewable primary energy and total primary
energy use), which could be explained by the fact that it is the only one with thinner façades and a
corresponding lower thermal mass, as shown by the values of the periodic thermal transmittance in
Appendix A.

This implies that if social housing in Zaragoza is renovated following the image conservation
approach (scenarios 1 and 3), the energy regulation for major renovation, which is compulsory,
could not be fulfilled, unless additional measures were taken on the top of those that we have studied
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here. Only the image coordination approach provides solutions that would comply with current
regulations (scenarios 2 and 4) and could even transform existing social housing buildings into nZEBs
when improving both the envelope and the systems (scenario 4). This was the case for the two case
studies with massive load-bearing façades (Girón and Alférez Rojas). For the case of the building with
thinner façades and a structure of pillars (Balsas de Ebro Viejo), the only scenario fulfilling the major
renovation requirements was scenario 4. In order for the image conservation approach (scenarios
1 and 3) to fulfil the major renovation requirements, it would be necessary to reduce the K-value
(Table 3). This would require, for example, adding internal insulation, but as already discussed this is
not considered a feasible solution due to the small size of households.

Table 3. Results of compliance with the Spanish Buildings Technical Code.

K-Value
(W/m2

·K)
Qsol, jul

(kW·h/m2
·month)

Nonrenewable
Primary Energy
(kW·h/m2

·year)

Total Primary Energy
(kW·h/m2

·year)
Compliance with

Requirements

Sc
en

ar
io

C
al

cu
la

te
d

Li
m

it

C
al

cu
la

te
d

Li
m

it

C
al

cu
la

te
d

M
R

Li
m

it

n
Z

EB
Li

m
it

ca
lc

ul
at

ed

M
R

Li
m

it

n
Z

EB
Li

m
it

M
R

nZ
EB

Girón case study
0 1.59 0.65 1.59 2 103.5 70 38 105.5 105 76 NO NO
1 0.94 0.65 0.35 2 80.0 70 38 82.0 105 76 NO NO
2 0.53 0.65 0.35 2 64.1 70 38 66.1 105 76 YES NO
3 0.94 0.65 0.35 2 46.9 70 38 69.3 105 76 NO NO
4 0.53 0.65 0.35 2 33.7 70 38 56.0 105 76 YES YES

Alférez Rojas case study
0 1.93 0.65 1.93 2 113.0 70 38 115.8 105 76 NO NO
1 1.01 0.65 0.48 2 83.9 70 38 86.9 105 76 NO NO
2 0.33 0.65 0.48 2 51.6 70 38 54.8 105 76 YES NO
3 1.01 0.65 0.48 2 54.2 70 38 73.9 105 76 NO NO
4 0.33 0.65 0.48 2 27.6 70 38 47.5 105 76 YES YES

Balsas de Ebro Viejocase study
0 1.83 0.66 1.79 2 165.0 70 38 168.3 105 76 NO NO
1 0.96 0.66 0.66 2 101.5 70 38 105.3 105 76 NO NO
2 0.36 0.66 0.66 2 72.3 70 38 76.2 105 76 NO NO
3 0.96 0.66 0.66 2 61.2 70 38 87.9 105 76 NO NO
4 0.36 0.66 0.66 2 38.9 70 38 65.8 105 76 YES NO

4 * 0.36 0.66 0.66 2 37.2 70 38 65.8 105 76 YES YES

Note: MR: major renovation; nZEB: nearly zero energy buildings; highlighted grey are the unfulfilled limits;
* Additional 5% of DHW (in total 65%).

Table 4. CO2 emissions of the three case studies for the five studied scenarios.

Case Study Girón Alférez Rojas Balsas de Ebro Viejo

Scenario CO2 Emissions
(kg CO2/m2·year)

CO2 Emissions
(kg CO2/m2·year)

CO2 Emissions
(kg CO2/m2·year)

0 21.6 23.46 34.4

1 16.6 17.25 20.82

2 13.23 10.35 14.52

3 9.59 10.95 12.28

4 6.78 5.26 7.49

4* - - 7.14

Note: *Additional 5% of DHW (in total 65%).



Sustainability 2020, 12, 5579 12 of 24

3.2. Energy Use, CO2 Emissions, and Thermal Comfort

When looking at the CO2 emissions of the three case studies for the five scenarios considered
(Table 4), we observed that:

• The energy retrofit of the envelope following the image conservation approach (scenario 1) could
be responsible for the reduction of 23%–39% of CO2 emissions, depending on the case study,
whereas the improvement of the envelope following the image coordination approach (scenario 2)
could entail a reduction of 39%–58% of CO2 emissions, according to simulations.

• If, additionally, the systems are improved, the total reduction of CO2 emissions following the
image conservation approach (scenario 3) could be up to 53%–64%, whereas following the image
conservation approach (scenario 4) it could be up to 69%–79%, according to simulations.

Therefore, the image coordination approach could bring about an additional 13%–24% reduction
of CO2 emissions, as compared to the image conservation approach, which is quite a significant figure
considering the objectives of the EU to reduce emissions by 80%–95% for 2050.

When the CO2 emissions are broken down into heating, cooling, and DHW emissions for the
three case studies and five scenarios (Figures 5–7), we observed that:

• The envelope energy retrofit would significantly contribute to the reduction of emissions caused
by the use of heating systems: a 45%–64% reduction in heating CO2 emissions with the image
conservation approach, and 75%–96% with the image coordination approach. On the other hand,
it would increase the emissions caused by the use of cooling systems: a 9%–27% increase in cooling
CO2 emissions with the image conservation approach and 13%–39% with the image coordination
approach. However, these increases are not so significant because CO2 emissions due to cooling
only represent a 6%–8% of total emissions in the original buildings (scenario 0) for this city and
these case studies. The reason for this low need of cooling systems may be due to the combination
of high internal thermal inertia, night ventilation, and solar protection, which together would
significantly reduce the cooling demand in the five scenarios [48].

• The proposed systems improvement would reduce 5%–20% of CO2 emissions of heating systems
and 69% of DWH systems.

Therefore, the most significant CO2 emissions reductions would be caused by the deep energy
retrofit of the envelope in the image coordination approach and the improvement of the DHW
production systems.

When analyzing the energy use (broken down into heating, cooling, and DHW, as well as into
renewable and nonrenewable) and thermal comfort for the three case studies and five scenarios
(Figures 8–10), we observed that:

• The reason why the emissions get so significantly reduced by the deep renovation of the envelope
is the significant saving in heating energy use: a 45%–64% saving with the image conservation
approach (scenario 1) and 75%–97% for the image coordination one (scenario 2), according to
simulations. This reduction in heating energy use could be achieved without compromising the
comfort. In fact, it would actually increase the percentage of hours of 90% acceptability, with an
additional 48%–54% of hours for the image conservation approach (scenario 1) and 45%–55% for
the image coordination approach (scenario 2). The comfort achieved would be quite similar for
both approaches.

• The reason why the emissions get so significantly reduced by the improvement of the DHW
production systems is mainly the installation of renewable sources. As can be seen in Figures 8–10,
the energy use for DHW would only be reduced by 21% in all the cases, and the rest of the
emissions reduction (48%) would be achieved by the use of sun as energy source.
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Figure 6. CO2 emissions for the case study of Alférez Rojas (S#: scenario #).
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Figure 7. CO2 emissions for the case study of Balsas de Ebro Viejo (S#: scenario #).
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Figure 8. Primary energy use (left) and percentage of hours within the 90% of acceptability comfort
range (right) in Girón case study (S#: scenario #; NRN: nonrenewable; RN: renewable).
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Figure 9. Primary energy use (left) and percentage of hours within the 90% of acceptability comfort
range (right) in Alférez Rojas case study (S#: scenario #; NRN: nonrenewable; RN: renewable).Sustainability 2020, 12, x FOR PEER REVIEW 15 of 22 
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3.3. Cost-Effectiveness of the Scenarios 

To complete the analysis, we performed a cost-effectiveness analysis of the scenarios for the 

three case studies. As can be seen in Table 5, the most cost-effective scenario is number 2, 

corresponding to the deep renovation of the envelope following the image coordination approach, 
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4 308,872 155.25 3.80 217,367 138.27 2.25 148,700 159.89 1.71 

4. Conclusions 

How to conduct the energy renovation of social housing of the period 1945–1969 in Spain, 

without compromising the character of unity of the residential estates to which they belong, is a 

challenge that some city councils are facing. 

In Spain, the energy retrofit of social housing with cultural value presents different challenges 

from those identified in other countries, such as England or the Netherlands [14–22], since inside 

insulation is not considered a feasible option because of the small size of the households and the 

difficulty of merging dwellings in condo buildings. 
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Figure 10. Primary energy use (left) and percentage of hours within the 90% of acceptability comfort
range (right) in Balsas de Ebro Viejo case study (S#: scenario #; NRN: nonrenewable; RN: renewable).

3.3. Cost-Effectiveness of the Scenarios

To complete the analysis, we performed a cost-effectiveness analysis of the scenarios for the three
case studies. As can be seen in Table 5, the most cost-effective scenario is number 2, corresponding
to the deep renovation of the envelope following the image coordination approach, with a cost of
0.69€–2.02€ per nonrenewable kW·h saved, depending on the case study. The next most cost-effective
scenario is the one improving the envelope following the image conservation approach (scenario 1),
followed by the scenarios that also improve systems (scenarios 4 and 3). Again, the image coordination
approach was proven to be more advantageous from the sustainability point of view than the image
conservation one.
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Table 5. Costs analysis (TC: total renovation investment costs; RC/S: renovation investment costs per
usable surface; C-E: cost-effectiveness: NRN: nonrenewable).

Girón Case Study Alférez Rojas Case Study Balsas de Ebro Viejo Case Study

Sc
en

ar
io

TRC
(€)

RC/S
(€/m2)

C-E
(€/NRN

kW·h Saved)

TRC
(€)

RC/S
(€/m2)

C-E
(€/NRN

kW·h Saved)

TRC
(€)

RC/S
(€/m2)

C-E
(€/NRN

kW·h Saved)

1 139,402 70.07 2.97 89,850 57.16 1.96 51,221 55.08 0.87

2 158,975 79.90 2.02 96,411 61.33 0.99 59,350 63.82 0.69

3 289,299 145.41 5.26 210,805 134.10 3.84 141,590 152.25 2.15

4 308,872 155.25 3.80 217,367 138.27 2.25 148,700 159.89 1.71

4. Conclusions

How to conduct the energy renovation of social housing of the period 1945–1969 in Spain,
without compromising the character of unity of the residential estates to which they belong, is a
challenge that some city councils are facing.

In Spain, the energy retrofit of social housing with cultural value presents different challenges
from those identified in other countries, such as England or the Netherlands [14–22], since inside
insulation is not considered a feasible option because of the small size of the households and the
difficulty of merging dwellings in condo buildings.

Two possible approaches were considered in this paper to deal with the tensions between the
sustainability goals and the preservation of the modern built heritage. One of them, named here
the image conservation approach, consists of renovating the building with very efficient solutions,
except for the brick-facing walls, which will only have insulation in their existing 3 cm thick cavities.
The other strategy, the image coordination approach, consists of renovating the whole building with
efficient solutions, including external insulation for existing brick-facing walls, and drawing up
coordination plans for each of the residential estates in order to guarantee a coordinated new image of
the residential estates.

By means of three case studies in the city of Zaragoza and four scenarios of improvement, the two
strategies were compared regarding the regulation compliance, the energy use, the emissions reduction,
the thermal comfort, and the cost-effectiveness of the measures.

The results show that from the points of view of environment (energy use and emissions) and
cost-effectiveness, the image coordination approach is the best strategy because:

• It would bring about an additional 13%–24% reduction of CO2 emissions as compared to the
image conservation approach. In total, it could contribute to up to 69%–79% reduction of CO2

emissions in comparison with the original buildings, which is quite close to the objectives of the
EU for 2050 to reduce emissions in the building sector by 80%–95%.

• It implies an additional reduction of heating energy use of 29%–51% as compared to the image
conservation approach. The heating energy use can be reduced in total up to 75%–97% in
comparison with the original buildings with this approach, according to simulations.

• Even if it implies an additional increase of the cooling energy use of 4%–13% as compared to
the image conservation approach and a total increase of 13%–39% with regard to the original
buildings (scenario 0), this is not so significant when looking at the whole picture because cooling
only represents a 6%–8% of total emissions in scenario 0 thanks to the high thermal inertia,
night ventilation, and solar protection of these types of buildings, which are maintained or
improved in the subsequent scenarios.
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Regarding thermal comfort, both strategies provide high levels of comfort, reaching 96%–100% of
hours within the 90% acceptability.

The analysis also shows that the image coordination strategy is the only one that can ensure
the fulfilment of the compulsory major renovation requirements recently modified in Spain, and can
even transform existing social housing buildings into nZEBs by improving both the envelope and
the systems.

For these reasons, the image coordination approach is the only strategy recommended in this
paper, unless the boundary conditions were changed, for example by defining innovative solutions to
facilitate merging households in condo buildings and using inside insulation solutions.

The buildings from this period with thick brick-bearing walls show a better energy performance
before and after renovation than buildings with structures of pillars and the corresponding thinning
of the façade, due to the higher thermal inertia of their façades making it easier and cheaper (up to
14%–62%) to achieve the major renovation and nZEB standards.
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Appendix A

Table A1. Thermal characterization of the elements of the envelope and systems of the simulation models (Y12: periodic thermal transmittance; k1: internal areal
thermal capacity).

Scenarios and Cases Façade Roof Ground Windows Systems

Sc
en

ar
io

0

G
ir

ón
F1U-value = 1.05 W/m2

·K
Y12 = 0.11 W/m2

·K
K1 = 41 kJ/m2

·K
F2 U-value = 1.23 W/m2

·K
Y12 = 0.30 W/m2

·K
K1 = 45 kJ/m2

·K
F3 U-value = 0.78 W/m2

·K
Y12 = 0.13 W/m2

·K
K1 = 43 kJ/m2

·K

U-value = 2.25
W/m2

·K

U-value = 3.81
W/m2

·K

Old wood frame
U-value = 2.0 W/m2

·K;
Single glass

U-value = 5.6 W/m2
·K; g = 0.85;

Dark shutter
Window U-value = 5.08 W/m2

·K [13]

Regular gas boiler
Performance 81% [34]A

lf
ér

ez
R

oj
as

U-value = 2.21
W/m2

·K

B
al

sa
s

de
Eb

ro
Vi

ej
o

F9U-value = 1.49 W/m2
·K

Y12 = 0.89 W/m2
·K

K1 = 48 kJ/m2
·K

F10 U-value = 1.20 W/m2
·K

Y12 = 0.75 W/m2
·K

K1 = 49 kJ/m2
·K

U-value = 2.31
W/m2

·K
U-value = 1.92

W/m2
·K

Sc
en

ar
io

1

G
ir

ón

F1U-value = 0.60 W/m2
·K

Y12 = 0.04 W/m2
·K

K1 = 41 kJ/m2
·K

F2 U-value = 0.66 W/m2
·K

Y12 = 0.11 W/m2
·K

K1 = 42 kJ/m2
·K

F3 U-value = 0.15 W/m2
·K

Y12 = 0.00 W/m2
·K

K1 = 41 kJ/m2
·K

U-value = 0.12
W/m2

·K

U-value = 3.81
W/m2

·K;
Perimeter insulation:
1 m, R = 3.0 m2

·K/W;

PVC frame U-value = 1.80 W/m2
·K

Triple glass U-value = 0.85 W/m2
·K; g = 0.70

Light shutter
Window U-value = 1.04 W/m2

·K

Regular gas boiler
Performance 81% [34]A

lf
ér

ez
R

oj
as

U-value = 0.16
W/m2

·K

B
al

sa
s

de
Eb

ro
Vi

ej
o

F9U-value = 0.73 W/m2
·K

Y12 = 0.33 W/m2
·K

K1 = 45 kJ/m2
·K

F10 U-value = 0.15 W/m2
·K

Y12 = 0.03 W/m2
·K

K1 = 42 kJ/m2
·K

U-value = 0.12
W/m2

·K
U-value = 0.15

W/m2
·K
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Table A1. Cont.

Scenarios and Cases Façade Roof Ground Windows Systems
Sc

en
ar

io
2

G
ir

ón

F1U-value = 0.23 W/m2
·K

Y12 = 0.00 W/m2
·K

K1 = 41 kJ/m2
·K

F2 U-value = 0.23 W/m2
·K

Y12 = 0.01 W/m2
·K

K1 = 41 kJ/m2
·K

F3 U-value = 0.21 W/m2
·K

Y12 = 0.01 W/m2
·K

K1 = 41 kJ/m2
·K

U-value =0.12
W/m2

·K

U-value = 3.81
W/m2

·K;
Perimeter insulation:
1 m, R = 3.0 m2

·K/W;

PVC frame U-value = 1.80 W/m2
·K

Triple glass U-value = 0.85 W/m2
·K; g = 0.70

Light shutter
Window U-value = 1.04 W/m2

·K

Regular gas boiler
Performance 81% [34]

A
lf

ér
ez

R
oj

as
U-value = 0.28

W/m2
·K

B
al

sa
s

de
Eb

ro
Vi

ej
o

F9U-value = 0.22 W/m2
·K

Y12 = 0.04 W/m2
·K

K1 = 42 kJ/m2
·K

F10 U-value = 0.23 W/m2
·K

Y12 = 0.05 W/m2
·K

K1 = 43 kJ/m2
·K

U-value = 0.12
W/m2

·K
U-value = 0.28

W/m2
·K

Sc
en

ar
io

3

G
ir

ón

F1U-value = 0.60 W/m2
·K

Y12 = 0.04 W/m2
·K

K1 = 41 kJ/m2
·K

F2 U-value = 0.66 W/m2
·K

Y12 = 0.11 W/m2
·K

K1 = 42 kJ/m2
·K

F3 U-value = 0.15 W/m2
·K

Y12 = 0.00 W/m2
·K

K1 = 41 kJ/m2
·K

U-value = 0.12
W/m2

·K

U-value = 3.81
W/m2

·K;
Perimeter insulation:
1 m, R = 3.0 m2

·K/W;

PVC frame U-value = 1.80 W/m2
·K

Triple glazing U-value = 0.85 W/m2
·K; g = 0.70

Light shutter
U-value window = 1.04 W/m2

·K

Gas condensing boiler
Performance 100%

60% solar energy DHWA
lf

ér
ez

R
oj

as

U-value = 0.16
W/m2

·K

B
al

sa
s

de
Eb

ro
Vi

ej
o

F9U-value = 0.73 W/m2
·K

Y12 = 0.33 W/m2
·K

K1 = 45 kJ/m2
·K

F10 U-value = 0.15 W/m2
·K

Y12 = 0.03 W/m2
·K

K1 = 42 kJ/m2
·K

U-value = 0.12
W/m2

·K
U-value = 0.15

W/m2
·K
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Table A1. Cont.

Scenarios and Cases Façade Roof Ground Windows Systems
Sc

en
ar

io
s

4
an

d
4*

G
ir

ón

F1U-value = 0.23 W/m2
·K

Y12 = 0.00 W/m2
·K

K1 = 41 kJ/m2
·K

F2 U-value = 0.23 W/m2
·K

Y12 = 0.01 W/m2
·K

K1 = 41 kJ/m2
·K

F3 U-value = 0.21 W/m2
·K

Y12 = 0.01 W/m2
·K

K1 = 41 kJ/m2
·K

U-value = 0.12
W/m2

·K

U-value = 3.81
W/m2

·K;
Perimeter insulation:
1 m, R = 3.0 m2

·K/W;

PVC frame U-value = 1.80 W/m2
·K

Triple glass U-value = 0.85 W/m2
·K; g = 0.70

Light shutter
U-value window =1.04 W/m2

·K

Gas condensing boiler
Performance 100%

60% solar energy DHW (scenario 4)
65% solar energy DHW (scenario 4*)A

lf
ér

ez
R

oj
as

U-value = 0.28
W/m2

·K

B
al

sa
s

de
Eb

ro
Vi

ej
o

F9U-value = 0.22 W/m2
·K

Y12 = 0.04 W/m2
·K

K1 = 42 kJ/m2
·K

F10 U-value = 0.23 W/m2
·K

Y12 = 0.05 W/m2
·K

K1 = 43 kJ/m2
·K

U-value = 0.12
W/m2

·K
U-value = 0.28

W/m2
·K

Note: * Additional 5% of DHW (in total 65%)

Appendix B

Table A2. Linear thermal transmittance of thermal bridges (W/mK).

Scenario Floor-To-Wall
Junctions

Wall-To-Wall Junctions:
Exterior Corners

Wall-To-Wall Junctions:
Interior Corners

Window-To-Wall
Junctions: Ledge

Window-To-Wall
Junctions: Lintel

Window-To-Wall
Junctions: Jambs Slab-On-Ground Suspended Concrete Floors and Slabs

in Contact with Uninhabitable Rooms

Girón case study

0 0.99 0.15 −0.22 0.10 0.58 0.37 3.51 -

1, 3 0.67 0.08 −0.12 0.12 0.55 0.34 3.76 -

2, 4 0.07 0.04 −0.06 0.08 0.09 0.03 3.88 -

Alférez Rojas case study

0 0.98 0.15 −0.22 0.11 0.59 0.37 - −2.67

1, 3 0.18 0.08 −0.19 0.15 0.70 0.43 - 0.94

2, 4 0.08 0.05 −0.07 0.08 0.09 0.04 - 0.19

Balsas de Ebro Viejo case study

0 1.06 0.19 - 0.10 0.56 0.36 - −6.11

1, 3 0.61 0.09 - 0.12 0.51 0.32 - 0.9

2, 4, 4 * 0.06 0.04 0.08 0.09 0.04 - 0.81

Note: * Additional 5% of DHW (in total 65%).
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Appendix C

Table A3. Use and climate conditions in the simulation models.

Parameters Values

Occupancy density (3 people) 0.05 people/m2

Hours of operation and occupancy: Monday to Friday: 7 am to 3 pm 25% occupation

Hours of operation and occupancy: Monday to Friday: 3 pm to 8 pm 50% occupation

Hours of operation and occupancy: Monday to Friday: 8 pm to 7 am 100% occupation

Hours of operation, activity and occupancy: Saturday and Sunday 100% occupation

Climate equipment operating hours (heating) 7 a.m. to 10 p.m.

Climate equipment operating hours (cooling) 9 a.m. to 8 p.m.

Running of the air conditioning system from Monday to Sunday 7 days/week

Summer period 1st June–30th September

Winter period 1st October–31st May

Metabolic factor: “Standing/walking” option 1

Clothing values (CLO) Summer 0.5 Clo; winter: 1.0 Clo

Load due to general lighting 4.4 W/m2–100lux (10% (0–7 h, 30% (7–18 h), 50% (18–19 h), 100% (19–23 h), 50% (23-24 h)

High set point temperature (June-September) 27 ◦C (0:00–7:00, 23:00–23:59)
25 ◦C (15:00–22:59)

Low set point temperature (January-May, October-December) 17 ◦C (0:00–7:00, 23:00–23:59)
20 ◦C (7:00–22:59)

Relative humidity of the indoor air 50%

Infiltration air flow rate per internal volume through the envelope (n50) 5.72 h−1 for scenario 0 [41], and 4.91 h−1 for the improved scenarios (1–4 and 4 *)

Renewal air flow 33 L/s

Night ventilation 4 h−1 (June–September; 1–8 h)

Activation of solar control in summer

Window shadingType: blind with low reflectivity slats (scenario 0), blind with high reflectivity slats (scenarios 1–4 and 4*)
Position: outside

Slat angle control type: fix; vertical
Operation schedule: residential CTE shading:

On: June–September; 30% 0–24 h
Off: January–May; October–December

Note: * Additional 5% of DHW (in total 65%).
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