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Preface/Prefacio 

 

Esta tesis doctoral titulada “Síntesis de materiales metal-orgánicos y encapsulación de 

moléculas bioactivas” se ha realizado en el Departamento de Ingeniería Química y Tecnologías 

del Medio Ambiente (IQTMA) y en el Instituto de Nanociencia de Aragón (INA) e Instituto de 

Ciencia de Materiales de Aragón (ICMA),  de la Universidad de Zaragoza. Se ha llevado a cabo 

en el Grupo de Catálisis, Separaciones Moleculares e Ingeniería de Reactores (CREG), dentro 

del subgrupo dedicado al desarrollo y modificación de materiales nanoestructurados y 

membranas.  

Entre otras líneas, el grupo CREG trabaja desde 1991 en la síntesis de materiales 

nanoestructurados porosos y su aplicación en membranas inorgánicas y en reactores catalíticos 

de membrana. En el año 2005 fue reconocido por el Gobierno de Aragón como grupo de 

investigación de excelencia y comenzando por entonces la línea de investigación de materiales 

híbridos orgánicos-inorgánicos y procesos de modificación de materiales laminares porosos 

donde se enmarca el presente trabajo.  

La realización de esta tesis doctoral ha sido posible gracias al apoyo económico de la 

Diputación General de Aragón (T43-17R), del Ministerio de Economía y Competitividad y del 

Fondo Social Europeo mediante el proyecto de investigación MAT2016-77290-R.  

Durante la realización de esta tesis la autora ha colaborado en diversos temas, sin reflejo en 

la presente memoria de tesis, con las empresas Industrias Químicas del Ebro (IQE, Zaragoza) 

y Orache Desinfection (Sabiñánigo). En este último caso la colaboración ha dado lugar a la 

solicitud de una patente española: “Pastillas desinfectantes bicapa con detergente y repelente 

de suciedad” (P201830195). 

Dicho lo anterior, el objetivo de la tesis se centra en el estudio de la síntesis de materiales 

metalorgánicos porosos (MOFs) usando nuevas rutas, que permitan un mayor control de sus 

propiedades (capítulos 2 y 3), así como la aplicación de los MOFs a la encapsulación de 

moléculas bioactivas (cafeína, ácido kójico y carvacrol). En este último caso, además, se han 

usado metodologías inéditas hasta el momento, como son la encapsulación a alta presión en 

ausencia de disolvente (capítulo 4) y la encapsulación asistida mediante dióxido de carbono 

supercrítico (capítulo 5). 
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Resumen 

Se presenta aquí la tesis doctoral con título “Síntesis de materiales metal-orgánicos y 

encapsulación de moléculas bioactivas” (Synthesis of metal-organic materials and 

encapsulation of bioactive molecules). 

En el capítulo 1 se expone una breve introducción a los materiales metal-orgánico 

(MOF) en la que se explican los fundamentos de estos materiales y sus aplicaciones. 

En los capítulos 2-6 se exponen los resultados de esta tesis que ha estado basada en 

dos líneas de investigación principales: (i) el diseño de nuevas estrategias de síntesis de 

MOF (capítulos 2 y 3), y (ii) nuevos métodos de encapsulación de moléculas bioactivas 

con MOF potencialmente biocompatibles (capítulos 4 y 5). 

En lo referente al campo de la síntesis, dos nuevas estrategias se han estudiado en las 

cuales se ha utilizado la reactividad de los metales en disolución y de la química de la 

coordinación para favorecer la síntesis de MOF. En primer lugar, el uso de atmósferas 

gaseosas reactivas a alta presión (6 bar) se estudió en la síntesis de fumaratos de aluminio 

y hierro(III). Se estudió el efecto de CO y O2 sobre la formación de MOF y los diferentes 

productos finales se caracterizaron y compararon entre sí y con otros materiales de la 

literatura científica. En segundo lugar, se utilizó peróxido de hidrógeno (H2O2) para 

sintetizar tereftalatos de aluminio y hierro(III). Por medio de varias técnicas, este efecto 

se estudió y compraró con muestras de referencia preparadas sin peróxido para proponer 

un mecanismo que explique el efecto favorable del H2O2. 

En lo referente al campo de la encapsulación, se han propuesto dos nuevos métodos, 

en los cuales se usó alta presión por medio de diferentes aproximaciones. En primer 

lugar, se estudió el efecto de aplicar alta presión (0,32 GPa) con una prensa hidráulica 

sobre mezclas MOF-aditivo con cuatro tipos de MOF basados en ligandos carboxilato 

(MIL-53(Al), Mg-MOF-74, UiO-66 y MIL-101(Cr)) y dos aditivos (cafeína y ácido kójico). 

Por medio de diferentes técnicas, se demostró el alcance de la encapsulación para los dos 

aditivos. En segundo lugar, se empleó CO2 supercrítico (a 40 ºC y 100 bar) para 

encapsular cafeína y carvacrol en dos MOF potencialmente biocompatibles, MIL-53(Al) 

y Mg-MOF-74. La cantidad de carga de aditivo se estudió a distintos tiempos y se 

caracterizaron las interacciones MOF-aditivo. 

Finalmente, los resultados más remarcables conseguidos a lo largo de esta tesis se han 

resumido brevemente en el capítulo 6 (conclusiones). 
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Summary  

The PhD dissertation with the title “Síntesis de materiales metal-orgánicos y 

encapsulación de moléculas bioactivas” (Synthesis of metal-organic materials and 

encapsulation of bioactive molecules) is presented here. 

In Chapter 1, a brief introduction to metal-organic frameworks (MOFs) is presented, 

in which a general overview is displayed about of the fundamentals and applications of 

these materials. 

In chapters 2-6, the two main research lines and results of this thesis are presented, 

(i) new strategies of MOF synthesis (Ch. 3 and 4) and (ii) encapsulation of bioactive 

molecules in potentially biocompatible MOFs (Ch. 5 and 6) 

In the synthesis field, two different approaches were studied, and in both of them the 

metal reactivity and coordination chemistry were used to promote the MOF synthesis. 

Firstly, reactive gas atmospheres at high pressure (6 bar) were used in the synthesis of 

M3+-fumarates of aluminium and iron. The effect of CO and O2 over the MOF formation 

was studied, and the resulting final materials were characterized and compared. The 

results were discussed and published. Secondly, the oxidant hydrogen peroxide (H2O2) 

was used to synthesize M3+-terephthalates of aluminium and iron. Through different 

techniques, the effect was compared and discussed with reference samples obtained 

without H2O2 to propose a plausible mechanism to explain the favorable effect on MOF 

synthesis. 

In the encapsulation field, two new routes were proposed and in both of them high 

pressure was used through different ways. First, four carboxylate based MOFs (MIL-

53(Al), Mg-MOF-74, UiO-66 and MIL-101(Cr)) and two additives (caffeine and kojic 

acid) were studied when high pressure (0.32 GPa) was applied with a hydraulic press. By 

different techniques, the extent of the encapsulation of both additives was demonstrated. 

Second, supercritical-CO2 (at 40 ºC and 100 bar) was used to encapsulate two soluble 

molecules, caffeine and carvacrol, into two potentially biocompatible MOFs, MIL-53(Al) 

and Mg-MOF-74. The additive loadings were studied through time, and host-guest 

interactions were characterized. 

Finally, the most remarkable goals achieved during this doctoral thesis are briefly 

summarized in chapter 7 (conclusions). 

Having said this, the PhD dissertation with the title “Síntesis de materiales metal-

orgánicos y encapsulación de moléculas bioactivas” (Synthesis of metal-organic 

materials and encapsulation of bioactive molecules) is presented as follows. 



 



 

 

Chapter 1 

 
Introduction 
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1.1.- General considerations of metal-organic frameworks (MOFs) 

MOFs (Metal-Organic Frameworks) can be described as extended crystalline networks in 2D or 

3D, which show permanent porosity and high specific surface area.1,2 As any network, MOFs are 

constituted by knots and connecting units forming channels (1D), sheets (2D) or 3D networks.2 The 

composition consists of clusters of metal cations connected through linkers, known as struts, typically 

bi- or tridentate. As other porous materials, MOFs find general applications in gas adsorption, 

separation and catalysis, and others more specific. 

The inorganic part: metal ion coordination 

The metal ions are located in the knots, coordinated to connector groups of the ligand and in some 

cases among them. These knots are described as secondary building units (SBU).2,3 This coordination 

is conditioned by the synthesis conditions and starting reactants, (metal salt and ligand, typically in 

the acid form). The SBU determines the final structure and the stoichiometry of the porous material.2 

Several examples are, tetramers of tetrahedral Zn2+ of MOF-5  [Zn4(O)O12C6], chains of octahedral 

Al3+, Cr3+, Fe3+, Ga3+, In3+, Sc3+ or V3+ of MIL-53,4–10 hexamers of (octahedral) Zr4+ of UiO-66,11 or  

monomers of tetrahedral Zn2+ or Co2+ of ZIFs, among others.12 The topology of MOFs is assorted: they 

show different structures, e.g. cubic cages of MOF-5,13 mono-dimensional channels of MIL-53 series, 
4–7 3D nets of octahedral and tetrahedral pores with triangular windows of UiO-66,11 and zeolite-like 

structure of ZIFs (zeolitic imidazolate frameworks).12 

The organic part: ligands  

Regarding the ligand that links the SBUs, a great number of bi- and tridentate ligands have been 

used to build MOFs.12,14 The ligands are sometimes named struts as they act likewise connecting the 

knots of metal centers. Most common binding functionality is carboxylate group, e.g. coming from 

terephthalic acid or benzene-1,4-dicarboxylic acid (H2BDC), trimesic acid or benzene-1,3,5-

tricarboxylic acid (H3BTC), and imidazolates (ZIFs). It is important to remark that the starting 

reactant is normally the ligand in the acid form but in the MOF structure is deprotonated, e.g. 

departing from terephthalic acid, the struts are formed by terephthalates (BDC) and from trimesic 

acid, trimesates (BTC). Typically, the ligand is an aromatic ring or a combination of them, which 

provides higher structural stability. Although, other less rigid ligands are also used, e.g. fumarate,15 

adipate16 or malate.17 One of the distinctive MOFs characteristic is the organic part, which can be 

functionalized in such a way that pore cavities modifies the MOF surface and therefore the properties 

of the material can be changed, e.g. the interaction with a guest or in molecular separations. Several 

reports can be found, where the authors compare the properties of the original material with those of 

the functionalized MOF. 18–20 For example, Devic et al 2012 studied the CO2 adsorption of 

functionalized MIL-53(Fe)-X, that is, the material was prepared with usual ligand, terephthalate or 

benzene 1,4-dicarboxilate, and with a group ring X= Cl, Br, CH3, NH2, (COOH)2–2,4-substitution), in 

2-position of the aromatic.18 Yang et al 2016 improved the CO2 adsorption of MIL-53(Al) by 

introducing -OH groups.19 They observed that the introduction of two -OH groups per ligand 

improved CO2 uptake. The authors justified this fact by the high quadrupolar moment of CO2 that 

allowed the interaction with -OH groups. Otherwise the presence of four -OH groups per ligand 

produced lower CO2 uptake, in this case the excess of functional groups diminished the pore volume 

and then the adsorption capacity of the MOF.  

The ligand primarily determines the size of the cavities. It is representative the work carried out by 

Eddaoudi et al. 2002 in Yaghi’s group.21 They synthesized a series of MOFs with the same structure 

of MOF-5, Zn4O(BDC)3,13 in which  IRMOFs (isoreticular MOFs) whose pore size increases as ligand 

length is longer. Another similar case was reported in 2012 by the same group, in which a series of 



Chapter 1 
 

8 

isoreticular MOF-74 (IRMOF-74 ), a honeycomb structure, were synthesized.22 The handicap of 

IRMOFs is that as the larger is the ligand length, the most probable it is the interpenetration of nets 

or concatenation,23 apart from the fact that the price of the ligand increases, which may limit the 

applicability of the MOF.  

The importance of tunability can be understood if MOFs are compared with the crystalline 

inorganic equivalent: the zeolites (see section 6 for further comparison with other porous materials). 

Zeolites are limited by the base composition of aluminosilicates and structural tetrahedral oxides; 

some variability might be achieved just by cation exchange. Meanwhile, MOFs can be modified, for 

example, accordingly the gas to be adsobed.24 

The intrinsic properties of the ligands can provide distinctive applications to the MOFs, e.g. 

chirality or fluorescence. Chiral ligands can be used to build MOFs for applications in catalysis, 

enantioselectivity separations or non-linear optics, e.g. L- or D-POST-1 (made of Zn and L- or D-

tartrate, respectively), POST stands for Pohang University of Science and Technology,25 or those made 

from chiral amino acids. Otherwise, MOF prepared from fluorescent struts show applications in 

chemical sensing and biosensing.26 

A bit of nomenclature 

The expression of metal-organic framework was used firstly in 1995 by Omar Yaghi and Hailian Li, 

from the Arizona University back then.27 However, MOFs or crystalline hybrid structures date before 

that year, but they were not named in that way. For example, Konoshita et al. reported in 1959 the 

crystal structure of the 3D network of bis(adiponitrilo)-copper(I) nitrate.28 The reporting of their 

special properties started in 1997, when Kondo et al, in the group of Kitagawa at Tokyo Metropolitan 

University, described the CH4, N2 and O2 adsorption behavior of a MOF based on the ligand 4,4´-

bypiridine and a divalent metal cation (Co, Ni or Zn).29 Moreover, especially significant was the first 

paper on MOF-5 by Li et al 1999, composed by Zn2+ and 1,4-benzenedicarboxylate, and its 

exceptionally high BET surface area of 2320 m2/g, superior to those reported for other porous 

materials like zeolites and activated carbon.13 Since then and to say so, three main research sides have 

stood up in this field, the north American side with the groups of O. Yaghi (Berkeley University), J.Y. 

Hupp (Northwestern University) and O. Farha (Northwestern University before, King Abdulaziz 

University nowadays), the side in France of the group of C. Serre and G. Férey (died in 2017) of 

Lavoisier Versailles Institute (Paris), and the side in Japan of the group of S. Kitagawa (Kyoto 

University). Nevertheless,, several other groups are important in this field and have developed many 

interesting advances in hybrid porous materials. 

The metal-organic materials are known also as porous coordination polymers (PCP) although in 

general they are named MOFs.30,31 Firstly, they were compared to organic polymers because the 

network can be considered chains expanded in 2 or 3D of the ligand (monomer) connected through 

the coordination to the metal. However, similarities between MOFs and polymers are scarce in terms 

of physical and chemical properties. The generic name normally consists of the acronym MOF 

followed by a hyphen and a number. The metal element that forms the net can be included before the 

name separated by a hyphen or after it in brackets, e.g. Mg-MOF-74 or MIL-53(Al). In some cases, 

MOF are denominated with an acronym related to the place of discover, such as the MIL named so 

for the Materials Institute of Lavoisier of Paris, the series UiO from Oslo University (Universitetet i 

Oslo),11 HKUST (Hong Kong University of Science and Technology)32 or CAU (Christian Albrechts 

Universität).33  The nomenclature can be ambiguous in some cases since a material can be referred 

with different names. For example, among the MOFs used in through this thesis, the Mg-MOF-7434 is 

also known as CPO-27,35 or IRMOF-1. Another example, MIL-53(Al)-FA, named so for being 
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isostructural with MIL-53(Al) but with the ligand fumarate,15 is also known as MIL-88A(Al), as 

basolite A520 in a patent by BASF,15,36 simply aluminum-fumarate15 or µp-AF.37 That makes five 

different names to refer the same material. 

Porosity, structure and flexibility 

Several features make MOFs of great interest. Firstly, the permanent porosity, as mentioned 

before, MOFs are crystalline networks that display typically porosity in the nanoscale. Although some 

of them have mesoporous, e.g. MOF-100 and 101 with pores of  a few nanometers.38,39 The importance 

of permanent porosity related to their reusability: crystal structure must be preserved after the 

removal of adsorbed gas for adsorption-desorption cycles. Their intrinsic crystallinity results in 

characteristic diffraction patterns that can be compared with references or simulated patterns which 

are deposited in the crystallographic data center (CCDC) for identification.40  

One of the most remarkable property of MOFs is the high specific surface area, these materials 

show the highest values ever reported up to date (~7000 m2/g).41 Typically, the Brunauer-Emmett-

Teller (BET) method is used to calculate the specific area from adsorption isotherms data and this 

value allows to to compare among materials. It is remarkable that even among synthesis routes and 

activation processes, different values are displayed for a given material. The applicability of BET 

theory for MOFs has been discussed,42,43 and sometimes is also reported the Langmuir surface area 

value (BET theory assumes multilayer adsorption and Langmuir theory considers a single 

monolayer). Nevertheless, Langmuir areas tend to overestimate the apparent surface areas and BET 

area is considered the most appropriate way to calculate specific surface areas of MOFs.42 The specific 

surface area is considered crucial for applications, especially for those related with gas adsorption and 

separation. It is worthy to mention that high crystallinity is not always required for some applications 

as long as the adsorption capacity is preserved. 

A characteristic feature of some MOFs is their flexibility, in terms of the so-called breathing, the 

structure is modified due to an external stimulus or a guest present into the pores. Depending on the 

magnitude of this modification, it is distinguished between flexibility, if the variation is minor, or 

breathing, if a change in special group is produced.2 The MIL-88A is an example of flexibility and so 

MIL-53 of breathing.2,3 Breathing and flexibility should be distinguished from the rigidity or flexibility 

of the ligand composing the struts, as they are not related properties, i.e. a rigid ligand can give rise 

to a flexible structure. 

The wide range of possibilities of combination of metal cations and ligands generate a great number 

of MOFs. In opposition, the number of zeolite types structures is limited.44 Additionally, MOFs struts 

can be post-synthetically modified, for example by exchanging a functional group or using a different 

substituent, and in turn this allows the adjustment of the properties of the material.45 Consequently, 

the research in MOFs is a challenging field considering that the study of potential applications is 

broad. The great versatility of MOFs distinguishes them from other porous materials such as inorganic 

zeolitic materials and activated carbons.  

The MOF functionality for each application depends greatly on the interactions between the MOF 

pores surface and the guest, either a gas or a liquid. Two different sites have to be considered, the 

knots and the struts, that is, the environment around the secondary building units or SBUs and the 

organic linkers.46,47 A priori, the SBUs could form polar interactions with guest, meanwhile the 

binding with the organic linker would be led mainly by non-polar or less polarized interactions and, 

in some cases, by π-π stacking. Although, the functionalization of the ligand would also determine 

these interactions. Hydrogen bonds, either with the ligand or the coordination positions, can be 



Chapter 1 
 

10 

found.48 The accessibility of the binding active sites is important for the good performance of MOFs, 

therefore the activation step is decisive in this point.49 

Regarding the SBUs and its environment around, the availability of unsaturated metal centers 

(UMC)50 or open metal sites can play an important role in some applications, especially in those of 

gas separations34,50–54 and others like catalysis.55,56 The specificity for a gas molecule is improved due 

to the preferential interaction with UMC. For example, it has been studied for H2 storage,51–54 CO2 

capture34 and NO storage.57 See section 3.1 in which some representative examples are described.  

Strengths and weakness 

The major handicaps of MOFs are thermal resistance and low stability in water. The thermal 

stability limits the application in industry for high temperature processes, in this point MOFs cannot 

compete with zeolites or other inorganic porous materials. As MOFs are formed by organic 

components, thermal stability is limited in any event. Most MOFs are no stable above 450 ºC, with 

some important exceptions like MIL-53(Al) and the series of UiO. The metal can also have influence 

on the thermal resistance, e.g. for the MIL-53 series, the MOF of Al is the most stable (ca. 500-550 

ºC), meanwhile that of Fe is only stable up to 350-400 ºC. In the UiO series, UiO-66 is stable up to 

540 ºC. In this MOF, the SBU is extraordinarily strong, formed by a Zr6-octahedron, and its strength 

is so high that during the thermal decomposition the carboxylate of the terephthalate is kept with the 

cluster, separately from the aromatic ring. 

Regarding stability in water, the weakest structural point is normally the coordination bond 

between the ligand and the metal center. In fact, hydrolysis is produced due to the favored solvation 

of the metal cation by water molecules over the ligand coordination at high temperatures or even at 

room temperature, solvation might be favored by the anions in solution like phosphates. MOF 

decomposition leads usually to the metal cation and ligand separation. The water and humidity effects 

in MOFs have been broadly studied. For example, Mg-MOF-74 is a promising material for CO2 

capture,34 although the water and humidity instability can limit the actual industrial use.58 Water 

stable MOFs can be applied in more potential applications than those that are not.59 

 

1.2.- Synthesis, post treatments and post synthetic modifications  

1.2.1- Synthesis overview 

MOFs are synthetic materials. The synthesis of MOFs is normally carried out in solvothermal or 

hydrothermal conditions, i.e. in a sealed reactor at high temperature in an organic solvent or in water. 

Summarizing, the basic synthesis of MOFs consists in placing the ligand and the metal salt together 

in the solvent (distilled water, an organic solvent or a mixture of both) in a tightly closed inert reactor, 

or an autoclave at high temperature, or in baker at room temperature. Working temperatures are in 

the range from room temperature to 250 ºC at maximum, and normally below this temperature.  It is 

worthy to remark the importance of synthesis reactants, especially the metal salt, and pH. 

The optimization of syntheses is a challenging issue and stands out because the applicability 

depends on obtaining an affordable and viable route. In many cases, the reported syntheses require a 

toxic solvent, typically dimethylformamide (DMF), that implies a more complicated processing, 

higher expenditure in waste, washing steps of the material or even the final impurity of the obtained 

products because DMF tends to be strongly occluded in the MOF pores.  

Consequently, one of the first aims in the synthesis research is the substitution of DMF by other 

less toxic solvent. For example, the synthesis of UiO-66, one of the MOFs that shows highest thermal 
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resistance, was tested in different solvents with a moderate success, only DMF produced pure 

crystalline UiO-66.60 

Another challenge is to obtain milder conditions of synthesis. High temperature and relatively long 

reaction times are usually reported, which also implies the need of a reactor formed by an inert Teflon 

and a stain less steel jacket able to resist high pressures. For example, the synthesis of MIL-53(Al), 

also highly stable up to 500 ºC, is carried out in the described setup at 220 ºC for 3 days,4 which 

requires a reaction system able to stand high pressure and temperature. In order to achieve milder 

conditions and reduced energetic expense, the synthesis of MIL-53(Al) has been reported at room 

temperature departing from sodium terephthalate instead of terephthalic acid.61 However, this 

method generates a solid less crystalline and with poorer properties, as they depend strongly on the 

crystallinity. Hence this must be a key element: a novel synthesis method must arise with a solid of 

good crystallinity degree or, at least, good enough for each desired application.  

The molar ratio metal:ligand is also a key point in MOFs synthesis, the actual obtention of the MOF 

phase depends a great deal on it. In some cases, an excess of ligand is required, which is the most 

expensive reactant. For example, ZIF-8, a Zn imidazolate isostructural with the Co imidazolate ZIF-

67, can be synthesized in MeOH or mixtures of MeOH/H2O at room temperature with a high excess 

of ligand, 1M:8L.62 

The yield is also a key factor to take into account, not always included in the reported syntheses. 

Some described syntheses report high quality MOFs although with low yield, limiting the real 

applicability. Alternative or improved syntheses are needed in those cases. In some reports in which 

scaling up syntheses are described, the value of space-time yield (STY) is used. STY is defined as the 

mass of a product formed per volume of the reactor and time (e.g. kg·m-3·h-1 or g·L-1·h-1).63 

The importance of the reactants and synthesis conditions 

The salt selection can be decisive in the final product, or even in the righteous obtaining of the 

MOF. As a representative example, Janiak and co-workers carried out a study to obtain MIL-100(Fe) 

in a solvent media of DMSO/H2O. They tested different iron (III) salts, that is of nitrate (Fe(NO3)3·9), 

chlorine (FeCl3·6H2O), mesylate (Fe(MeSO3)3), hydrogensulfate (Fe(HSO4)3) and sulfate (Fe2(SO4)3). 

Interestingly, they only obtained the phase MIL-100(Fe) with the nitrate salt for the same conditions 

of solvent, temperature, reaction time and pH.64 It is also interesting the replacement of less desirable 

metal nitrates and chlorines by alternative and in in some cases greener and cheaper salts as those 

based on acetylacetonates.65   

Some ligand-metal ion combinations can give rise to different structures depending on the 

conditions and is not always known the reason why one structure is formed instead the others. For 

example, departing from terephthalic acid and an iron (III) chlorine four different structures can be 

obtained, MIL-53(Fe),6 MIL-68(Fe),66 MIL-88B(Fe),67 and MIL-101(Fe),68 even a fifth structure, 

MIL-85, can be constructed when ion acetate is incorporated into the structure too.69 

The ligand can be purchased as protonated or the corresponding salt, although the most used is 

the protonated ligand.61 The low pH corresponding to solutions of transition metals may protonate 

the ligand in any event. 

External assistance: beyond solvothermal method 

Even though, solvo- and hydrothermal syntheses are the most used, other processes have been 

developed successfully for some MOFs.70 Most relevant methods are described below as follows: 
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-Microwave synthesis. Microwave irradiation (MW) is used to heat the system. The 

electromagnetic field interacts the mobile charges of the media (ions or polar molecules), which align 

with the electromagnetic field. The field is oscillating, and, therefore, molecules are constantly 

changing the orientations.71 Additionally, the system can spin, meanwhile pressure and temperature 

are controlled at the same time. Reaction times are considerably lower, from hours or days in the 

common solvothermal approach to minutes.70 The first MOF synthesized with this method was that 

MIL-100(Cr), a reduction of time was produced from 4 days to 4 h.72 

Several MOFs haven reported to synthesized by microwaves, some of them with better results than 

the usual method, such as MIL-101(Cr), HKUST-1, MOF-5, Co-MOF-74, MIL-53 of Al, Fe or Cr, ZIF-

8.63 The major handicap can be the scale-up of the process. 

-Sonochemical synthesis. The system is perturbed by an ultrasound (US) vibration of a frequency 

in the range of 20 kHz- 10 MHz. The vibration affects the solvent, and the wavelength is higher than 

the molecular dimensions, therefore reactants are not directly affected. The US produces cyclic high-

low pressure regions (compression and rarefaction). When the low pressure area is below vapor 

pressure, bubbles are formed. The cavitation, i.e. formation, growth and collapse of bubbles, shows 

huge energy in the boundaries, temperature and pressure can achieve local values of ca. 5000 K and 

1000 bar, while heating and cooling rates are extraordinarily high, more than 1010 K·s-1. These areas 

are called “hot spots”.71 All this promotes the facilitated nucleation of MOF particles, a complex 

physical chemistry is around the effect on the nucleation.  

The first reports of US assisted synthesis of MOFs date from 2008 of ZIF-8 and amino MIL-53, -

88 and 101 of iron. Other MOFs synthesized with this methodology are MIL-121, CAU-1, HKUST-1, 

MOF-14, MOF-5, and other ZIFs (ZIF-7, ZIF-11 and ZIF-20),73 among others. In general, more 

crystalline particles are obtained and higher yields. Nevertheless, the industrial application must 

overcome different challenges, such as applying at large reactors and achieving homogenous bubbles. 

-Mechanochemical synthesis. A mechanical force produces the breakage of chemical bonds and the 

induction of chemical transformations.71  The MOF is obtained by milling or grinding the starting 

reactants, sometimes small amounts of solvents can be used assisting the process.74 Temperature can 

be also a parameter to play with. The synthesis system can be a simple mortar with a pestle or 

automated ball mills. In any event, this method of synthesis is not lacking solvent absolutely, because 

the purification steps may require them due to not complete reaction of precursors. 

Mechanosyntheses are classified as solvent-free grinding (SFG), liquid-assisted grinding (LAG) and 

ion-and-liquid assisted grinding (ILAG). LAG uses a minimum amount of liquid and is more effective 

than SFG. In ILAG, another salt is added to the initial mixture.63 

The first SFG of MOFs was reported by Pichon et al in 2006, the authors described the synthesis 

of copper(II) isonicotinc, departing from copper acetate and isonicotinic acid (Hina). Other MOFs 

synthesized by SFG are ZIF-8, HKUST-1, or MIL-101(Cr). First report of LAG date from 2006 by Braga 

et al., CuCl2(dace) (dace=diaminocyclohexane) with DMSO. Other MOFs synthesized by LAG are Zn-

fumarate (2006), HKUST-1 (2010), MOF-14 (2010), IRMOF (2015), UiO-66 (2016) or NH2-UiO-66 

(2016). The ILAG approach shows less examples, e.g. pillared MOF of Zn2+ and terephthalate and 

dabco (1,4-diazabicylooctane), using alkali metal or ammonium nitrate, and ZIF-8, using ammonium 

salts.63 

-Electrochemical synthesis. There are two approaches for using electricity to synthesize MOFs, the 

anodic dissolution and the cathodic deposition.63,71 
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In the anodic dissolution, the source of MOF metal is not a salt in solution but the anode, which is 

oxidized. The ions pass to the solution and react with the ligand present in the electrolyte solution. By 

this method, MOF films can be obtained. The anodic dissolution was firstly patented by BASF in 2005, 

when they described the synthesis of CuBTC (HKUST-1) by this method. Other MOFs have been 

synthesized by anodic dissolution, such as ZIF-8, MIL-53(Al) and MIL-100(Al) (2012), MIL-100(Fe) 

(2014), several ZIF (2016), rare earth MOFs TbBTC and GdBTC (2014), and MOF-5.63,70 

In the cathodic deposition, apart from usual metal salt and ligand in solution, a so-called probe is 

needed. It consists of a species that is reduced in the cathode, e.g. nitrate to nitrite, which generates a 

pH increase and in turn promotes the MOF synthesis. First report of the cathodic deposition date of 

2011 by Dincă et al. in which the authors described the synthesis of MOF-5.75 

-Flow chemistry synthesis. The MOF synthesis is carried out in a tube instead of a bath reactor 

under continuous flowing stream, often in microfluidic conditions.76 Some of the most interesting 

advantages of this method is the high area to volume ratio or the reactor, which improves the heat 

and mass transfer and, as a consequence, faster synthesis, and the high control of reaction parameter. 

Additionally, flow reactors are scalable nowadays. Three types of reactors are used microreactor (MR), 

plug flow reactors (PFR) and stirred bank reactors (CSTR).63 

In 2011, Ameloot et al reported the first synthesis of a MOF with a flow reactor.77 Authors described 

the synthesis of HKUST-1 microcapsules, templated with droplets formed due to the immiscibility of 

water and oil. Other MOFs synthesized with flow chemistry are HKUST-1, IRMOF-3, MOF-5, UiO-

66, MIL-88B(Fe), CeBDC, Ni-CPO-27 (Ni-MOF-74), MIL-53(Al), and CAU-13, among others. 63 

-Spray-drying synthesis. The spray drying process consists in the formation of droplets of liquid or 

slurry and the immediate evaporation of the solvent with a hot gas. The MOF precursors or reactants 

are dissolved, and this solution is atomized into microdroplets that are dried to form the MOF.63 In 

2013, Carné-Sanchez, Maspoch and co-workers reported firstly the synthesis of MOF by spray-drying, 

in the same report the authors described the synthesis of 13, such as HKUST-1, NOT-100, ZIF-8 and 

MOF-5, which were obtained with high BET values, good yields and even in aqueous conditions.78 

Other MOFs synthesized with spray drying are UiO-66 series and FeBTC (MIL-101(Fe)).79  

In situ modifications: chemical point of view 

It is well-known that solids and molecules can modify particle crystallization, interacting with 

nuclei and their growth.80 Alternatively to  physical variations described above for which a different 

reaction system is need, in situ chemical variations have been successfully described for MOFs, 

specifically the coordination modulation method,81,82 and the use of some additives83–85.  

In the modulated synthesis, a monodentate ligand is added to the liquid media, such as a 

monocarboxylate or an amine ligand, and typically improves the crystallinity of the MOF and can 

modify size and shape.81,82,86,87 Tsuruoka et al. described in 2009 the synthesis of [Cu2(ndc)2(dabco)n] 

(ndc=1,4-naphthalene dicarboxylate, dabco=1,4-diazabicyclo [2.2.2] octane) with acetic acid, which 

promotes anisotropic growth of crystals by favoring [001] direction to form nanorods instead of 

cubes.81 Then, Kitakawa and co-workers reported the synthesis of CuBTC with dodecanoic acid to 

narrow particle size distribution (2010)82 and to modulate crystal shape (2011).88 Other representative 

examples are those of Schaate et al. reporting in 2011 the synthesis of several MOFs of the UiO series 

with benzoic and acetic acids to increase crystallinity,88 and of Wiβmann et al. in 2011, which achieved 

the synthesis of Zr-fumarate only in presence of formic acid as modulator.89 

Other chemicals modify size, shape or surface of MOF particles, such as surfactants or blocking 

agents, e.g. dimethylammonium halides or sodium dodecyl sulfate.83–85  
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Finally, it is worthy to mention that all the described methods of synthesis, except 

mechanosynthesis, high pressure and anodic deposition, depart from the raw metal salt and ligand in 

solutions and the product is the powder MOF. Although other strategies and products have been 

applied to MOFs synthesis, such as reverse microemulsions,83 ionothermal process,83,90 sol-gel 

method,91 etc. 

 

1.2.2.- Post treatments 

Activation 

After the synthesis of a given MOF its pores are normally loaded with an excess of ligand o solvent 

which have to be removed to activate the MOF porosity. First step is washing with a more volatile and 

in general less toxic organic solvent, like ethanol or methanol. After drying, pores might be still 

occluded. The process of pores emptying is known as activation and is a critical step on MOF 

processing. Typically, it is carried out by thermal treatment, exchange with another solvent, drying in 

vacuum or supercritical CO2 drying.92 Sometimes several of these processes are combined to produce 

a more efficient MOF activation. 

The thermal treatment way is the most frequent method. The dried MOF in powder is placed in an 

oven and a heating program is optimized for each material, with a maximum temperature below the 

material degradation which is determined normally by TGA. The activation through calcination can 

induce the partial o punctual collapse of the structure, damaging its crystallinity.  

In solvent exchange, the powder MOF is immersed while optionally heating in a solvent with low 

boiling point under stirring from hours to days at room or high temperature. High boiling solvent and 

ligand are substituted by the solvent molecules. Thus, pores are occupied by the exchange solvent 

molecules that can be removed easily by drying.  

By heating under vacuum, a better drying can be carried out without increasing excessively the 

temperature and then preventing the structure damage. 

Finally, the use of supercritical CO2 allows the use of mild temperature conditions for activation 

due to its relatively low critical point at 301 K and 74 bar (NIST Database). An effective removal of 

occluding molecules is achieved, increasing free surface area. In fact, the largest BET specific surface 

area was obtained with this activation, i.e. 7000 m2/g for Nu-110E.41  

Post-synthetic modification  

This step is optional, in fact it is not carried out in most reported synthetic procedures. In different 

reports the pore surface modification has been studied to obtain different properties of separation, 

catalysis, gas storage, etc. It is necessary to differentiate between MOF functionalization, departing 

from a modified ligand, and the post-synthetic, in which the MOF is a posteriori chemically modified. 

Post-synthetic modifications (PSM) were firstly tested in Kim´s group93 and different strategies can 

be used, e.g. using a reductant, attaching organic groups to the ligand or doping with a metal.94 

Composite and conjugate materials 

For the actual application, MOFs have been prepared in combination with other materials, such as 

silica,95 polymers to improve performance with thin films in gas separation,96 metal surface like gold,97 

biopolymers to increase biocompatibility in drug delivery,57 with graphene oxide (GO),98 with 

biomolecules to target delivery of drugs,57 etc. The range possibilities is extremely broad, out of the 

scope of the introduction to MOF of this chapter. 
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1.3.- Applications 

In the finals of the 90´s and the 2000 decade, there was an exponential rise in MOFs studies. MOFs 

chemistry was deeply studied, and several applications were discovered. Main applications of MOFs 

are gas storage (H2 and CO2),24,49 gas separation,24 catalysis99 and drug delivery,100 and other more 

advanced applications are proton conductivity,101 sensing,102 magnetic resonance imaging,26 nonlinear 

optics effects,103 supercapacitors,104 semiconducting,105 proton conductivity,101,106 scaffolds for 

pyrotechnic materials,107 water capture,108 and water or solvent adsorption for heat transfer,37  among 

others. Nowadays, the research in MOFs is a more mature field and greater effort is put to scale-up 

their production for industrial applications.109 

The origin of MOFs applicability arises from their adsorption capacity and the way they interact 

with the guest molecules. The potential interactions host-guest are stablished through the unsaturated 

metal centers, hydrogen bonding, acid-base interactions, π-π stacking, the breathing of the net, and 

electrostatic interactions.110,111 A brief summary is provided here for the most remarkable applications.   

1.3.1.- Gas adsorption and separation. First applications of MOFs were found for small gases 

adsorption and separation.29 The porosity of MOFs is of regular nature that allows the separation at 

nanoscale level, like a molecular sieve. Additionally, the chemical surface shows different selectivity 

for gases and contributes to selective separation. In some MOFs, there are unsaturated metal centers, 

that is, positions around the metal coordination do not occupy by the ligand and a gas molecule can 

interact with it strongly. Permanent porosity is a must for gas application, since some MOFs collapse 

when the pores are totally evacuated.24 Most important examples are H2 storage, CO2 capture and gas 

mixture separations, such as CO2/N2, CO2/CH4, H2/CO2 and H2/CH4.  

H2 storage. 46 The use of green transportation is a current research field, both in academic and 

industry. There is an increase necessity to substitute the fossil fuels for those that leave no waste and 

could be obtained through renewable sources. Regarding this, H2 has been proposed as an excellent 

alternative for fuel cell vehicles. Its reaction with O2 (air as natural source) produces only water and 

the energy is recovered through a fuel membrane -also a trending research topic, even MOFs have 

been studied for this aim (see section 3.6). However, raw H2 cannot be storage safely, a material able 

to storage the H2 is required for a correct use. Different materials have been tested with this purpose 

such as zeolites, activated carbon, metal hydrides, single-walled carbon nanotubes and MOFs.57 The 

minimum of H2 uptake has been established in 4.5 wt% hydrogen (1.5 kWh/kg system) by the Office 

of Energy efficiency & Renewable energy (U.S. Department of Energy).112 

The porosity and interactions with the pore walls determine the H2 uptake in MOFs. It has been 

shown that the bigger pores do not necessarily improve the H2 uptake.51,113–115 Otherwise, several 

articles report a remarkable increase by improving the H2 binding to the surface, specifically through 

the unsaturated metal centers.116 The major challenge in H2 storage is the increase of the binding 

energy of the H2 molecule, so that the required pressure and temperature conditions are viable for 

commercial use. 

  Several MOFs have been reported. One of the reported MOFs with highest surface area, NU-100, 

displays high storages capacities of storage of H2 and CO2.117 

 

CO2 capture. CO2 is a greenhouse gas (GHG), the one produced in greater amount by 

anthropogenic sources. Even though fossil fuels are being substituted, their use is nowadays the most 
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extended. In order to mitigate the effect on global warming, CO2 capture is proposed to decrease its 

concentration in the atmosphere. One way to reach this is the capture by an adsorbent means. In 

Wang et al. classified solid adsorbents at low (<200 ºC), intermediate (200-400 ºC) and high 

(>400ºC) temperature of use.118 MOFs are in those described for low temperature with carbon-based 

adsorbents, zeolites, alkali carbonates and amine-based solids.119 

Many works have been reported about this topic with MOFs. Among them, Mg-MOF-74 shows 

high CO2 adsorption. With this regard, Yang et al. published in 2016 the substitution of terephthalic 

acid by hydroxylated ligand in the synthesis of MIL-53(Al) to obtain MIL-53(Al)-OHx. Then, the CO2 

adsorption capacity was improved for the hydroxylated material, due to the better chemical 

interaction between the OH groups and the CO2 molecule. Interestingly, an excess of OH groups 

produced lower uptake due to higher the steric hindrance and lower pore volume.19 

NO storage. In this case, the purpose is medical application. The NO molecule is an important 

signaling molecule that shows several important functions in biological signaling.57 Different MOFs 

have been tested for the sustained release of NO from MOF for drug delivery, most remarkable are 

HKUST-1 and MOF-74 of Ni2+ and Co2+.57 

Gas separations of low and high molecular gases. MOFs have been demonstrated to be 

useful in the efficient separations of small molecules due to selective molecule interactions with the 

unsaturated metal centers and the pore wall. Remarkable separations are those of carbon dioxide 

separation and mixtures CO2/CH4, and H2/CH4.120 The separations can be carried out using MOFs 

either as powders in adsorption or as membranes.119,121 Regarding larger molecules, MOFs show also 

selective adsorption and separation,122 to cite some examples they have been reported for 

chromatography separation of alkanes,123 and separation also of hydrocarbons.124 

1.3.2.-Catalysis. One of the first proposed applications of MOFs was catalysis,125 by analogy to 

the zeolites, used as catalyst in industry.126 Moreover catalysis was the first demonstrated use.127,128 

and has been broadly studied.25,129 

As catalyst, MOFs share with zeolites properties like regular porosity ang high internal area. The 

major advantage of MOFs is that they contain an organic part which increases the catalytic 

possibilities. The major handicap, in opposition to zeolites, is the limited water and thermal stability 

(at the most 500 ºC for some MOFs) which in turn restrict their applicability. Regarding this 

considerations, MOFs have been proposed as heterogeneous catalyst for high value products and fine 

chemicals.128  

MOFs can be classified as catalysts regarding the origin of the catalytic activity in the metal nodes, 

a homogeneous catalyst used as struts and catalysis due to encapsulated species.128,130 Finally, MOFs 

can be used as sacrificing materials to obtain catalytically active metal oxide nanoparticles.131 

1.3.3. Sensors. MOFs have been described as sensor of small gases and molecules, and 

biomolecules.  

Chemical sensors. Different mechanisms can produce the molecule detection, such as stress 

detection of flexible MOFs and with luminescent ligands as struts.102  

First article about the use of the flexibility of some MOFs to induce stress detection was reported 

by Allendorf et al. in 2009. These authors tested HKUST-1, made of Cu2+ and BTC, deposited in a 

piezoresistive cantilever to achieve the detection of different alcohols and CO2.132 One interesting 

examples of MOF as sensors is the explosive detection by luminescence. 133 
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Additionally, MOFs can also be used as template for preparing other applicable materials. MOFs 

can also be calcined to give rise an ordered oxide of the corresponding metal, which show high specific 

surface are comparing to other oxides. For example, Lü et al. reported the synthesis of ZIF-67 and the 

later calcination to obtain a porous oxide Co3O4 of high porosity (121 m2/g) and similar morphology 

of the departing cubes of MOFs. The sensing properties of this special structured oxide were tested 

with different volatile organic compounds, i.e. ethanol, acetone, toluene and benzene.134 Also, Wang 

et al. calcined MIL-88A(Fe) to obtain an iron oxide Fe3O4, with carbonaceous materials as base on 

electrochemical sensing.135 

Biosensors. MOFs have been used for biomolecules detection in vivo and in vitro. Wang et al. 

classified biosensors accordingly to the sensor mechanism in quenchers for DNA/RNA sensing, 

fluorescence for small molecule sensing and cell imaging and composites MOF-enzymes. 26  

 

1.3.4.- Drug delivery and sustained release.   

The delivery of drugs to a specific target and their release in a sustained way is a field of extensive 

research. MOFs are promising carriers that must show several requirements to eventually be used in 

vivo. Those are: (i) size reduced to the nanoscale to avoid precipitation; (ii) surface functionalization 

to improve biocompatibility and to prevent from particle aggregation; and (iii) biodegradation, in fact 

selected MOFs are potentially biodegradable because their relatively low hydrostability and the low 

toxicity of the degradation products (metal ion and ligand). 

The use of MOFs for sustained release was also one of the initial studied applications. The 

competitiveness in this field is huge because of the great interest to improve drug delivery and the 

broad different types of materials studied for it, such as silicas, polymers, dendrimers, liposomes, 

cyclodextrins, nanoparticles, etc. The major advantage of MOFs is the long term sustained release, 

hardly comparable with other systems. 

Several articles report the use of MOFs as potential drug carrier, standing out the research 

developed by Horcajada, Serre and co-workers of the Lavoisier Versailles Institute with MILs. They 

encapsulated different drugs by liquid phase impregnation, in a highly concentrated solution of the 

drug in a solvent like ethanol, in which the MOF is suspended under magnetic stirring. In the group 

CREG, several articles were also published before this thesis, such as the one step encapsulation of 

caffeine in NH2-MIL-88(B)136 and ZIF-8,137 or that dealing with the use of Hansen solubility 

parameters to study drug encapsulation in MOFs,137 among others. Apart from those articles written 

during this thesis about the encapsulation without solvent by high pressure138 and the use of 

supercritical CO2 as impregnation media.139 

1.3.5.- Medical imaging and magnetic resonance imaging. Different approaches based on 

MOFs have been studied for intracellular imaging, MRI (Magnetic Resonance Imaging) and 

Computed Tomography (CT).26  

For intracellular imaging, fluorescent probes are needed. Fluorescence can come from the struts 

composing the net of the MOF, a molecule encapsulated into the porosity or a molecule attached to 

the MOF surface.140 

In MRI imaging, magnetic field interact with the hydrogens of water. In order to increase the 

signal, two types of compounds as contrast agents are used, which increase of the proton relaxation 

times. These that increase the relaxation time t1 or r1, e.g. these made of gadolinium and manganese 
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ions, Gd3+ and Mn2+, respectively,  and those that increase the transverse relaxation times t2 or r2, e.g. 

those made of paramagnetic iron, Fe3+.26,141 

 

1.3.5.- Other promising applications 

Removal of hazardous chemicals and environmental remediation 

Two main strategies have been reported for removal of hazardous materials or environmental 

remediation with MOFs: adsorption and catalytic degradation. 142 One of the most used MOFs are 

those based on iron, due to their semiconducting properties and redox reactions in Fenton process.142 

In gas phase removal, MOFs have been studied for air purification of toxic gases like warfare agents 

and simulants, ammonia, carbon monoxide, nitrogen oxides, sulfur-containing compounds, among 

others.143 In liquid phase, MOFs have been tested for the removal of heavy metals and its oxoanions,144 

radioactive isotopes,144 dyes in organic and aqueous phases,145 etc.  

Photodynamic therapy (PDT). PDT is medical treatment that uses a photosensitizer or 

photosensitizing agent as drug to treat cancer. The photosensitizer, once injected, is exposed to light 

of an specific wavelength which induces the formation of species oxygen that destroy the cells. The 

use of nano MOFs has been reported as a way to transport the photosensitizer in struts of the 

structure. Several MOFs have been described for DPT, which are usually based on porphyrinic and 

metalloporphyrinic and metals like Zn2+, Hf4+ or Zr4+.146 

Water adsorption for heat transfer. In opposition to air pumps and air conditioners, 

thermally driven adsorption chillers and adsorption heat pump heat or cool down thank to the energy 

exchanged during water adsorption and desorption.37 Among the materials able to adsorbs and 

desorbs water, some MOFs can potentially fit for that purpose. The inherent drawbacks of MOFs could 

be limiting this application, i.e. high cost production and hydrothermal stability. The MOF has to be 

a part of a device, because as raw powder heat-mass transfer would be hindered.37 Few MOFs have 

been reported in this field such as  ISE-1 (made of Ni, BTC and BTRE, 1,2-bis(1,2,4-triazol-4-

yl)ethane, ISE stands for Institut Solare Energiesysteme from Freiburg),37 or the cost-effective 

aluminium fumarate (MIL-53(Al)-FA).37 Other interesting MOF for heat transfer or storage are MIL-

101,147 Al-polycarbonate148 or HKUST-1.149  

 

1.4.- Advances in industrial use 

The emerging of industrial applications is conditioned by high synthesis costs, as MOFs compete 

with other well-stablished porous materials like zeolites or activated carbon. Moreover, they must be 

processable, e.g. transformable in pellets,150 and be stable during processing and in the use 

conditions.109  

For research purposes, there are some suppliers which offers MOFs such as Sigma Aldrich, Tokyo 

Chemical Industry (TCI), PlasmaChem, or Stream chemicals. For example, Sigma Aldrich makes 

available several MOFs, advertised under their own commercial name, such as CuBTC or Basolite® C 

300, MIL-53(Al) or Basolite® A100, and ZIF-8 or Basolite® Z1200. The prices of the products are not 

affordable for industrial use. 

Nevertheless, we can find MOFs commercialized through different companies for high scale 

applications, some relevant are listed and described in the following lines. 
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-BASF is one of the biggest of chemistry companies and one of their research field is the MOFs 

scale-up production and shaping.  

-MOFapps is a company based on the production of UiO-66 and other zirconium-based family 

MOFs, commercialized as the exclusive partner with the University of Oslo. Depending on the 

application they offer the material in different shaping: disks, pellets, spheres or powder.151  

-MOF Technologies (MOFT) commercializes MOFs in powder or shaped in pellets, such as 

magnesium fumarate and Al(OH)-fumarate, HKUST-1 or CuBTC and FeBTC, ZIF-8 and ZIF-67, 

MOF-74 of magnesium, cobalt, nickel and copper, among others. They claim the main applications 

are carbon capture, gas storage, heat transformation, separation and other emerging applications.152  

-NuMat Technologies. The MOFs are not directly sold but they offer solutions for separation 

and modification or capture and release and advertise ION-X “a next generation electronic gas 

delivery platform”.153 

-Promethean particles. This company offers a diverse range of nanomaterials, including MOFs 

for gas storage, adsorbents (gas, toxic chemicals, or contaminants), gas separation, drug delivery, 

water treatment, and catalysis. They offer several MOFs, e.g. HKUST-1 or CuBTC, ZIF-8, MIL-53(Al), 

and MOF-74.154  

Other remarkable companies working MOFs are MOFWORKS is a start-up within CSIRO 

(Commonwealth Scientific and Industrial Research Organization),155ACSYNAM (Advanced 

Chemical Synthesis and Manufacturing)156 and NovoMOF.157  

It is noticeable that most companies offer the MOFs in different shaping and claim the different 

applications, but no product was found to include directly the materials (at least a final product and 

advertised in the webpage). As an exception to this point, NuMat seems to advert direct solutions but 

no brochure is available.  

 

1.5.- MOF related materials 

1.5.1- Covalent Organic Frameworks (COFs). The development of COFs has evolved in 

parallel with that of MOFs. They are only composed by organic monomers, without metal in the knots, 

which join by covalent bonding.158 Most reported COFs are based on boronic acid derivates, whose 

special chemistry allows the union in 2D layers, e.g. diboronic acid in the synthesis of COF-1-which is 

formed by sheet stacked together by π-π interactions,159 and 3D, with a more complex precursors.160 

COFs and MOFs share common properties such as crystalline structure, high porosity and high 

thermal stability. COFs shows applications in different fields such as gas storage, catalysis or 

photoelectric applications.158,161 The major advantages of COFs with respect to MOFs are the higher 

humidity stability and are not so easily hydrolyzed.161 

1.5.2.- Metal Organic Gels (MOGs). The synthesis is similar to that of MOFs, but the final 

product is a gel instead of a powder. Main advantage of MOGs over MOFs is that MOGs can be easily 

shaped at expense of losing the regular porosity and specific surface area.162,163 Several examples have 

been reported, e.g. MOG-1 (Fe3+-BTC)162 or M(DTA), (M2+=Ni, Cu, Pd and DTA, dithiooxamidate)164 
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One of the most challenging issues when a researcher starts working with MOFs is dealing with the 

extremely wide bibliography. Even now, after almost four years I found this field demanding because 

more materials, methods, composites and sophisticated applications are constantly reported. 

Therefore, I would like to finish this introduction with a personal recommendation of those articles 

that I found more instructive and “easy” reading to whom starts working with MOF or wants to know 

more about them. 

-The Chemistry and Applications of Metal-Organic Frameworks. Hiroyasu Furukawa, Kyle E. 

Cordova, Michael O’Keeffe, Omar M. Yaghi. Science. 2013, 341, 1230444. 

It is a general overview of MOFs. 

-A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon 

Hydration, Thierry Loiseau, Christian Serre, Clarisse Huguenard, Gerhard Fink, Francis Taulelle, 

Marc Henry, Thierry Bataille, and Gérard Férey. Chemistry- A European Journal, 2004, 10, 1373-

1382 

It is described the MOF MIL-53(Al) and its breathing behavior. 

-Best Practices for the Synthesis, Activation, and Characterization of Metal−Organic 

Frameworks, Ashlee J. Howarth, Aaron W. Peters, Nicolaas A. Vermeulen, Timothy C. Wang, Joseph 

T. Hupp, and Omar K. Farha. Chemistry of Materials, 2017, 29, 26−39 

The most important techniques of MOFs characterization are described and several factors to 

consider about them. 

-Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, 

Morphologies, and Composites, Norbert Stock and Shyam Biswas. Chemical Reviews, 2012, 112, 933–

969 

It is a general overview of MOFs synthesis. 

-New synthetic routes towards MOF production at scale, Marta Rubio-Martinez, Ceren Avci-

Camur, Aaron W. Thornton, Inhar Imaz, Daniel Maspoch and Matthew R. Hill. Chemical Society 

Reviews, 2017, 46, 3453. 

It is about alternative methods of MOFs syntheses (MW, US, mechanochemical, spray-drying and 

flow synthesis) with a scale-up view. Also, it is described the MOFs shaping (like pellets, foams or 

membranes) and some companies working with MOFs. 

-Selective gas adsorption and separation in metal–organic frameworks, Jian-Rong Li, Ryan J. 

Kuppler and Hong-Cai Zhou. Chemical Society Reviews, 2009, 38, 1477–1504 

It is about the use of MOFs for gas separation and the industrial importance in the context of 

porous materials. 
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2.1. Summary and graphical abstract 

The use of gas reacting atmospheres is proposed here as a new tool to control the 

synthesis of MOFs. With the addition of Al to an Fe-fumarate synthesis medium (which 

produces the typical structure of MOF MIL-88A(Fe)), a hybrid Fe/Al-fumarate that 

exhibits the structure of MOF MIL-53(Al)-FA was obtained even though both metals 

could be identified in the resulting material by STEM-HAADF. The use of CO and O2 

atmospheres (6 bar) in the synthesis of both MIL-88A(Fe) and MIL-53(Fe/Al)-FA might 

accelerate their synthesis and gave rise to a highly crystalline solid and to core-shell 

nanoparticles (190±42 nm) with an Fe-rich core surrounded by an Al-rich shell, i.e., with 

a controlled Fe/Al atomic distribution. After pyrolysis the MIL-53(Fe/Al)-FA particles 

exhibited superparamagnetism while keeping some texture (244 m2/g vs. 862 m2/g of 

the as made material). 
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2.2. Reactive gas atmospheres as a tool for the synthesis of MOFs: 

the creation of a metal hybrid fumarate with a controlled Fe/Al 

composition profile 

INTRODUCTION  

The effect of using different gas environments during the growth of nanoparticles 

(NPs) is considered of paramount importance because the crystallization kinetics can be 

in this manner modified to control their size and shape.1 For instance, the influence of a 

variety of reactive gas atmospheres has been studied to produce faceted Pd NPs: 1) O2 

promoted the formation of rod shaped NPs, 2) CO directed the synthesis towards 1.5 nm 

thick-nanosheets and unique surface plasmon resonance characteristics, and 3) N2 

rendered randomly shaped NPs. Additionally, a variety of iron oxide-based magnetic NPs 

with different crystalline phases and shapes can be obtained just by selecting different 

gas atmospheres.2  

Reactive gas synthesis conditions can also modify the structure of preformed NPs. The 

CO and NO adsorption energies on certain facets of Pt and Pd can be large enough to 

cause the surface energies to be negative, and promote the breakup of metal surfaces and 

the dispersion of metal NPs.3 H2 and CO gas environments were also selected to tune the 

atomic distribution and the catalytic performance of Pt-Cu NPs by a post-synthesis 

reaction.4 Other structural phenomena in reactive gas conditions are: reconstruction,5 

reshaping,6 resegregation7 and phase transition.8 

The growth of metal-organic frameworks (MOFs) under reactive gas synthesis 

conditions is unexplored. Just CO environments were considered in a variety of post-

synthesis treatments on MOFs: 1) to study the binding of carbonyl species to MOFs 

composed of Fe2+ or Co2+,9 2) to modify amino-MOFs (NH2-MIL-53(Al)) to their 

isocyanate analogues using CO,10 3) to load CO in a metal-CO complex to control its 

release in therapeutic applications,11 and 4) CO removal.12 MOF Fe-BTTri exhibited an 

unprecedented spin state change mechanism for the highly selective reversible 

adsorption of CO over H2, N2, CO2 and various hydrocarbons.13 The effects caused by the 

presence of gases can be concomitant with those caused by high temperatures, giving rise 

to the segregation of 5-15 nm CuO NPs in case of HKUST-1.14 

In liquid phase it is also known the effect of some small molecules on the shape and 

crystallinity of MOF particles. In the coordination modulation approach15 a 

monocaboxylate ligand is added to the reaction media although it is not part of the final 

structure and does not aim to accelerate the synthesis. For example, acetic acid improved 

the crystallinity of [{Cu2(ndc)2(dabco)}n]15 and UiO-66,16 and sodium formate that of 



Chapter 2 

34 
 

ZIF-8.17 Not only carboxylates but other different species can be used with the purpose 

of controlling the MOF synthesis. For instance, caffeine was used in the synthesis of 

amino-MIL-88B(Fe),18 and different radicals produced new isostructural MOFs 

incorporating them as pendant or guest species.19  

We propose here the application of air, O2 and CO atmospheres to modify the 

synthesis of MOFs: i) accelerating and improving their crystallization kinetics, and ii) 

making possible the production of hybrid core-shell structures, i.e., fumarate- containing 

MOFs20–22 with a controlled Fe/Al atomic distribution. Gases, generally with limited 

solubility in the liquid reaction medium, have the advantage of leaving the reaction once 

the pressure is decreased, while the other above-mentioned species may remain in the 

liquid phase polluting the mother liquor and products.  

 

Figure 1. MOFs addressed in this work. Color code: coordination polyhedral of the metal centers 

(green), oxygen atoms (blue) and carbon atoms (grey). The structures were represented by using Diamond 

3.2. with the crystallographic information files in CCDC.21,22 

 

Hybrid MOF-based materials can be of two different types. MOF-MOF type, e.g., by 

seeding the IRMOF-3 synthesis medium with IRMOF-1 particles.23 The other type 

corresponds to either mixed-metal MOFs, e.g., MOF-74 with different combinations of 

divalent metals,24 or mixed-ligand MOFs, as in the case of ZIF-300, -301 and 302 

synthesized by incorporating two distinct imidazolates.25 Hybrid MOFs may find 

application as efficient catalysts, adsorbents25 and membrane fillers,26 among others. In 

addition, hybrid MOFs can be considered as functionalized MOFs, and these can help 

the rational design and synthesis of adsorbents and separation materials.27 

We have attempted the production of MOFs using either single or sequential reactive 

gas environments. Fe-fumarate (MIL-88A(Fe)), Al-fumarate (MIL-53(Al)-FA) (Figure 1) 

and Fe/Al-fumarate hybrids have been synthesized under different reactive gas 
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atmospheres. This has given rise to new MOF type nanomaterials with a controlled 

distribution of Fe and Al atoms and with the structure of the recently solved Al-fumarate 

MIL-53(Al)-FA (an analogue of the MIL-53(Al)-BDC, previously known as MOF 

A520).22,28 Finally, one of the new MOFs was pyrolyzed to obtain particles with magnetic 

properties. The carbonization of MOFs, using them as sacrificial templates, has been 

carried out as a way of obtaining catalytic nanoparticles,14 nanoporous carbons,29 

metal/carbon composites,30 magnetic nanoparticles,31 Zn-air battery components32 and 

hybrid supercapacitors,33 among others. 

 

EXPERIMENTAL SECTION  

Chemicals and methods 

The experimental setup for the synthesis of the nanoparticulated MOFs consisted in 

a high-pressure Teflon-lined stainless-steel autoclave with a capacity of 40 mL and a 

connection for feeding gases. The autoclave was immersed in a water bath at 90 °C with 

magnetic stirring. Three types of reactive atmospheres were used: the self-generated or 

autogenous in air, and with CO or O2 at 6 bar. The preparation of reagents was carried 

out under air atmosphere and the resulting reaction mixture was introduced in the 

autoclave and was flushed under CO or O2 flow. The autoclave atmosphere was swept 

several times to achieve a pure gas atmosphere of CO or O2 and remove any trace of air.  

The required chemicals were dimethylformamide (DMF, Scharlau, 99.5%) as solvent, 

fumaric acid (FA, Acros Organics, ≥99%), iron (III) chloride hexahydrate (FeCl3·6H2O, 

Sigma Aldrich, ≥98%) and aluminum nitrate nonahydrate (Al(NO3)3·9H2O, Sigma 

Aldrich, ≥98%). These chemicals were used as received. 

Table 1 summarizes the three reactive atmospheres (self-generated or autogenous in 

air, CO or O2 at 6 bar) and gas exposure times used during the growth of MOFs at 90°C. 

In the syntheses corresponding to the Fe-fumarate (MIL-88A(Fe), series 1 of 

experiments in Table 1), fumaric acid (232 mg, 2 mmol) was dissolved in 5 mL of DMF 

and separately FeCl3·6H2O (540 mg, 2 mmol) in 5 mL of DMF. Final concentrations for 

each reactant were 200 mM. The same procedure was used for Al-fumarates (MIL-

53(Al)-FA, series 2 of experiments) but with an Al(NO3)3·9H2O solution (750 mg, 2 

mmol) instead of that of iron. To synthesize Fe/Al-fumarate hybrids (series 3 of 

experiments), fumaric acid (FA, 232 mg, 2 mmol) was dissolved in 5 mL of DMF and 

separately Al(NO3)3·9H2O (375 mg, 1 mmol) with FeCl3·6H2O (270 mg, 1 mmol) in 5 mL 

of DMF. The molar ratio was 1Fe:1Al:2FA. Both solutions were mixed in each experiment 

just before to be added to the reactor. 
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Table 1 Reaction conditions at 90 °C with CO and O2 at 6 bar each and their corresponding dwelling 

times. Phase numeration refers to MIL-88A(Fe) [1], yellowish solution-black colloid [2], MIL-53(Al)-FA [3], 

core-shell MIL-53(Fe/Al)-FA [4], MIL-53(Fe/Al)-FA [5], no solid obtained [6] and insufficient amount for 

XRD characterization [7]. 

Run Molar ratio CO O2 Autogenous Phase 

1.1 

2Fe.2FA.129DMF 

  6 h [1] 

1.2 6 h   [2] 

1.3   1.25 h [1] 

1.4  1.25 h  [1] 

1.5 1 h 15 min  [1] 

2.1 

2Al:2FA:129DMF 

  6 h [3] 

2.2 6 h   [3] 

2.3   1.25 h [6] 

2.4  1.25 h  [6] 

3.1 

1Fe:1Al.2FA.129DMF 

1 h 5 min  [7] 

3.2 1 h 10 min  [4] 

3.3 1 h 15 min  [4] 

3.4 1 h 1 h  [5] 

3.5 3 h 3 h  [5] 

3.6   1.25 h [6] 

3.7   6 h [5] 

 

 

Characterization techniques 

The characterization of the powdered samples was carried by X-ray diffraction (XRD, 

Siemens D-500 diffractometer) with a copper anode and a graphite monochromator (Cu-

Kα1 radiation, λ= 1.540 Å) in the 4-40° 2θ range with a scanning rate of 0.01°/s. The UV-

Vis spectra were recorded with a V-670 Jasco spectrophotometer. Thermogravimetric 

analysis (TGA, Mettler Toledo TGA/STDA 851e) was measured from 30 to 700 °C in air 

with a heating ramp of 10°C/min.  The N2 isotherms were obtained with a Micrometrics 

TriStar 3000 and specific surface areas were calculated by the BET method. A 

transmission electron microscope (TEM, Tecnai FEI T20) operating at an acceleration 

voltage 200 kV with a LaB6 electron source fitted with a “SuperTwin®” objective lens 

allowing a point-to-point resolution of 2.4 Å was selected to study the nanocrystal 

morphology. Tecnai F30 transmission electron microscopy fitted with a SuperTwin® 

lens allowing a point resolution of 1.9 Å was also selected. High-Angle Annular Dark Field 

(HAADF) and EDS detectors were used to determine the location of Al and Fe by Z-

contrast imaging. 
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The magnetic behavior of the iron-containing oxidized MOFs was measured at 37 °C 

in a superconducting quantum interference device (SQUID MPMS-5S, Quantum Design 

Inc.) from 0 to 4 Tesla. The powdered samples were measured in a gelatin capsule and a 

diamagnetic correction for the sample holder was performed. 

 

RESULTS AND DISCUSSION 

Synthesis of MIL-88A(Fe) in different atmospheres 

Figure 2-a,b shows that the transparent orange MIL-88A(Fe) precursors rendered a 

dark orange colloid after 6 h of reaction under autogenous pressure (run 1.1 in Table 1). 

Elongated square bipyramid microcrystals (ca. 1x2 μm) with a monodisperse size and 

regular morphology were obtained under these conditions. A green-yellowish solution 

when the MIL-88A(Fe) precursors were exposed to a 6 bar CO atmosphere for 6 h was 

obtained (run 1.2). This solution was not stable and after 10 min a black suspension was 

obtained (Figure 2-c). The hue exhibited a color transition from the air-liquid interphase 

to the bottom (Figure 2-c). This fact would imply that the observed transition was 

sensitive to the presence of O2. After centrifugation, a black slurry was recovered which 

became an orange solid once dried. TEM images revealed 80-90 nm nanocrystals (Figure 

2-c). The black color of the suspension was preserved if the CO treated solution was kept 

under an inert atmosphere. Similar results were obtained when the solution was treated 

with CO for 1 h, but no color change was observed in the precursor or in the product if 

the reagents were treated with CO for 5 min. 

Considering that the resulting CO treated solution was sensitive to oxygen, it was 

subsequently exposed to an O2 atmosphere (run 1.5). This promoted the formation of an 

orange colloid instead of the above-mentioned black colored slurry (Figure 2- c). Even if 

the final product was also orange, it showed a narrower value of FWHM (full width at 

half maximum) for the most intense XRD peak at 10.1° than the previous two materials 

obtained under autogenous pressure (run 1.3) and 6 bar O2 (run 1.4), 3.8 and 1.6 times 

lower, respectively (see Figure 3-B). Regarding the TEM morphology, more 

heterogeneous and aggregated particles are observed in the case of using an O2-based 

synthesis only (Figure 3C). In addition, the modification of the reaction environment 

produced an increase in the MOF weight yield (based on the ligand FA calculated by 

TGA): 1% in autogenous atmosphere (run 1.3), 2% under O2 (run 1.4) and 17% with the 

combination of CO and O2 (run 1.5). 
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Figure 2. Synthesis of MIL-88A(Fe) crystals at 6 h and 90 °C with autogenous (run 1.1) and CO 

atmosphere (run 1.2). Optical and TEM images of: (a) MIL-88A(Fe) precursors. (b) MIL-88A(Fe) colloid 

and crystals produced with autogenous pressure (run 1.1). (c) MIL-88A(Fe) colloid and crystals produced 

under 6 bar CO atmosphere (run 1.2) where the color transition was completed in 10 min. 

To explain the favorable effect of the CO atmosphere on the crystallization of MIL-

88A(Fe) we focused on the solution chemistry of the MOF precursors. Fe3+ coupled with 

carboxylate ligands produces two main secondary building blocks: a) a chain of corner 

sharing octahedra with iron atoms linked through a μ2-oxo bridge; and b) μ3-oxo 

centered trimers of iron octahedra. The coupling of these clusters with linear 

dicarboxylate ligands gives rise to solids such as MIL-53, MIL-68 (both from chains Fe 

O-Fe), MIL-88 and MIL-101 (from trimeric Fe3O units).34 As shown in Figure 2, the 

syntheses produced suspensions with visible properties. This suggested the use of UV-

Vis spectroscopy to gain insight into the influence of the CO atmosphere on the MOF 

synthesis. In fact, this spectroscopy has recently been used to monitor the synthesis of 

bimetallic MOF hybrid structures.35 The UV-Vis spectrum of the MIL-88A(Fe) 

precursors solution (Figure 3A-b) shows two intense bands at 318 and 360 nm, 

characteristic of ligand-to-metal charge transfer (LMCT) transitions from the μ2-oxo 

ligand to iron in diferric Fe-O-Fe complexes. 34 
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Figure 3. A) UV-Vis spectra of: (a) Fe2+ + FA, (b) Fe3+ + FA, (c) Fe3+ + FA + 1 h CO and (d) Fe3+ + FA + 

1 h CO + 15 min O2. B) Diffraction patterns of the resulting products of the syntheses for 1.25 h at 90 °C with 

different gases from bottom to top: (a) autogenous atmosphere (run 1.3), (b) O2 at 6 bar (run 1.4), (c) 1 h CO 

at 6 bar + 15 min O2 at 6 bar (run 1.5), and (d) simulated pattern of MIL-88A(Fe).21 C) TEM images of 

syntheses for 1.25 h at 90 °C in: (a) autogenous atmosphere (run 1.3), (b) O2 at 6 bar (run 1.4), (c) 1 h CO at 

6 bar + 15 min O2 at 6 bar (run 1.5). 

Accordingly, we hypothesize that dimers [Fe(μ2-O)(μ2-OOC- R)2FeL2]2+ (L= solvent 

molecule) or related polynuclear chains are firstly formed in solution and a solid from 

these octahedral units is obtained (Figure 4-a). For further MIL-88A(Fe) nucleation, 

intermediate solid would redissolve to release dimeric Fe-O-Fe units that would 

equilibrate with trimers Fe3O for crystallization of MIL-88A(Fe). In fact, the formation 

and dissolution of different clusters in MOF crystallization has been previously 

described.36 Since the MOF crystallinity increases with time, it is probable that the 

dimers-trimers equilibrium is slow.  

The UV-Vis spectrum of the green-yellowish solution obtained when MIL-88A(Fe) 

precursors are in contact with CO atmosphere (Figure 3A-c) shows a decrease in the 

LMCT transitions assigned to μ2-oxo-Fe being similar to that of Fe2+/FA in DMF (Figure 

3A-a). Then, a reduction of diferric to diferrous Fe-O-Fe complexes due to the reductive 

CO atmosphere is plausible. (Figure 4-b). Stable structures of oxo bridged diferrous 

complexes with carboxylate ligands appear to require a μ2-hydroxo bridge.33,34,36–38 

Diferrous Fe-(OH)-Fe complexes have been described to give greenish-yellow solutions 

that change to reddish-brown by oxidation to diferric Fe-O-Fe species in presence of 

air.34–39 From these observations, we postulate the formation of a diferrous [FeII(μ2-

OH)(μ2-OOC-R)2FeIIL2]+ complex in the green-yellowish solution exposed to the CO 

atmosphere. This soluble complex would be partially oxidized by air leading to mixed 
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valence iron Fe2+/Fe3+ polynuclear species that aggregate to render the unstable black 

solid, which can be further over-oxidized to the orange solid derived from ferric trimers 

Fe3O (Figure 4-b). However, the complete oxidation of green diferrous Fe-(OH)-Fe 

complex by treatment with O2 leads directly to the orange solid MIL-88A(Fe) with high 

crystallinity (run 1.5). The UV-Vis spectrum of the resulting solution (Figure 3A-d) 

shows LMCT-transitions at 314 nm and 360 nm that are assigned to trimers [Fe3(μ3-

O)(μ2-OOC-R)6L3]+ and aggregate to form MIL-88A(Fe). The fast formation of trimers 

Fe3O by oxidation from diferrous Fe-(OH)-Fe complexes can be explained by the 

occurrence of intermediate dimeric mixed species Fe2+-O-Fe3+ in equilibrium with 

trimeric mixed species Fe2+
2Fe3+O, well known in organometallic chemistry.40,41 

 

Figure 4. a) Hypothetical scheme of synthesis of MIL-88(Fe) in autogenous atmosphere. Iron (III) 

atoms are represented by red balls; each corner of octahedra is occupied by oxygen atoms but only shared 

oxygens are represented by grey balls; for simplicity, bidentate fumaric ligands are represented by blue 

connectors and only one of each pair of ligands is depicted. b) Scheme of the synthesis of MIL-88(Fe) in CO 

and O2 atmospheres.  

 

Synthesis of hybrids of Fe and Al with the MIL-53(Al)-FA structure 

The CO atmosphere had no influence on the synthesis of Al-fumarate with MIL-

53(Al)-FA structure at 90 °C for 6 h, probably due to lack of Al redox activity in the 

 

 

a)

b)
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working conditions. The syntheses for 6 h in autogenous (run 2.1) and CO (run 2.2) 

atmospheres generated white products with identical diffraction patterns (Figure 5A) 

and similar particle morphologies (Figure 5C). When the reaction time was reduced to 

1.25 h (run 2.3) no solid product was obtained, even in O2 atmosphere (run 2.4). 

 

Figure 5. A) XRD results of synthesis of Al-fumarate at 90°C for 6 h under: (a) autogenous atmosphere 

(run 2.1), (b) CO at 6 bar (run 2.2), and (c) simulated pattern.22 B) Synthesis of Fe/Al-fumarate at 90°C for 

1.25 h (a) 1 h CO + 10 min O2 (3.2), (b) 1 h CO + 15 min O2 (run 3.3) and (c) 1 h CO + 1 h O2 (run 3.4). C) 

TEM images of Al-fumarate corresponding to: (a) autogenous atmosphere (run 2.1), and (b) CO at 6 bar 

(run 2.2).  

A series of experiments (Figure 6-a) were performed with the molar ratio of 

1Fe:1Al:2FA, a previous treatment for 1 h in CO at 6 bar and a final exposure to O2 at 6 

bar for 5 min (run 3.1), 10 min (run 3.2), 15 min (run 3.3) and 60 min (run 3.4). The 

obtained products showed the MIL-53(Al)-FA structure, as verified by XRD (Figure 5B), 

except for the sample exposed during 5 min which yielded an insufficient amount of 

powder for its XRD characterization. EDS analysis revealed that particles produced after 

5 min of O2 treatment were composed practically of iron (Figure 6-b). This is consistent 

with a faster nucleation for the Fe based phase than that based on Al. Core-shell 

nanoparticles were synthesized if the O2 treatment duration was between 5 and 15 min 

(Figure 6-c). These nanoparticles consist of a core rich in Fe (high brightness by Z 

contrast) surrounded by a shell where Al predominates (Figure 6-h). No core-shell 

structure was observed by Z contrast if the O2 treatment were maintained for 1 h or more 

(Figure 6-d), but EDS analysis depicted a constant Fe/Al profile across the metal 

fumarate particles and confirmed the non- segregated location of Fe and Al (Figure 6-h). 

These results indicate that the obtained particles were Fe/Al-MOF hybrid entities. The 

mechanism for the transformation of the Fe-rich core would involve the diffusion of the 
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ligand fumarate from the reaction media to the inner of the nanoparticle or probably by 

the exchange of Fe by Al (favored by the existence of a common MIL-53-FA structure). 

It is worth mentioning that until now the reported pure Fe-fumarates have the MIL-

88A(Fe) structure,21 meanwhile Al-fumarates that of MIL-53(Al)-FA (Figure 5).22 

However, the hybrid Fe/Al–fumarate obtained here exhibits only the XRD intensities 

corresponding to the MIL-53(Al)-FA structure with no other crystalline phases present. 

This agrees with a material having such crystalline structure in both core and shell. This 

argument based on the powder XRD is reinforced by the high BET specific surface area 

of 862 m2/g currently measured for the hybrid Fe/Al–fumarate, not far from that of MIL-

53(Al)-FA (939 m2/g).42 Nevertheless, the presence of some of an amorphous Fe based 

compound in the core may not be totally discarded. 

The duration of the O2 treatment had a strong influence on the atomic distribution of 

both Fe and Al. A constant Fe/Al ratio across the MOF was obtained with autogenous 

atmosphere conditions (run 3.7). A short O2 treatment (6 bar, 15 min) (run 3.3) after 6 

bar CO favored the crystallization of 190±42 nm particles with a core rich in Fe (Figure 

6-e,f), i.e., relatively high Fe/Al, surrounded by a shell with a low Fe/Al atomic ratio. 

Figure S1 illustrates the STEM–HAADF image corresponding to a MIL-53(Fe/Al)-FA 

nanoparticle after tilting it from +33° to -35°, inferring with this insight that a core-shell 

structure was obtained in agreement with the EDS analysis profile depicted in Figure 6-

h. 

The organic component of the core-shell particles (run 3.3) was reduced by treating 

them at 400 °C for 1h. At this temperature, the organic part of the material was totally 

degraded, as shown in the corresponding thermogravimetric curve (Figure S2), resulting 

in a dark brown powder with amorphous structure (Figure S3). Nanoporous carbon 

materials have been already reported by direct carbonization of Zn- and Co-MOFs,31,43 

even giving rise to magnetic Co nanoparticles with a magnetization up to 59 emu/g.31 

However, to the best of our knowledge, no single report can be related to such type of 

particles from MIL-53 structures. STEM-HAADF images confirmed that the core-shell 

structure was maintained after calcination (Figure 6-i,j). EDS profile also confirmed the 

location of the Fe-rich core (Figure 6-k). Interestingly, calcined NPs showed magnetic 

behavior as they were attracted to a permanent magnet. The magnetic properties were 

studied by SQUID showing superparamagnetic behavior with no coercivity or remanent 

magnetization up to 4 Tesla (Figure S4). Their magnetic moment at 4 Tesla and 37°C was 

1.4 emu/g. 
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Figure 6. STEM-HAADF images of Al-Fe MOF nanoparticles produced at different conditions (90°C 

and with the gases at 6 bar). (a) Scheme of the formation mechanism. (b) 1 h CO + 5 min O2 (run 3.1), (c) 1 

h CO + 10 min O2 (run 3.2), (d) 3 h CO + 3h O2 (run 3.5). (e-f) 1 h CO + 15 min O2 (run 3.3 (g) 6 h autogenous 

atmosphere (run 3.7). (h) EDS analysis profiles from NPs produced at different conditions: 1) 6 h autogenous 

atmosphere (run 3.7), 2) 1 h CO + 15 min O2 (run 3.3), 3) 3 h CO + 3 h O2 run (3.5). (i-j) sample (run 3.3) 

calcined at 400 °C for 1h; (k) EDS analysis profile from the white marked line in (j). 

Additionally, the BET specific surface area and pore volume were calculated from N2 

adsorption data before (862 m2/g and 0.763 cm3/g at P/P0 0.989) and after (244 m2/g 

and 0.591 cm3/g at P/P0 0.987) calcination. Even if the adsorption capacity (Figure S4) 

and specific surface area decreased upon the partial calcination of the material, the 

remaining values are relatively high, highlighting the potential use of the resulting 

material in typical MOF applications such as catalysis,44 drug delivery45 and electronics,43 

among others.  
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Conclusions 

In summary, we carried out the synthesis of MOFs MIL-88A(Fe) and MIL-53(Fe/Al)-

FA in CO and O2 gas reacting atmospheres for the first time in the field of MOF materials. 

Furthermore, these conditions made possible the creation of a metal hybrid fumarate 

with a controlled Fe/Al profile: core-shell particles with a Fe-rich core surrounded by an 

Al-rich shell. 

The crystallinity, particle size in the nanometer range, superparamagnetism and 

textural properties exhibited by some of the particles obtained here allows one to 

highlight their potential use in several fields related to catalysis, medicine and 

electronics. 
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Figure S1. STEM-HAADF images of Al-Fe MOF NPs taken on the same particle after tilting the STEM 

holder from -35° to 35° (run 3.3). 

 

 

 

 

Figure S2. TGA (in air) curve of the as-made core-shell particles (run 3.3) 
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Figure S3. Compared diffraction patterns of the sample (3.3) before (a) and after (b) calcination at 400°C 

for 1 h. 

 

 

 

 

Figure S4. (a) Magnetization curve with the inset showing the region close to the origin with no 

remanence or coercive field; (b) N2 adsorption isotherms at 77 K for: 1) the as-made core-shell particles 

(run 3.3), and 2) the corresponding calcined product. 
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3.1. Summary  

Hydrogen peroxide (H2O2) is used to promoter the synthesis of terephthalate-

based MOFs, specifically those made from Fe3+ and Al3+ and mixtures of both. 

Kinetics and reaction yield were significantly improved, while crystallinity and 

N2 adsorption properties were mostly maintained. A reaction mechanism was 

envisaged from the mass spectroscopy analysis of the solutions involved in the 

terephthalate synthesis suggesting a µ-hydroxo bridge promoter role for H2O2.  
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3.2. Hydrogen peroxide effect on the synthesis of terephthalate-based 

MOF  

INTRODUCTION 

The efficient MOF (metal-organic framework) synthesis is a decisive point for the 

industrial use of these materials, which are effective in several key applications related 

to gas separations and storage,1 selective membranes,2 catalysis,3 encapsulation4,5 and 

medicine,6 among others. The commonest synthesis method is the solvothermal or 

hydrothermal, in which the precursors, i.e. a metal salt and an organic ligand, are 

dispersed in an organic solvent or water.7,8 The mixture can be heated up at high 

temperature (working under autogenous pressure) for relatively long reaction times.  

Several methodologies are reported as assisted or alternative to the solvothermal 

synthesis. The most studied are the microwave9 and the sonochemical10 assisted 

syntheses, which require a more complicated setup. These methods increase nucleation 

through the perturbances they create in the media. Consequently, they affect 

crystallization and growth, differently to the basic solvothermal method.8 Other 

remarkable methods, the mechanosynthesis and high pressure driven synthesis, i.e. in 

absence of solvents, have been proved useful, but also only with some MOFs.8,11  

Alternatively to external physical modifications, in situ chemical variations have 

been successfully described, such as the coordination modulation approach,12,13 and the 

use of some additives14–16 and reactive gas atmospheres.17 In liquid phase, for 

modulating the synthesis, a monodentante ligand is added to the liquid media, such as 

monocarboxylate or amine ligand, and typically improves the crystallinity of the MOF 

and can modify its shape.12,13,18 Other chemicals modify size, shape or surface of MOF 

particles, such as surfactants14,15 or blocking agents.16 In the modification of the 

atmospheres, CO or O2 at high pressure have been used to improve the crystallinity and 

to accelerate the synthesis, allowing the creation of particles with different profiles of 

metal composition.17 

Hydrogen peroxide (H2O2) is a common reductant and strong oxidant used for 

several applications such as water treatment, pulp and textile bleaching, and chemical 

synthesis, among others.19 In water and soil treatment, it is well-known the Fenton 

reactions of H2O2 with iron ions20,21 to remove persistent organic pollutants, promoting 

their oxidation.19 Representative Fenton reactions are as follows: 

H2O2 + Fe2+ → ·OH + Fe3+ + OH- (1) 

H2O2 + Fe3+ → HO2
· + Fe2+ + H+ (2) 
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with respective k values of 51 M-1s-1 and 0.01 M-1s-1, in aqueous media at room 

temperature.22 Equation (2) is disfavored compared to (1), although (2) is favored in 

high concentrated solutions of Fe3+.23 In bleaching, hydrogen peroxide removes the 

organic components. In chemical synthesis, H2O2 role can turn complex. For example, 

it can promote the hydroxylation in presence of Fe2+ of tartaric acid20 and terephthalic 

acid,24 or epoxidation of alkenes.25,26 

Herein, we observed the promoter or enhancer effect of H2O2 on the synthesis of 

terephthalate-based MOFs with trivalent metals (Fe3+ and Al3+), which has not been 

previously described in the synthesis of hybrid materials, to the best of our knowledge. 

Firstly, we performed reference experiments to observe the effect of stablished 

conditions on the final obtained phase, considering that the basis conditions used here 

are not as those reported. Then, the same experiments were carried out with the 

addition of different quantities of H2O2 to the synthesis media, as promoter of the MOF 

formation. In all the products, the crystallinity, morphology and N2 adsorption were 

compared with the reference synthesis without the promoter to observe changes in the 

obtained solids. Finally, the MOF synthesis was monitored through different 

techniques to elucidate the mechanism for H2O2 promoter effect. 

 

EXPERIMENTAL SECTION 

Chemicals and methods 

The experimental setup comprised a Teflon-lined stainless-steel autoclave of 40 mL 

immersed in a water bath heated at 90 ºC with magnetic stirring. Two types of media 

were studied: (i) reference experiments with the corresponding metal salts and the 

ligand using DMF as solvent (set 1), and (ii) departing from these conditions the 

addition of hydrogen peroxide to the media (sets 2 and 3). The required reagents were 

terephthalic acid (H2BDC, Sigma Aldrich, 99%, 2 mmol, 332 mg), iron (III) chloride 

hexahydrate (FeCl3·6H2O, Sigma Aldrich, ≥98%, 2 mmol, 540 mg or 1 mmol, 270 mg 

for hybrids), aluminum nitrate nonahydrate (Al(NO3)3·9H2O, Sigma Aldrich, ≥98%, 2 

mmol, 750 mg or 1 mmol, 375 mg for hybrids) and peroxide solution 30% (H2O2 (aq), 

Sigma Aldrich, 204 µL (x1) or 408 µL (x2)). Dimethylformamide (DMF, Scharlau, 

99.5%, 10 mL) was used as solvent. Hybrids correspond to the simultaneous use of Fe 

and Al metals. Solid products were recovered by centrifugation, washed with 5 mL of 

DMF, dried at room temperature and finally heated at 100 ºC for 24 h to eliminate the 

encapsulated DMF. Samples with sole aluminum were calcinated at 270 ºC for 3 h with 

a heating ramp of 3 h. 
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Table 1. Reaction conditions for the three sets of experiments at 90 ºC. Molar ratio of metal ions, 

terephthalic acid and solvent for all runs were 2M3+ (Al3+, Fe3+ or Al3+/ Fe3+, same mol):2H2BDC:129DMF 

Metal(s) Molar ratio Run H2O2 Run H2O2 Run H2O2 Time Phase 

Al 2Al:2H2BDC 
1.1 

--- 

2.1 

x1 

3.1 

x2 

1.25 h MIL-53(Al) 
as 1.2 2.2 3.2 2.25 h 

Fe 2Fe:2H2BDC 
1.3 2.3 3.3 1.25 h 

MIL-68(Fe) 
1.4 2.4 3.4 2.25 h 

Al/Fe 1Al:1Fe:2H2BDC 

1.5 2.5 3.5 1.25 h 
MIL-

68(Al/Fe) 
1.6 2.6 3.6 2.25 

h 
 

Characterization 

The crystallinity of powder samples was characterized by X-ray diffraction (XRD, 

Siemens D-500 diffractometer) in the range of 4-40º 2θ at a scan rate of 0.01º s-1 with a 

copper anode and a graphite monochromator (Cu-Kα1 radiation, λ=1.540 Å). 

Thermogravimetric analysis (TGA, Mettler Toledo TGS/STDA 851e) was carried out 

under air atmosphere from 30 ºC to 700 ºC with a heating rate of 10 ºC min-1. N2 

adsorption was measured with a Micrometrics TriStar 3000 and specific surface areas 

were calculated by BET method. Samples were outgassed prior to the analysis under 

vacuum for 8 h at 200 ºC. Spectroscopic characterization with Raman (WITec alpha 

300) was carried out with the 783 nm laser and working at 17 mW (integration time 1.5 

s, 25 accumulations and a resolution of 2 cm-1). Particle imaging and morphology were 

characterized with a scanning electron microscope (SEM, FEI Inspect F50), with a 

previous Pt coating. Intermediate particle morphology was observed with a 

transmission electron microscope (TEM, Tecnai F30), operating at an acceleration 

voltage of 300 kV with a LaB6 electron source fitted with a “SuperTwin®” objective lens 

with a point-to-point resolution of 2.4 Å. High-angle annular dark field (HAADF) and 

EDS (energy dispersive X-ray spectroscopy) detectors were used to determine which 

chemical elements were present in the produced materials. 1H and 13C NMR spectra in 

solution were acquired on a Bruker AV-400 spectrometer, the chemical shifts ( ) are 

reported in parts per million from tetramethylsilane with the solvent resonance as the 

internal standard. The 13C NMR spectra of condensed phases were measured with 

cross-polarized magic angle spinning solid nuclear magnetic resonance (CP MAS-

NMR) in a Bruker Avance III WB 400. High resolution mass spectra (HRMS) were 

recorded using a Bruker Daltonics MicroToF-Q instrument from methanolic solutions 

using the positive electrospray ionization mode (ESI+), where cationic fragments were 

registered at their m/z values. 

 

RESULTS AND DISCUSSION 
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Influence of metal cations on the final phase 

At the same synthesis conditions, different cations in solution (Al3+, Fe3+ or the 

equimolecular mixture of both) gave rise to different phases (Fig. 1). The resulting 

diffraction patterns were compared with the simulated ones: synthesis based on 

Al(NO3)3 was compared with MIL-53(Al) as or ht (as-made and activated at high 

temperature ht),27 on FeCl3 with MIL-68(Fe)28 and on both salts with MIL-68(Al/Fe), 

in which the final product showed the characteristic pattern of MIL-68(Al) (equivalent 

pattern to that of MIL-68(V))29,30 with Fe3+ partially substituting Al3+ in the SBUs. MIL-

53(Al) structure consists of 1D  rhombohedral channels defined by chains of octahedral 

coordinated Al3+, connected through µ-OH and µ-terephthalate bridges.27 Instead, MIL-

68 is constructed also by these chains although forming trigonal and hexagonal 

channels in the final structure.28 It is not well known the reason why one structure is 

formed over the other in some conditions.31  

The colors of the powders were in concordance with their compositions, MIL-53(Al) 

white, MIL-68(Fe) orange and MIL-68(Al/Fe) pale orange, almost white. Figure 1 

shows small undefined rod-like particles of ca. 10-20 nm for MIL-53(Al), 

rhombohedral particles of ca. 1 μm for MIL-65(Al) and globular particles of 50-150 nm 

in case of MIL-68(Al/Fe). The small size of MIL-53(Al) particles, in the nanoscale 

range, was experimentally noticeable by the more difficult separation by centrifugation 

of the MOF from the solvent. It is also remarkable that in the combined synthesis with 

both metals, Al3+ and Fe3+, there was a higher content of aluminum in the resulting 

solid as it is inferred by the white pale color of the solid instead of orange color of the 

iron phase, but iron seemed to direct the final phase to MIL-68 instead of MIL-53, that 

showed for sole aluminium. The hybrid shows the pattern of MIL-68(Al) instead that of 

MIL-53(Al) or MIL-68(Fe) (of the MOF synthesized separately). The iron-terephthalate 

might be nucleating faster, although aluminium is incorporated to the net afterwards. 

This might be related to ionic radius,32 MIL-68 of Al and V show the same diffraction 

pattern30  and ionic radius for Fe3+ and V3+,32,33 are similar.  

The most stable phase under heating was MIL-53(Al), which losses the structure 

integrity at ca. 500 ºC, and the most sensitive to temperature that of MIL-68(Fe), with 

a degradation step ca. 350 ºC (TGA curves for the three phases after activation are in 

Fig. S1). 
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Figure 1. Final phases obtained with Fe3+, Al3+ or an equimolar blend of both for 1.25 h, their respective 

diffraction patterns (A1a, A2a and A3a) compared with the simulated (A1b, A2b and A3b, CIFs 220475, 

778931 and 222072), 27–30 and the SEM images of each phase (B1-B3). 

After synthesis, encapsulated DMF impurified the MIL-53(Al) as phase (see TGA in 

Fig. S2), which was experimentally noticeable by the harsher activation conditions 

needed as compared to the MIL-68 phases of Fe3+ and Al3+/Fe3+. The actual 

encapsulation was observed by the thermal stabilization, boiling point temperature for 

DMF is 152 ºC, although the evaporation step is observed at 250 ºC. In this manner, 

encapsulated DMF was removed by calcination at 270 ºC for 3 h. However, this 

activation temperature and time were lower than those reported elsewhere for MIL-

53(Al) activation (330 ºC for 72 h, or 380 ºC for 24 h).5,27 In the reported synthesis in 

water, some ligand H2BDC remains encapsulated into the pores and requires high 

temperature to be degraded above 350 ºC. H2BDC is poorly soluble in most solvents. In 

water, encapsulation of H2BDC might be favored by the better interaction with the pore 

walls rather than water molecules. Although, the solubility in DMF can be enough to 

remain in the organic liquid phase instead of into the pores.  

Finally, Table S1 shows that the three MOFs were obtained here in milder conditions 

than those previously reported. It might be explained by the system itself, where a 

water bath is used to achieve a faster heat transfer than the conventional air convention 

oven. In addition, a fast heat transfer promotes the nucleation a growth processes that 

accelerate the MOF production.34 We also used magnetic stirring, in opposition to the 

steady reactor, favoring the reaction. 

Effect of hydrogen peroxide on the synthesis of MIL-53(Al) as 
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Considering previous results reported by our group where the crystallization of 

MOFs was accelerated in oxidant atmospheres, it was considered to use H2O2 as MOF 

crystallization promoter.17 The addition of H2O2 (x1 and x2 equivalents or molar 

proportion with respect to the reactants) to the synthesis media of MIL-53(Al) 

produced an increment of the reaction yield (Table 2), more remarkable  for 1.25 h, 

when increased from 5% to 49% (runs 1.1, 2.1 and 3.1). The highest yield of 74% was 

obtained for 2.25 h and H2O2 with a molar ratio x2 (run 3.2). The peaks in the 

diffraction patterns appeared wider in the runs with H2O2, suggesting a loss of 

crystallinity or the reduction of particle size (Fig. S4). However, BET areas remained 

similar for all experiments, and close to the reported values for MIL-53(Al) (1140 

m2/g).27 

Regarding the MIL-53(Al) XRD patterns, Figure S3 shows that the main peak at 8.7º 

shows a shoulder at 9.3º, and a peak at 12.5º also appeared with low intensity for some 

samples (runs 1.1, 3.1, 3.2). This is in agreement with the presence of a part of the 

material in the hydrated form, as it can be inferred by the comparison with the 

simulated pattern of the hydrated or lt form, in which water molecules are bound by 

hydrogen bonds to adjacent carboxylates of terephthalate that narrows the pores and 

gives rise to different diffraction patterns.27 Raman spectroscopy highlights these 

different configurations (Fig. S5 and Table S2). Significant shifts of the carboxylate 

bands were observed, as hydrogen bonding are lacking, compared to the Raman 

spectrum of MIL-53 lt, while the vibrations corresponding to aromatic stretching and 

deformations are mainly kept. The band at 179 cm-1 of MIL-53(Al) synthesized here  is 

also a remarkable difference, the network in the open pore form shows a lattice 

vibration (contraction and expansion) of the network (as it is displayed for carbon 

nanotubes in the radial breathing mode).35 Solid 13C-NMR (Fig. S6) allowed to gain 

insight into potential structural differences and chemical environments of MIL-53(Al) 

synthesized samples with H2O2 here and MIL-53(Al) synthesized in water, clear spectra 

were obtained in both cases, with three peaks corresponding to the three different types 

of C atoms present in the terephthalate of MOF structure. Since the spectra were almost 

identical, the chemical environment of the carbon atoms showed no differences, even 

though the pore configuration was different for each sample. 
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Table 2. Yield and BET area values for synthesis of MIL-53(Al), MIL-68(Fe) and MIL-68(Al/Fe) in 

different conditions. 

  Blanks x1 H2O2 x2 H2O2 

Phase 
Time 

(h) 
Run 

Yield 
(%) 

BET 
area 

(m2/g) 
Run 

Yield 
(%) 

BET 
area 

(m2/g) 
Run 

Yield 
(%) 

BET 
area 

(m2/g) 
MIL-53 

(Al) 
1.25 1.1 5.0 - 2.1 27 824 3.1 49 1072 

2.25 1.2 39 1145 2.2 40 1245 3.2 74 1025 

MIL-68 
(Fe) 

1.25 1.3 4.1 -  2.3 0.5 - 3.3 18 - 

2.25 1.4 6.2 186 2.4 4.7 - 3.4 36 53 

MIL-68 
(Al/Fe) 

1.25 1.5 18 1189 2.5 31 1077 3.5 39 396 

2.25 1.6 30 1235 2.6 48 1139 3.6 56 947 

 

All in all, for MIL-53 syntheses a clear increase in yield was observed, preservation 

of textural properties and generation of smaller particles (SEM images Fig. S4) with 

broadening diffraction peaks. H2O2 displayed a clear promoter effect on the synthesis, 

affecting the reactants and/or the solvent. Firstly, the chemical modification of the 

ligand by hydroxylation (given the oxidant function of H2O2) of the aromatic ring of the 

terephthalic acid to form 2-hydroxyterephthalic acid was discarded from the Raman 

spectra. The shifts for the final phase of MIL-53(Al) treated with H2O2 showed the same 

band pattern of para-substituted aromatic ring, as the reference MIL-53(Al) (see 

Raman spectra in Fig. S5 and Table S2). 

Additionally, the reaction was studied by 1H- and 13C-NMR and high resolution 

mass spectroscopy (HRMS), with and without H2O2, in order to understand why MOF 

formation evolves differently in presence of hydrogen peroxide. For these studies, an 

aliquot was taken after 45 min of reaction in both cases. For 1H-NMR analysis, 0.5 mL 

of the studied solution was mixed with some drops of CDCl3. Even if DMF (reaction 

solvent) and partially deuterated DMF (formed in analysis mixture) signals were large 

they allowed to observe potential modifications in the linker terephthalic signals from 

the aromatic area. However, in agreement with above mentioned Raman study, 

(Fig.S5) the observed NMR peaks in the reactions with and without H2O2 were the 

same and they correspond to the reference terephthalic acid (Fig. S7).  

The reactions were also analyzed by HRMS with and without H2O2 (Fig. S8) to study 

the effect of it on chain precursor formation of MIL-53(Al) (Fig. 2a). Some microliters 

of samples, taken also at 45, min were diluted in methanol and ionized using the 

positive electrospray ionization mode (ESI+). Without H2O2, several peaks at different 

m/z ratios were observed. The resolved peaks correspond to positive molecular ions in 

which Al3+ cations are linked by terephthalate bridges, and some molecules of the 

ionized solvent complete the coordination sphere of metal atoms (m/z 433 and 611). A 
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single unit is also observed, with one terephthalate ligand linked to the Al3+ nucleus 

(m/z 296) (Fig. 2b). In the sample with H2O2, the only observed peak corresponds to a 

single cation with two terephthalate ligands linked to one Al3+ nucleus (m/z 430) (Fig. 

2c). In this sample, molecular ions with chains Al-µ-terephthalate-Al of Figure 2b were 

not observed. Taking into account that 1D structure is known to be present as a ribbon 

of aluminium linked through µ-OH and µ-terephthalate bridges,27 it is plausible to 

suppose that µ -OH bridges were unstable to ionization conditions and they cannot be 

detected even they were present in the studied solutions.  

 

Figure 2. Chain precursor formation of µ-hydroxo and µ-terephthalate bridges to form MIL-53(Al) 

(a). MS fragments without H2O2 (b) and with H2O2 (c) from MIL-53(Al) precursor synthesis. MS fragments 

from MIL-68(Fe) precursor synthesis (d). Color code: Al (green), Fe (red), bridge O (grey). 
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Differences between the observed species in HRMS with and without H2O2 could be 

due to a different mechanism operating in the MOF nucleation. Without H2O2, chains 

of terephthalate bridges would form first, and be observable in HRMS. From these 

chains, µ-hydroxo bridges would generate slowly to finally yield the MOF. In presence 

of H2O2, µ-hydroxo bridges would form directly at first. Then, terephthalate would link 

aluminium nucleus (this molecular entity was observed through MS, obviously without 

OH bridges) (Fig. 2c), and finally µ-carboxylate bridges would form easily between 

aluminium atoms that were already close. This difference in the mechanism of 

formation of µ-hydroxo bridges is consistent with a faster nucleation and growth and a 

higher reaction yield in presence of H2O2. 

The role of DMF is not totally clear in the mechanism. In general, the use of DMF 

has been discussed not only as common solvent but sometimes as an a priori 

irreplaceable solvent in the MOF synthesis. Here, it completes coordination around 

metal ions. The combination of polar properties of DMF to dissolve the metal-ligand 

complexes and the acid pH, which allows to have the free cations in solutions, promotes 

the precursor formation instead of inorganic polymerization or oxides formation.32  

 

Effect of hydrogen peroxide on the synthesis of MIL-68(Al/Fe) and MIL-

68(Fe) 

To validate the use of H2O2 in the synthesis of carboxylate type MOFs, the approach 

followed with MIL-53(Al) was extended to Fe and Al/Fe terephthalates. First, a solution 

of both metal salts in DMF (without H2BDC) was treated in the same set-up system at 

the same reaction conditions (90 ºC and 1.25 h) without and with H2O2. An orange 

solution was obtained without H2O2 (Fig. 3Aa). In presence of H2O2, the solution 

change in color (Fig. 3Ab, x1), with an increase of redness (Fig. 3Ab, x2), suggesting the 

formation of nanoparticles. The particles of the salt solution treated with x2 H2O2 (Fig. 

3Ac) were recovered by centrifugation for 30 min and analyzed by TEM and STEM, 

observing sharpened needle-shape nanoparticles (3-45 nm wide and 100-550 nm 

length, depending on agglomeration) (Figs. 3B and 3C). The EDS analysis showed that 

the composition was based on iron (Fig. 3D), and no aluminum was detected. The 

formation of these particles could be explained from a redox process. As mentioned in 

the introduction, the combination of Fe3+ and H2O2 is well-known for producing Fenton 

reactions. The formation of HO2
· species and Fe2+ is possible due to great excess of Fe3+, 

and maybe favored by the use of DMF as solvent and the relatively high temperatures. 

This could lead to the formation of particles of mixed valence iron complexes. 
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Nevertheless, Fenton reaction produces hydroxyl radicals ·OH that must lead to the 

quick transformation of terephthalic acid into 2-hydroxyterephthalic acid, and this fact 

was discarded from Raman spectra (Fig. S5 and Table S2) as discussed above. 

Moreover, neither the solution reactions (Fig. 3A) nor the obtained MOFs with Fe3+ 

(with or without H2O2) showed fluorescence with a UV lamp at 254 or 365 nm 

corresponding to 2-hydroxyterephthalic acid.24 Otherwise, and from an oxidation point 

of view, H2O2 could have promoted the formation of iron oxides that condense at the 

working conditions, being these species responsible of color change observed in the 

reactions with hydrogen peroxide. This oxide was expected to be formed in higher 

extension for sole iron synthesis, and Raman bands at 332 and 44 cm-1 attributed to Fe-

O bonds vibrations of oxides and hydroxides seem to corroborate it, as they are not 

observed in the other phases.  

 

Figure 3. Photos corresponding to the solutions of metal salts (A) of blank (a), x1 H2O2 (b) and x2 

H2O2 (c); TEM (B) and STEM-HAADF (C) images of the particles recovered from A(c); and EDS analysis 

profile (D) of C). Photos of the obtained solids in the Al3+/Fe3+-terephthalate experiments (E). 

A yield increase was observed for both synthesis, MIL-68(Fe) and MIL-68(Al/Fe) 

(Table 2). However, the yield only raised its value by using the double proportion of 

H2O2 in case of MIL-68(Fe) (3.3 and 3.4). In fact, it decreased significantly for 1.25 h 

and x1 H2O2 (2.3). The formation of the described sharp particles with H2O2, just the 

metals and the solvent, could hinder the MOF growth in first place.  
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Hence, the effect of hydrogen peroxide is not clear in the formation of iron phases. 

Studies by RMN in solution could not be properly carried out due to paramagnetic 

effect of Fe3+. The study by HRMS of the reaction with H2O2 revealed the existence of 

iron dimers with both µ-oxo and µ-terephthalic bridges between both iron nuclei. One 

chloride atom (coming from the ferric chloride used as reactive) linked to each metal 

atom and with some small molecules (DMF or N,N-dimethylformamide dimethylacetal, 

DMFDA, formed by reaction of DMF with methanol upon ionization) complete the 

coordination sphere of metal atoms (Figs. S9 and 2d). Hydrogen peroxide could 

increase the formation of oxygen bridges between Fe3+, as described above for 

aluminium, or increase the formation of ferric oxides. 

Regarding the textural properties, the BET areas were low for all MIL-68(Fe) 

samples (see Table 2) and some experiments did not yield enough amount of powder 

for the measurements. Moreover, the reported experimental value for MIL-68(Fe) is 

relatively low, 355 m2/g, with a previous degasification at 250 ºC.28 A temperature of 

200 ºC was used here, which may justify the lower values obtained. The BET areas in 

the mixed phase MIL-68(Al/Fe) were slightly reduced, particularly with x2 H2O2. This 

can be explained by the increase of the iron content when more H2O2 was added, 

comparing the respective values in the pure phases (low for Fe-based and high for Al-

based) and the color change observed for the final phases (Fig. 3E). For example, in the 

experiments for 2.25 h, the BET areas values were with x2 H2O2 1025 m2/g for MIL-

53(Al) (3.2), 53 m2/g for MIL-68(Fe) (3.4) and 947 m2/g for mixed MIL-68(Al/Fe) 

(3.6, orange color), meanwhile for those without H2O2, 1145 m2/g for MIL-53(Al) (1.2), 

186 m2/g for MIL-68(Fe) (1.4) and 1235 m2/g for mixed MIL-68(Al/Fe) (1.6, raw white 

color). Besides that, a differentiated low value was obtained at 1.25 h and x2 H2O2 

(3.3), 396 m2/g, in agreement with the lower crystallinity (Fig. S10). MIL-68(Al) can 

exhibit a BET area as high as ca. 1400 m2/g,36 what agrees with the fact that the highest 

BET area sample (1.6) was almost white consistent with a low or null Fe content. 

For MIL-68(Al/Fe), no significant changes were observed in crystallinity (Fig. 10) or 

in morphology in SEM images (Fig. S11) comparing the reference samples with those 

produced in H2O2, except for the diffraction pattern of sample synthesized for 1.25 h 

with x2 H2O2 (3.5) in agreement with the low BET area. This diffraction pattern might 

be compatible with that corresponding with a mixture of MIL-53(Al) and MIL-53(Fe), 

the latter not presenting appreciable BET area.37 Additionally, considering the excess of 

promoter  (x2 H2O2) and the reduced time, more nuclei were formed and the growth of 

particles (Fig. 3A) was limited by the shorter time. In case of MIL-68(Fe), the 

morphology was noticeably modified, the reference rhombohedral particles turned into 
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polydisperse rods for samples with x2 H2O2 (Fig. S12). In fact, it was observed an 

increased XRD background and peak broadening, therefore some crystallinity was lost 

(Fig. S13).  

 

Conclusions 

MIL-53(Al), MIL-68(Fe) and MIL-68(Al/Fe) were obtained at milder conditions 

rather than the reported syntheses: lower temperature, shorter times, milder 

purification procedures and good yields. In MIL-68(Fe) and MIL-53(Al) syntheses, Fe3+ 

allowed the solubilization of terephthalic acid in DMF, and therefore the ligand was 

absent in the final product, which normally impurifies the MOFs. We observed that 

H2O2 produced an increase of synthesis yield for MIL-53(Al) and MIL-68(Al/Fe), while 

MIL-68(Fe) seemed to be impurified by some oxide. The crystallinity and the BET were 

roughly kept for MIL-53(Al) and MIL-68(Al/Fe). For iron-based phases, the formation 

of needle-like particles of iron oxide was favored with H2O2 and mixed MOFs with 

different iron content were produced by means of controlling the synthesis time and 

the amount of H2O2. While the effect of H2O2 was not clear in the formation of MOFs 

containing only Fe as metal, in case of Al containing MOFs a different mechanism 

seems to work with or without H2O2. The hydrogen peroxide would promote the early 

formation of µ-hydroxo bridges and then terephthalate species would link aluminium 

containing species to give rise to the µ -carboxylate bridges between metallic atoms 

already close, leading to a faster growth of the final MOF. Contrarily, in absence of 

H2O2 chains of terephthalate bridges would form first, delaying the synthesis of the 

MOF. 

 

References 

1. Kuppler, R. J. et al. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 

3042–3066 (2009). 

2. Sorribas, S., Gorgojo, P., Téllez, C., Coronas, J. & Livingston, A. G. High flux thin film 

nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. 

J. Am. Chem. Soc. 135, 15201–15208 (2013). 

3. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450 (2009). 

4. Paseta, L., Potier, G., Abbott, S. & Coronas, J. Using Hansen solubility parameters to study the 

encapsulation of caffeine in MOFs. Org. Biomol. Chem. 13, 1724–1731 (2015). 

5. Monteagudo-Olivan, R., Paseta, L., Potier, G., López-Ram-de-Viu, P. & Coronas, J. Solvent-Free 

Encapsulation at High Pressure with Carboxylate-Based MOFs. Eur. J. Inorg. Chem. (2018). 



Chapter 3 

65 
 

doi:10.1002/ejic.201800985 

6. Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for 

drug delivery and imaging. Nat Mater 9, 172–178 (2010). 

7. Farha, O. K. & Hupp, J. T. Rational design, synthesis, purification, and activation of metal-organic 

framework materials. Acc. Chem. Res. 43, 1166–1175 (2010). 

8. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF 

topologies, morphologies, and composites. Chemical Reviews 112, 933–969 (2012). 

9. Klinowski, J., Paz, F. A. A., Silva, P. & Rocha, J. Microwave-assisted synthesis of metal-organic 

frameworks. Dalton Trans. 40, 321–330 (2011). 

10. Khan, N. A. & Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or 

ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry 

Reviews (2015). doi:10.1016/j.ccr.2014.10.008 

11. Paseta, L., Potier, G., Sorribas, S. & Coronas, J. Solventless synthesis of MOFs at high pressure. 

ACS Sustain. Chem. Eng. 4, 3780–3785 (2016). 

12. Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented 

attachment growth. Angew. Chemie - Int. Ed. 48, 4739–4743 (2009). 

13. Diring, S., Furukawa, S., Takashima, Y., Tsuruoka, T. & Kitagawa, S. Controlled multiscale 

synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. (2010). 

doi:10.1021/cm101778g 

14. Xiong, W. W. & Zhang, Q. Surfactants as Promising Media for the Preparation of Crystalline 

Inorganic Materials. Angew. Chemie - Int. Ed. (2015). doi:10.1002/anie.201502277 

15. Seoane, B. et al. Metal organic framework synthesis in the presence of surfactants: Towards 

hierarchical MOFs? CrystEngComm (2015). doi:10.1039/c4ce02324b 

16. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF 

topologies, morphologies, and composites. Chemical Reviews (2012). doi:10.1021/cr200304e 

17. Monteagudo-Olivan, R., Arruebo, M., López-Ram-De-Viu, P., Sebastian, V. & Coronas, J. Reactive 

gas atmospheres as a tool for the synthesis of MOFs: The creation of a metal hybrid fumarate with 

a controlled Fe/Al composition profile. J. Mater. Chem. A 6, (2018). 

18. Umemura, A. et al. Morphology design of porous coordination polymer crystals by coordination 

modulation. J. Am. Chem. Soc. (2011). doi:10.1021/ja204233q 

19. Brillas, E., Sirés, I. & Oturan, M. A. Electro-fenton process and related electrochemical 

technologies based on fenton’s reaction chemistry. Chem. Rev. (2009). doi:10.1021/cr900136g 

20. Fenton, H. J. H. LXXIII. - Oxidation of tartaric acid in presence of iron. Journal of the Chemical 

Society, Transactions (1894). doi:10.1039/CT8946500899 

21. Haber, F. & Weiss, J. The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proc. R. 

Soc. A Math. Phys. Eng. Sci. (1934). doi:10.1098/rspa.1934.0221 

22. Petrucci, E., Da Pozzo, A. & Di Palma, L. On the ability to electrogenerate hydrogen peroxide and 



Chapter 3 

66 
 

to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes. 

Chem. Eng. J. (2016). doi:10.1016/j.cej.2015.08.030 

23. Hayyan, M., Hashim, M. A. & Alnashef, I. M. Superoxide Ion: Generation and Chemical 

Implications. Chemical Reviews (2016). doi:10.1021/acs.chemrev.5b00407 

24. Barreto, J. C., Smith, G. S., Strobel, N. H. P., McQuillin, P. A. & Miller, T. A. Terephthalic acid: A 

dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. (1994). doi:10.1016/0024-

3205(94)00925-2 

25. Lane, B. S. & Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. 

Chemical Reviews (2003). doi:10.1021/cr020471z 

26. Grigoropoulou, G., Clark, J. H. & Elings, J. A. Recent developments on the epoxidation of alkenes 

using hydrogen peroxide as an oxidant. Green Chemistry (2003). doi:10.1039/b208925b 

27. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-

53) upon hydration. Chemistry 10, 1373–1382 (2004). 

28. Fateeva, A. et al. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-

68(Fe) Solid. Eur. J. Inorg. Chem. 2010, 3789–3794 (2010). 

29. Seoane, B., Sebastián, V., Téllez, C. & Coronas, J. Crystallization in THF: The possibility of one-pot 

synthesis of mixed matrix membranes containing MOF MIL-68(Al). CrystEngComm (2013). 

doi:10.1039/c3ce40847g 

30. Barthelet, K., Marrot, J., Ferey, G. & Riou, D. VIII(OH)[O2C-C6H4-CO2].(HO2C-C6H4-

CO2H)x(DMF)y(H2O)z(or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: 

reticular synthesis with infinite inorganic building blocks? Chem. Commun. (Camb). 520–521 

(2004). doi:10.1039/b312589k 

31. Loiseau, T., Volkringer, C., Haouas, M., Taulelle, F. & Férey, G. Crystal chemistry of aluminium 

carboxylates: From molecular species towards porous infinite three-dimensional networks. 

Comptes Rendus Chim. (2015). doi:10.1016/j.crci.2015.08.006 

32. Devic, T. & Serre, C. High valence 3p and transition metal based MOFs. Chemical Society Reviews 

(2014). doi:10.1039/c4cs00081a 

33. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in 

halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976). 

34. Paseta, L. et al. Accelerating the controlled synthesis of metal-organic frameworks by a 

microfluidic approach: A nanoliter continuous reactor. ACS Appl. Mater. Interfaces 5, 9405–9410 

(2013). 

35. Maultzsch, J., Telg, H., Reich, S. & Thomsen, C. Radial breathing mode of single-walled carbon 

nanotubes: Optical transition energies and chiral-index assignment. Phys. Rev. B - Condens. 

Matter Mater. Phys. 72, 205438 (2005). 

36. Seoane, B., Sebastián, V., Téllez, C. & Coronas, J. Crystallization in THF: The possibility of one-pot 

synthesis of mixed matrix membranes containing MOF MIL-68(Al). CrystEngComm (2013). 

doi:10.1039/c3ce40847g 



Chapter 3 

67 
 

37. Denny, M. S. & Cohen, S. M. In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix 

Membranes. Angew. Chemie - Int. Ed. (2015). doi:10.1002/anie.201504077 

 

  



Chapter 3 

68 
 

 

 

 

 

 

 

 

3.3. Supporting Information 

  



Chapter 3 

69 
 

 

 

Figure S1. TGA curves of MOFs after drying at 100ºC and calcination at 270ºC for MIL-53(Al). 

 

Figure S2. TGA curves of MIL-53(Al) in DMF (blue) and before activation (as, blue dotted), and of MIL-

53(Al) in H2O (green) and before (as, green dotted)  
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Table S1. Comparison of the published synthesis conditions for MIL53(Al),1 MIL-68(Fe)2 and MIL-

68(Al)3,4 with the ones developed in this report.  

 Time Temp. Solvent Postreatment 

ref. MIL-53(Al) 72 h 220 ºC H2O Calcination 330 ºC 72 h 

obt. MIL-53(Al) 2.25 h 90 ºC DMF Calcination 270 ºC 6 h 

ref. MIL-68(Fe) 120 h 100 ºC DMF with HF 
Washing in DMF 100 ºC 18 h 

Calcination 300 ºC 24 h 

obt. MIL-68(Fe) 2.25 h 90 ºC DMF Drying 100 ºC 24 h 

ref. MIL-68(Al) 18.5 h 130 ºC DMF Drying 

obt. MIL-
68(Al/Fe) 

2.25 h 90 ºC DMF Drying 100 ºC 24 h 
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Figure S3.  Diffraction patterns of the Al3+-terephthalate experiments from bottom to up: 1.1, 1.2, 2.1, 

2.2, 3.1, 3.2 and simulated pattern of the pore-opened MIL-53(Al) ht phase and hydrated lt phase.1  

 

 

Figure S4. SEM images of Al3+-terephthalate syntheses. 

 

5 10 15 20 25 30 35 40

MIL-53(Al) lt simulated

2.25 h

1.25 h x1 H
2
O

2In
te

n
s
it

y
 (

a
.u

.)

2 (º)

1.25 h

2.25 h x1 H
2
O

2

1.25 h x2 H
2
O

2

2.25 h x2 H
2
O

2

MIL-53(Al) ht simulated



Chapter 3 

72 
 

 

Figure S5. Raman spectra of MOF obtained with H2O2 from bottom to up: MIL-68(Fe) (2.4), MIL-53(Al) 

(2.2) and MIL-68(Al/Fe) (2.6). Up: reference MIL-53(Al) synthesized in water.  

 

Table S2. MOF: terephthalate shifts of MOF obtained with H2O2 MIL-68(Fe) (2.4), MIL-53(Al) (2.2), 

MIL-68(Al/Fe) (2.6) and reference MIL-53(Al) synthesized in water 
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Figure S6. NMR Solid 13C-NMR spectra of samples treated with x1 H2O2 and 2.25 h of MIL-53(Al) (a) and 

MIL-53(Al) synthesized accordingly to the reference.1 

 

 

 

Figure S7. 1H-NMR and 13C-NMR of simulated spectrum of terephthalic acid (a and c, respectively) and 

2-hydroxiterephthalic acid (b and d, respectively), and experimental spectra of an aliquot at 45 min of the 

MIL-53(Al) synthesis without and with H2O2 (e and f, respectively) 
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Figure S8. MS spectra of the intermediate reaction of Al3+-terephthalate with H2O2 (a) and 

with H2O2 (b). 
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Figure S9. MS spectra of the intermediate reaction of Fe3+-terephthalate with H2O2  

 

 

 

 

Figure S10. Diffraction patterns of the obtained solids in the Al3+/Fe3+-terephthalate experiments from 

bottom to up: 1.5, 1.6, 2.5, 2.6, 3.5 and 3.6.  
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Figure S11. SEM images of Al3+/Fe3+-terephthalate syntheses. 

 

 

 

 

Figure S12. SEM images of Fe3+-terephthalate syntheses. 
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Figure S13. Diffraction patterns of the Fe3+-terephthalate experiments from bottom to up: 1.3, 2.4, 3.3 

and 3.4 
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4.1. Summary and graphical abstract 

The solvent-free encapsulation of caffeine and kojic acid is carried out in different 

carboxylate-based MOFs (MIL-53(Al), UiO-66 and Mg-MOF-74) by high pressure (0.32 

GPa) contact. This methodology enables fast and ecofriendly encapsulation and gives rise 

to additive@MOFs with equivalent physical and features to materials obtained by 

common liquid phase encapsulation processes. It could be applied to other guest-host 

systems simplifying the procedures, reducing the use and waste of harmful chemicals 

and approaching the conditions of interest in the industry. The characterization carried 

out by thermogravimetry, X-ray diffraction, N2 adsorption and 13C NMR provided 

information about the presence and conformation of the additives in the MOFs. The 

highest encapsulation values for caffeine (37%) and kojic acid (32%) are obtained with 

MIL-53(Al). 
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4.2. Solvent-free encapsulation at high pressure in carboxylate-

based MOFs  

INTRODUCTION 

Metal-organic frameworks (MOFs) are porous crystalline hybrid materials made of 

metal ions or clusters coordinated with organic linkers to form single or 

multidimensional structures.1 Due to the high surface area  of these materials,2 their 

relatively high chemical and thermal stability3,4 and the possibility of modifying the pore 

size and the functionality by changing the metal ion or the organic ligand,5 MOFs are 

useful in a wide  range of fields such as catalysis,6 adsorption and storage of gases,7 

selective membranes,8 encapsulation,9 and medicine.10–13 

One of the most important families of MOFs corresponds to those based on 

carboxylate-type ligands. Specifically, MIL-53(Al), UiO-66 and Mg-MOF-74 are very 

suitable from the encapsulation point of view because of the potential biocompatibility 

of their corresponding organic linkers and metal centers.14,15 MIL-53(Al) is composed of 

trivalent metal cations Al3+ interconnected through terephthalate linkers to form a three 

dimensional framework with rhombus-shape one-dimensional channels.16 This MOF has 

attracted considerable attention due to its high thermal and chemical stability and its 

“breathing” behavior. This allows it to adapt its porosity, which can vary in the range of 

8.5 x 8.5 Å (ht form) and 2.6 x 13.6 Å (lt form), to the size and shape of the guest 

molecule.16–18 This feature makes MIL-53(Al) very interesting in the encapsulation field19 

and for the delivery of molecules of pharmacological interest.17 The second carboxylate-

based MOF UiO-66 also shows  high stability  compared with other MOFs due to the 

special structure of the corresponding Zr4+-terephthalate, which displays octahedral and 

tetrahedral cages with triangular pore windows of 6 Å.20 The third material studied, Mg-

MOF-74, is composed  of Mg2+ and 2,5-dihydroxyterephthalate and presents hexagonal 

channels of 12 Å.21,22 This MOF is highly hydrated showing the behavior of a typical high 

aluminum content zeolite; due to the fact that some water molecules play a structural 

role, it has low stability in water.23 Finally, MIL-101(Cr) is made of terephthalate ligands 

coordinated to Cr3+ and is well-known as an adsorbent with a high specific surface area; 

it  has cages of 29 Å and 34 Å featuring 12 Å pentagonal and 16 Å hexagonal apertures.24 

Due to  its chromium content, this material is not as biocompatible as the other three 

materials but  has a high adsorption capability.10 It is studied here for the purposes of 

comparison. Regarding traditional liquid phase encapsulation, there are two different 

methodologies to encapsulate a drug into a MOF denominated as “multi-step” and “one-

step” encapsulations9,27–30 The former involves three steps: the synthesis of the MOF,  its 

subsequent activation, and the encapsulation of the drug by liquid phase adsorption.10,31–
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34 In the latter, the drug is placed together with the reactants in the synthesis media and 

the MOF grows around the drug.35–39 Moreover, after encapsulation, it has been reported 

the functionalization of MOF particles with different biomolecules40,41 and magnetic 

nanoparticles.42  

 

 

Figure 1. Guest and host systems addressed in this work.  Atomic color code: carbon (grey), oxygen 

(blue) and metal coordination (green). These structures were made with Diamond 3.2. and Crystal Maker 

9.2.7 using the corresponding CIF files.16,21,25,26 

Herein we propose a different and new methodology: the solvent-free encapsulation 

by high pressure (0.32 GPa) contact of additives or drugs (caffeine and kojic acid) with 

several carboxylate-based MOFs (see Fig. 1). Caffeine can be considered as a model 

molecule31,35 suitable  for demonstrating a new encapsulation process. In addition, 

caffeine is widely known because of  its stimulant effect in the central nervous system43 

but also as a fat reducer in the fields of cosmetics and pharmacology.44 To broaden the 

scope of applicability, a second probe additive, kojic acid, has been used in the present 

study. This natural compound produced by several fungi is used in low doses for skin 
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lightening45,46 in cosmetic products and as an antimelanogenesis agent.47 It also has 

applications as a biocide.48 The smaller molecular size of kojic acid (as compared to 

caffeine) will provide additional insight into the host-guest interaction. 

The solvent-free encapsulation process carried out for the first time in this work can 

be considered as environmentally friendly, in line with others related to the synthesis of 

MOFs working in continuous mode,49 using water as a solvent50 or avoiding the use of 

solvents entirely.49,50 We postulate that high pressure favors the diffusion of the additive 

into the material and therefore the use of any solvent is avoided. The bibliography on the 

effect of high pressure on MOFs is very scarce. We have previously reported the solvent-

less synthesis of ZIF-8 at high pressure49 and  the behavior of this MOF at high pressure 

has also been described  with regard to its stability51,52 and water intrusion.53 Moreover, 

the contact of MOF Cu-btc with several liquids (alcohols and perfluorotri-N-

pentylamine) has been studied up to 8 GPa.54 Interestingly, these authors concluded that 

“the fundamental understanding of high-pressure phenomena in MOFs will play a 

pivotal role in the advancement of their diverse applied functionalities.” Finally, it is 

worth mentioning that the MOFs studied here, MIL-53(Al),19 UiO-66,31,57 Mg-MOF-7455 

and MIL-101(Cr),56 have previously been applied to the conventional encapsulation of 

different guests.  Finally, it has been recently commercialized MOF based products 

TruPick and ION-X as systems for food packaging and electronic gas delivery.57  In 

particular, TruPick releases 1-methylcyclepropene (encapsulated in a MOF synthesized 

by mechanochemistry) that reduces fruit ripening during its storage. This demonstrates 

that MOF encapsulation is a field with great potential of industrial development. 

 

RESULTS AND DISCUSSION  

Fig. 2 depicts the typical crystal morphologies of MIL-53(Al), UiO-66, Mg-MOF-74 

and MIL-101(Cr) as observed by SEM. These images are consistent with high crystalline 

materials (as demonstrated below by XRD characterization) which may be considered 

appropriate for the purpose of studying the solvent free encapsulation of caffeine and 

kojic acid at high pressure. 
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Figure 2. SEM images of the materials MIL-53(Al) (a), UiO-66 (b), Mg-MOF-74 (c) and MIL-101(Cr) 

(d). 

 

 High pressure stability and encapsulation  

In agreement with previous publications dealing with the liquid phase encapsulation 

of drugs in MOFs,19,31,32,35,37,57,61 XRD, N2 adsorption, NMR and TGA techniques were 

employed to evidence the encapsulation carried out here by the new solvent-free 

methodology proposed. XRD is qualitative proof of encapsulation, since the guest 

molecule intensity in its contact with the MOF decreases due the adsorption in the MOF 

structure. N2 adsorption (to calculate the BET specific surface area) is in line with XRD; 

if the encapsulation is produced in the MOF porosity, less porosity is available for N2 

molecules. NMR demonstrates host-guest interactions and the preservation of the guest 

chemical nature. Finally, TGA allows a calculation of the encapsulation yield, since 

encapsulated molecules show a thermal stabilization as compared with external 

molecules (that have not penetrated in the MOF structure). We did not carry out liquid 

phase characterizations of our samples to avoid alteration of the solid state encapsulation 

method. 

Fig. 3 shows the diffraction patterns of the different materials before and after 30 min 

at 0.32 GPa. As an index of the effect of pressure on the decrease of the MOF crystallinity, 
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the FWHM (full width at half maximum height) was calculated for the main peaks of the 

MOFs (MIL-53(Al): 12.5° - (110) plane, UiO-66: 7.2° - (111) plane, and Mg-MOF-74: 11.7° 

- (300) plane) before and after pressure exposure. Table S1 shows the obtained results 

highlighting that the FWHM increased for the pressure treated materials in agreement 

with a decrease of crystallinity. In particular, MIL-53(Al) and Mg-MOF-74 seem to be 

less affected, maintaining their crystalline structures after the high pressure treatment, 

even though the relative intensities of some peaks varied in the case of MIL-53(Al) 

probably due to its flexible structure.59 Regarding our results with UiO-66, low intensity 

peaks were still visible in the diffraction pattern after the high pressure treatment but 

with some noise and evident broadening (Table S1). Finally, strong amorphization was 

revealed for MIL-101(Cr) after the high pressure treatment treatment, and the FWMH 

was not calculated. Conspicuously characteristic peaks below 10° disappeared while most 

of the others tended to merge into broad peaks. These findings are in agreement with 

previous works on computational characterization of the mechanical stability of flexible 

MIL-53(Al) and rigid UiO-66.60,61 These works predicted the loss of crystallinity of rigid 

UiO-66 at 1.83 GPa. In turn, this coincides with the experimental work carried out on 

UiO-66 that concluded that this MOF was not amorphized below 2 GPa, even though a 

gradual loss of crystallinity was detected at moderated pressures (0.3-1.7 GPa) in terms 

of broadening of the XRD peaks.62 
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Figure 3. XRD patterns of the different samples (from bottom to top, MOF, MOF after high pressure 

exposure, caffeine@MOF after high pressure encapsulation, simple mixture of caffeine and MOF, and 

caffeine) corresponding to: MIL-53(Al) (a), UiO-66 (b), Mg-MOF-74 (c), and MIL-101(Cr) (d). 

Encapsulation at room temperature, 0.32 GPa and 4:1 MOF:caffeine weight ratio. 

 

 XRD is a useful tool for monitoring the effective encapsulation of the additives since 

the additive intensities would decrease or almost disappear upon guest adsorption in the 

MOF porosity, i.e. the isolated additives in the MOF porosity would not be able to form 

detectable crystals. Fig. 3. shows the XRD patterns corresponding to the high pressure 

encapsulation of caffeine into the different MOFs (MOF:caffeine weight ratio of 4:1) 

together with those of the simple blending of caffeine with the MOF (at the same weight 

ratio) for a proper comparison. Encapsulation of caffeine in MIL-53(Al) and UiO-66 

produced a clear decrease in the main peak of caffeine at 11.9°, as inferred from the 

comparison of the XRD patterns corresponding to the simple additive-MOF mixtures 

and samples caffeine@MIL-53(Al) and caffeine@UiO-66. In consequence, this caffeine 

peak was considered to follow the encapsulation of caffeine in both MOFs. In this 

context, Table S2 shows the area ratios corresponding to maximum XRD peaks of 

additives (caffeine (CAF): 11.9° and kojic acid (KA): 19.3°) and MOFs (MIL-53(Al): 12.5° 

- (110) plane, UiO-66: 7.2° - (111) plane, and Mg-MOF-74: 11.7° - (300) plane) for simple 

additive-MOF blending (0 GPa) and encapsulation at 0.32 GPa. In all the cases, these 

area ratios decreased from the simple blending to 0.32 GPa encapsulation. We assume 

that this ratio decrease is due to the adsorption of caffeine into the MOF pores and 

therefore the disappearance of external caffeine impregnating the MOFs. Caffeine@MOF 

products would show the additive pattern if caffeine was present in the form of crystal 

outside the MOF. The reduction or absence of the characteristic caffeine peaks is 

consistent with its encapsulation, and the caffeine peaks are more evident when excess 

caffeine was used (2:1 MOF:caffeine weight ratio instead of 4:1, see Fig. S1). 

TGA analysis was used to observe the possible thermal stabilization of additives after 

encapsulation usually related to their adsorption on the MOF porosity and not to their 

mere external impregnation. The TGA curve of sample 4:1 in MIL-53(Al) (Fig. S2a) 

shows only one intermediate step corresponding to thermally stabilized caffeine. In the 

caffeine@UiO-66 TGA curve (Fig. S2b), two removal steps can be observed due to the 

external caffeine at ca. 180 °C and the encapsulated caffeine at ca. 230 °C. The external 

caffeine step appeared when caffeine was used in high excess, as seen in Fig. S3 for 

caffeine@MIL-53(Al). The XRD patterns for Mg-MOF-74 are not clear enough to 

conclude the completion of encapsulation because the most intense peak of caffeine 

overlaps with one of the peaks of the MOF. In addition, Fig. S2c does not reveal any 
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stabilization for caffeine@MOF-74, in agreement with a mere external impregnation of 

caffeine on the MOF. In the pressurized sample with MIL-101(Cr), only caffeine peaks 

are observed, consistent with the great damage that the high pressure produced in this 

material, suggesting its structural collapse at 0.32 GPa. 

Fig. 4 shows similar results for the encapsulation of kojic acid in MIL-53(Al) (Fig. 4a) 

and UiO-66 (Fig. 4b). Nevertheless, the decrease corresponding to the kojic acid peak 

area is greater than in the experiments with caffeine as compared to the simple blending, 

especially in the case of MIL-53(Al) (Table S2). This can be attributed to the more 

reduced size of kojic acid (MW 142.11 g/mol) as compared to caffeine (MW 194.19 

g/mol), considering that it is easier to encapsulate a smaller molecule. However, the 

chemical interaction estimated in terms of Hansen solubility parameters9,63  would favor 

caffeine-terephthalate interactions (Ra parameter 3.1 MPa0.5) over those between kojic 

acid and terephthalate (9.6 MPa0.5). TGA curves in Fig. S4 show some thermal 

stabilization of kojic acid with both MOFs. In the case of Mg-MOF-74, the most intense 

peak of kojic acid remains in the kojic acid@Mg-MOF-74 (Fig. 4c). The area ratio 

between the most intense peaks of the additive at 19.3° and the MOF at 11.7° is 4.5 for 

the simple blending and 0.55 for kojic acid@MOF-74 (Table S2), i.e. an important part 

of the additive disappeared from the external surface during the encapsulation process. 

Therefore, in this case the change in the relative intensities supports the idea that 

encapsulation had taken place, in agreement with the corresponding TGA curve in Fig. 

S4c. MIL-101(Cr) was not used to encapsulate kojic acid due to its lack of high pressure 

stability, as shown above. 
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Figure 4. XRD patterns of the different samples (from bottom to top, MOF, MOF after high pressure 

exposure, kojic acid@MOF after high pressure encapsulation, simple mixture of kojic acid and MOF, and 

kojic acid) corresponding to: MIL-53(Al) (a), UiO-66 (b), and Mg-MOF-74 (c). Encapsulation at room 

temperature, 0.32 GPa and 4:1 kojic acid:MOF weight ratio 

 

Table 1 shows the BET specific surface area values of some selected samples. First, the 

effect of high pressure reduced the surface area values for both MIL-53(Al) and UiO-66 

from 1140 and 951 m2/g to 1016 and 253 m2/g, respectively. This suggests that the 

microporosity of MIL-53(Al) was not significantly affected by high pressure, in 

agreement with the above shown XRD pattern, while that of UiO-66 presents an 

important reduction, according to the somewhat noisy UiO-66 XRD pattern (suggesting 

some loss of crystallinity after the high pressure contact). In addition, the decrease of the 

BET specific surface area due to guest pore filling supports the encapsulation of caffeine 

and kojic acid in MIL-53(Al) and UiO-66, even though on this last case the effect of guess 

pore filing may overlap on the structure damage. The decrease of surface area of MIL-

53(Al) (1016 m2/g) after the encapsulation of caffeine (336 m2/g) and kojic acid (9 m2/g) 

was consistent with its pores filled with the additives. These values were 52 and 83 m2/g 

for caffeine@UiO-66 and kojic acid@UiO-66, respectively.  
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Table 1. BET surface area of MIL-53(Al) and UiO-66 after high pressure treatment and high pressure 

encapsulation of caffeine and kojic acid in both MOFs. 

Sample 
SBET 

(m2/g) 
Sample 

SBET 

(m2/g) 

MIL-53(Al) 1140 UiO-66 951 

MIL-53(Al) HP 1016 UiO-66 HP 253 

Caffeine@MIL-53(Al) 336 Caffeine@UiO-66 52 

Kojic acid@MIL-53(Al) 9 Kojic acid@UiO-66 83 

 

Solid-state 13C NMR was employed to study the MOF-guest interactions upon 

encapsulation by high pressure contact. Figures 5 and 6 compare the 13C MAS NMR 

spectra of caffeine and kojic acid with those of MIL-53(Al) and UiO-66 before and after 

encapsulation. Some trends were observed analyzing the changes in chemical shifts of 

additives and terephtalate ligand in additive@MOF materials (Tables S3-S5).  In the case 

of caffeine@MIL-53(Al), the peaks corresponding to the terephthalate MOF linker 

remained as in the bare MIL-53(Al) (Table S3a). However, the peaks of caffeine were 

modified once it was encapsulated (see Fig. 5a and Table S4). Interestingly, C2, C4, C5, 

Me1 and Me6 signals shifted upfield, while those for C7, C9 and Me3 shifted downfield. 

This can be explained by the anisotropic magnetic behavior of the ligand. There are 

typical shielding areas due to the aromatic ring effect (affecting to upper and lower 

parallel planes) and also deshielding zones (anisotropic cone) generated by the carbonyl 

group. Therefore, the size and shape of the guest molecule and host cages determine a 

specific and symmetric position of caffeine inside the porosity of MIL-53(Al). An 

arrangement of caffeine-terephthalate planes with C2-axis of terephthalate parallel to an 

imaginary line bonding N8 and N1 in caffeine ring (Fig. 5c) is proposed for caffeine@MIL-

53(Al). However, the symmetry of the MOF linker is not affected and the 13C NMR peaks 

are similar to those of the bare MIL-53(Al).  

Caffeine@UiO-66 exhibits 13C NMR peaks corresponding to the MOF ligand wider as 

compared to the bare UiO-66 (Figure 5b). This agrees with the loss of crystallinity after 

the encapsulation process and with the XRD results and BET specific surface area values 

above discussed. Nevertheless, taking into account the observed changes in the chemical 

shifts of caffeine and ligand signals, a complementary explanation is proposed. A similar 

trend of caffeine signals in both MIL-53 and UiO-66 (Table S4) shows a parallel 

arrangement between additive and terephthalate ligand in both MOFs. Simultaneously, 
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the slight tendency to downfield of broadened carboxylate signal of ligand (a shoulder 

can even be observed at 172.3 ppm, Table S3b) next to a deshielding of Corto suggests the 

formation of hydrogen bonds that involve the carboxylic group of terephthalate. 

Simultaneously, the amorphization of caffeine@UiO-66 and the different kind of host-

guest interactions may increase the anisotropy of the host giving rise to the observed 

broad peaks. 

 

Figure 5. 13C MAS NMR spectra of the different samples (from bottom to top, MOF, caffeine@MOF 

after high pressure encapsulation and caffeine) corresponding to: MIL-53(Al) (a), and UiO-66 (b). 

Encapsulation at room temperature, 0.32 GPa and 4:1 caffeine:MOF weight ratio. Proposed arrangement of 

caffeine-terephthalate planes with C2-axis of terephthalate parallel to an imaginary line bonding N8 and N1 

in caffeine ring. Color code: upfield atoms (blue) and downfield atoms (red) (c). 

 

For kojic acid@MIL-53(Al) the terephthalate 13C NMR signals were also widened (see 

Fig. 6a and Table S5) as compared to those of kojic acid and MIL53(Al). This is 

attributable to the host-guest interactions because the MIL-53(Al) structure was 

preserved after the high pressure treatment, in agreement with both XRD and N2 

adsorption characterizations. The chemical 13C NMR signals of terephthalate in kojic 

acid@MIL-53(Al) followed a different pattern from those of caffeine@MIL-53(Al) and 

kojic acid@UiO-66 (Table S5), and carboxylate and Corto signals of ligand shifted upfield. 

This behavior suggests that the presence of the additive modifies the metal-terephthalate 

interactions. It has been described that changes in binding modes of the acetate group in 

metallic clusters can be determined using the solid-state 13C NMR: carboxylate peak 
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shifts upfield when it changes from chelating mode to bidentate or monodentate 

bridge.64 This change in metal-terephthalate binding must be due to the effect of kojic 

acid. It is known that kojic acid forms stable chelates with metal acetate salts.65 

Nevertheless, the suggested interactions are reversible, as the thermodiffractometry 

experiments suggests (see below). 

Finally, the chemical 13C NMR peaks of terephthalate in kojic acid@UiO-66 did not 

broaden suggesting ordered host-guest interactions (Fig. 6b and Table S5). Carboxylate 

and Corto signals of ligand were deshielded evidencing the formation of hydrogen bonds 

between carboxylic groups of terephthalate and hydroxyl groups of kojic acid. A slightly 

shielding of carbon atoms of kojic acid suggests an additional stacking of the aromatic 

rings of both structures in parallel planes. The behavior of carbonyl C4 in kojic acid is 

different because it is the most electronically affected by the intermolecular hydrogen 

bond with terephthalate, since it must loss its intramolecular hydrogen bond. These kojic 

acid-UiO-66 interactions could preserve the symmetry of the linker and the ordered 

structure of MOF, in agreement with 13C NMR spectra. 

 

Figure 6. 13C MAS NMR spectra of the different samples (from bottm to top, MOF, kojic acid@MOF 

after high pressure encapsulation and kojic acid) corresponding to MIL-53(Al)(a), and UiO-66 (b). 

Encapsulation at room temperature, 0.32 GPa and 4:1 kojic acid:MOF weight ratio.  

 

Table 2 shows the encapsulation values achieved with the different MOFs. The 

calculation was made per g dry MOF, i.e. excluding from the curves in Figs. S1 and S3 

solvent (in principle water from moisture) and external (non-encapsulated) additive 

weight losses below ca. 100 °C and above the removal temperature of the pure additive, 

respectively. The material that produced the best results was MIL-53(Al), with 37% and 

32% loadings for caffeine and kojic acid, respectively. This can be related to  its 

exceptional stability against mechanical treatment and the  flexibility of its structure,16 
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which facilitates the successful encapsulation of the two different additives, caffeine and 

kojic acid. Additionally, UiO-66 showed 15% and 22% loadings for caffeine and kojic acid, 

respectively, but the loadings (probably due to its small porosity and lack of flexibility) 

and the mechanical stability (see the above XRD discussion) were lower than in the case 

of MIL-53(Al). Mg-MOF-74 has been demonstrated to be stable at high pressure and the 

encapsulation seems to be achieved only for kojic acid (24%) under the experimental 

conditions tested. The encapsulation in Mg-MOF-74 involves the exchange of water 

(present in the as-made MOF, as shown in Fig. S2c with the first step around 100 °C) by 

the desired guest, and only kojic acid was able to produce such an exchange. Table 2 also 

shows the number of molecules of additive per unit cell (u.c.): 1.6 and 1.3 molecules/u.c. 

for caffeine@MIL-53(Al) and caffeine@UiO-66, respectively, and 1.9, 2.5 and 2.1 

molecules/u.c. for kojic acic@MIL-53(Al), kojic acid@UiO-66 and kojic acid@Mg-MOF-

74, respectively. For the corresponding calculations, the unit cell formulae of 

C32Al4O20H20 (MIL-53(Al)),16 C192Zr24O120H96 (UiO-66)20 and C16Mg16O40H8 (Mg-MOF-

74).25 This means that the wt% loading corresponding to one molecule per u.c. is 23, 12 

and 16 wt% in case of caffeine and 17, 8.7 and 12 wt% in case of kojic acid for for MIL-

53(Al), UiO-66 and Mg-MOF-74, respectively. 

Table 2. Caffeine and kojic acid encapsulation in different MOFs at 0.32 GPa with 4:1 MOF:guest weight 

ratio and room temperature in (g guest/g dry MOF)·100 and number of additive molecules per unit cell 

(molec./u.c.). The unit cell formulae of C32Al4O20H20, C192Zr24O120H96 and C16Mg16O40H8 have been 

considered for MIL-53(Al),16 UiO-6620 and Mg-MOF-74,25 respectively, for the calculations. 

Guest MIL-53(Al) UiO-66 Mg-MOF-74 

Caffeine 37% 
1.6 

molec./u.c. 
15% 

1.3 

molec./u.c. 
0% 

0 

molec./u.c. 

Kojic acid 32% 
1.9 

molec./u.c. 
22% 

2.5 

molec./u.c. 
24% 

2.1 

molec./u.c. 

 

Effect of temperature and pressure on the encapsulation in MIL-53(Al) 

 MIL-53(Al) is sensitive to temperature16,66 and a sufficiently high temperature  may 

help the desorption of the guest. We have therefore observed the effect of different 

temperatures on high pressure encapsulation samples in thermodiffractometry 

experiments. Fig.7 shows the diffraction patterns measured in the 25-300 °C range. 

When increasing the temperature from 50 to 100 °C, the caffeine@MIL-53 sample 

changed its structure from the hydrated, low temperature form (MIL-53(Al) lt) to the 

high temperature form (MIL-53(Al) ht,16 maintained upon heating up to 300 °C), while 

caffeine peaks are  scarcely apparent. However, the TGA analyses carried out on pure 
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caffeine and caffeine@MIL-53 are consistent with the removal of caffeine at a 

temperature higher than 100 °C (Fig. S2a). This suggests that the action of the high 

temperature favors the encapsulation of caffeine guest molecules placed in the 

surroundings of caffeine@MIL-53. This can be considered as a process in series. First, 

the high temperature increases the mobility of caffeine molecules already encapsulated, 

but occupying mostly external crystal pores and eventually reaching empty internal 

crystal pores. Second, caffeine molecules impregnating the external surfaces of MIL-53 

crystals penetrate inside the porous structure.  

In the case of the kojic acid@MIL-53 sample, the phase transition is also observed 

(Fig. 7). Additionally, the complexity of the peaks is considerably increased at 150 °C. We 

assume that the molecule of kojic acid interacts with the functional groups in the pores 

and, as occurs with water molecules, the structure changes according to this stimulus. 

The recovery of the structure of MIL-53(Al) ht upon heating at 300 °C is consistent with 

a reversible encapsulation process in both caffeine@MIL-53 and kojic acid@MIL-53 

samples. These results are completed with the thermodiffractometries corresponding to 

the encapsulations of caffeine and kojic acid on UiO-66 and Mg-MOF-74 (Fig. S5). 

 

Figure 7. Thermodiffractometry in air with a heating ramp of 10°C/min of caffeine@MIL-53(Al) (a) and 

kojic acid@MIL-53 (b). Encapsulation at 0.32 GPa and with a 4:1 MOF:guest weight ratio. 

 

Once demonstrated the new solventless application, to gain insight into the 

encapsulation at high pressure and the impact of temperature, the influence of a small 

amount of ethanol in the encapsulation of caffeine in MIL-53(Al) was investigated. After 

the addition, the mixture was still a solid considering the small amount of ethanol used 

in the experiment. This would improve the additive-MOF contact and hence the diffusion 

and dispersion of the additive into the pores of the MOF. Fig. S6 shows a more complex 

XRD pattern compared to those of the as-made material and those encapsulated without 

ethanol (Fig. 3a). As mentioned above, MIL-53(Al) “breathes” depending on the presence 
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of guest molecules in the pores of the MOF, and as a consequence the diffraction pattern 

was modified. In this experiment, caffeine and ethanol were simultaneously adsorbed on 

the material evidencing changes in the XRD intensities, consistent with an opening (as 

compared with the lt as-made material) of the porosity as observed for MIL-53(Cr) when 

adsorbing methanol and ethanol.67 

The sample caffeine@MIL-53(Al), obtained in the presence of ethanol, was used in a 

thermodiffractometry experiment carried out under vacuum. Together with this sample, 

Fig. S6 shows for the purposes of comparison the XRD patterns of caffeine and MIL-

53(Al) at the initial conditions previous to the encapsulation, i.e. in the form known as 

lt.16 Upon heating at 200 °C, the ethanol was desorbed from the MOF and the XRD 

adapted the ht form for MIL-53(Al).68 After subsequent heating at 300 °C, caffeine 

should have been removed (in agreement with the TGA shown in Fig. S7); however, no 

further changes were observed in the XRD pattern. 

Finally, even though most of the encapsulation experiments were carried out at 0.32 

GPa, Tables S6 and S7 and Fig. S8 show the encapsulation of caffeine and kojic acid on 

MIL-53(Al) at three different pressures from 0.32 to 0.64 GPa. The decrease of the 

percentage of encapsulation (MIL-53(Al)) and the similar values of BET specific surface 

area observed with increasing pressure suggest that 0.32 GPa was the optimum working 

pressure. This pressure relates to a good balance between the loss of MOF crystallinity 

and the encapsulation efficiency. 

 

CONCLUSIONS 

We have demonstrated the simple and ecofriendly encapsulation of caffeine in two 

different MOFs by means of a high pressure application (0.32 GPa). This simple 

procedure may be of considerable industrial interest considering its speed and the fact 

that it does not need further purification (i.e. separation from the encapsulation 

dispersion as in the case of conventional liquid phase encapsulation). This minimizes the 

use of solvents and the potential generation of waste. Moreover, the solvent free, high 

pressure approach has been carried out with three MOFs (MIL-53(Al), UiO-66 and Mg-

MOF-74, since MIL-101(Cr) was strongly amorphized upon high pressure exposure) and 

two guests (caffeine and kojic acid), the best results being obtained with MIL-53(Al) due 

probably to its high structural flexibility that helps the diffusion of caffeine under the 

pressure effect. The XRD characterization demonstrated the encapsulation qualitatively, 

while TGA allowed to estimate of the amount of drug encapsulated in every case. In 

addition, the decrease of the BET specific surface area of MOFs after the encapsulation 
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of caffeine and kojic acid was consistent with its pores filled with the additives. The 13C 

MAS NMR spectra of the additive@MOF materials support the preservation of the 

chemical nature of caffeine and kojic acid upon high pressure encapsulation, suggesting 

in some cases (caffeine@MIL-53(Al) and kojic acid@UiO-66) relatively ordered host-

guest interactions. The combination of the four characterization techniques 

demonstrated both the qualitative and quantitative caffeine and kojic acid encapsulation 

in the studied MOFs using the at high pressure conditions in solvent-free conditions. 

Finally, the results achieved thought this research, obtained through a green process, 

allows one to say that MOF encapsulation is a field with great potential of industrial 

development where the costs and environmental impacts can be minimized. 

 

EXPERIMENTAL SECTION 

Synthesis of materials 

Synthesis of MIL-53(Al). In a typical synthesis,16 5.20 g of aluminum nitrate 

nonahydrate (13.9 mmol, Al(NO3)3·9H2O, Sigma Aldrich, ≥98%) together with 1.12 g of 

terephthalic acid (6.7 mmol, H2BDC, Sigma Aldrich, 98%) were dispersed in 100 mL of 

distilled water and placed in a Teflon-lined stainless steel autoclave for 3 days at 220 °C. 

The resulting product was recovered by centrifugation at 10,000 rpm for 10 min, washed 

once with ethanol followed by centrifugation under the same conditions and dried 

overnight at 65 °C. The solid was activated by calcination at 380 °C for 24 h. 

Synthesis of UiO-66. Following a previous report,20 0.508 g of ZrCl4 (2 mmol, Sigma 

Aldrich, ≥99,5 %) and 0.667 g of terephthalic acid (4 mmol, H2BDC, Sigma Aldrich, 98%) 

were mixed with 100 mL of dimethylformamide (DMF) and the resulting solution placed 

in a Teflon-lined stainless steel autoclave for 24 h  at 120 °C. The white product was 

recovered by centrifugation at 10,000 rpm for 10 min and washed once with ethanol 

followed by centrifugation under the same conditions. The solid was activated by 

calcination at 300 °C for 4 h. 

Synthesis of Mg-MOF-74. As reported elsewhere,21 0.149 g of 2,5-

dihydroxyterephthalic acid (0.75 mmol, DOBDC, TCI, >98%) was dissolved in 10 mL of 

THF  after which 3 mL of a 1 M NaOH aqueous solution was added. A solution of 0.384 

g of magnesium nitrate hexahydrate (1.5 mmol, Mg(NO3)2·6H2O, Sigma Aldrich, 98%) in 

3 mL of distilled water was added and the resulting mixture placed in a Teflon-lined 

stainless steel autoclave for 3 days at 110 °C. The yellow product was recovered by 

centrifugation at 10,000 rpm for 10 min and washed several times with methanol 
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followed by centrifugation under the same conditions. The product was dried overnight 

at room temperature. 

Synthesis of MIL-101(Cr). Following a previous report,69 0.83 g of terephthalic acid (5 

mmol, H2BDC, Sigma Aldrich, 98%) and 2.00 g of chromium nitrate nonahydrate (5 

mmol, Cr(NO3)3·9H2O, Sigma Aldrich, 98%) were mixed in 25 mL of distilled water and 

placed in a Teflon-lined stainless steel autoclave for 8 h at 220 °C. The green product was 

recovered by centrifugation at 10,000 rpm for 10 min and washed with methanol 

followed by centrifugation under the same conditions. The solid was activated by 

treatment in DMF for 24 h at 150 °C and then boiled in a reflux in methanol overnight. 

The product was dried at room temperature for 8 h. 

 

High pressure encapsulation 

The procedure for the high pressure encapsulation was as follows: 100 mg of the MOF 

material and 25 mg of additive (weight ratio 4:1) were mixed together by 1 min hand 

shaking in a vial. The mixture was then placed at room temperature inside the metal 

cylinder of a hydraulic press (Specac 25.011). After insertion of the metal piston, pills 

were compacted under a pressure of 0.32-0.64 GPa for 30 min. The compacted material 

pill was gently milled into powder and is referred to here as additive@MOF. Blanks 

corresponding to the MOFs and additives separately exposed to high pressure were 

produced under the same conditions. Additionally, in the case of MIL-53(Al), 2:1 and 1:1 

MOF:additive weight ratios were contacted at high pressure. Finally, a 2:1 weight ratio 

experiment was carried out at 0.32 GPa for 30 min with the addition of 20 mg (ca. 0.025 

mL) of ethanol, i.e. using a 2:1:0.4 MOF:additive:ethanol weight ratio. 

  

Characterization 

Scanning electron microscopy (SEM, FEI Inspect F50) observation of the powder 

samples was carried out with a voltage 2-15 kV and after Pt coating. Powder X-ray 

diffraction (XRD) was carried out at room temperature in a Siemens diffractometer with 

a copper anode and a graphite monochromator so as to select Cu-Kα1 radiation (λ=1.540 

Å). Data were collected in the 4-40° 2θ range, and the scanning rate was 0.03°/s. This 

technique was used to check the crystallinity after the process and to observe the 

decrease of additive peaks in high pressure contact encapsulation due to the reduction of 

the external additive. Nitrogen adsorption isotherm and BET specific surface area were 

measured with a Micrometrics TriStar 3000 with a previous degasification at 150 °C for 
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5 h.  The 13C NMR spectra were achieved with cross-polarized magic angle spinning solid 

nuclear magnetic resonance (CP MAS-NMR) in a Bruker Avance III WB 400. 

Thermogravimetric analyses (TGA) were performed using Mettler Toledo TGA/SDTA 

851e instrument. The samples were put in 70 µL alumina pans and heated up to 700 °C 

with a heating rate of 10 °C/min in air. Thermodiffractometry was performed under air 

in a furnace coupled to a Siemens diffractometer with a copper anode and a graphite 

monochromator to select the same Cu-Kα1 radiation. Each XRD pattern was recorded for 

20 min in the 3-40° 2θ range with a 0.01°/s scanning rate at 25, 50, 100, 150, 200, 250 

and 300 °C with a heating rate of 10 °C/min. 
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Table S1. FWHM (full width at the half maximum) ratios corresponding to XRD main peaks of MOFs after 

and before (as-made) high pressure treatment. The following XRD peaks have been used: MIL-53(Al): 12.5° 

- (110) plane, UiO-66: 7.2° - (111) plane, and Mg-MOF-74: 11.7° - (300) plane. XRD data for FWHM 

calculations from Figs. 3 and 4. 

 

 
MIL-53(Al) 

FWHMtreated/FWHMas-made 

UiO-66 

FWHMtreated/FWHMas-made 

Mg-MOF-74 

FWHMtreated/FWHMas-made 

 Caffeine Kojic acid Caffeine Kojic acid Kojic acid 

MOF, 0.32 GPa 0.99 2.5 1.3 

Encapsulation, 

0.32 GPa 
0.93 1.2 5.6 3.6 1.3 

 

 

Table S2. Area ratios corresponding to main XRD peaks of additives and MOFs for simple additive-MOF 

blending (0 GPa) and encapsulation at 0.32 GPa. Caffeine (CAF): 11.9°, kojic acid (KA): 19.3°, MIL-53(Al): 

12.5° ((110) plane), UiO-66: 7.2° ((111) plane), and Mg-MOF-74: 11.7° ((300) plane). Encapsulation at room 

temperature and 4:1 MOF:additive weight ratio. 

 

 MIL-53(Al) UiO-66 Mg-MOF-74 

Ratio 

Pressure 
ACAF/A(110) AKA/A(110) ACAF/A(111) AKA/A(111) AKA/A(300) 

Blending, 0 GPa 0.56 0.72 0.33 0.49 4.5 

Encapsulation, 0.32 GPa 0.40 0.15 0.08 0.10 0.55 

 

 

Figure S1. XRD patterns for (from bottom to up): MIL-53(Al), additive@MOF with MOF:caffeine weight 

ratios of 4:1 and 2:1 (100mg MOF:50mg additive), and additive. 
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Figure S2. TGA curves of MOF (black line), caffeine (blue line) and caffeine@MOF after high pressure 

encapsulation (red line) with a 4:1 MOF:caffeine weight ratio. 

 

 

Figure S3. TGA curves of MOF (black line), caffeine (blue line) and caffeine@MOF after high pressure 

encapsulation (red line) with a 1:1 MOF:caffeine weight ratio. 
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Figure S4. TGA curves of MOF (black line), kojic acid (blue line) and kojic acid@MOF after high pressure 

encapsulation (red line) with a 4:1 MOF:caffeine weight ratio. 
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Table S3. Chemical shifts (δ) in 13C MAS NMR of terephthalate ligand in MIL-53(Al) and UiO-66 before 

and after high pressure encapsulation of caffeine (a) and kojic acid (b) (encapsulation at room temperature, 

0.32 GPa and 4:1 kojic acid:MOF weight ratio). Differences in chemical shifts higher than 0.1 ppm between 

terephthalate signals before and after encapsulation of additives are recorded in parentheses (d: downfield, 

u: upfield) and they are highlighted on the figure as red and blue, respectively. 

 

 

S3a) 

 

 δ COO δ Cα δ Corto 

Terephthalate-MIL-53(Al) 174.3 135.6 129.3 

Caffeine@MIL-53(Al) 174.3 135.7 129.4 

Kojic acid@MIL-53(Al) 
170.0 

(4.3 u) 

136.0 

(0.4 d) 

128.2 

(1.1 u) 

δ in ppm 

 

S3b) 

 

 δ COO δ Cα δ Corto 

Terephthalate –UiO-66 170.2 135.8 127.8 

Caffeine@UiO-66 
172.3 

(2.1 d) 
135.7 

128.9 

(1.1 d) 

Kojic acid@UiO-66 
174.2 

(4.0 d) 
135.7 

129.4 

(1.6 d) 

δ in ppm 
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Table S4. Chemical shifts (δ) in 13C MAS NMR of caffeine free and after encapsulation at high pressure into 

MIL-53(Al) and UiO-66 (encapsulation at room temperature, 0.32 GPa and 4:1 caffeine:MOF weight ratio). 

Differences in chemical shifts higher than 0.1 ppm between encapsulated and free caffeine signals are 

recorded in parentheses (d: downfield, u: upfield) and they are highlighted on the figure as red and blue, 

respectively. 

 

 

 δ C2 δ C4 δ C5 δ C7 δ C9 Me1 Me3 Me6 

Caffeine 151.9 154.9 106.3 143.1 148.4 30.8 28.4 35.1 

Caffeine@ 

MIL-538Al) 

150.5 

(1.4 u) 

153.0 

(1.9 u) 

104.5 

(1.8 u) 

147.0 

(3.9 d) 

149.2 

(0.8 d) 

30.1 

(0.7 u) 

29.6 

(1.2 d) 

33.4 

(1.7 u) 

Caffeine@ UiO-

66 

150.2 

(1.7 u) 

153.2 

(1.7 u) 

105.0 

(1.3 u) 

147.2 

(4.1 d) 

149.3 

(0.9 d) 

30.5 

(0.3 u) 

29.2 

(0.8 u) 

34.2 

(0.9 u) 

δ in ppm 
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Table S5. Chemical shifts (δ) in 13C MAS NMR of kojic acid free and after encapsulation at high pressure 

into MIL-53(Al) and UiO-66 (encapsulation at room temperature, 0.32 GPa and 4:1 kojic acid:MOF weight 

ratio). Differences in chemical shifts higher than 0.1 ppm between encapsulated and free kojic acid signals 

are recorded in parentheses (d: downfield, u: upfield) and they are highlighted on the figure as red and blue, 

respectively. 

 

 

 δ C2 δ C3 δ C4 δ C5 δ C6 δ C7 

Kojic acid 169.9 107.4 174.0 145.4 138.5 59.6 

Kojic acid @ 

MIL-53(Al) 
170 107.3 173.9 145.3 138.4 59.5 

Kojic acid@ 

UiO-66 

169.6 

(0.3 u) 

107.1 

(0.3 u) 

174.2 

(0.2 d) 

145.1 

(0.3 u) 

138.2 

(0.3 u) 

59.3 

(0.3 u) 

δ in ppm 
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Figure S5. Thermodiffractometry in air with a heating ramp of 10°C/min of caffeine@Mg-MOF-74 (a), 

kojic acid@Mg-MOF-74 (b), caffeine@UiO-66 (c) and kojic acid@UiO-66 (d). Encapsulation at 0.32 GPa 

and with a 4:1 MOF:guest weight ratio.  

 
Figure S6. Thermodiffractometry of sample caffeine@MIL-53(Al). Encapsulation at 0.32 GPa and with a 

2:1:0.4 MOF:caffeine:ethanol weight ratio. 
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Figure S7. TGA curves of MIL-53(Al) (black line), caffeine (blue line) and caffeine@MOF (red line). 

Encapsulation at 0.32 GPa and with a 2:1:0.4 MOF:caffeine:ethanol weight ratio. 

 

Table S6. Caffeine loadings and BET specific surface areas of caffeine@MIL-53(Al) samples obtained at 

different pressures. Encapsulation at room temperature and 4:1 MOF:additive weight ratio. 

 

Pressure 
(g caffeine/g dry 

MOF)·100 
SBET (m2/g) 

0.32 GPa 37% 336 

0.48 GPa 33% 365 

0.64 GPa 25% 215 

 

 

Table S7. Kojic acid loadings and BET specific surface areas of caffeine@MIL-53(Al) samples obtained at 

different pressures. Encapsulation at room temperature and 4:1 MOF:additive weight ratio. 

 

Pressure 
(g kojic acid/g dry 

MOF)·100 
SBET (m2/g) 

0.32 GPa 32% 9 

0.48 GPa 33% 8 

0.64 GPa 34% 11 

 

  

100 200 300 400 500 600 700
100

80

60

40

20

0

W
e
ig

h
t 

lo
s
s

 (
%

)

Temperature (ºC)

Caffeine (34%)

Water & ethanol

D
e
ri

v
a
ti

v
e



Chapter 4 

111 

 

Figure S8. TGA curves corresponding to caffeine@MOF (a) and kojic acid@MOF obtained at different 

pressures. Encapsulation at room temperature and 4:1 MOF:additive weight ratio. 
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5.1. Summary and graphical abstract 
 

Caffeine and carvacrol were encapsulated using supercritical CO2 (sc-CO2) technique in 

MOFs, MIL-53(Al) and Mg-MOF-74, to deliver the compounds into pores at different 

contact times. High additive loadings were achieved, 32.1 and 34.3% for caffeine, and for 

carvacrol 34.4 and 30.1%, respectively. The sc-CO2 encapsulation was more effective 

compared to the typical liquid phase encapsulation in ethanol. In fact, the encapsulation in 

Mg-MOF-74 was only possible in sc-CO2, null loading was observed in the liquid ethanol 

phase process. The products required no purification and the excess of additives could be 

reused. In all the studied cases, the materials maintained their crystalline structure and 

MIL-53(Al) displayed its characteristic flexibility adapting its structure to the additives. The 

total release of caffeine and carvacrol from Mg-MOF-74 was produced after 5 h in distilled 

water, while in the case of MIL-53(Al) no release was observed for 10 days.  
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5.2. Supercritical CO2 encapsulation of bioactive molecules in carboxylate- 

based MOFs 

INTRODUCTION 

The potential applications of metal-organic frameworks (MOFs) are extensively studied 

due to their demonstrated high performance in different fields such as catalysis,[1] gas 

adsorption,[2] selective membranes[3] and drug-delivery,[4,5] among others. MOFs are 

highly porous materials which are made of metal centers connected by organic linkers, 

commonly dicarboxylates and imidazolates. Some of the most well-known MOFs are MOF-

5,[6] MILs (Materials Institute Lavoisier)[7,8] and ZIFs (zeolitic imidazolate 

frameworks).[9] Encapsulation in MOF has been proposed for different applications, mainly 

for drug delivery in medicine and controlled release in cosmetics.[10–13] However, it also 

finds application for luminescence based sensors in which the adsorbed molecules enhance 

luminescence depending on the host-guest interactions,[14] heterogenization of 

homogeneous catalysts,[1] and medical imaging[15]. Regarding active compounds or drugs, 

MOFs show different sustained release from a few hours to several days depending on the 

type of MOF and its stability in solution.[4] Among the MOFs studied for active molecules 

or drugs encapsulation, MIL-53(Fe) and MIL-53(Al) have been used in several reports,[4,16] 

while in vivo studies have been described for MIL-88A(Fe) and MIL-88B(Fe) modified with 

a polymer coating.[17] The encapsulation is normally carried out in liquid phase, after MOFs 

synthesis and processing, with generally good additive loadings.[18] In a previous work of 

the group the one-step encapsulation of caffeine in NH2-MIL-88B(Fe) was reported, 

avoiding a multistep procedure, in which the synthesis and the encapsulation are carried out 

simultaneously.[19] Additionally, the encapsulation in MOF has been described by metal 

organic chemical vapor deposition (MOCVD) at high temperatures.[20] 

The porosity of MOFs is not mostly accessible without an activation process, the excess 

of the organic linker and solvent has to be removed normally by successive washing with a 

specific solvent and thermal steps. In some MOFs, the thermal treatment may induce the 

partial collapse of their pores and the incomplete activation.[21,22] In order to overcome 

this handicap, several articles can be found on the use of supercritical-CO2 (sc-CO2) in a 

highly efficient activation and drying process of MOFs.[21,23] This supercritical technology 

has led to the largest BET specific surface areas ever reported, e.g. 7000 m2/g for Nu-

110E.[24]  
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The supercritical conditions of CO2 are relatively low, with a critical point at 301 K and 74 

bar (NIST Database), and therefore easily achievable if they are compared with other 

compounds like water (647 K and 220 bar) or ethanol (514 K and 63 bar). In supercritical 

conditions, CO2 displays an intermediate behavior between a liquid and a gas. It shows high 

diffusivity, as gases, which is useful to spread better into the microporosity of a given porous 

material. The density, comparable to liquids, allows its use as a relatively weak nonpolar 

solvent [25], that might have sufficient strength for various applications. Regarding 

encapsulation and precipitation, the literature about the use of supercritical fluids covers 

different types of carriers, e.g. polymers, biopolymers and aerogels.[26,27] As the sc-CO2 

operation leaves no residue, the use in food and medical/pharmaceutical industry has great 

interest to avoid undesirable contaminations.[25,26,28] Nevertheless, the applicability of 

sc-CO2 is scarce in the encapsulation in porous inorganic or hybrid materials in powder 

form. To the best of our knowledge, only Matsuyama and co-workers applied the 

encapsulation with sc-CO2 in MOFs, although in this case sc-CO2 assisted the encapsulation 

and hexane as solvent was needed.[29] For zeolites, López-Periago and co-workers used sc-

CO2 as solvent to simultaneously synthesize and insert an active compound.[30] 

From an industrial point of view, this process is advantageous because it is not necessary 

to manage water or organic solvents, and the waste is merely CO2, which is naturally present 

in the atmosphere and eventually could be reused.[31] Additionally, the final product does 

not have to be purified because it is in powder form as the starting material. Considering the 

case of poor soluble compounds in sc-CO2, a co-solvent can be used to increase the 

solubility,[25,32] and then enhance the encapsulation process. 

In this work, we have carried out the supercritical encapsulation of two additives, caffeine 

and carvacrol, into MOFs, MIL-53(Al) and Mg-MOF-74 (see Fig. 1). The former is a flexible 

hybrid net of 1D channels of terephthalate bidentate ligands connected by octahedral-

coordinated Al3+, interconnected by OH groups. The structure “breathes” or modifies the 

pore dimensions under different stimuli such as temperature or the presence of guest 

molecules, e.g. water.[7] In the hydrated material, known as MIL-53(Al) lt, water molecules 

are bound by hydrogen bonds that narrow the pore. Once the material is dried, named then 

MIL-53(Al) ht, the pores are opened.[7] This MOF shows high thermal stability to the extent 

that it can be activated by calcination at 380 °C.[7] Mg-MOF-74 is made of deprotonated 

2,5-dihydroxyterephtelate and Mg2+ which are coordinated to give rise a 12 Å honeycomb 

structure.[33] This MOF does not show flexibility, contains structural water molecules and 
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presents a lower thermal stability.[33] Some MOFs can be degraded in aqueous media, and 

Mg-MOF-74 is sensitive to humidity.[34] This fact can be a handicap for several applications 

like gas separation or catalysis in presence of moisture. Nevertheless, it can be advantageous 

for controlled release and drug delivery, as reported for biopolymers and MOFs which are 

degraded leaving nontoxic residue.[25,35–37] Once MIL-53(Al) and Mg-MOF-74 were 

degraded, the inorganic and the organic parts would be obtained separately. The inorganic 

part corresponds to ions of aluminum and magnesium, both present in normal diets. 

Furthermore, the former is present in drugs such as almagate (AlmaxTM), which is used as 

anti-acid, and the latter is used as dietary supplement. The organic rests are terephthalate 

and 2,5-dihydroxiterephthelate which could be potentially biocompatible like for other 

similar ligands.[15,38]  

 

Figure 1. MOF guest structures used in this work with channels sizes, MIL-53(Al) (a and b) and Mg-MOF-74 (c). 

Atomic color code: carbon (black), oxygen (light blue) and metal coordination (dark blue). These structures were 

made with Diamond 3.2. using the corresponding CIF files.[7,33] The molecular structures of the studied guest 

additives (d).  
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The pure additive compounds tested for this work are caffeine and carvacrol (see Fig. 1d), 

both of them show relatively high solubility in sc-CO2. In fact, caffeine is commonly used as 

additive and is broadly studied in supercritical fluids.[39,40] Decaffeination of coffee is mass 

produced by extraction with sc-CO2 in substitution of toxic and pollutant 

dichloromethane.[41] Caffeine is commonly used as model drug or additive for 

demonstration of novel encapsulation procedures, e.g. in MOFs[18,19,42], silica[43], and 

polymers.[44] Even though encapsulation find major applications for non hidrosoluble or 

sensitive compounds, the encapsulation and release of hydrosoluble caffeine has been 

reported useful in textiles for cosmetic applications[44,45] or for oral administration with 

chewing gum versus capsules.[46] Carvacrol is also a natural occurring compound, one of 

the main components of oregano essential oil. It has been studied with supercritical fluids 

and its solubility has been reported at different conditions.[47] Carvacrol shows 

antimicrobial properties[48,49] and has been previously encapsulated in different matrices 

such as starch,[27] milk protein[50] and chitosan.[51] Carvacrol has been studied as additive 

for food preservation in packaging materials[52] and biofilms[53] with controlled release. 

Herein we achieved the encapsulation in pure supercritical CO2 phase of soluble 

additives, caffeine and carvacrol, in carboxylate based MOFs, MIL-53(Al) and Mg-MOF-74. 

This process required no purification and produced no waste. We compared the results of 

the sc-CO2 impregnation with those achieved in liquid impregnation to highlight the benefits 

of the proposed process. Additionally, the effects of the encapsulation on the materials were 

characterized by X-ray diffraction (XRD) to check the crystalline structure stability after 

processing the starting materials and the potential changes in the flexible structure of MIL-

53(Al).[7,8] We analyzed the samples by Raman spectroscopy to study the additive-MOF 

interactions; this technique has been widely used for host-guest systems[54–57] to gather 

information about the configuration of the guest additive in the host MOF. Finally, as a proof 

of concept of the potential use for controlled release, the additive release of the sc-CO2 

impregnated samples was monitored through time.  
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EXPERIMENTAL 

Materials 

For MOF synthesis the reactants were aluminum nitrate nonahydrate (Al(NO3)3·9H2O, 

Sigma Aldrich, ≥98%), magnesium hydroxide (Mg(OH)2, Alfa Aesar, 95-100 %), 

terephthalic acid (H2BDC, Sigma Aldrich, 98%) and 2,5-dihydroxyterephthalic acid (6 

mmol, H4DOBDC, TCI, >98%). The synthesis solvents were distilled water and 

tetrahydrofuran (THF, Scharlab, >98%). Methanol (MeOH, Scharlab, >99%) was used for 

washing. Additives were carvacrol (150 g/mol, Sigma Aldrich, 99% FG) and caffeine (194 

g/mol, Sigma Aldrich, 99%). For supercritical CO2 encapsulation (Carburos Metálicos S.A., 

99.95%) and for liquid encapsulation absolute ethanol were used. Analysis solvents for CG-

MS were MeOH (Scharlab, analysis grade) and acetone (PanReac, analysis grade). Analysis 

solvents for HPLC were Milli-Q water (Millipore), phosphoric acid (Acros Organic, aqueous 

solution 85%), MeOH (Scharlab, analysis grade) and acetonitrile (Scharlab, analysis grade). 

All the chemicals were used as received. 

 

Synthesis of MOFs 

Synthesis of MIL-53(Al), Al(OH)BDC. From a previous report,[7] 15.6 g of 

Al(NO3)3·9H2O (41.7 mmol) and 3.36 g of H2BDC (20.1 mmol) were added to a 400 mL 

Teflon-lined stainless steel autoclave (Berghof DAB-3) where 250 mL of distilled  water was 

poured to form a white dispersion. The system was sealed and placed in an oven for 3 days 

at 220 °C. The product was recovered by centrifugation at 10,000 rpm for 10 min (Allegra® 

X-15R Centrifuge), washed with distilled water and recovered also by centrifugation at the 

same conditions. The white product was dried at room temperature overnight and activated 

by calcination for 24 h at 380 °C (see Fig S1). Yield with respect to H2BDC: 61%  

Synthesis of Mg-MOF-74, [Mg2(DOBDC)(H2O)2]· 8H2O. From the original 

synthesis,[33] including some small variations, 1.188 g of H4DOBDC (6 mmol) was dissolved 

in 120 mL of THF in a glass flask. Then a solution of 0.699 g of Mg(OH)2 (12 mmol) in 40 

mL of distilled water was added and the mixture was heated at 80 °C for 5 h under reflux. A 

yellow solid was recovered by centrifugation at 10,000 rpm for 10 min and washed several 

times with MeOH with an ultrasound treatment for 2 min between washings. The yellow 
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product was dried at room temperature overnight (see Fig S1). Yield with respect to 

H4DOBDC: 79%. 

 

Supercritical CO2 and liquid impregnation 

Supercritical CO2 impregnation. The experimental set-up used to prepare 

encapsulated additive@MOFs (i.e. carvacrol@MOF and caffeine@MOF) is shown in Fig. 2. 

The stored CO2 (1) is carried to a cooler in order to assure liquid state (2) and pumped (3) to 

reach a pressure of 100 bar inside the vessel (4).  Liquid carvacrol or solid caffeine was placed 

at the bottom of the stainless steel vessel (4) and the MOF was separated above by a metallic 

mesh to avoid direct contact. The vessel was put in an oven (5) which was connected to a 

temperature sensor inside the recipient (4). The selected temperature was 40 °C, a little 

above the supercritical conditions, but not a very high value because it was intended to have 

soft conditions of temperature so that this methodology can be extended to temperature 

sensitive molecules like carvacrol, and additionally, in this manner, the potential large scale 

costs are also reduced. As mentioned above, both compounds exhibit high solubility in sc-

CO2. The temperature and pressure were selected to achieve a high value of solubility of both 

additives, and the amount of additive was chosen above the saturation concentration in the 

described conditions. The volume of the recipient was 85 cm3 and the density of sc-CO2 in 

the working conditions was 0.686 g/mL (NIST database). The solubilities of caffeine and 

carvacrol in CO2 at supercritical conditions of 40 °C and 100 bar (the working pressure) are 

6.3·10-5[39,40] and 0.02[47] (in molar fraction), respectively. To have a large excess, 1.00 g 

caffeine was used and in case of carvacrol 5.00 mL. To ensure the solubilization of the 

additive in the CO2, the cell was provided with a magnetic mixer. After the predefined contact 

time, the cell was depressurized through a micrometric valve with a velocity of 

depressurization of 20 bar/min. To avoid freezing, a heater was placed in the exit pipe (6). 

After the experiments, the excess of additive could be re-used as it was not damaged during 

the process. 
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Figure 2. Schematic set-up for sc-CO2 encapsulation: (1) CO2 cylinder, (2) cooler, (3) pump, (4) 

encapsulation vessel, (5) oven, (6) Heater. 

 

Liquid ethanol impregnation. In a vial, 100 mg of MOF, MIL-53(Al) or Mg-MOF-74, 

was suspended in a concentrated solution (10 mL) of caffeine (4 g/L) or carvacrol (50 g/L). 

The use of ethanol as medium was selected considering the low stability of Mg-MOF-74 in 

water and the better solubility of the additives in this alcohol. At room temperature the 

samples are impregnated with magnetic stirring. After 14 h, the solids were recovered by 

centrifugation at 10,000 rpm for 10 min and dried at room temperature overnight.  

 

Controlled release 

The releases of caffeine and carvacrol from MIL-53(Al) and Mg-MOF-74 were monitored 

as a function of time. The selected samples were those with the highest obtained loadings 

with sc-CO2, i.e. caffeine@MIL-53(Al) and caffeine@Mg-MOF-74, both samples 

impregnated for 24 h, and carvacrol@MIL-53(Al) and carvacrol@Mg-MOF-74 impregnated 

for 14 h. The loaded material (additive@MOF, 20 mg) was suspended in a beaker with 0.5 L 

of distilled water with magnetic stirring bar at 25 °C. At each selected time an aliquot of 1.2 

mL was collected, and the same volume was replaced with water. The sample was 
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centrifuged for 2 min at 5,000 rpm (Microfuge 16, Beckman Coulter) and the supernatant 

was filtered (PTFE, 0.22 μm) for HPLC analysis. 

  

Characterization 

Determination of caffeine and carvacrol loadings   

Extraction and gas chromatography-mass spectroscopy (CG-MS). The 

extraction was carried out with 10.0 mg of additive@MOF in 1.5 mL of acetone for caffeine 

and 1.5 mL of ethanol for carvacrol containing samples. Each suspension was sonicated for 

0.5 h and the liquid was separated from the solid by centrifugation at 5,000 rpm for 5 min. 

The solution of the extracted additive was filtered previously to the analysis with 0.22 μm 

filters. The concentrations were determined by CG-MS (7890C GC/5977A MSD Agilent 

Technologies) equipped with a HP-5MS capillary column (30 m x 0.25 mm x film thickness 

0.25 μm). The carrier gas was helium at a flow rate of 0.7 mL/min with 1 μL of injection 

volume and a 300:1 split ratio. The injection was carried out with the column oven at 105 

°C, then heated to 220 °C (4 °C/min) and to 250 °C (15 °C/min). MSD transfer line 

temperature was 250 °C. The electron ionization system for detection operated at an 

ionization voltage of 70 eV. The calibration ranges for caffeine and carvacrol were, 

respectively, 0.5-1.5 mg/mL and 1.0-4.0 mg/mL. Samples analyses were performed in 

duplicate and the corresponding standard deviations were calculated. The loading values 

were calculated as (g additive/g dry MOF)·100 and dry MOF was determined by 

thermogravimetry (see below). 

Pore occupation: N2 and CO2 adsorption. The N2 adsorption capacity of MIL-53(Al) 

and additive@MIL-53(Al) was analyzed at 77 K with a TRIStar 3000 instrument and specific 

surface area was calculated by BET method. The CO2 isotherms and uptakes at 273.15 K of 

Mg-MOF-74 and additive@Mg-MOF-74 were obtained with a Micrometrics ASAP 2020 

instrument. Previously to analysis, outgassing was carried out under vacuum for 5 h at 150 

°C. 

X-ray diffraction (XRD) of crystalline materials. The MOF and additive@MOF 

samples were characterized by XRD to check the effects in crystallinity before and after the 

sc-CO2 and common liquid phase encapsulations. The measurements were recorded in a 

Siemens D-5000 diffractometer (45 kV, 40 mA) with a copper anode with a graphite 
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monochromator in CuKα1 radiation (λ=1.540 Å) in the 4-40° 2θ range and a scanning rate of 

0.03°/s. 

Raman spectroscopy. The host-guest interactions between the additive and the MOF 

were studied by Raman spectroscopy (WITec alpha 300) with the 783 nm laser and working 

at 17 mW. The integration time for each measurement was 1.5 s and the data recording were 

taken with 25 accumulations and a resolution of 2 cm-1. 

Thermogravimetric analysis (TGA). Using a Mettler Toledo TGA/SDTA 851e 

instrument, the TGA analyses of the samples were carried out in 70 μL alumina pans and 

heated up under air atmosphere to 700 °C with a ramp of 10 °C/min. 

Particle morphology and scanning electron microscopy (SEM). The powder 

materials, before and after the encapsulation processes, were studied by SEM (Inspect F50) 

coated previously with a thin film of platinum to ensure the conductivity of samples. 

Monitoring caffeine and carvacrol release by high performance liquid 

chromatography (HPLC). The concentrations of additives during the release 

experiments were analyzed by HPLC, in a Waters 1515 system equipped with a C18 column 

(SunFire 4.6 x 250 mm, 5 μm) and coupled with a UV-Vis dual λ absorbance detector 

(Waters 2487), operating in isocratic mode at 40 °C with a mobile phase flow of 2 mL/min. 

The mobile phase for caffeine was composed by 75% of phosphate buffer 0.025 M in Milli-

Q water at pH 3 and 25% of MeOH, meanwhile for carvacrol determination it was composed 

of 50% acetonitrile and 50% Milli-Q water. Calibration ranges for caffeine and carvacrol 

were for both 2.0-10.0 mg/L. Sample analyses were performed in duplicate and the 

corresponding standard deviations were calculated. 

 

RESULTS AND DISCUSSION  

Effect of contact time 

Fig. 3 shows the effect of contact time in the sc-CO2 encapsulation of caffeine and 

carvacrol in MIL-53(Al) and Mg-MOF-74 in the conditions described above. For 

caffeine@MIL-53(Al) (see Fig. 3a) a gradual increase was observed until 24 h when the 

loading reached a value of 32.1%. In opposition, the sc-CO2 encapsulation of caffeine in Mg-

MOF-74 showed a remarkable difference between 4 and 14 h, from 3.2% to 17.7%. This 
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difference was not observed in MIL-53(Al), which shows a more gradual loading increase. It 

could be explained by the high content of water present in Mg-MOF-74 (see the ca. 35% 

weight loss below 150 °C in Fig. S2c) and by the structural role of part of it as described by 

Dietzel et al. 2008[33]. This water cannot be thermally evacuated during pore activation 

(removing molecules inside the pores) without inducing the structure collapse.[33] It might 

create some transport resistance against the diffusion of sc-CO2 and caffeine into the pores; 

therefore, the encapsulation kinetics was slower in this case. The low solubility of water in 

CO2[58,59] can contribute to the resistance of the withdrawal of water from the MOF (to 

release its porosity for the guest)  and consequently the loading is hindered. After the 

removal of water, high caffeine loadings were achieved after 24 h (34.3%) in Mg-MOF-74. 

 

Figure 3. Effect of contact time in sc-CO2 encapsulation at 40 °C and 100 bar in MIL-53(Al) and Mg-MOF-

74 for caffeine (a) and carvacrol (b). 

A fast encapsulation of carvacrol in MIL-53(Al) was observed after 2 h of contact time 

with a loading value of 26.5% (Fig. 3b). If the contact time was increased to 14 h the loading 

achieved was 34.0%. The relatively high solubility of carvacrol in the working conditions (40 

°C and 100 bar, see section 2.3) and its size, smaller than that of caffeine, favored a more 

efficient and faster loading. Carvacrol was considered a smaller molecule than caffeine in 

agreement with their respective molar masses of 150 g/mol and 194 g/mol and the bulkier 

molecular structure of the latter (see Fig. 1). In the case of the encapsulation of carvacrol in 

Mg-MOF-74, the same kinetic effect was observed, the loading increase was more 

remarkable between 4 and 14 h than in the 2-4 h interval. 

Fig. 4c shows the thermal step removal of caffeine in Mg-MOF-74 corresponding to the 

sc-CO2 encapsulation at 14 h and the reduced amount of water with respect to the starting 
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material. Therefore, it seems that the encapsulation is concomitant with a partial 

substitution of the water by the additive. On the contrary, the loading of caffeine in MIL-

53(Al) was directly produced, considering that the presence of water in the starting material 

was significantly lower (3%, see Fig. 4). Noticeably, in the curve for carvacrol@Mg-MOF-74 

impregnated with sc-CO2, the removal steps of water and carvacrol are consecutives and a 

single step is observed in the corresponding TGA curve. 

After the encapsulation the pore occupation was verified by the decrease in the capacities 

of MIL-53(Al) to adsorb N2 and of Mg-MOF-74 to adsorb CO2 (Table 1 and Fig. S2). The 

previous outgassing was carried out at 150 °C in all cases, thus the additives were not 

removed during this step. Consequently, the BET specific surface area for MIL-53(Al) was 

low (761 m2/g), while if degasification was carried out at 200 °C it increased to 1100 m2/g, 

in agreement with the reported value of 1140 m2/g.[7] The impregnated MIL-53(Al) samples 

show almost null BET area, which is in agreement with high encapsulations of caffeine and 

carvacrol in the MOF pores. Analogous results were found in terms of CO2 adsorption 

capacities (see Table 1) of caffeine@Mg-MOF-74 (1.4 mmol/g) and carvacrol@Mg-MOF-74 

(0.4 mmol/g), compared to that of Mg-MOF-74 (12.0 mmol/g), similar to the reported value 

ca. 10.7 mmol/g.[60] These lower CO2 adsorption capacities agree with the Mg-MOF-74 

porosity occupied by the additive molecules. Nevertheless, the retained CO2 adsorption 

capacity suggests that not all the porosity was occupied by the additives because of the rigid 

structure of this MOF and the water structural molecules, which do not allow a facilitated 

diffusion through the pores. 

 

Table 1. Adsorption before and after the sc-CO2 encapsulation with a contact time of 14 h at 100 bar and 40 

°C. BET specific surface areas of MIL-53(Al) and impregnated samples (left) and CO2 adsorption capacities at 0 

°C and 1 atm of Mg-MOF-74 and impregnated samples (right). 

 SBET (m2/g)  CO2 uptake (mmol/g) 

MIL-53(Al) 761 Mg-MOF-74 12.0 

caffeine@ MIL-53(Al) 7 caffeine@ Mg-MOf-74 1.4 

carvacrol@ MIL-53(Al) 5 carvacrol@ Mg-MOF-74 0.4 
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Comparison of sc-CO2 versus liquid ethanol phase encapsulations 

Fig. 5 compares the sc-CO2 encapsulation with the traditional liquid phase (using ethanol 

which shows good solubility for caffeine and carvacrol) after 14 h of contact time in both 

cases. In general, the loading values were higher for supercritical encapsulation, even if in 

case of MIL-53(Al), the difference was not very substantial for caffeine. However, only a 6% 

of carvacrol loading was achieved in liquid phase vs a 34.0% in sc-CO2. The loading of 

caffeine in MIL-53(Al) in liquid phase of ethanol (16.4%) was significantly higher than that 

of carvacrol (6.3%), meanwhile the behavior was reversed in supercritical conditions and 

less caffeine (20.5%) was loaded than carvacrol (34.0%).  

For Mg-MOF-74 the differences were more noticeable between sc-CO2 and ethanol. In 

fact, the encapsulation in liquid phase was not achieved in Mg-MOF-74 with none of the 

additives. In agreement with this, the corresponding TGA curves also show the differences 

among these samples (see Fig. 4). In the liquid phase encapsulation, the resulting materials 

have almost identical curves to the starting Mg-MOF-74. Meanwhile, the samples with sc-

CO2 show the removal step of caffeine and an increased amount of the organic part for 

carvacrol at a temperature similar to that corresponding to the removal of structural water. 

For MIL-53(Al) the TGA curves suggest that some non-desired ethanol solvent would 

remain in the pores of the material after the liquid encapsulation of caffeine (Fig 4a) and the 

subsequent drying at room temperature. 
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Figure 4. TGA curves of sc-CO2 encapsulations at 40 °C and 100 bar and ethanol liquid encapsulations at 

25ºC in MIL-53 of caffeine (a) and carvacrol (b), and in Mg-MOF-74 of caffeine (c) and carvacrol (d). The 

encapsulation contact time was 14 h in all the experiments. 

 

Figure 5. Compared encapsulation values of caffeine (a) and carvacrol (b) in MIL-53(Al) and Mg-MOF-74 

with sc-CO2 encapsulation versus ethanol liquid phase encapsulation at 25 °C for a contact time of 14 h. 
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Finally, Figs. S3 and S4 depict SEM images of MIL-53(Al) and Mg-MOF-74, respectively, 

before and after encapsulations. As reported elsewhere,[7,33] the former displays a 

polyhedral morphology, while in the later the particles are needle-like. These shapes were 

maintained after both types of encapsulations in the described conditions. 

Structural Characterization: XRD and Raman spectroscopy studies 

The MOF crystalline structure was studied by XRD before and after sc-CO2 and liquid 

ethanol phase encapsulations. The interpretations were correlated with the flexible structure 

for MIL-53(Al)[7] and the rigidity of Mg-MOF-74.[33] The water molecules of the MIL-

53(Al) pores create hydrogen bonds between the carboxylates of the terephthalate ligands 

that narrow the pores, giving rise to the so-called lt form, after calcination the pores open 

producing the ht form.[7] The caffeine@MIL-53(Al) pattern obtained by sc-CO2 treatment 

seems to arise from a combination of ht and lt configurations (Fig. 6Ab). The lt peaks (Fig. 

6Aa) are kept with lower intensity although the main peak in the ht form (Fig. 6Ae) appears 

clearly. The size of caffeine is considerable, therefore its diffusion through the MOF pores 

may be hindered and with different potential configurations. Other additional peaks present 

in the XRD pattern suggest a mixture of the two MIL-53(Al) pore structures adapted to the 

guest caffeine molecule. The peaks of caffeine are not observed, consistent with the absence 

of external caffeine.[61] The XRD pattern corresponding to the liquid encapsulation in Fig. 

6Ac seems undefined, suggesting the presence of retained solvent. Fig. 6B shows the 

different patterns corresponding to carvacrol@MIL-53(Al). The liquid and supercritical 

encapsulations arose with similar patterns between them (Figs. 6Bb and 6Bc) and with some 

common peaks of the pattern of MIL-53(Al) ht, implying the pore opening in both and the 

removal of the hydrogen bonding water, in agreement with the absence of water in the TGA 

curves (Fig. 4b). 
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Figure 6. XRD patterns of (A) MIL-53(Al) lt (a), caffeine sc-CO2 encapsulation (b), caffeine liquid phase 

encapsulation (c), caffeine (d) and MIL-53(Al) ht (e); (B) MIL-53(Al) lt (a), carvacrol sc-CO2 encapsulation (b), 

carvacrol liquid phase encapsulation (c), and MIL-53(Al) ht; (C) Mg-MOF-74 (a), caffeine sc-CO2 encapsulation 

(b), caffeine liquid phase encapsulation (c) and caffeine (d); and (D) Mg-MOF-74 (a), carvacrol sc-CO2 

encapsulation (b) and carvacrol liquid phase encapsulation (c). The encapsulation contact time was 14 h in all 

the experiments. 

For the encapsulations in Mg-MOF-74, the XRD patterns are similar to that of the 

starting Mg-MOF-74 (see Figs. 6C and 6D). These data imply that none of the encapsulation 

processes affected the bulk crystallinity of the rigid structure. 

The host-guest interactions were studied by Raman spectroscopy which provides 

information about the structure of the samples and the molecular interactions. The nature 

of the material structure has influence on the interpretation of the Raman results shown in 

Fig. 7 and Tables S1-S4. The encapsulations of caffeine in MIL-53(Al) show similar Raman 

shifts corresponding to the terephthalate bands of the MOF, although the relative intensity 

is remarkably changed for sc-CO2 encapsulation (see Fig. 7A and Table S1) with respect to 
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the starting material or to that achieved by liquid phase encapsulation for bands at 867, 1469 

and 1612 cm-1 which corresponds to the deformation of aromatic C-H, symmetric stretching 

of CO2
- and ring C=C stretching. The modification of the intensities in case of supercritical 

encapsulation may be attributed to the modification of the polarization of terephthalate 

intramolecular bonds in the MIL-53(Al) structure and to the more effective pore occupation 

by caffeine (See Fig. 4). The molecule of caffeine can be placed in parallel with the ligand 

terephthalate and hence the heteroatoms of caffeine induce the polarizability of C-H bonds 

of the ligand increasing the Raman intensity (in Raman spectroscopy the intensity is related 

with the polarizability of the vibrational mode). Interestingly, this fact induces the contrary 

effect on the stretching of C=C of the aromatic ring. The opening of the MIL-53(Al) pore 

(observed by XRD, see Fig. 6A) had to remove the hydrogen bonding in the lt form between 

two adjacent carboxylates and can be the cause of the reduced intensity of one of the modes 

of the carboxylate. The hydrogen bonding may be partially present considering that there is 

some water after the supercritical encapsulation (see TGA curves in Fig 4a) and that the XRD 

is altered (with respect to the pristine MOF) which arises from different pore fillings or 

configurations (see Fig 6A). As opposed, the Raman spectrum of the sample caffeine@MIL-

53(Al) obtained in liquid phase encapsulation shows almost no changes with respect to the 

starting material which indicates the weaker interactions with pore walls.  

Fig. 7B shows the Raman spectra for carvacrol@MIL-53(Al) encapsulations (see also 

Table S2). The most important differences are in the stretching modes of the MOF 

carboxylates for both processes. In agreement with TGA and XRD, in which the open 

structure of the ht form is observed, no water, displaced by carvacrol, is present in the MOF 

porosity. The shifts of the CO2
- stretching (st) bands can be caused by the breaking of the 

water-MOF hydrogen bond and its potential substitution by hydrogen bonds between the 

aromatic alcohol of carvacrol and the MOF. The more acidic character of the phenol in 

carvacrol favors its actuation as hydrogen donor which it is not present with the saturated 

molecule of ethanol (media for liquid encapsulation). Therefore, in both liquid and sc-CO2 

phases, the Raman spectroscopy suggests that hydrogen bond interactions carvacrol-MIL-

53(Al) influenced the encapsulation. Another noticeable difference is the single new band at 

187 cm-1 for both encapsulations which is assigned to lattice vibrations of the expansion and 

contraction of MIL-53(Al) ht flexible network (this fact reminds to the radial breathing mode 

of carbon nanotubes).[62] In this region of the spectrum, there are several very weak bands 
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in the lt form and in the caffeine encapsulation a band appears with higher intensity than 

others but the pore is not totally open, as it is observed in the diffraction pattern.  

 

Figure 7. Raman spectra of (A) MIL-53(Al) lt (a), caffeine sc-CO2 encapsulation (b), caffeine liquid phase 

encapsulation (c) and caffeine (d), (B) MIL-53(Al) lt (a), carvacrol sc-CO2 encapsulation (b), carvacrol liquid 

phase encapsulation (c) and carvacrol (d), (C) Mg-MOF-74 (a), caffeine sc-CO2 encapsulation (b), caffeine liquid 

phase encapsulation (c) and caffeine (d), (D) Mg-MOF-74 (a), carvacrol sc-CO2 encapsulation (b), carvacrol 

liquid phase encapsulation (c) and carvacrol (d). The encapsulation contact time was 14 h in all the experiments. 

In opposition, the Raman spectra of the encapsulations in Mg-MOF-74 show no 

remarkable shifting neither for caffeine nor carvacrol (see Fig. 7C-D and Tables S3-S4). This 

fact was expected for the liquid phase encapsulation considering that the loading of additives 

was null (or, in any case, perhaps some water could have been replaced by ethanol). 

Alternatively, the spectra of the encapsulation in sc-CO2 show more background noise for 

both additives, caffeine and carvacrol, which could be due to the increase of unspecific 

interactions. In the pure MOF the pores are filled with water (around 35% in weight, see the 

TGA in Fig. 4) which was not totally removed after the encapsulation (around 25%) for 

caffeine@Mg-MOF-74, neither for carvacrol@Mg-MOF-74, in which the remaining water 
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cannot be estimated from the TGA curve because the removal step of water is consecutive to 

that of carvacrol. This presence of water could lead to reduced additive-MOF interactions. 

Additionally, the structure of Mg-MOF-74 is rigid and less changes can be expected in 

comparison with MIL-53(Al). The increased noise can also be assigned to punctual crystal 

damage although the bulk crystallinity of Mg-MOF-74 seems unaltered (see Figs. 6C-D). 

Controlled release 

The release of caffeine and carvacrol in aqueous media was studied at room temperature 

for the highest loaded samples in sc-CO2 (24 h for caffeine@MOF and 14 h for 

carvacrol@MOF). Two different behaviors were observed for additive@Mg-MOF-74 and 

additive@MIL-53(Al). In distilled water the former releases most of the impregnated 

caffeine and carvacrol in 5 h (see Fig. 8a) due to the simultaneous hydrolysis of Mg-MOF-

74.[63] However, the two additive@MIL-53(Al) materials showed no release for 10 days. 

The suspended material in the release media was recovered by centrifugation after that time 

and analyzed by thermogravimetry to evidence the presence of caffeine and carvacrol 

remained in the corresponding two additive@MIL-53(Al) materials (see Fig. 8b). The 

compared curves with the starting materials shows a small decrease of both additives in 

MIL-53(Al) that was not evidenced during the release experiments or the amount was below 

the limit of quantification. 

 

Figure 8. Release profiles at 25 °C for caffeine@Mg-MOF-74 and carvacrol@Mg-MOF-74 in distilled water 

(a) and TGA curves of the solids before (bf) and after (af) the release experiment, i.e. the remaining solids 

recovered by centrifugation from aqueous solution after 10 days in the release system, for caffeine@MIL-53(Al) 

and carvacrol@MIL-53(Al) (b). 
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CONCLUSIONS 

The encapsulation of bioactive molecules caffeine and carvacrol in two different MOFs, 

the flexible MIL-53(Al) and the rigid Mg-MOF-74, has been demonstrated. In all cases, the 

loadings were higher under supercritical CO2 conditions than applying the conventional 

liquid phase procedure in ethanol. In fact, the encapsulation in Mg-MOF-74 was only 

possible in the supercritical phase. The encapsulation was demonstrated using the 

measurements of XRD diffraction, TGA analysis and gas adsorption, while the Raman 

spectroscopy was useful to study the host-guest interactions. The encapsulation with sc-CO2 

showed clear advantages compared with the conventional technique: it required no later 

purification avoiding in this manner the steps of separation and drying in liquid phase, no 

ethanol contaminated the product and the excess of additive remained in the system as pure 

solid or liquid, therefore it could be reused easily. This methodology could be potentially 

applied to any soluble additive in sc-CO2 and particularly to those sensitive to temperature 

or unstable in solution. Consequently, and after the displayed results, this is a promising 

applicable procedure for encapsulation in MOFs. 
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1.- MOFs characterization 

 

Figure S1. MIL-53(Al) lt and Mg-MOF-74 XRD patterns compared to the simulated (ref) (a) and TGA curves to 

the starting ligand (b). 
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2.-N2 and CO2 adsorption 

 

Figure S2. Adsorption capacity of MOFs and the corresponding sc-CO2 impregnated MOFs for 14 h at 40 ºC 

and 100 bar (a) N2 adsorption isotherms of MIL-53(Al) samples and (b) CO2 adsorption isotherm of Mg-MOF-

74 samples. The outgassing in all cases was carried out at 150 ºC. 

 

 

3.- SEM characterization 

 

Figure S3. SEM images of MIL-53(Al) before and after the impregnation in sc-CO2 at 40ºC and 100 bar and in 

ethanol solution for 14 h of caffeine and carvacrol. 
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Figure S4. SEM images of Mg-MOF-74 before and after the impregnation in sc-CO2 at 40ºC and 100 bar and 

in ethanol solution for 14 h of caffeine and carvacrol 

 

 

4.- Raman spectroscopy 

Table S1. Caffeine@MIL-53(Al): terephthalate shifts 

MIL-53(Al) lt 
    

sc-CO2 (cm-1)   EtOH (l) (cm-1)   

1612 vs ring C=C stretching 1613 (1) m 1612  (0) vs 

1524 w asymmetric stretching CO2
-
 1522  (-2) w 1518  (-6) vw 

1469 s 
symmetric stretching CO2

-
 

1470  (1) m 1470  (1) s 

1437 w 1439  (2) w 1437  (0) w 

1142 m Ar =C-H in-plane deformation   1144 (2) m 1141  (0) m 

867 m Ar =C-H out-of-plane deformation 870  (3) vs 869  (2) m 

630 w aromatic ring deformation  630  (0) w 628  (-2) w 

vs: very strong, s: strong, m: medium, w: weak, vw: very weak 
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Table S2. Carvacrol@MIL-53(Al): terephthalate shifts 

MIL-53(Al) lt   Vibration sc-CO2 (cm-1)   EtOH (l) (cm-1)   

1612 vs ring C=C stretching 1615  (3) vs 1615  (3) vs 

1524 w asymmetric stretching CO2
-
 1503  (-21) w 1503  (-21) w 

1469 s 
symmetric stretching CO2

-
 

1475  (7) s 1475  (7) s 

1437 w 1453  (16) m 1453  (16) m 

1142 m Ar =C-H in-plane deformation   1148  (6) m 1148  (6) m 

867 m Ar =C-H out-of-plane deformation 871  (4) s 871  (4) s 

630 w Aromatic ring deformation  629  (-1) w 629  (-1) w 

    Lattice vibration 187 vs 186 vs 

 

Table S3. Caffeine@Mg-MOF-74: 2,5-dihydroxyterephthalate shifts 

Mg-MOF-74   Vibration sc-CO2 (cm-1)   EtOH (l) (cm-1)   

1626 w ring C=C stretching 1626  (0) w 1626  (0) w 

1576 m asymmetric stretching CO2
-
 1574  (-2) m 1573  (-3) m 

1500 m 
symmetric stretching CO2

-
 

1499  (-1) m 1497  (-3) m 

1429 s 1429  (0) s 1428  (-1) s 

1293 vs Ar-O- 1295  (2) vs 1295  (2) vs 

818 m Ar =C-H in-plane deformation   817  (-1) m 816  (-2) m 

728 w Ar =C-H out-of-plane deformation 730//725  (2) w 725  (-3) w 

661 w aromatic ring deformation  660  (-1) w 660  (-1) w 

564 m   563  (-1) m 565  (1) m 
 

Table S4. Carvacrol@Mg-MOF-74: 2,5-dihydroxyterephthalate shifts 

Mg-MOF-74 
  Vibration 

sc-CO2 (cm-1)   EtOH (l) (cm-1)   

1626 w ring C=C stretching 1626  (0) w 1626  (0) w 

1576 m asymmetric stretching CO2
-
 1574  (-2) m 1574  (-2) m 

1500 m 
symmetric stretching CO2

-
 

1499  (-1) m 1497  (-3) m 

1429 s 1429  (0) s 1428  (-1) s 

1293 vs Ar-O- 1295  (2) s 1295  (2) s 

818 m Ar =C-H in-plane deformation   817  (-1) m 816  (-2) m 

728 w Ar =C-H out-of-plane deformation 730//723  (2) vw 726  (-2) w 

661 w aromatic ring deformation  660  (-1) w 660  (-1) w 

564 m   563  (-1) m 565  (1) m 
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Conclusiones 

 

Durante el desarrollo de esta tesis doctoral se han alcanzado varios objetivos e innovaciones en el 

campo de los MOF. 

En el campo de la síntesis de híbridos, dos nuevas estrategias se han propuesto y aplicado: 

➢ Se ha descrito el uso de atmósferas reactivas (CO and O2) por primera vez en la síntesis de MOF. 

La síntesis asistida de MOF se había estudiado anteriormente mediante sistemas físicos o por 

medio de la adición de diferentes compuestos químicos en disolución, pero no con gases 

reactivos a alta presión. Al emplear los dos gases de manera consecutiva, se observó un 

incremento significativo del rendimiento en la síntesis de fumarato de Fe(III), a la vez que se 

mejoró la cristalinidad y se obtuvieron partículas con morfología más definida. Además, se 

obtuvo una distribución asimétrica de un híbrido de fumarato de Al y Fe(III) usando también 

de manera consecutiva los dos gases: un núcleo rico en hierro y una corteza exterior más 

concentrada en aluminio. Finalmente, se llevó a cabo la calcinación parcial de una muestra de 

material híbrido y se obtuvo un material superparamagnético que conservaba cierta área 

superficial BET (244 m2/g). Los resultados de esta investigación se publicaron en Journal of 

Materials Chemistry A, 2018, 6, 14352-14358. 

➢ Se estudió el uso de H2O2 en la síntesis de tereftalato de M(III). Se demostró que el H2O2 

promovía la síntesis de MOF basados en tereftalato de aluminio (MIL-53(Al)), hierro (MIL-

68(Fe)) y la combinación de ambos (MIL-68(Al/Fe)). El rendimiento se incrementó 

sustancialmente, particularmente para MIL-53(Al). La cristalinidad y el área BET de los 

materiales se mantuvieron para MIL-53(Al) y MIL-68(Al/Fe). Se estudió la reacción mediante 

varias técnicas y se hizo la hipótesis de que el H2O2 promovía la formación de puentes µ-OH, 

los cuales son precursoras de las estructuras finales de los MOF estudiados. De esta manera se 

favoreció la nucleación y se mejoró el rendimiento de la síntesis. Estos resultados se han 

enviado a una revista científica y están en revisión. 

En el campo de la encapsulación de moléculas bioactivas en MOF, se han estudiado dos nuevas 

estrategias en el desarrollo de esta tesis en las que se evita el uso de disolventes orgánicos, a saber: 

➢ Se estudió el uso de una prensa hidráulica para aplicar alta presión en la mezcla en polvo de 

aditivos, cafeína y ácido kójico, y diferentes MOF promoviendo la difusión de los aditivos en 

los poros, es decir, su encapsulación. De esta manera, se encapsularon cafeína y ácido kójico en 

MIL-53(Al) y UiO-66, evitando para ello el uso de disolventes, mientras que en Mg-MOF-74 y 

MIL-101(Cr) no se consiguieron encapsulaciones tan efectivas. La estabilidad mecánica y la 

estructura cristalina jugaron un papel decisivo en la efectividad de la encapsulación, que no se 

logró en todos y cada uno de los cuatro MOF estudiados (MIL-53(Al), UiO-66, Mg-MOF-74 y 
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MIL-101(Cr)). Entre aquellos en los que sí se consiguió, MIL-53(Al) mantuvo su estructura 

cristalina, mientras que UiO-66 la perdió en parte. Por otro lado, la estructura del Mg-MOF-74 

se mantuvo, pero la encapsulación de cafeína no resulto eficaz. Finalmente, la inestabilidad 

mecánica del MIL-101(Cr) se evidenció en su evidente amorfización al aplicar la alta presión. 

Los resultados de esta investigación se publicaron en European Journal of Inorganic Chemistry 

2019, 29-36. 

➢ El uso de CO2 supercrítico (sc-CO2) se estudió para encapsular cafeína y carvacrol en los MOF 

MIL-53(Al) y Mg-MOF-74 a diferentes tiempos. La carga de los aditivos se mejoró respecto a 

los valores obtenidos en fase líquida de etanol. De hecho, la encapsulación en Mg-MOF-74 solo 

se consiguió en sc-CO2. De esta manera, se evitó el uso de disolventes y se mejoraron los 

resultados. Finalmente, los materiales encapsulados mediante sc-CO2 y etanol líquido se 

caracterizaron y compararon para observar diferencias estructurales y en las interacciones 

MOF-aditivo. Los resultados de esta investigación se publicaron en Journal of CO2 Utilization, 

2019, 30, 38-47. 
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Conclusions 

 

During the accomplishment of this Doctoral Thesis, different goals and innovations were achieved 

in the MOF field. 

Regarding the synthesis of MOFs, two new approaches have been developed: 

➢ The use of gas atmospheres (CO and O2) was reported for the first time to synthesize MOFs. 

The assisted synthesis had been previously studied by a physical external help and by the 

addition of different chemical compounds, but not with reactive gases at high pressure. When 

both gases were consecutively combined, Fe-fumarate synthesis increased the yield and the 

crystallinity was improved, simultaneously more defined morphology was obtained. 

Additionally, an asymmetric distribution of hybrid Fe/Al-fumarate was obtained using both 

gases: a core rich in iron and a shell more concentrated in aluminum. Finally, the partial 

calcination of a hybrid sample yielded superparamagnetic particles that kept some texture (244 

m2/g). The results of this research were published in Journal of Materials Chemistry A, 2018, 

6, 14352-14358. 

 

➢ The use of H2O2 was studied for M3+-terephthalate synthesis. It was shown that H2O2 promoted 

the synthesis of terephthalate MOFs of aluminium (MIL-53(Al)), iron (MIL-68(Fe)) and the 

combination of both (MIL-68(Al/Fe)). The yield was substantially increased, especially for 

MIL-53(Al). The crystallinity and the BET specific surface area were roughly kept for MIL-

53(Al) and MIL-68(Al/Fe). The reaction was studied through different techniques and it was 

hypothesized that H2O2 promoted the construction of µ-hydroxo bridges that are precursors 

for the final MOF structures, in the end favoring nucleation and then improving the MOF 

synthesis yield. The results of this research are under revision of a scientific journal. 

 

Regarding the encapsulation of bioactive molecules in MOF, two new strategies have been studied 

in this PhD thesis avoiding the use of organic solvents: 

➢ The use of a hydraulic press was studied to apply high pressure into the powder mixture of 

additives, caffeine and kojic acid, and different MOFs promoting the diffusion of the additives 

into the pores, i.e. their encapsulation. In this manner, caffeine and kojic acid were 

encapsulated into MIL-53(Al) and UiO-66 avoiding the use of any solvent. Mechanical stability 

and crystalline structure play an important role in the effective encapsulation: even if four 

different MOFs were tested (MIL-53(Al), UiO-66, Mg-MOF-74 and MIL-101(Cr)) not all of 

them yielded effective encapsulations. Regarding those for which encapsulation was achieved, 

MIL-53(Al) kept its crystalline structure, although that of UiO-66 decreased in some extent. 



149 
 

For Mg-MOF-74, the structure was maintained, although the encapsulation of caffeine was 

hindered. Finally, the mechanical stability limited the encapsulation in MIL-101(Cr) because 

the material was amorphized under the studied pressure. The results of this research were 

published in European Journal of Inorganic Chemistry 2019 29-36. 

 

➢ The use of supercritical CO2 (sc-CO2) was studied to encapsulate caffeine and carvacrol in MIL-

53(Al) and Mg-MOF-74 with different contact times. The additive loadings were improved from 

those values obtained in ethanol liquid phase. In fact, encapsulation for Mg-MOF-74 was only 

possible in sc-CO2. In this way, the use of solvent was avoided, and the results were improved. 

Finally, the encapsulated materials with sc-CO2 and ethanol liquid encapsulation were 

characterized and compared to observe the difference in the material structures and in the 

host-guest interactions. The results of this research were published in Journal of CO2 

Utilization, 2019, 30, 38-47. 
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