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Abstract. We give a method to obtain new solvable 7-dimensional Lie algebras endowed
with closed and coclosed G2-structures starting from 6-dimensional solvable Lie algebras
with symplectic half-flat and half-flat SU(3)-structures, respectively. Provided the existence
of a lattice for the corresponding Lie groups we obtain new examples of compact solv-
manifolds endowed with calibrated and cocalibrated G2-structures. As an application of
this construction we also obtain a formal compact solvmanifold with first Betti number
b1 = 1 endowed with a calibrated G2-structure and such that does not admit any invariant
torsion-free G2-structure.
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Introduction

A G2-structure on a 7-dimensional manifold M consists in a reduction of its frame
bundle to the exceptional Lie group G2. Such structure can also be characterized by
the existence of a global non-degenerate 3-form ϕ on M , which is called the fun-
damental form or G2-form.As it is described in [13] the presence of such structure
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on a manifold induces a two-fold vector cross product P , a metric gϕ and a volume
form vol, satisfying

gϕ(P(X, Y ), Z) = ϕ(X,Y, Z)

for all X, Y, Z ∈ X(M).
Such structure allows to distinguish also a 4-form that can be described as the

Hodge star ∗ of the fundamental form.
In [15] Fernández and Gray obtained a classification of G2 manifolds attend-

ing to the decomposition of the covariant derivative of the fundamental form into
G2 irreducible components. They described 16 different classes of G2 manifolds,
among which we must distinguish calibrated G2 manifolds (the fundamental form
is closed, i.e. dϕ = 0) and cocalibrated G2 ones (d ∗ ϕ = 0). This two classes
are two of the most important ones since if the fundamental form is closed and
coclosed the manifold has holonomy on G2, see [15]. A G2-structure ϕ such that
is calibrated and cocalibrated at the same time is usually called parallel or torsion-
free. Obtaining compact examples of these classes is not an easy task. The first
example of compact calibrated G2 manifold was given in [12] and consists on a nil-
manifold (compact quotient of a nilpotent Lie group by a lattice). Since then, many
other examples have been obtained but there has been a clear absence of examples
with certain properties like formal ones or examples with first Betti number lower
than 2. Recently in [24, Section 1.4] and [14] examples satisfying both conditions
simultaneously have been obtained. In particular, in [14] the authors show that the
example there described does not admit any torsion-free G2-structure.

In this paper we focus our attention on the construction of compact manifolds
endowed with closed and coclosed G2-structures. In particular we obtain compact
solvmanifolds (compact quotients of solvable Lie groups by a lattice) endowedwith
that structures. In order to obtain these examples we describe first how to obtain
closed and coclosed G2-structures on solvable Lie algebras.

It is well-known that the presence of a symplectic half-flat structure namely
(ω,ψ+) on a 6-dimensional Lie algebra h, defines a closed G2-structure on g =
h ⊕ R. Equivalently, if the SU(3)-structure (ω,ψ+) on h is half-flat, a coclosed
G2-structure can be defined on g = h ⊕ R. In the present work we generalize this
well-known construction. This fact allows to obtain new examples of 7-dimensional
Lie algebras endowed with closed and coclosed G2-structures. Thus, provided the
existence of a lattice we can construct new compact solvmanifolds endowed with
special G2-structures.

This work is structured as follows: Sect. 1 is devoted to recall some prelimi-
nars on SU(3) and G2-structures. In Sect. 2 we also recall some facts concerning
minimal models and formality. Section 3 is focused on the construction of new
7-dimensional solvable Lie algebras endowed with a closed G2-structure. In par-
ticular in Theorem 3.1 we describe how to obtain a 7-dimensional Lie algebra of
the form

g = h ⊕D R (1)

endowed with a closed G2-structure from a 6-dimensional Lie algebra h with a
symplectic half-flat SU(3)-structure, where D denotes a derivation of h, what con-
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stitutes a generalization of some of the results obtained in [19] for almost abelian
algebras. Note that almost abelian Lie algebras have also been considered by sev-
eral authors with different purposes. Lauret in [23] use them in order to obtain
almost abelian solvmanifolds endowed with G2-structures solving the Laplacian
flow. Also in [2] the authors consider almost abelian Lie algebras to find explicit
solutions of the Laplacian coflow of G2-structures on 7-dimensional almost abelian
Lie groups.

In order to obtain many new examples of Lie algebras endowed with closed
G2-structures we consider all the 6-dimensional solvable Lie algebras endowed
with a symplectic half-flat SU(3)-structure (obtained in [16]) and thus apply the
previously mentioned construction. Finally in subsections 3.1 and 3.2 we show,
compact G2 calibrated manifolds, which are respectively an almost nilpotent one
and a formal almost abelian examplewith first Betti number equal to 1 not admitting
invariant torsion-free G2-structures. As far as the author knows this latter example
is the first example in these conditions in the class of compact solvmanifolds.

Section 4 is devoted to an equivalent study considering coclosed G2-structures
and half-flat SU(3)-structures. In particular, in Theorem 4.1 we describe how to
obtain 7-dimensional Lie algebras endowed with a coclosed G2-structure from 6-
dimensional Lie algebras with half-flat SU(3)-structures. In subsections 4.1, and
4.2 we show, compact G2 cocalibrated manifolds, which are respectively an almost
abelian, an almost nilpotent one.

1. Prelimnars on SU(3) and G2-structures

AnSU(n)-structure on a Lie algebra h of dimension 2n, consists in a triple (g, J,$)

such that (g, J ) is an almost Hermitian structure on h, and $ = ψ+ + i ψ− is a
complex volume (n, 0)-form, satisfying

(−1)n(n−1)/2
( i
2

)n
$ ∧ $ = 1

n! ωn,

with $ the complex form obtained by conjugation of $, and ω the Kähler form
associated to (g, J ). In what follows we will consider SU(3)-structures on 6-
dimensional Lie algebras.

The existence of an SU(3)-structure on a Lie algebra h can also be described
by the presence of a pair of forms, namely, (ω,ψ+) ∈ %2h∗ × %3h∗ such that
describe a metric as

g(X, Y )ω3 = −3 ιXω ∧ ιY (ψ+) ∧ ψ+,

with X,Y ∈ h and ιX denoting the contraction by X . We can also recover its
compatible almost complex structure as it is described in [10]

−2(J ∗
ψ+α)(X)

ω3

3! = α ∧ ιXψ+ ∧ ψ+,

or, equivalently,

α(J X) = −J ∗α(X),
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for any 1-form α on h∗.
Also, if (g, J,$) is an SU(3)-structure on a Lie algebra h we may choose

an orthonormal frame {e1, . . . , e6} such that the almost complex structure J is
J ∗e1 = e2, J ∗e3 = e4 and J ∗e5 = e6 with {e1, . . . , e6} an orthonormal basis dual
to {e1, . . . , e6}. Therefore, the Kähler form ω and the complex volume form $ can
be written as

ω = e12 + e34 + e56, $ = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6), (2)

where, with the usual notation of the related literature, we write ei j for the wedge
product ei ∧ e j , ei jk = ei ∧ e j ∧ ek , and so on. Thus,

ψ+ = e135 − e146 − e236 − e245, and ψ− = −e246 + e235 + e145 + e136.

In [21], Gray and Hervella prove that there exist sixteen different classes of almost
Hermitian structures according to the behavior of the covariant derivative of its
Kähler form. Equivalently, the different classes of SU(n)-structures can be defined
in terms of the forms ω,ψ+ and ψ−. In particular we are interested in two classes
of SU(3)-structures which were defined respectively in [8] and [25] as follows:

• (g, J,$) is a half-flat SU(3)-structure iff dω2 = dψ+ = 0;
• (g, J,$) is a symplectic half-flat SU(3)-structure iff dω = dψ+ = 0;

A classification of half-flat SU(3)-structures on nilpotent Lie algebras is done
in [6]. In [18] a similar work for decomposable solvable Lie algebras has been
established. The existence of symplectic half-flat SU(3)-structures on nilpotent Lie
algebras is studied in [9] and the complete study of these structures on solvable
Lie algebras is obtained in [16].

AG2-structure on a 7-dimensional Lie algebra g is defined by a 3-form ϕ (called
the fundamental form) on g which also induces a metric gϕ and a volume form vol
satisfying

gϕ(X, Y ) vol =
1
6

ιXϕ ∧ ιYϕ ∧ ϕ,

for all X,Y ∈ g. With respect to some orthonormal basis of 1-forms {e1, . . . , e7}
on g the fundamental form can be written as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245. (3)

It can also be defined the 4-form ∗ϕ, where ∗ denotes the Hodge star operator
associated to gϕ . Therefore, respect to the basis {e1, . . . , e7} of 1-forms of g in
which the fundamental form is described by (3) the 4-form can be described as

ϕ = e1234 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367.

In [15], Fernández andGrayprove that there exist sixteendifferent classes ofG2-
structures according to the behavior of the covariant derivative of its fundamental
form. In particular we will be interested in two different classes of G2-structures
which are described as follows:
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• ϕ is an almost parallel or closed G2-structure iff dϕ = 0;
• ϕ is a semiparallel or coclosed G2-structure iff d ∗ ϕ = 0;

A classification of closed G2-structures on nilpotent Lie algebras has been
obtained in [7]. SU(3) and G2-structures are closely related. In fact, if (N 6,ω,ψ+)
is a 6-dimensional manifold endowed with an SU(3)-structure then the 3-form

ϕ = ω ∧ dt + ψ+, (4)

defines a G2-structure on the 7-dimensional manifold M7 = N 6 × S1 where t
denotes the coordinate in S1.

Concerning the relation between special SU(3)-structures and special G2-
structures, if the SU(3)-structure (ω,ψ+) on N 6 is symplectic half-flat clearly the
G2-structure defined by (4) constitutes a closed G2-structure on M7. Equivalently,
if the SU(3) manifold (N 6,ω,ψ+) is half-flat the 3-form

ϕ = ω ∧ dt − ψ−, (5)

is such that

∗ϕ = 1
2
ω ∧ ω + ψ+ ∧ dt,

and therefore defines a coclosed G2-structure on the 7-dimensional manifold M7 =
N 6 × S1, where t is the coordinate on S1.

2. Minimal models and formality

In this section some definitions and results about minimal models and formality are
reviewed. All these facts are very well known in the literature and can be found,
for example, in [11,14,17].

From now on, we work with graded algebras over the field of real numbers R,
and we denote by |a| the degree of an element.

A differential graded commutative algebra (A, d) over R (CDGA for short)
consists on pair (A, d), where A is a graded commutative algebra A = ⊕i≥0Ai

over R, and d : A∗ → A∗+1 is a derivation of degree 1, that is, d is a linear map
such that d2 = 0 and, for homogeneous elements a and b,

d(a · b) = (da) · b + (−1)|a|a · (db).

Given a differential graded commutative algebra (A, d), we denote its cohomology
by H∗(A). The cohomology of a differential graded algebra H∗(A) is a CDGA
with the product inherited from that onA and with the differential being identically
zero. The CDGA (A, d) is connected if H0(A) = R, and (A, d) is 1-connected
if, in addition, H1(A) = 0.

In our context, the main examples of CDGAs are the de Rham complex
((∗(M), d) of a differentiable manifold M , where d is the exterior differential,
and the de Rham cohomology algebra (H∗(M), d = 0).
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If (A, dA) and (B, dB) are CDGAs, a map

ν : (A, dA)−−−−→ (B, dB),

is called morphism of CDGA’s if ν is a morphism of algebras such that preserves
the degree and commutes with the differential.

Definition 2.1. A CDGA (A, d) is said to be minimal if

• A is the free algebra A = ∧
V over a graded (real) vector space V = ⊕kV k ;

and
• there exists a basis {xi , i ∈ I } of V , for a well-ordered index set I , such that
|xi | ≤ |x j | if i < j , and each dx j is expressed in terms of the preceding xi
(i < j).

Definition 2.2. Let (M, dM) and (A, d) be two CDGA’s. We say that (M, dM)

is a minimal model of (A, d) if (M, dM) is minimal, so M = ∧
V , and there

exists a morphism

ρ : (M, dM)−−−−−−→ (A, d),

of DGAs, such that it induces an isomorphism in cohomology

ρ∗ : H∗(M)
∼=−−−−−−→ H∗(A).

In [22], Halperin proved that any connected differential graded algebra (A, d)
has a minimal model unique up to isomorphism. For 1-connected differential alge-
bras, a similar result was proved earlier by Deligne, Griffiths, Morgan and Sulli-
van [11].

Definition 2.3. A minimal model of a connected differentiable manifold M is a
minimal model (M, dM) of the de Rham complex ((∗(M), d) of differential
forms on M .

Definition 2.4. A minimal model (M, dM) is formal if there exists a morphism
of differential algebras

ψ :
(
M, dM

)
−→

(
H∗(M), 0

)
,

inducing the identity map on cohomology. Also a differentiable manifold M is
called formal if its minimal model is formal.

The formality of a minimal algebra is characterized as follows.

Theorem 2.5. ([11]) A minimal algebra
(
M, dM

)
with M = ∧

V is formal if
and only if the space V can be decomposed into a direct sum V = C ⊕ N with
d(C) = 0 and d injective on N, such that every closed element in the ideal I (N )

in
∧

V generated by N is exact.

This characterization of formality can be weakened using the concept of s-
formality introduced in [17].
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Definition 2.6. A minimal algebra
(
M, dM

)
withM = ∧

V is s-formal (s > 0)
if for each i ≤ s the space V i of generators of degree i decomposes as a direct sum
V i = Ci ⊕ Ni , where the spaces Ci and Ni satisfy the three following conditions:
(1) d(Ci ) = 0,
(2) the differential map d : Ni −→ ∧

V is injective, and
(3) any closed element in the ideal Is = I (

⊕
i≤s

N i ), generated by the space
⊕
i≤s

N i

in the free algebra
∧
(
⊕
i≤s

V i ), is exact in
∧

V .

A differentiable manifold M is s-formal if its minimal model is s-formal.
Clearly, if M is formal then M is s-formal, for any s > 0. The main result of [17]
shows that formality can be guaranteed or discarded with the weaker condition of
s-formality.

Theorem 2.7. ([17]) Let M be a connected and orientable compact differentiable
manifold of dimension 2n or (2n − 1). Then M is formal if and only if it is (n − 1)-
formal.

3. Lie algebras with a calibrated G2-structure

Consider h a 6-dimensional Lie algebra, and D a derivation of h, thus the vector
space

g = h ⊕D Rξ

is a Lie algebra with the Lie bracket given by

[U, V ] = [U, V ]|h, [ξ,U ] = D(U ),

for any U, V ∈ h.
Let (ω,ψ+) be a symplectic half-flat structure on h. Thus, it defines an almost

complex structure J , and as it is mentioned in [4] this allows to obtain a real
representation of the complex matrices as

ρ : gl(3,C)−−−−→ gl(6,R).
Then, if A ∈ gl(3,C), ρ(A) is the matrix (Bi j )3i, j=1 with

Bi j =
(

ReAi j ImAi j
−ImAi j ReAi j

)
,

where Ai j is the (i, j) component of A.
In particular, let us recall that the real representation of sl(3,C) (complex matrices
without trace) is given by

sl(3,C) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
−a1,2 a1,1 −a1,4 a1,3 −a1,6 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6

−a3,2 a3,1 −a3,4 a3,3 −a3,6 a3,5
a5,1 a5,2 a5,3 a5,4 −a1,1 − a3,3 −a1,2 − a3,4

−a5,2 a5,1 −a5,4 a5,3 a1,2 + a3,4 −a1,1 − a3,3

⎞

⎟⎟⎟⎟⎟⎠
, with ai, j ∈ R

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(6)



V. Manero

Theorem 3.1. Let h be a 6-dimensional Lie algebra and let g be a 7-dimensional
Lie algebra satisfying

g = h ⊕D Re7,

with D a derivation of h such that D ∈ sl(3,C), then the following two conditions
are equivalent:

(1) The SU(3)-structure on h given by

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245.

is symplectic half-flat.
(2) The G2-structure on g given by

ϕ = ω ∧ e7 + ψ+,

is closed.

Proof. Identifying k-forms on g = h ⊕D Rξ which annihilate ξ with k-forms on
h, one may write any k-form γ ∈ %kg∗ as

γ = α ∧ ξ♭ + β

for unique α ∈ %k−1h∗ and β ∈ %kh∗ where ♭ denotes the canonical isomorphism.
One can check that

dgγ = dhα ∧ ξ♭ + ξ♭ ∧ D.β + dhβ (7)

for D.β being the natural action of D ∈ gl(h) on β ∈ %kh∗.
Thus, consider the SU(3)-structure (ω,ψ+) on h such that with respect to the

basis {e1, . . . , e6} has the canonical expression. Consider also, the G2 form

ϕ = ω ∧ η + ψ+,

with η the 1-form such that η(X) = 0 for all X ∈ h and η(ξ) = 1. From (7) is clear
that

dgϕ = dhω ∧ η + η ∧ D.ψ+ + dhψ+. (8)

For every triple (ei , e j , ek) of elements of the basis of h

D.ψ+(ei , e j , ek) = ψ+(D(ei ), e j , ek)+ ψ+(ei , D(e j ), ek)+ ψ+(ei , e j , D(ek))

where can be checked that if D ∈ sl(3,C) the second member vanishes. Thus, the
condition D ∈ sl(3,C) (or equivalently D belongs to the stabilizer Lie algebra
gl(h)ψ+ of ψ+) is considered in order to guarantee that D.ψ+ = 0. Finally in view
of (8) we have that

dgϕ = dhω ∧ η + dhψ+,

and therefore the G2 form ϕ is dg closed if and only if ω and ψ+ are dh closed, i.e.
symplectic half-flat. ⊓,
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Table 1. Six-dimensional unimodular solvable Lie algebras admitting SHF-structures

Algebra Structure equations

a (0,0,0,0,0,0)
e(1, 1) ⊕ e(1, 1) (0, 0,−e14,−e13, e25,−e26)

g5,1 ⊕ R (0, 0, 0, e15, 0, e13)

g−1,−1,1
5,7 ⊕ R (−e15, e25,−e35, e45, 0, 0)

gα,−α,1
5,17 ⊕ R (αe15 + e35,−αe25 + e45,−e15 + αe35,−e25 − αe45, 0, 0)

g6,N3 (0, e35, 0, 2e15, 0, e13)

g06,38 (2e36, 0,−e26,−e26 + e25,−e23 − e24, e23)

g0,−1
6,54 (e16 + e45,−e26,−e36 + e25, e46, 0, 0)

g0,−1,−1
6,118 (−e15 + e36, e46 + e25,−e16 − e35, e45 − e26, 0, 0)

Remark 3.2. Note that the trace of D, the real representation of certain A ∈ sl(3,C)
vanishes. Therefore, the Lie algebra g = h ⊕D Re7 is unimodular if and only if h
is so.

In this section, using the previous results we describe new examples of 7-
dimensional Lie algebras with closed G2-structures. These examples are con-
structed as

g = h ⊕D Re7,

where h denotes a 6-dimensional solvable Lie algebra with a symplectic half-flat
structure and D is a derivation of h. From [16] the 6-dimensional unimodular
solvable Lie algebras with a symplectic half-flat SU(3)-structure are:

Where we use the usual notation in the related literature meaning that if in the
k position appears ei j thus dek = ei ∧ e j .

The structure equations of the previously mentioned Lie algebras are given in
terms of an adapted basis, that is, a basis such that the forms

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

are closed and therefore describe a symplectic half-flat SU(3)-structure.

Proposition 3.3. The Lie algebras described in Table 2 of the Appendix admit the
closed G2-structure given by

ϕ = ω ∧ e7 + ψ+.

Proof. For every h, 6-dimensional solvable Lie algebra admitting a symplectic
half-flat SU(3)-structure, (see Table 1) we consider Lie algebras

g = h ⊕D Re7,
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with D being the real representation of certain A ∈ sl(3,C). Thus, the differential
operator on g can be described as

dgei = dhei +
6∑

j=1

Di j e j7, (9)

and g represents a differential algebra if and only if D is a derivation of h or
equivalently if the differential operator dg vanishes when applied twice. Therefore,
in what follows, we present for every Lie algebra in Table 1 the values of the
parameters ai, j in D for which d2g vanishes, (equiv. such that the Jacobi identity
holds on g). Finally from Theorem 3.1 the 3-form

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245

defines a closed G2-structure on g = h ⊕D Re7.
• h = a

D =

⎛

⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
−a1,2 a1,1 −a1,4 a1,3 −a1,6 a1,5
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6

−a3,2 a3,1 −a3,4 a3,3 −a3,6 a3,5
a5,1 a5,2 a5,3 a5,4 −a1,1 − a3,3 −a1,2 − a3,4

−a5,2 a5,1 −a5,4 a5,3 a1,2 + a3,4 −a1,1 − a3,3

⎞

⎟⎟⎟⎟⎟⎠
.

a ⊕D Re7 =
(
a1,1e17 + a1,2e27 + a1,3e37 + a1,4e47 + a1,5e57 + a1,6e67,

− a1,2e17 + a1,1e27 − a1,4e37 + a1,3e47 − a1,6e57 + a1,5e67,

a3,1e17 + a3,2e27 + a3,3e37 + a3,4e47 + a3,5e57 + a3,6e67,

− a3,2e17 + a3,1e27 − a3,4e37 + a3,3e47 − a3,6e57 + a3,5e67,

a5,1e17 + a5,2e27 + a5,3e37 + a5,4e47 +
(
−a1,1 − a3,3

)
e57

+
(
−a1,2 − a3,4

)
e67,

− a5,2e17 + a5,1e27 − a5,4e37 + a5,3e47 +
(
a1,2 + a3,4

)
e57

+
(
−a1,1 − a3,3

)
e67, 0

)
.

• h = e(1, 1) ⊕ e(1, 1)

D =

⎛

⎜⎜⎜⎝

a3,3
a3,3

−a3,3
−a3,3

⎞

⎟⎟⎟⎠
.

(
e(1, 1) ⊕ e(1, 1)

)
⊕D Re7

= (0, 0,−e14 + a3,3e37,−e13 + a3,3e47, e25 − a3,3e57,−e26 − a3,3e67, 0).
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• h = g5,1 ⊕ R

D =

⎛

⎜⎜⎜⎝

a1,3 a3,5
a1,3 a3,5

a1,5 a3,5
a1,5 a3,5

⎞

⎟⎟⎟⎠
.

(
g5,1 ⊕ R

)
⊕D Re7 = (0, 0, a1,3e17 + a3,5e57, e15 + a1,3e27 + a3,5e67, a1,5e17

+a3,5e37, e13 + a1,5e27 + a3,5e47, 0).

• h = g−1,−1,1
5,7 ⊕ R

D =

⎛

⎜⎜⎜⎝

a1,1 a3,1
a1,1 a3,1

a1,3 −a1,1
a1,3 −a1,1

⎞

⎟⎟⎟⎠
.

(
g−1,−1,1
5,7 ⊕ R

)
⊕D Re7 =(−e15 + a1,1e17 + a3,1e37, e25 + a1,1e17 + a3,1e37,

− e35 + a1,3e17 − a1,1e37, e45 + a1,3e27

− a1,1e47, 0, 0, 0).

• h = gα,−α,1
5,17 ⊕ R with α ≥ 0

D =

⎛

⎜⎜⎜⎝

−a1,3
−a1,3

a1,3
a1,3

⎞

⎟⎟⎟⎠
,

(
gα,−α,1
5,17 ⊕ R

)
⊕D Re7 =(αe15 + e35 − a1,3e37,−αe25 + e45 − a1,3e47,

− e15 + αe35 + a1,3e17,−e25 − αe45

+ a1,3e27, 0, 0, 0),

for all α > 0 and

D =

⎛

⎜⎜⎜⎝

−a1,3 −a1,4
a1,4 −a1,3

a1,3 a1,4
−a1,4 a1,3

⎞

⎟⎟⎟⎠
,
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(
g0,0,15,17 ⊕ R

)
⊕D Re7 =(e35 − a1,3e37 + a1,4e47, e45 − a1,4e37 − a1,3e47,

− e15 + a1,3e17 − a1,4e27,−e25 + a1,4e17

+ a1,3e27, 0, 0, 0)

for α = 0.

• h = g6,N3

D =

⎛

⎜⎜⎜⎜⎜⎝

a1,3
2 −a1,5

a1,3
2 −a1,5

a1,3 2a3,5
a1,3 2a3,5

a1,5 a3,5
a1,5 a3,5

⎞

⎟⎟⎟⎟⎟⎠
.

g6,N3 ⊕D Re7 =
(a1,3

2
e37 − a1,5e57, e35 +

a1,3
2

e47 − a1,5e67, a1,3e17 + 2a3,5e57,

a1,3e27 + 2a3,5e67, a1,5e17 + a3,5e37, e13 + a1,5e27

+ a3,5e47, 0
)
.

• h = g06,38

D =

⎛

⎜⎜⎜⎝

−a3,6
a3,6

−a3,6
a3,6

⎞

⎟⎟⎟⎠
.

g06,38 ⊕D Re7 = (2e36, 0,−e26 − a3,6e67,−e26 + e25 + a3,6e57,

−e23 − e24 − a3,6e47, e23 + a3,6e37, 0).

• h = g0,−1
6,54

D =
(
0
)
.

g0,−1
6,54 ⊕ Re7 =(e16 + e45,−e26,−e36 + e25, e46, 0, 0, 0).

• h = g0,−1,−1
6,118
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D =

⎛

⎜⎜⎜⎝

−a1,3
−a1,3

a1,3
a1,3

⎞

⎟⎟⎟⎠
.

g0,−1,−1
6,118 ⊕D Re7 = (−e15 + e36 − a1,3e37, e46 + e25 − a1,3e47,−e16 − e35

+ a1,3e17, e45 − e26 + a1,3e27, 0, 0, 0)

⊓,
Remark 3.4. According to [16] there exist 4Lie algebras and aone-parameter family
of solvable non-unimodular Lie algebras admitting symplectic half-flat structures.
For all these algebras, with the same procedure described in Proposition 3.3, can
be obtained derivations D such that the corresponding 7-dimensional Lie algebra
admits a closed G2-structure. However, these latter algebras are not interesting
for our purposes since they will not be unimodular and therefore do not provide
compact examples.

3.1. An almost nilpotent compact G2-calibrated manifold.

Let h be the 6-dimensional nilpotent Lie algebra defined by the structure equations

h = (0, e35, 0, 2e15, 0, e13).

The almost Hermitian structure (g, J ) on h given by

g =
6∑

i=1

ei ⊗ ei , Je1 = e2, Je3 = e4, Je5 = e6 (10)

is such that its Kähler form is

ω = e12 + e34 + e56.

Thus, (g, J ) together with the complex volume form $ = ψ+ + i ψ−, where

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246,

define anSU(3)-structure onh. Clearly,d ω = d ψ+ = 0, so (g, J,$ = ψ++i ψ−)
is a symplectic half-flat SU(3)-structure on h. Consider now the derivation D of h
given by

⎛

⎜⎜⎜⎜⎜⎝

1
1

2
2

⎞

⎟⎟⎟⎟⎟⎠
∈ sl(3,C),



V. Manero

that is,

D(e1) = 2e3, D(e2) = 2e4, D(e3) = e1, D(e4) = e2.

Take the Lie algebra

g = h ⊕D Re7,

whose structure equations are

g = (e37, e35 + e47, 2e17, 2e27 + 2e15, 0, e13, 0).

Then, the 3-form ϕ given by

ϕ = ω ∧ e7 + ψ+

is a closedG2 form on g. LetG be the simply connected solvable Lie groupwith Lie
algebra g, and let H be the simply connected nilpotent Lie group with Lie algebra
h. Note that G = R !φ H , where φ is the unique action φ : R −→ Aut (H) such
that, for any t ∈ R, the morphism (φt )∗|e : h −→ h is given by

(φt )∗|e = exp(t D),

where D is the derivation previously defined on the Lie algebra h, and exp denotes
the map exp : Der(h) → Aut(h).

In order to show that there exists a discrete subgroup 1 of G such that the quo-
tient space 1/G is compact we proceed as follows. The SU(3)-basis {e1, . . . , e6}
of h is a rational basis for h and, with respect to this basis, we have

φt =

⎛

⎜⎜⎜⎜⎜⎜⎝

cosh(
√
2t)

√
2
2 sinh(

√
2t)

cosh(
√
2t)

√
2
2 sinh(

√
2t)√

2 sinh(
√
2t) cosh(

√
2t)√

2 sinh(
√
2t) cosh(

√
2t)

1
1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

To obtain a lattice 1 of G it is enough to find some real number t0 such that φt
is conjugated to an element A ∈ SL(6,Z). In these conditions we can find 10 a
lattice of H invariant under φt0 , and take

1 = (t0 Z) !φ 10.

In particular, if we consider t0 =
√
2
2 arc cosh(3), then cosh(

√
2 t0) = 3 and

sinh(
√
2 t0) = 2

√
2 and thus φt0 is a matrix whose entries are integer numbers.

Therefore, Z⟨e1, . . . , e6⟩ is a co-compact subgroup of H preserved by φt0 , namely
10. Consequently,

1 = (t0 Z) !φ 10

is a co-compact subgroup of G. Hence, the compact quotient 1/G is a compact
solvmanifold, in particular almost nilpotent. Since g is completely solvable

H∗
dR(1\G) ∼= H∗(g)

and therefore the compact solvmanifold S = 1\G admits a closed G2-structure.
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3.2. A formal almost abelian compact G2-calibrated manifold with b1 = 1.

Let h be the 6-dimensional abelian Lie algebra. The almost Hermitian structure
(g, J ) on h given by

g =
6∑

i=1

ei ⊗ ei , Je1 = e2, Je3 = e4, Je5 = e6

is such that its Kähler form is

ω = e12 + e34 + e56.

Thus, (g, J ) together with the complex volume form $ = ψ+ + i ψ−, where

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246,

define anSU(3)-structure onh. Clearly,d ω = d ψ+ = 0, so (g, J,$ = ψ++i ψ−)
is a symplectic half-flat SU(3)-structure on h.
Consider now the derivation D of h given by

⎛

⎜⎜⎜⎜⎜⎝

a1,1
a1,1

a3,3
a3,3

−a1,1 − a3,3
−a1,1 − a3,3

⎞

⎟⎟⎟⎟⎟⎠
∈ sl(3,C),

that is,

D(e1) = a1,1e1, D(e2) = a1,1e2, D(e3) = a3,3e3, D(e4) = a3,3e4,

D(e5) = (−a1,1 − a3,3)e5, D(e6) = (−a1,1 − a3,3)e6.

Take the Lie algebra

g = h ⊕D Re7,

whose structure equations are

g =
(
a1,1e17, a1,1e27, a3,3e37, a3,3e47, (−a1,1 − a3,3)e57, (−a1,1 − a3,3)e67, 0

)
.

Then, the 3-form ϕ given by

ϕ = ω ∧ e7 + ψ+
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is a closed G2 form on g. Let us denote by G the simply connected and completely
solvable Lie group consisting on matrices of the form

a =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ea1,1x7 x1
ea1,1x7 x2

ea3,3x7 x3
ea3,3x7 x4

e(−a1,1−a3,3)x7 x5
e(−a1,1−a3,3)x7 x6

1 x7
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with xi ∈ R, for i = 1, . . . , 7. Then a global system of coordinates {xi } for G
is defined by xi (a) = xi . A standard calculation shows that a basis for the left
invariant 1-forms on G can be described by

e1 = e−a1,1x7dx1, e2 = e−a1,1x7dx2, e3 = e−a3,3x7dx3, e4 = e−a3,3x7dx4,

e5 = e(a1,1+a3,3)x7dx5, e6 = e(a1,1+a3,3)x7dx6, and e7 = dx7.

Therefore g is exactly the Lie algebra of G. Notice that G = R !φ R6, where R
acts on R6 via φt described by

φt =

⎛

⎜⎜⎜⎜⎜⎝

ea1,1t

ea1,1t

ea3,3t

ea3,3t

e(−a1,1−a3,3)t

e(−a1,1−a3,3)t

⎞

⎟⎟⎟⎟⎟⎠
.

Thus the operation on the group G is given by

r · s = (s1ea1,1r7 + r1, s2ea1,1r7 + r2, s3ea3,3r7 + r3, s4ea3,3r7

+r4, s5e(−a1,1−a3,3)r7 + r5, s6e(−a1,1−a3,3)r7 + r6, s7 + r7),

where r = (r1, . . . , r7) and s = (s1, . . . , s7).
As in the previous example to obtain a lattice 1 of G it is enough to find some real
number t0 such that φt0 is conjugated to an element A ∈ SL(6,Z). If 10 denotes a
lattice of R6 invariant under φt0 , take

1 = (t0 Z) !φ 10.

Consider the matrix

A =

⎛

⎜⎜⎜⎜⎜⎝

1 1
1 1
2 1
2 1

1 1 2
1 1 2

⎞

⎟⎟⎟⎟⎟⎠
.
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Notice that det (A) = 1 and its characteristic polinomial is p(λ) = (−λ3 + 5λ2 −
6λ + 1)2. Take p̃(λ) = −λ3 + 5λ2 − 6λ + 1, then p̃(0) = 1, p̃(1) = −1, p̃(3) =
1, p̃(4) = −7, thus, from Bolzano’s theorem it has three positive real roots. There-
fore A has three double positive real eigenvalues λ1, λ2 and λ3 = 1

λ1λ2
. Taking

appropriated values for t0 and a3,3 (t0 = Ln(λ1)
a1,1

, a3,3 = Ln(λ2)
Ln(λ1)

a1,1) we have that

et0D = Diag(λ1, λ1, λ2, λ2, λ3, λ3). Since A is symmetric it is diagonalizable and
therefore there exist certain P such that AP = Pφt0 . So, the lattice defined by

10 = P Z⟨e1, . . . , e6⟩
is invariant under the group t0Z. Thus

1 = (t0 Z) !φ 10

is a lattice of G. Since g is completely solvable Hattori’s theorem

H∗
dR(1\G) ∼= H∗(g)

is satisfied. If we chose the parameter a1,1 such that a1,1 ̸= 0,−a3,3 the real
cohomology of S = 1\G is exactly

H0(S) = ⟨1⟩,
H1(S) = ⟨[e7]⟩,
H2(S) = ⟨1⟩,
H3(S) = ⟨[e135, e136, e145, e146, e235, e236, e245, e246]⟩,
H4(S) = ⟨[e1357, e1367, e1457, e1467, e2357, e2367, e2457, e2467]⟩,
H5(S) = ⟨1⟩,
H6(S) = ⟨[e123456]⟩.

The corresponding minimal model of S is the graded algebra (M, d), withM
the free algebra

M =
∧

(a) ⊗
∧

(c1, c2, c3, c4, c5, c6, c7, c8) ⊗
∧

V≥5

with a of degree 1 and ci have degree 3. The morphism

ρ : M −→ ((S)

that induces an isomorphism in cohomology is be defined by

ρ(a) = e7, ρ(c1) = e135, ρ(c2) = e136,
ρ(c3) = e145, ρ(c4) = e146, ρ(c5) = e235,
ρ(c6) = e236, ρ(c7) = e245, ρ(c8) = e246.

Recalling Definition 2.6

C1 = a, N 1 = 0,
C2 = 0, N 2 = 0,
C3 = c1, c2, c3, c4, c5, c6, c7, c8, N 3 = 0,

thus S is 3-formal and by Theorem 2.7 it is formal. Then, the compact solvmanifold
S has first Betti number 1, is formal and admits a closed G2-structure.
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Proposition 3.5. The compact solvmanifold S does not admit any invariant torsion-
free G2-structure.

Proof. We prove that S has no cocalibrated G2-structures and therefore does not
admit torsion-free G2-structures either. In [1, Lemma 3.3] it is proved the following
restriction to the existence of a cocalibrated G2-structure on a Lie algebra l: if there
exists a pair of different non zero vectors X, Y ∈ l such that

(ιY (ιXγ ))2 = 0, (11)

for every closed 4-form γ where ι denotes the contraction operator, then the Lie
algebra l does not admit cocalibrated G2-structures. This restriction is obvious from
the fact that if a cocalibrated G2-structure exists, there is a closed 4-form such that
in terms of an adapted basis can be described canonically. Thus for every pair of
different non zero vectors, Eq. (11) cannot vanish. On the other hand, from the
structure equations of g, the Lie algebra associated to G with S = 1\G, can be
checked that the space of closed 4-forms is

Z4(g∗) = ⟨e1237, e1247, e1257, e1267, e1347, e1357, e1367, e1457, e1467, e1567,
e2347, e2357, e2367, e2457, e2467, e2567, e3457, e3467, e3567, e4567⟩.

Let γ ∈ Z4(g∗) then

(ιe1(ιe2γ ))
2 = 0,

and thus g has no cocalibrated G2-structures and, in particular, it cannot admit
torsion-free G2-structures. Therefore the solvmanifold S = 1\G has no invariant
torsion-free G2-structures. ⊓,

4. Lie algebras with a cocalibrated G2-structure

In this section we show that if a 6-dimensional half-flat Lie algebra is endowed
with a particular type of derivation, then a Lie algebra with a coclosed G2-structure
can be constructed.

We recall that a coclosed G2-structure on a real Lie algebra g of dimension
7 consists on the presence of a G2 form which is coclosed. In order to obtain an
expression adapted to our purposes, in this section we characterize a G2 form on g
as a 3-form that can be written as

ϕ = e127 + e347 + e567 + e246 − e235 − e145 − e136,

with respect to some basis {e1, . . . , e7} of the dual space of g.
Let us also recall that sp(6,R) is given by

sp(6,R) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
a2,1 −a1,1 a2,3 a2,4 a2,5 a2,6

−a2,4 a1,4 a3,3 a3,4 a3,5 a3,6
a2,3 −a1,3 a4,3 −a3,3 a4,5 a4,6

−a2,6 a1,6 −a4,6 a3,6 a5,5 a5,6
a2,5 −a1,5 a4,5 −a3,5 a6,5 −a5,5

⎞

⎟⎟⎟⎟⎟⎠
, with ai, j ∈ R

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (12)
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Theorem 4.1. Let h be a 6-dimensional Lie algebra and let g be a 7-dimensional
Lie algebra satisfying

g = h ⊕D Re7,

with D a derivation of h such that D ∈ sp(6,R). Then the following two conditions
are equivalent:

(1) The SU(3)-structure on h given by

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

is half-flat.
(2) The G2-structure on g given by

ϕ = ω ∧ e7 − ψ−,

is coclosed.

Proof. If we identify k-forms on g = h ⊕D Rξ which annihilate ξ with k-forms
on h, one may write any k-form γ ∈ %kg∗ as

γ = α ∧ ξ♭ + β

for unique α ∈ %k−1h∗ and β ∈ %kh∗ where ♭ denotes the canonical isomorphism.
One can check that

dgγ = dhα ∧ ξ♭ + ξ♭ ∧ D.β + dhβ

for D.β being the natural action of D ∈ gl(h) on β ∈ %kh∗.
Thus, consider the SU(3)-structure (ω,ψ+) on h such that with respect to the

basis {e1, . . . , e6} has the canonical expression. Consider also, the G2 form

ϕ = ω ∧ η − ψ−,

with η the 1-form such that η(X) = 0 for all X ∈ h and η(ξ) = 1. Thus we have
that

∗ϕ = 1
2
ω2 + ψ+ ∧ η

and for (7) is clear that

dg(∗ϕ) = dh
(ω2

2

)
+ η ∧ D.

(ω2

2

)
+ dhψ+ ∧ η. (13)

For every cuadruplet (ei , e j , ek, el) of elements of the basis of h

D.ω2(ei , e j , ek, el) = ω2(D(ei ), e j , ek, el)+ ω2(ei , D(e j ), ek, el)

+ω(ei , e j , D(ek), el)+ ω2(ei , e j , ek, D(el)),
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where can be checked that if D ∈ sp(6,R) the second member vanishes. Thus, the
condition D ∈ sp(6,R) (or equivalently D belongs to the stabilizer Lie algebra
gl(h) ω2

2
= gl(h)ω of ω) is considered in order to guarantee that D.ω2 = 0. Finally

in view of (13) we have that

dg(∗ϕ) = dh
(ω2

2

)
+ dhψ+ ∧ η,

and therefore the G2 form ϕ is dg coclosed if and only if ω2 and ψ+ are dh closed,
i.e. half-flat. ⊓,

Previous theorem describes a method to construct 7-dimensional Lie algebras
with a coclosed G2-structure.

Remark 4.2. Note that the trace of D ∈ sp(6,R) vanishes. Therefore, the Lie
algebra g = h ⊕D Re7 will be unimodular if and only if h is so.

4.1. An almost abelian compact G2-cocalibrated manifold.

Let h be the 6-dimensional abelian Lie algebra. The almost Hermitian structure
given in (10) defines an SU(3)-structure on h. Concretely, since ω2 and ψ+ are
closed it is a half-flat structure. Consider now the derivation D of h given by

diag(1,−1, 1,−1, 1,−1)

that is,

D(e1) = e1, D(e2) = −e2, D(e3) = e3,

D(e4) = −e4, D(e5) = e5 and D(e6) = −e6.

Thus, the Lie algebra

g = h ⊕D Re7,

which is described by the structure equations

g = (e17,−e27, e37,−e47, e57,−e67, 0),

is completely solvable and from Theorem 4.1 admits the coclosed G2 form

ϕ = ω ∧ η − ψ−,

This coclosed G2 form was already obtained in [20] where the author gave a com-
plete classification of coclosed G2-structures on Lie algebras with a codimensional
one Abelian ideal. In what follows we describe explicitly the corresponding com-
pact solvmanifold admitting such structure.
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Let us denote by G the simply connected and completely solvable Lie group
consisting on matrices of the form

a =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex7 x1
e−x7 x2

ex7 x3
e−x7 x4

ex7 x5
e−x7 x6

1 x7
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with xi ∈ R, for i = 1, . . . , 7. Then a global system of coordinates {xi } for G
is defined by xi (a) = xi . A standard calculation shows that a basis for the left
invariant 1-forms on G can be described by

e1 = e−x7dx1, e2 = ex7dx2, e3 = e−x7dx3, e4 = ex7dx4,

e5 = e−x7dx5, e6 = ex7dx6, and e7 = dx7.

Therefore g is exactly the Lie algebra of G. Notice that G = R !φ R6, where R
acts on R6 via φt described by

diag(et , e−t , et , e−t , et , e−t ).

Thus the operation on the group G is given by

a · b = (b1ea7 + a1, b2e−a7 + a2, b3ea7 + a3, b4e−a7

+ a4, b5ea7 + a5, b6e−a7 + a6, b7 + a7),

where a = (a1, . . . , a7) and b = (b1, . . . , b7).
To construct a lattice 1 of G it is enough to find some real number t0 such that φt0
is conjugated to an element A ∈ SL(6,Z). If 10 denotes a lattice of R6 invariant
under φt0 , take

1 = (t0 Z) !φ 10.

Consider the matrix

A =

⎛

⎜⎜⎜⎜⎜⎝

2 1
1 1

2 1
1 1

2 1
1 1

⎞

⎟⎟⎟⎟⎟⎠
,
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with triple eigenvalues 3+
√
5

2 , 3−
√
5

2 . Taking t0 = Ln( 3+
√
5

2 ) we have that φt0 and
A are conjugated. In particular, take

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1+
√
5

2
1 −1−

√
5

2

1 −1+
√
5

2
1 −1−

√
5

2

1 −1+
√
5

2
1 −1−

√
5

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

it is easy to check that PA = φt0 P . So, the lattice defined by

10 = P Z⟨e1, . . . , e6⟩

is invariant under the group t0Z. Thus

1 = (t0 Z) !φ 10

is a lattice of G. Since g is completely solvable

H∗
dR(1\G) ∼= H∗(g)

and the compact solvmanifold S = 1\G admits a coclosed G2-structure.

4.2. An almost nilpotent compact G2-cocalibrated manifold.

Let h be the 6-dimensional nilpotent Lie algebra defined by the structure equations

h = (0, e35, 0, 2e15, 0, e13).

The almost Hermitian structure (g, J ) described in (10)

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246,

is a symplectic half-flat SU(3)-structure on h. Consider now the derivation D of h
given by

⎛

⎜⎜⎜⎜⎜⎝

2
−1

1
−2

⎞

⎟⎟⎟⎟⎟⎠
∈ sp(6,R),

that is,

D(e1) = e5, D(e2) = −2e6, D(e5) = 2e1, D(e6) = −e2.
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Take the Lie algebra

g = h ⊕D Re7,

whose structure equations are

g = (2e57, e35 − e67, 0, 2e15, e17, e13 − 2e27, 0).

Then, the 3-form ϕ given by

ϕ = ω ∧ η − ψ−,

is a coclosed G2 form on g. Let G be the simply connected solvable Lie group
with Lie algebra g, and let H be the simply connected nilpotent Lie group with Lie
algebra h. Note that G = R !φ H , with

φt =

⎛

⎜⎜⎜⎜⎜⎜⎝

cosh(
√
2t)

√
2
2 sinh(

√
2t)

cosh(
√
2t) −

√
2 sinh(

√
2t)

1
1√

2 sinh(
√
2t) cosh(

√
2t)

−
√
2
2 sinh(

√
2t) cosh(

√
2t)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

in particular, if we consider t0 =
√
2
2 arc cosh(3), then cosh(

√
2 t0) = 3 and

sinh(
√
2 t0) = 2

√
2 and thus φt0 is a matrix whose entries are integer numbers.

Therefore, Z⟨e1, . . . , e6⟩ is a co-compact subgroup of H preserved by φt0 , namely
10. Consequently,

1 = (t0 Z) !φ 10

is a co-compact subgroup of G. Hence, the compact quotient 1\G is a compact
solvmanifold, in particular almost nilpotent. Since g is completely solvable

H∗
dR(1\G) ∼= H∗(g)

and therefore the compact solvmanifold S = 1\G admits a coclosed G2-structure.
I would like to thank to Luis Ugarte for useful remarks and suggestions to

improve the present work and also to Miguel Ángel Marco for helping in the
construction of the example described in section 3.2.
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Appendix

see Table 2.



V. Manero

Table 2. Lie algebras endowed with a closed G2-structure obtained in Proposition 3.3, not
coming from the 6-dimensional abelian Lie algebra

g Structure equations

e(1, 1) ⊕ e(1, 1) ⊕D Re7 (0, 0,−e14 + a3,3e37,−e13 + a3,3e47, e25 −
a3,3e57,−e26 − a3,3e67)

(g5,1 ⊕ R) ⊕D Re7 (0, 0, a1,3e17 + a3,5e57, e15 + a1,3e27 + a3,5e67,
a1,5e17 + a3,5e37, e13 + a1,5e27 + a3,5e47, 0)

(g−1,−1,1
5,7 ⊕ R) ⊕D Re7 (−e15 + a1,3e17 + a1,1e37, e25 + a1,1e17 + a3,1e37,

−e35 + a1,3e17 + a1,1e37, e45 + a1,3e27 −
a1,1e47, 0, 0, 0)(

gα,−α,1
5,17 ⊕ R

)
⊕D Re7 (αe15 + e35 − a1,3e37,−αe25 + e45 − a1,3e47,

∀α > 0 −e15+αe35+a1,3e17,−e25−αe45+a1,3e27, 0, 0, 0)(
g0,0,15,17 ⊕ R

)
⊕D Re7 (e35 − a1,3e37 + a1,4e47, e45 − a1,4e37 − a1,3e47,

−e15 + a1,3e17 − a1,4e27,−e25 + a1,4e17 +
a1,3e27, 0, 0, 0)

g6,N3 ⊕D Re7 (
a1,3
2 e37−a1,5e57, e35+ a1,3

2 e47−a1,5e67, a1,3e17+
2a3,5e57,
a1,3e27+2a3,5e67, a1,5e17+a3,5e37, e13+a1,5e27+
a3,5e47, 0)

g06,38 ⊕ Re7 (2e36, 0,−e26 − a3,6e67,−e26 + e25 +
a3,6e57,−e23 − e24 − a3,6e47, e23 + a3,6e37, 0)

g0,−1
6,54 ⊕ Re7 (e16 + e45,−e26,−e36 + e25, e46, 0, 0, 0)

g0,−1,−1
6,118 ⊕D Re7 (−e15 + e36 − a1,3e37, e46 + e25 − a1,3e47,

−e16 − e35 + a1,3e17, e45 − e26 + a1,3e27, 0, 0, 0)
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