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Abstract 

We present here a review on some of our latest works concerning the development of thermodynamics-aware machine learning strategies for the 
data-driven construction of constitutive models. We suggest a methodology constructed upon three main ingredients. (i) the employ of manifold 
learning strategies to unveil the true dimensionality of data, thus pointing out the need for the definition of “internal” variables, different of the 
experimental ones. (ii) the process will be described by the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling 
(GENERIC). (iii) the precise form of the GENERIC terms will be unveiled by regression of data. 
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1. Introduction 

We review in this contribution some of our latest results in 
the application of machine learning to the data-driven 
characterization of constitutive laws for complex multiscale 
materials. Particular attention is paid to the development of 
thermodynamics-aware methods, in which laws such as the first 
and second law of thermodynamics are fulfilled. 

2. A dynamical systems approach to machine learning 

Assume that the variables governing the behavior of the 
system at a particular level of description are stored in a vector  

�̇�𝝃 = 𝑓𝑓(𝑡𝑡, 𝝃𝝃),      𝝃𝝃(0) =  𝝃𝝃0.̇          (1) 

Under this prism, machine learning would be equivalent to 
finding 𝑓𝑓  by regression, provided that sufficient data is 
available. How this regression is accomplished is of little 
importance: neural networks or classical (piecewise) regression 
are thus equivalent, if both work well. 

To guarantee the thermodynamic admissibility of the 
resulting approximation, we impose Eq. (1) to have a 
GENERIC form [1]: 

𝝃𝝃�̇�𝑡 = 𝑳𝑳(𝝃𝝃𝑡𝑡)∇𝐸𝐸(𝝃𝝃𝑡𝑡) + 𝑴𝑴(𝝃𝝃𝑡𝑡)∇𝑆𝑆(𝝃𝝃𝑡𝑡),                                      (2) 

Where 𝑳𝑳  represents the classical Poisson matrix of 
Hamiltonian mechanics (and is, therefore, skew-symmetric) 
and 𝑴𝑴 represents the so-called friction matrix, that must be 
symmetric, semi-positive definite in order to guarantee 
thermodynamic consistency. 

In our previous works, see [2] [3], we perform regression 
analysis from data so as to unveil the particular form of the 
expression for the energy, 𝐸𝐸, and entropy, 𝑆𝑆, potentials. The 
resulting formulation guarantees by construction 
thermodynamic admissibility and provides excellent results in 
the data-driven identification of complex behaviors. 

3. Unveiling the need for internal variables 

However, one particularly important question remains in this 
(and other) approaches to data-driven mechanics of materials. 
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Scientists have traditionally resorted to the employ of internal 
variables so as to take into account the influence on the model 
of unresolved degrees of freedom. This choice has been often 
phenomenological and motivated by intuition, something 
difficult to transmit to the world of machine learning. In Fig. 1 
a sketch of this type of so-called Mori-Zwanzig projection is 
depicted.  

Fig. 1. Sketch of the Mori-Zwanzig projection to a less-detailed manifold, 
where the system is sampled experimentally. The influence of this sampling 
scale on the number of non-resolved degrees of freedom is analyzed. 

In essence, the scale of molecular dynamics is Hamiltonian 
(Newton laws apply) and therefore only the Energy potential is 
needed. If subsequent coarse-graining is applied to the 
description of the system, the need for a second potential 
(entropy) is obvious. This arises from the well-known 
fluctuation-dissipation theorem (see [4] and references 
therein). 

Moreover, it is well-known [5] that such a Mori-Zwanzig 
projection leads to the appearance of noise (fluctuation due to 
the unresolved degrees of freedom), which is equivalent to 
dissipation (and hence entropy), and also history dependence 
of the resulting description. 

So the only possibility to unveil the need for internal 
variables is to be able to project back the experimental results 
from the coarse-grained manifold N,  to the fully-resolved one, 
M, or at least one of a similar dimension. This can be 
accomplished by employing kernel-PCA (k-PCA) techniques 
[4]. These non-linear manifold learning techniques operate by 
projecting data to a higher (eventually, infinite) dimensional 
space, where everything can be separated by a hyperplane. 
Thus, projecting to a number of dimensions 𝑅𝑅, with 𝑑𝑑 ≤ 𝑅𝑅 ≤
𝐷𝐷 , could provide with insight on the true dimensionality of 
data, and hence the number of internal variables needed. 

4. An example: polymeric flows 

We consider, as a proof-of-concept, the case of Couette flow of 
a polymeric material, described by an Oldroyd-B-type 
constitutive law.  

The Oldroyd-B model arises from the consideration of the 
stretching elasticity of polymer chains, and is well known to 
provide a description of the stress tensor in the fluid dependent 
on the conformation tensor, i.e., 

𝝉𝝉 = − 𝑛𝑛
2𝜁𝜁12

𝒄𝒄∇, 

where 𝒄𝒄∇  represents the Oldroyd derivative of the 
conformation tensor,  

𝒄𝒄 = 〈𝑸𝑸𝑸𝑸〉, 

and 𝑸𝑸 represents the end-to-end vector of the polymeric chains. 
It is thus obvious that the model fully depends on small-scale 
degrees of freedom (end-to-end distances 𝑸𝑸) that cannot be 
obtained by experimental measurements. 

Fig. 2. K-PCA eigenvalues for 700 different experiments of the polymer flow. 

 

Fig. 3. K-PCA embedding of the 750 experimental results. (top) color plot 
represents the embedding according to the initial polymer chain orientation. 
(bottom) embedding according to the shear rate or, in other words, according 
to the history variable of the problem. 

Experiments performed successively will depend on the 
initial state of the conformation tensor, giving apparently noise 
as a result. A careful analysis by k-PCAof 750 different 
experiments gave the eigenvalue plot shown in Fig. 2, that 
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reveals that some 4-5 degrees of freedom should be enough to 
describe the system. 

If we plot the embedding of these experimental results on a 
space of three dimensions, we obtain the plots in Fig. 3. 

In Fig. 3 it can readily be noticed how the proposed 
technique is able to clusterize the experimental results 
according to hidden variables in the model such as the initial 
polymer chains orientation or the shear rate in the flow. 

5. Conclusions  

We have presented a method for the machine learning of the 
presence of hidden, internal variables in the description of a 
material. In this case, a polymeric fluid has been chosen to this 
end. The presented method is able to unveil the dependence of 
the problem on details that are not available at the scale of 
experimental measurements, or that depend on the history of 
the fluid. 

We refer the reader to the references below for a detailed 
description of these and other examples, as well as for a sound 
theoretical description of the developed method. 
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