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Abstract 

The present work focuses on the reduced modelling of multi-component systems, in particular on a two stages stamping chain process. Starting 
from snapshots collected by using the commercial software PAM-STAMP, the non-intrusive sparse-PGD constructor is used in order to build a 
parametric transfer function of each operation in a separated representation, circumventing the problem of the curse of dimensionality. Moreover, 
in order to fill the gap between this deterministic solution and the measured fields and safely applied control strategies, data driven-modeling can 
be employed according to the new “hybrid twin” methodology. 
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1. Introduction 

Since the previous (third) industrial revolution numerical 
simulation has been widely used in many scientific and 
engineering fields, defining the so called “virtual twins”. They 
make possible the virtual evaluation of systems responses, from 
the accurate solution of the mathematical model expected 
describing it (by using methods as finite differences, finite 
elements, finite volumes, …) [1]. However, usually virtual 
models are static, that is, they are used in the design of complex 
systems and their components, but they are not expected to 
accommodate or assimilate data. The characteristic time of 
standard simulation strategies is not compatible with the real-
time constraints compulsory for control purposes; moreover 
optimization and inverse analyses involved in calibration 
procedures require respectively many direct calculations to find 
the optimal or the searched parameters.  

Thus Model Order Reduction techniques (POD, PGD, 
reduced basis, …) [2, 3, 4, 5, 6, 7, 8] opened new possibilities 
for more efficient simulations allowing important computing-
time savings, of several orders of magnitude in some cases, 
making possible the construction of very general solutions 
(parametric in many cases) able to ensure almost instantaneous 
responses to queries and the assimilation of data collected from 
sensors into the physically-models, defining the so called 
“digital twins”.   

2. Parametric model 

The two-stages stamping process depicted in Fig. 1 is 
analyzed and its control described. The first stage proceeds 
from a plate shell, whereas the second one acts on the part that 
results from the first stage, fact that implies the necessity of 
properly address the link between both stages.    
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Fig. 1. Two-Stage Stamping: (left) first stage; (right) second stage; (top) initial 
configuration and (bottom) final one. 

 Three process parameters are considered in each stage: (i) the 
closing force F, (ii) the friction coefficient ξ between the sheet 
and the tooling and (iii) the one μ between the sheet and the 
flan-clamping. Thus, for the first stage the parametric 
expression of the thermo-mechanical state reads 
 
𝑋𝑋𝐼𝐼(𝒙𝒙, 𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇𝜇𝐼𝐼)                                                                      (1) 
 

 

Fig. 2. Real (left) and predicted (right) displacement and plastic strain at the 
end of the first stage for three different combinations of the parameters 
𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼and 𝜇𝜇𝐼𝐼. 

where 𝒙𝒙 is the spatial coordinate and the superscript ∎𝐼𝐼 refers 
to the first stage of the global process. In this work this 
parametric solution is constructed by combining PAM-STAMP 
and the s-PGD constructor [9] (some details on the sPGD 
method are given in Appendix A) which allows to write the 
mechanical state in its separated representation 

 
𝑋𝑋𝐼𝐼(𝒙𝒙, 𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇𝜇𝐼𝐼)  =  ∑ Λ𝑖𝑖

𝐼𝐼 (𝒙𝒙)Φ𝑖𝑖
𝐼𝐼(𝐹𝐹𝐼𝐼)Ψ𝑖𝑖

𝐼𝐼( 𝜉𝜉𝐼𝐼)𝑁𝑁
𝑖𝑖=1 P𝑖𝑖

𝐼𝐼(𝜇𝜇𝐼𝐼).           (2)     
 
This can be seen as a transfer function for the first stage: given 
a set of parameters (𝐹̂𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇̂𝜇𝐼𝐼), the output is fully determined 
by (2). Figs. 2 and 3 depict three different particularizations of 
the parametric solution (2) at the end of the first stage for three 
different arbitrary choices of the parameters. The reduced 
model solution is a good approximation of the full model one. 
Let’s note that, in the case we were also interested in the time 
evolution of the state along the stage, we could simply add the 
time as an extra parameter and looking for the corresponding 
modes in the separated representation (2).    
     The parametric solution of the second stage operates on the 
part coming from the first stage, so that its initial state should 
be also included as an extra parameter, i.e. 
 
𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼, 𝜇𝜇𝐼𝐼𝐼𝐼, 𝑋𝑋𝐼𝐼(𝒙𝒙)).                                   (3) 
 
Being 𝑋𝑋𝐼𝐼(𝒙𝒙) fully determined by the three process parameters 
of the first stage one possible solution would be to express the 
state, using again the s-PGD constructor, as  
 
𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇𝜇𝐼𝐼, 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼, 𝜇𝜇𝐼𝐼𝐼𝐼) =
∑ Λ𝑖𝑖

𝐼𝐼𝐼𝐼(𝒙𝒙)Φ𝑖𝑖
𝐼𝐼𝐼𝐼(𝐹𝐹𝐼𝐼)Ψ𝑖𝑖

𝐼𝐼𝐼𝐼( 𝜉𝜉𝐼𝐼)𝑁𝑁
𝑖𝑖=1 P𝑖𝑖

𝐼𝐼𝐼𝐼(𝜇𝜇𝐼𝐼)Θ𝑖𝑖
𝐼𝐼𝐼𝐼(𝐹𝐹𝐼𝐼𝐼𝐼)Γ𝑖𝑖

𝐼𝐼𝐼𝐼( 𝜉𝜉𝐼𝐼𝐼𝐼)E𝑖𝑖
𝐼𝐼𝐼𝐼(𝜇𝜇𝐼𝐼𝐼𝐼).  

                                                                                                (4) 
 
Given an input state 𝑋̂𝑋𝐼𝐼(𝒙𝒙), either the corresponding first stage 
parameters  (𝐹̂𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇̂𝜇𝐼𝐼), are known or, in the case they are not, 
they can be determined from (2) by imposing that  
 
(𝐹̂𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇̂𝜇𝐼𝐼) =  
argmin
(𝐹𝐹𝐼𝐼,𝜉𝜉𝐼𝐼,𝜇𝜇𝐼𝐼)

‖𝑋̂𝑋𝐼𝐼(𝒙𝒙) −  ∑ Λ𝑖𝑖
𝐼𝐼 (𝒙𝒙)Φ𝑖𝑖

𝐼𝐼(𝐹𝐹𝐼𝐼)Ψ𝑖𝑖
𝐼𝐼( 𝜉𝜉𝐼𝐼)𝑁𝑁

𝑖𝑖=1 P𝑖𝑖
𝐼𝐼(𝜇𝜇𝐼𝐼)‖2.          (5)     

 
Thus, by imposing 𝐹𝐹𝐼𝐼 = 𝐹̂𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼 = 𝜉𝜉𝐼𝐼  and 𝜇𝜇𝐼𝐼 = 𝜇̂𝜇𝐼𝐼  in (4) we 
have that           
 
𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼, 𝜇𝜇𝐼𝐼𝐼𝐼, 𝑋̂𝑋𝐼𝐼(𝒙𝒙))  =
∑ 𝛾𝛾𝑖𝑖

𝑁𝑁
𝑖𝑖=1 Λ𝑖𝑖

𝐼𝐼𝐼𝐼(𝒙𝒙)Θ𝑖𝑖
𝐼𝐼𝐼𝐼(𝐹𝐹𝐼𝐼𝐼𝐼)Γ𝑖𝑖

𝐼𝐼𝐼𝐼( 𝜉𝜉𝐼𝐼𝐼𝐼)E𝑖𝑖
𝐼𝐼𝐼𝐼(𝜇𝜇𝐼𝐼𝐼𝐼)                                     (6)     

                                          
where 
 
𝛾𝛾𝑖𝑖 = Φ𝑖𝑖

𝐼𝐼𝐼𝐼(𝐹̂𝐹𝐼𝐼)Ψ𝑖𝑖
𝐼𝐼𝐼𝐼( 𝜉𝜉𝐼𝐼)P𝑖𝑖

𝐼𝐼𝐼𝐼(𝜇̂𝜇𝐼𝐼).                                                  (7)     
    
This can be seen as a transfer function for the second stage 
process. In fact, given an input state 𝑋̂𝑋𝐼𝐼(𝒙𝒙)  and a set of 
parameters (𝐹̂𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼, 𝜇̂𝜇𝐼𝐼𝐼𝐼) the output is fully determined by (6). 
Figs. 4 and 5 depict three different particularizations of the 
parametric solution (2) at the end of the second stage for three 
different arbitrary choices of the parameters describing the 
thermo-mechanical state of the incoming part (the three 
combinations of Figs. 2 and 3) and the second stage parameters. 
Again, the reduced model solution is a good approximation of 
the full model one. 
 
    However, when the number of process stages increases, at 
each new stage more parameters have to be taken into account 
(the ones of all the previous stages). The fact of using too many 
parameters require a higher computational effort for building 



698	 Giacomo Quaranta  et al. / Procedia Manufacturing 47 (2020) 696–701
 Author name / Procedia Manufacturing 00 (2019) 000–000  3 

the parametric solution of the corresponding stage and at the 
same time reduce the precision and the efficiency of the reduced 
solution built with the sPGD technique.  
    In order to avoid this, a good alternative to the previous 
method consists in parametrized the incoming thermo-
mechanical state of a particular stage using the coefficients of 
the most relevant modes coming from a linear or nonlinear 
dimensionality reduction analysis performed on a training 
based on the previous stage parametric solution.  
    In the example of Fig. 1, taken into consideration in this 
work, a Proper Orthogonal Decomposition (POD) technique [5] 
was performed on the same states (i.e. at the end of the first 
stage) used to build the parametric solution (2). Only two modes 
were revealed to be important, so that, given an input state 
𝑋𝑋𝐼𝐼(𝒙𝒙), it can be parametrized as  
 
𝑋𝑋𝐼𝐼(𝒙𝒙)   =  𝛼𝛼Χ1(𝒙𝒙) +  𝛽𝛽Χ2(𝒙𝒙),            (8)  
 
where Χ1(𝒙𝒙) and Χ2(𝒙𝒙) are the two modes computed with the 
POD. The state at the end of the second stage can then be 
expressed using the sPGD constructor as  
 
𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝛼𝛼, 𝛽𝛽, 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼, 𝜇𝜇𝐼𝐼𝐼𝐼) =
∑ Λ𝑖𝑖

𝐼𝐼𝐼𝐼(𝒙𝒙)𝐴𝐴𝑖𝑖(𝛼𝛼)𝐵𝐵𝑖𝑖(𝛽𝛽)𝑁𝑁
𝑖𝑖=1 Θ𝑖𝑖

𝐼𝐼𝐼𝐼(𝐹𝐹𝐼𝐼𝐼𝐼)Γ𝑖𝑖
𝐼𝐼𝐼𝐼( 𝜉𝜉𝐼𝐼𝐼𝐼)E𝑖𝑖

𝐼𝐼𝐼𝐼(𝜇𝜇𝐼𝐼𝐼𝐼).                      (9) 
 

 

Fig. 3. Real (left) and predicted (right) displacement and thickness at the end 
of the first stage for three different combinations of the parameters 𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼  and 
𝜇𝜇𝐼𝐼 (same as Fig. 2). 

Thus, given an input state 𝑋̂𝑋𝐼𝐼(𝒙𝒙),  the parameters  (𝛼̂𝛼, 𝛽̂𝛽), 
corresponding to its parametrization, are computed by 

projecting it on the reduced base composed of the two modes  
Χ1(𝒙𝒙) and Χ2(𝒙𝒙). By imposing 𝛼𝛼 =  𝛼̂𝛼  and 𝛽𝛽 =  𝛽̂𝛽  in (9) we 
have again (6) but where  
 
𝛾𝛾𝑖𝑖 = 𝐴𝐴𝑖𝑖(𝛼̂𝛼)𝐵𝐵𝑖𝑖(𝛽̂𝛽).                                                                   (10)     
 
As already mentioned, (6) is a transfer function for the second 
stage process. The advantage of this second method is that the 
number of parameters does not increase as the number of stages 
increases since only the most important modes are taken into 
consideration at the beginning of each stage. In the example 
presented in this work, for instance, the numbers of parameters 
at the second stage reduced from 6 to 5, but a huger reduction 
can be obtained if many stages are considered (as it will be 
analyzed in future ongoing works). Moreover, given a new 
input, a simple projection on the reduced basis has to be 
performed in order to get the corresponding coefficients. Figs. 
6 and 7 depict three different particularizations of the 
parametric solution (2) at the end of the second stage for the 
same choices of the parameters of Figs. 4 and 5. The results 
obtained with the reduced model are again an excellent 
estimation of the high-fidelity solution. 

3. Future work: towards real-time control 

In what follows we consider one of the possible controls 
among the large number of possible choices. The nominal first 
process parameters are assumed determined 
offline,  (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼 , 𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼 , 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼 ), and the expected solution at the 
end of the first stage is 𝑋𝑋𝐼𝐼(𝒙𝒙, 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼 , 𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼 , 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼 ). However, a 
certain lack of accuracy is expected concerning the friction 
coefficients values and then, the accuracy of the first stage 
predictions has to be checked. For that purpose, some 
measurements are performed on the part leaving the first stage, 
before it enters in the second one and the gap between 
prediction and measurement is used for updating the first stage 
parametric model.  

For this purpose, parameters  𝜉𝜉𝐼𝐼  and 𝜇𝜇𝐼𝐼  are updated by 
enforcing that the associated predictions agree as much as 
possible with the experimental measurement. Indeed, updated 
parameters denoted by 𝜉𝜉̅𝐼𝐼 and 𝜇̅𝜇𝐼𝐼 allow updating the first stage 
parametric model that now reads 
 
𝑋̅𝑋𝐼𝐼(𝒙𝒙) = 𝑋𝑋𝐼𝐼(𝒙𝒙, 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼 , 𝜉𝜉̅𝐼𝐼, 𝜇̅𝜇𝐼𝐼).               (11) 
         
    However, in practice, some deviations between the predicted 
and observed responses are usually noticed due to inaccuracies 
in the employed models, that sometimes are not accurate 
enough descriptions of the real systems, or to an a priori almost 
unpredictable time evolution of certain models.  A certain part 
of the deviation (its unbiased component in a statistical sense) 
can be viewed as a noise and addressed by using adequate filters 
[10], but the remaining biased part proves the existence of a 
hidden model that operates but escapes to our understanding. In 
order to address this problem and efficiently attained system 
control, one possibility consists in constructing “on-the-fly” a 
data-driven model able to fill the gap between model prediction 
and measurement. This is the new Hybrid Twin paradigm [12, 
11], in fact, as soon as the data-driven model allows making 
accurate predictions, i.e. improving the accuracy of 𝑋̅𝑋𝐼𝐼(𝒙𝒙) in 
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(11), control strategies can be safely applied. The data-based 
deviation model can be built on-the-fly, directly from the 
collected data, by using machine learning techniques and 
artificial intelligence (data mining, deep learning, manifold 
learning, tensor learning, dictionary learning, linear and 
nonlinear regression … for citing few) [13, 14, 15]. 

    Now, the predictions of the second stage when using its 
nominal process parameters and the updated input sate is 
 
𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼𝐼𝐼 , 𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼𝐼𝐼 , 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼𝐼𝐼 , 𝑋̅𝑋𝐼𝐼(𝒙𝒙)).               (12) 
 

The thermo-mechanical state at the end of the second stage 
can be checked (maximum plastic deformation and its 
associated damage, minimum thickness, ...) and if a risk is 
detected, the control system proceeds to look for the optimal 
force 𝐹̅𝐹𝐼𝐼𝐼𝐼  fulfilling design criteria and avoiding forming 
defects. This search can be performed in real-time because the 
solution for each possible value of 𝐹𝐹𝐼𝐼𝐼𝐼 only requires a simple 
particularization. 

 

 

Fig. 4. Real (left) and predicted (right) displacement and plastic strain at the 
end of the second stage for three different combinations of the parameters 
𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇𝜇𝐼𝐼 (same as Figs. 2 and 3), 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼 and 𝜇𝜇𝐼𝐼𝐼𝐼. 

The updated prediction that takes into account the real 
incoming part and also the updated force 𝐹̅𝐹𝐼𝐼𝐼𝐼 writes  
 
𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝐹̅𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼𝐼𝐼 , 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼𝐼𝐼 , 𝑋̅𝑋𝐼𝐼(𝒙𝒙)).               (13) 

 
    However, here again, an uncertainty remains about the 
friction coefficients of the second stage process 𝜉𝜉𝐼𝐼𝐼𝐼 and 𝜇𝜇𝐼𝐼𝐼𝐼. In 
order to better calibrate both them, new measurements are 
performed on the part leaving the second stage, that allow 
calculating again in real-time the best value 𝜉𝜉𝐼̅𝐼𝐼𝐼 and 𝜇̅𝜇𝐼𝐼𝐼𝐼 of both 

parameters to make compatible prediction and measurement. 
As soon as both parameters have been identified, the second 
stage parametric model reads 
 
𝑋̅𝑋𝐼𝐼𝐼𝐼(𝒙𝒙) = 𝑋𝑋𝐼𝐼𝐼𝐼(𝒙𝒙, 𝐹̅𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉̅𝐼𝐼𝐼𝐼, 𝜇̅𝜇𝐼𝐼𝐼𝐼, 𝑋̅𝑋𝐼𝐼(𝒙𝒙)).                                        (14) 

    Again, when parameters updating do not suffices, i.e. their 
updating is not enough for ensuring accurate enough 
predictions, the gap can be explained from a data-based 
deviation model that will be enriched each time that a new 
unexpected gap occurs and use to improve the accuracy of  
𝑿̅𝑿𝑰𝑰𝑰𝑰(𝒙𝒙).                              

    The process model should be updated continuously, for each 
part coming into the two-stage stamping process, in order to 
ensure the quality of the produced parts. 

 

Fig. 5. Real (left) and predicted (right) displacement and plastic thickness at 
the end of the second stage for three different combinations of the parameters 
𝐹𝐹𝐼𝐼, 𝜉𝜉𝐼𝐼, 𝜇𝜇𝐼𝐼 (same as Figs. 2 and 3), 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼 and 𝜇𝜇𝐼𝐼𝐼𝐼 (same as Fig. 4). 

4. Conclusions 

This paper presented a reduced modelling of a multistep 
stamping chain process. The non-intrusive sPGD constructor 
was used in combination with the commercial software PAM-
STAMP in order to build a parametric transfer function of each 
stage. Moreover, a dimensionality reduction technique was 
used for taking into account at a certain stage the thermo-
mechanical state of the part coming from the previous stage. 
The numerical results showed how the predictions of the 
reduced model agree with the full order solutions. Finally, it is 
showed how the reduced modeling can be used for safe and 
efficient process control strategies by performing parameters 
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updating and by adding a data-driven correction in order to 
consider the physics that occurs during the process but that 
have not been taken into account in the simulations, according 
to the Hybrid Twin paradigm.  

In this paper we took into consideration a two-stages 
stamping process, but the proposed methodology can be 
applied to more complex processes with much more stages and 
parameters. The application of the methodology to a multi-step 
hot stamping process constitutes a work in progress. 

Appendix A. Sparse PGD: sPGD   

The sPGD is a procedure for sparse approximation in high 
dimensional settings [9]. For the case of the exposition let 
assume that the unknown objective function 𝑓𝑓(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) lives in 
ℝ3 , where 𝑥𝑥  is the spatial coordinate and (𝜇𝜇, 𝜂𝜂)  are the 
parametric coordinates, and that is to be recovered from sparse 
data. For that purpose we consider the Galerkin projection in 
Ω =  Ω𝑥𝑥 × Ω𝜇𝜇 × Ω𝜂𝜂 
 
∫ 𝑤𝑤(𝑥𝑥, 𝜇𝜇, 𝜂𝜂)(𝑢𝑢(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) − 𝑓𝑓(𝑥𝑥, 𝜇𝜇, 𝜂𝜂))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0Ω              (15) 
 
where Ω ⊂  ℝ3  and 𝑤𝑤(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) ∈  𝒞𝒞0(Ω)  is an arbitrary test 
function. Following the Proper Generalized Decomposition 
(PGD) rationale [5], the next step is to express the approximated 
function 𝑢𝑢𝑀𝑀(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) ≈ 𝑢𝑢(𝑥𝑥, 𝜇𝜇, 𝜂𝜂)  in a separated form and 
looking for the enriched approximation 𝑢𝑢𝑀𝑀(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) assuming 
known 𝑢𝑢𝑀𝑀−1(𝑥𝑥, 𝜇𝜇, 𝜂𝜂), 
 

 

Fig. 6. Real (left) and predicted (right) displacement and plastic strain at the 
end of the second stage for three different input states 𝑋𝑋𝐼𝐼(𝒙𝒙) (same as Figs. 4 
and 5), and combinations of the parameters 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼 and 𝜇𝜇𝐼𝐼𝐼𝐼. 

𝑢𝑢𝑀𝑀(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) =  𝑢𝑢𝑀𝑀−1(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) + 𝑋𝑋𝑀𝑀(𝑥𝑥)Ψ𝑀𝑀(𝜇𝜇) Φ𝑀𝑀(𝜂𝜂)           (16) 

with  
 
𝑢𝑢𝑀𝑀−1(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) = ∑ 𝑋𝑋𝑘𝑘(𝑥𝑥)Ψ𝑘𝑘(𝜇𝜇)Φ𝑘𝑘(𝜂𝜂).𝑀𝑀−1

𝑘𝑘=1                              (17) 
 

 

Fig. 7. Real (left) and predicted (right) displacement and thickness at the end 
of the second stage for three different input states 𝑋𝑋𝐼𝐼(𝒙𝒙) (same as Figs. 4 and 
5), and combinations of the parameters 𝐹𝐹𝐼𝐼𝐼𝐼, 𝜉𝜉𝐼𝐼𝐼𝐼 and 𝜇𝜇𝐼𝐼𝐼𝐼 (same as Fig. 6). 

It is worth noting that the product of the test function 
𝑤𝑤(𝑥𝑥, 𝜇𝜇, 𝜂𝜂)  times the objective function 𝑓𝑓(𝑥𝑥, 𝜇𝜇, 𝜂𝜂)  is only 
evaluated at few locations (the ones corresponding to the 
available data associated to the sampling). Since information is 
just known at 𝑃𝑃 sampling points (𝜇𝜇𝑗𝑗, 𝜂𝜂𝑗𝑗), 𝑗𝑗 = 1, … , 𝑃𝑃, it seems 
reasonable to express the test function not in a finite element  
context, but to express it as a set of Dirac delta functions 
collocated at the sampling points, 

 
𝑤𝑤(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) = (𝑋𝑋𝑀𝑀(𝑥𝑥)Ψ𝑀𝑀(𝜇𝜇)Φ𝑀𝑀(𝜂𝜂))∗ ∑ 𝛿𝛿(𝜇𝜇𝑗𝑗, 𝜂𝜂𝑗𝑗),𝑃𝑃

𝑗𝑗=1            (18) 
 

where  
 
(𝑋𝑋𝑀𝑀(𝑥𝑥)Ψ𝑀𝑀(𝜇𝜇)Φ𝑀𝑀(𝜂𝜂))∗ = 𝑋𝑋∗(𝑥𝑥)Ψ𝑀𝑀(𝜇𝜇)Φ𝑀𝑀(𝜂𝜂) +
𝑋𝑋𝑀𝑀(𝑥𝑥)Ψ∗(𝜇𝜇)Φ𝑀𝑀(𝜂𝜂) + 𝑋𝑋𝑀𝑀(𝑥𝑥)Ψ𝑀𝑀(𝜇𝜇)Φ∗(𝜂𝜂),                            (19) 
 
giving rise to 
 
∫ 𝑤𝑤(𝑥𝑥, 𝜇𝜇, 𝜂𝜂)(𝑢𝑢(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) − 𝑓𝑓(𝑥𝑥, 𝜇𝜇, 𝜂𝜂))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑Ω   

= ∫ (𝑋𝑋𝑀𝑀(𝑥𝑥)Ψ𝑀𝑀(𝜇𝜇)Φ𝑀𝑀(𝜂𝜂))∗ ∑ 𝛿𝛿(𝜇𝜇𝑗𝑗, 𝜂𝜂𝑗𝑗)𝑃𝑃
𝑗𝑗=1 (𝑢𝑢(𝑥𝑥, 𝜇𝜇, 𝜂𝜂) −Ω

𝑓𝑓(𝑥𝑥, 𝜇𝜇, 𝜂𝜂))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜂𝜂 = 0.                                                                  (20) 
 
    In the expression above nothing has been specified about the 
basis in which each one of the one-dimensional modes was 
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expressed. Two appealing choices, which tend to smooth the 
solution outside the control points, consists of using Chebyshev 
polynomials or interpolants based on Kriging techniques. In 
this work Chebyshev polynomials have been used but Kriging 
could be applied in order to avoid spurious oscillations 
characteristic of high order polynomial interpolation. This 
phenomenon is called Runge's phenomenon. It appears due to 
the fact that the sampling point locations are not chosen 
properly, i.e., they will not be collocated, in general, at the 
Gauss-Lobato-Chebyshev quadrature points. Kriging 
interpolants consider each point as a realization of a Gaussian 
process, so that high oscillations are considered as unlikely 
events.  

The use of the sPGD in tandem with Chebyshev 
polynomials or Kriging interpolation of the one-dimensional 
functions allows excellent accuracy while drastically reducing 
the number of sampling points.  

There are plenty of strategies to smartly select the position 
of the sampling points, but Latin Hypercube Sampling (LHS) 
[16] is chosen in the present work. Particularly, LHS tries to 
collocate 𝑃𝑃 sampling points in such a way that the projection 
of those points into each axis are as far as possible while 
improving the coverage of the parametric space. 
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