
Received March 20, 2020, accepted April 21, 2020, date of publication April 28, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991051

A Knowledge-Based Approach to Enhance
Provision of Location-Based Services
in Wireless Environments
ROBERTO YUS 1, CARLOS BOBED 2,3, AND EDUARDO MENA3
1University of California, Irvine, Irvine, CA 92697, USA
2everis / NTT Data, 28046 Madrid, Spain
3University of Zaragoza, 50018 Zaragoza, Spain

Corresponding authors: Roberto Yus (ryuspeir@uci.edu) and Carlos Bobed (cbobed@unizar.es)

This research work was supported by projects TIN2016-78011-C4-3-R (AEI/FEDER, UE), and DGA/FEDER 2014-2020 ‘‘Construyendo
Europa desde Aragón’’.

ABSTRACT Location-Based Services (LBS) are attracting a great interest with the fast expansion of mobile
computing nowadays. These services use the user location to customize the offered information. However,
most of those services are designed for specific scenarios and goals with implicit knowledge about the
application context. As a consequence, hundreds of them are available (even with the same purpose). So,
it is difficult for users to choose the most suitable service as they are in charge of knowing/finding the
services which will be interesting for them, and handle the information that such services need. In this
paper, we present an approach to handle LBS for mobile users which relieves them from knowing and
managing the knowledge related to such services. This approach consists of a proposal for the modeling
of such information as ontologies, which are handled by an agent-based architecture. Also, we propose to
maintain updated the knowledge each mobile device contains by leveraging the exchange of information
with others. For accessing the local knowledge, we present an SPARQL-like query language which avoids
the ambiguities of natural language. Finally, we propose an approach to translate the user information needs
into formal requests expressed in this query language, which could be later processed against the knowledge
repositories to obtain the results the user needs.

INDEX TERMS Location-based services, mobile computing, Semantic Web.

I. INTRODUCTION
In the last few years, the technological advances we have
witnessed regarding mobile devices have enabled new kinds
of information systems and paradigms that were not feasible
before. To this extent, the plethora of sensors that mobile
devices (e.g., smartphones and tablets) currently include,
along with their increasing computational power and battery
lifetimes, have turned each mobile device into a potential
and capable data capture and processing node of a mas-
sively distributed information system. Among these sensors,
location mechanisms have proved to be specially important
as they enable the development of Location-Based Services
(LBS) [1], which provide value added by considering loca-
tions of the mobile users to offer customized information.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaigui Bian .

Due to the pervasiveness of mobile computing in our
daily lives, there are currently hundreds of LBS available
for users (many of them with the same purpose). In fact,
current LBS are usually tailored to specific scenarios, where
both services and data are completely attached to prede-
fined and non-evolving schemas. Besides, they usually work
with implicit context knowledge (e.g., possibly hardcoded
within the application/service), which contributes to their
non-reusability. For example, LBS for taxi searching [2],
helping firefighting [3], detecting and recommending nearby
friends [4], or multimedia retrieval in sport events [5] have
been presented, among many others. Therefore, it is difficult
to handle the information about all the LBS which could be
interesting for us, and to select the most appropriate service
matching our information needs.

Some ad hoc solutions (e.g., [6], [7]) and even general
architectures (e.g., our SHERLOCK architecture presented
in [8], [9]) have been proposed to provide users with LBS.

80030 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9311-954X
https://orcid.org/0000-0003-4239-8785
https://orcid.org/0000-0003-0136-6082


R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

For instance, the latter architecture has been applied in dif-
ferent scenarios, such as finding transportation for a user and
coordinating a team of firefighters suppressing a wildfire (as
presented in [8], [9]), handling an emergency situation caused
by a traffic accident (presented in [10]), or helping a technical
director in the live broadcasting of a sport event (presented
in [11]). These systems require an appropriate management
of information related to LBS, which might be interesting
for users regarding their current context. However, due to the
heterogeneity of LBS and user information needs, handling
this information is not trivial.

In this paper, we propose an approach to handle LBS and
user information needs that is grounded in semantic technolo-
gies, such as ontologies [12] and semantic reasoners, for the
representation and handling of the knowledge related to LBS.
In particular, we have developed and integrated our proposal
within the SHERLOCK system [8]. Our approach utilizes an
agent-based architecture to distribute different tasks, such as
the maintenance of the knowledge and the interaction with
users to obtain their information needs. In summary, our
approach presents the following benefits:

• It includes an ontological model formodeling the knowl-
edge about relevant LBS, their domain, context, and
interesting services. This model is general enough to
cover the heterogeneity of most LBS and can be easily
extended.

• It maintains the knowledge about LBS updated by lever-
aging the communication between devices. Ontologies
defining LBS, based on the previous model, are shared
and integrated by software agents enabled with semantic
capabilities.

• It provides means to access the knowledge about LBS
through a query language which we defined based on
the standard semantic query language SPARQL.1

• It guides the user in the process of selecting the LBS that
best fits her needs. Then, it formalizes the user informa-
tion needs into a user request which, for instance, might
involve queries in the previous language avoiding the
ambiguities of natural language.

Therefore, we can summarize the main contributions of this
paper as follows:
• An architecture for the discovery of LBS based on auto-
matic knowledge sharing across mobile devices in the
scenario.

• A new query language combining elements to handle
geospatial and semantic definitions, which allows to
formally describe the user requests.

Note that the benefits of our approach do not restrict to
SHERLOCK: Systems providing LBS to users can benefit
from this management of the knowledge about such services
and the user information needs. These systems could process
the formal requests generated, for example against external
data sources, to retrieve the desired data.

1SPARQL 1.1 Overview, https://www.w3.org/TR/sparql11-overview/,
last accessed on 20th April, 2020.

The rest of the paper is as follows. In Section II, we present
a general overview of our approach including a description of
its features and the agents that support them. In Section III,
we describe how the knowledge about the user, her device,
and services that might be interested for her, is defined.
In Section IV, we present the formal query language we
designed to enable accessing this knowledge, and the agent
in charge of processing it. In Section V, we detail the agents
involved in updating the local knowledge related to LBS in
a mobile device enabled with our approach by interacting
with other devices. In Section VI, we present the agents in
charge of interacting with the user to help her select the
LBS that would fulfill her information needs. In Section VII,
we present how our proposal is applied to different use cases
motivating our work. Finally, related works and conclusions
are presented in Section VIII and Section IX, respectively.

II. OVERVIEW OF THE SYSTEM
In our approach, in order to manage the information about
services which might be relevant for a user, we advocate for a
distributed architecture where each device is an independent
node and is responsible for: managing their own knowledge,
updating it, and integrating new knowledge by collaborating
with the rest of the devices. Local interactions and knowledge
sharing is the key to keep each device’s local knowledge
updated without having to rely on a preexisting infrastructure.
For instance, let us imagine a user which arrives in a foreign
city. Despite having prepared the trip previously, she does
not have any current information about the different ser-
vices which might be available locally (e.g., she might have
downloaded a map, but she does not have information about
services offering transportation). In this scenario, instead of
relying on a centralized external server, the devices of local
people could automatically share with her device all the
required information, thus, making her device able to fulfill
her current information needs. To do so, the main two tasks
that every device must perform in our approach are:
• Knowledge acquiring and updating: A device is con-
tinuously sharing knowledge with its neighbors about
both available services (along with the required back-
ground knowledge to understand them) and their con-
texts. The information received is integrated within the
local knowledge.

• Request generation: Using its locally integrated knowl-
edge, each device is able to provide users with the set of
available context-relevant services, helping and guiding
her to express her information needs.

In the following section, we show the agent-based archi-
tecture for mobile devices we designed to handle the previous
two tasks.

A. INNER ARCHITECTURE OF DEVICES
In our approach mobile devices collaborate to serve their
users’ needs. Figure 1 shows the inner architecture of each
device as well as their peer-to-peer collaboration. The three
main features of a device incorporating our approach are:

VOLUME 8, 2020 80031



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

FIGURE 1. Agents to interact with a user and to manage knowledge in our approach.

• It manages local knowledge which comprises infor-
mation about the user, the device, available services,
and the environment in general (see Section III). This
knowledge is exploited to offer the user services and
mechanisms to express her needs, and is managed by the
following agents:
– Knowledge Manager (KM), which is in charge of

managing the knowledge stored in the device and
process queries to access it.

– Endpoint agent, which provides access to the
knowledge and processing capabilities of the device
to external agents and applications.

• It maintains the local knowledge continuously updated
through the interaction with other devices. This process
is handled by the following agents:
– Ontology Updater (OU), which shares and inte-

grates new knowledge related to services, obtained
from other objects, into the local ontology on the
user device.

– Context Updater (CU), which specializes on updat-
ing and inferring knowledge about the user and the
context of her device.

• It interacts with the user to provide her with the available
services, which might be interesting depending on her
context. The interaction is handled by the following
agents:
– Alfred, which specializes on interacting with the

user and stores as much information as possible
about these interactions.

– ADUS, which generates graphical user interfaces
(GUIs), adapted to the user profile and device capa-
bilities, by rendering a GUI description provided
by incoming agents that want to interact with the
user.

• It captures the user information needs and translates
them into a formal request. This task is handled by the
User Request Manager (URM) agent, which is created
on demand and uses ontology-guided mechanisms to
generate, with the help of the local knowledge, a request
that defines the user needs.

In the following sections, firstly, we will explain how the
knowledge used by our system is modeled (see Section III).
Then, we will explain how this knowledge can be accessed by
presenting the query language we designed and the agents in
charge of processing it, i.e., KM and Endpoint agents, (see
Section IV). Afterwards, we move onto how our approach
keeps the shared knowledge updated by interacting with other
devices, and the agents involved in this process, i.e., CU,
and OU agents, (see Section V). Finally, we will deal with
the interaction with users, explaining Alfred and ADUS
agents, and the translation of the user needs into a formal
request by the URM agent (see Section VI), and how our
approach is applied to the different motivating use cases
(see Section VII).

III. KNOWLEDGE MODELING
Our approach uses ontologies [12] to model information
about the user, her device, the different services she can
use, and the scenarios around her. These ontologies are

80032 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

TABLE 1. Information stored about the context of the device.

represented using OWL,2 de facto standard language to
implement expressive ontologies in the Web enabling the
definition of complex knowledge. Moreover, as OWL has
formal semantics based on Description Logics [13] (DL), it is
possible to perform several reasoning tasks to deduce implicit
knowledge (i.e., logical consequences of the knowledge in an
ontology) using semantic reasoners (i.e., DL reasoners3).

In addition to the OWL models, part of the factual data
which are more prone to change dynamically is stored sep-
arately using a database manager as we will explain in
Section IV-B1. This is done to efficiently manage semantic
data that comprises both static and volatile knowledge [15].
For instance, information such as the current capabilities of
the device (e.g., current battery available) or the GPS location
of the user are highly dynamic whereas information about
services is less prone to changes. Therefore, the former is
stored in a database whereas the latter is modeled in an
ontology.

Depending on the subject being modeled, the knowledge
handled by our system can be broadly classified into four dif-
ferent categories (see Figure 2): user context, device context,
service definitions, and scenarios. However, to improve read-
ability and despite being a continuum, we adopt a higher-level
separation of the knowledge which takes into account the pur-
pose that the knowledge is used in our system for: contextual
knowledge (including user context and device context), and
user request knowledge (including services and scenarios).

FIGURE 2. Different knowledge managed by a device.

2OWL Web Ontology Language, http://www.w3.org/TR/owl-primer, last
accessed on 20th April, 2020.

3We showed that using semantic reasoners locally on current mobile
devices is feasible in [14].

A. CONTEXTUAL KNOWLEDGE
We propose to manage information about the context of users
and their devices to infer different aspects of their status, and
use such inferences to: 1) perform a context-aware service
provision, and 2) help in protecting their privacy when shar-
ing information with other devices.

The device context (see Table 1) includes the features of
the device along with a snapshot of its current capabilities.
This information can be used to, for example, determine if
the communication with other devices has to be limited to
drain less battery.

The user context (see Table 2) includes information about
the profile of the user and her current context according to
the broadly adopted definition by Abowd et al. [16] where
context is split into ‘‘primary context pieces’’ (i.e., identity,
time, location, and activity) as well as ‘‘secondary context
pieces’’ (i.e., pieces of context related to the primary context
pieces, e.g., a user’s phone number can be obtained by using
the user’s identity).

Notice that location is probably the most important context
piece that the system has to manage as it is essential for
LBS. The notion of location in our system includes both the
position of an object (i.e., its coordinates) as well as the place
where the object is (i.e., its geographic area). The hierarchical
structure of the information stored about the context of a
user makes our approach able to use different granularities
of context pieces depending on the situation. For example,
the location of a user in our system can be viewed from
her coordinates to the building, the city level, or the region
level where the user is in. Moreover, sharing the location of
the user’s device allow us to estimate its coverage area [17],
which is important to process location-based queries in a
distributed way.

B. USER REQUEST KNOWLEDGE
We propose a model based on a basic schema, which can
be extended if needed, to define services and make our sys-
tem aware of the available functionality. This schema com-
prises knowledge about both the definition of such services
(e.g., which parameters they receive, how they are invoked,
the type of the result -if any-, etc.), and the different entities

VOLUME 8, 2020 80033



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

TABLE 2. Information stored about the context of the user.

FIGURE 3. Basic ontology for service modeling.

needed to completely define their semantics (e.g., if we define
a service to look for means of transport, in the ontology,
the entity meanOfTransport should appear). Our model has
been designed to enable service definers (users and/or com-
panies which want to incorporate a new service into devices
using our approach) to easily define LBS and does not aim
at matching directly services as in classic Semantic Web
Services approaches (see Section VIII-B for a further discus-
sion on this issue); but it relies on integration of the shared
schemas to discover new instances with similar functionality.

In our model (see Figure 3), services are instances of the
Service class in the ontology. Specializing this Service class,
the service definers can arrange services into families of
services which are used to group those sharing functional-
ity. Regarding the model, this implies that they are services
which belong to the same class, share functionality, and return
compatible results. For instance, imagine a service to find
buses (returning the location of buses) and another one to
find taxis (returning the location of taxis). These services
can be created as instance of the Service class or could be

80034 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

grouped as instances of the family of servicesFind Transports
as both return transportation means. In fact, our approach
requires that service definers select an existing family for
their newly added services (or define a new one, extending
the vocabulary).

In addition, the following properties are used to define a
service (see Figure 3):
• returns: To model the type of objects the service will
obtain (e.g., taxis in the previous example).

• hasParameter : To define parameters of the service that
are required for its functionality or that can be used to
impose constraints over the results. These parameters
can take numbers, boolean values, strings, and even
other objects as values. Further types can be incorpo-
rated by extending the Parameter class. For example,
we included a new parameter ImageDefinition needed
for a service to find images fulfilling certain constraints.
A particular type of parameter is the location for LBS,
which can be assigned to the service through the location
property.

• interestingFor : To know which services are relevant
to a particular user’s situation. This property has to
be populated by the user or company who is model-
ing the services, deciding whether that particular ser-
vice will be interesting for a certain context or not.
In this case, the context for which the service is inter-
esting has to be defined using its attached activity
and/or location (e.g., the service to find monuments
in New York could be defined as interesting for con-
texts whose activity is ‘‘tourism’’ and whose location is
‘‘New York’’).

• continuous: To define whether a service has to be contin-
uously evaluated. For example, a service to ask a camera
to take a picture might have to be evaluated once only,
whereas a service to obtain taxis near the user is expected
to be continuously reevaluated to obtain updated results
until the user is not interested in taxis anymore.

Apart from their ontological classification, services
defined following this model can further be classified attend-
ing to the way they are processed into three types of services:

1) Querying services: Services which provide functional-
ity to find objects specified using our query language
(see Section IV-A). The definition of such services in
our model must comprise the kind of information that
the service will obtain as a result (e.g., a service to
find pictures will return pictures) and its parameters (if
any). As an example, Figure 4 shows the definition of
services of this type to obtain transports. First, the con-
cepts Find Transports, Find Taxis, and Find Buses
represent families of services with properties to relate
them to the information they return (Transports, Taxis,
and Buses, respectively) and their parameters (which
have been defined for the family Find Transports and
inherited by the other two families). Then, the actual
services are created as instances (FindBusesService and
FindTaxisService).

FIGURE 4. Example of the definition of a query service to obtain
transports.

2) Invoked services: Services provided by a particular
provider object. This kind of services includes both
third-party external services and services offered by
other devices (which might involve notifying or inter-
acting with another user). The definition of this kind
of services is extended with information about: 1) their
provider (via provider property), 2) the access mech-
anism to be used (via call property), and 3) for those
which require user’s interaction, an specification of the
graphical interface to be used, which will be used by
the ADUS agent to interact with the user. Figure 5
shows a service to take pictures that is provided by
devices equipped with cameras, and the service of the
Metropolitan Transportation Authority of New York
which returns the location of buses through a web
service.

FIGURE 5. Two examples of the definition of external services: 1) to take
pictures and 2) to obtain transports from a web service.

3) Composed services: Services defined via a composition
of services of the two previous types (i.e., these ser-
vices use them as atomic actions). This composition is
defined by a workflow specified in BPMN [18], which
is included in the service definition in XPDL format4

using the execute property. Currently, we restrict our
approach to support a subset of BPMN enough to

4http://www.xpdl.org, last accessed on 20th April, 2020.

VOLUME 8, 2020 80035



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

model services executing atomic services in parallel,
sequence, and combinations of the previous ones.5

Any service of these three kinds of services will be trans-
lated into user requests when a user selects them, as we
will explain in Subsection VI. In particular, 1) a query-
ing service will be translated into a query in our formal
query language, 2) an external service into an external call,
and 3) a composed service into a workflow composed of
queries and/or calls.

IV. ACCESSING KNOWLEDGE
In this section, we explain the query language we designed to
access the knowledge on the device to retrieve geospatial and
semantic information. Then, we explain the agents involved
in providing access to the knowledge in a device by process-
ing queries posed in our query language.

A. GEOSPATIAL SEMANTIC QUERY LANGUAGE
The design of our approach has been guided by criteria of
maximizing both expressivity and flexibility of supported
LBS. Thus, in order not to be constrained to a predefined
set of scenarios, with hardcoded queries and user needs,
we designed a query language, named Geospatial Semantic
Query Language (GS-QL), used to access the knowledge
explained in the previous section. We designed this query
language taking as basis our previous experience in the field
of location-based queries. In particular, we took as baseline
the expressivity of the SQL-like query language proposed
in [19] which allows to write location-based queries using
different location granularities.

As our approach manages knowledge modeled using
ontologies, we based GS-QL on SPARQL [20], a standard
query language able to handle RDF data. To integrate both
aspects (locations and DL semantics) in the same query
language, we adopted (and adapted) the GeoSPARQL [21]
and SPARQL-DL [22] extensions of SPARQL. The former
extension is a standard for representation and querying of
geospatial linked data from the Open Geospatial Consortium
(OGC); while the latter one is a subset of SPARQL extended
with predicates that are fully aligned with OWL 2, and which
covers the typical functions associated with OWL.

The simplified grammar of GS-QL is shown in Figure 66

and explained in the rest of this section. We can distinguish
two main parts in a GS-QL query:
• The projections clause, which declares the free variables
that are used to match the result of the query. Note that
as we do not have any attached schema (as, for example,
in SQL), the meanings of these defined variables are not
yet specified.

• The list of where clauses, which defines both the loca-
tion constraints and conditions (Conds) that the required

5Note that our approach only supports the usage of simple atomic services
within the workflows. We do not aim at supporting complex service compo-
sition (e.g., workflows within workflows).

6The complete grammar, as well as examples of the use of the query
language, can be consulted at [23].

FIGURE 6. Simplified grammar of the proposed query language.

objects have to met (LICons and ObjectCons, respec-
tively), and the bindings of the previously declared vari-
ables to properties of such objects (ProjectionsCons).

1) CONSTRAINTS IN GS-QL
Location constraints defined within the LICons fragment of
a where clause impose conditions on the locations of the
returned objects, defining the relevant area of the query.
We explicitly separate the definition of location constraints
from object ones to clearly distinguish from spatial con-
straints that are to be interpreted continuously (e.g., retrieve
objects that are within New York) from spatial patterns that
refer to static properties of the objects (e.g., retrieve people
that were born within New York). Moreover, note that loca-
tion constraints are not mandatory, allowing for both location
and non-location based queries.

Object constraints within the ObjectCons fragment of a
where clause define semantically the objects that are to be
returned. The patterns in this fragment can appear modified
by an OPTIONAL clause which makes them not mandatory,
and/or grouped with the help of a CASE operator. This latter
operator allows for grouping object definitions by expressing
the shared properties and separating the particular patterns
into different CASES. Formally, letDEF be the set of patterns
within anObjectCons fragment which define the object, SDEF
the subset of patterns in DEF which are not within a CASE

80036 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

clause, and SCASE the set of sets of patterns within CASE
clauses in DEF , then:

DEF(x)⇔ SDEF (x) ∧ ∃p ∈ SCASE | p(x)

This is, all the mandatory patterns (i.e., those that are not
modified by an OPTIONAL operator) are so except for those
which are inside a CASE function, which are added to the
body of the definition following a logical OR semantics. For
example, with the CASE clause it is possible to define objects
of interest which are available vehicles, and specifically Taxis
of a particular operator, or Buses in general in the same query
definition:
OD{
Type(?thing, sherlock:Vehicle),
PropertyValue(?thing, available, <true>),
CASE(Type(?thing, sherlock:Taxi),

PropertyValue (?thing, operator, <TaxiCab Co.>),
CASE(Type(?thing, sherlock:Bus))

}

Finally, the projection constraints are used to select the
information to return to the user. Therefore, the attributes
defined in the projection constraints are those whose values
are obtained from the objects that satisfy both location and
object constrains in the query, and are returned as results.

2) PREDICATES IN THE PATTERNS
We can distinguish two main groups of predicates that can be
used to form the patterns:
• Geographical predicates (GeoFilter in the grammar),
which are taken from GeoSPARQL [21]. We have
adopted three different functions which we needed
to express inside constraints. In particular, we reuse
geof:intersects andgeof:within tests, which
test intersection and inclusion relationships between
spatial elements, and geof:buffer operation, which
performs the dilation of a spatial element by a given dis-
tance.We focused on predicates that allowed us to define
inside constraints as other types of location-dependent
constraints (e.g., nearest) can be expressed by using
inside constraints (for more details, see [7]).

• DL-related predicates (DLFunctions in the grammar),
which are mainly taken from SPARQL-DL [22].
We have adopted all the SPARQL-DL predicates, keep-
ing the same semantics as in their original definitions.7

These predicates include functions to check, for exam-
ple, if a given class is a direct subclass of another,
or disjoint with it. Besides, we have included two func-
tions to obtain the domain and range of a given prop-
erty. These functions in the DL extension are not part
of SPARQL-DL as these operations are not standard
in DL, but are useful to our semantic agents. Their
parameters are a property and a class, allowing at most
one free variable, and their exact semantics depend on
the position of such free variable (see Table 3). These
functions enable to: 1) check whether a class is within
the domain/range of the property, explicitly defined in

7The interested reader is referred to [22] for their detailed definitions.

TABLE 3. Semantics of the introduced DL operators: domain and range.

the ontology, or a subclass of it (i.e., the class is an
implicit domain/range8), 2) obtain all the classes which
are explicit or implicit domain/range of a given property,
and 3) obtain properties for which a given class is a
explicit or implicit domain/range.

3) BENEFITS OF GS-QL
The adoption of this query language in our approach has the
following benefits:
• It provides part of the expressivity of SQL and comple-
ments it taking into account semantic and geographic
technologies.

• It decouples the system from a specific scenario, increas-
ing its flexibility.

• It makes it easier to retrieve information from the local
knowledge of the device for applications, agents, or peo-
ple. Indeed, it is more flexible than developing APIs to
access such an information.

B. AGENTS HANDLING KNOWLEDGE ACCESSING
In the following section, we explain the agents that provide
access to the local knowledge on the device. First, we present
the Knowledge Manager agent, which is in charge of the
management of the knowledge and processing of GS-QL
queries. Then, we detail the Endpoint agent, which provides
an interface to the GS-QL processing capabilities of the
device, and therefore the local knowledge, to external agents.

1) KNOWLEDGE MANAGER AGENT
The Knowledge Manager agent (KM from now on) encap-
sulates the managing of the knowledge stored in the device
including highly-volatile data (e.g., the specific location of
the user and the surrounding objects, sensor readings of the
device, or even instances of current providers of each service)
and more static information (e.g., the model of the device and
its features, or definitions of services). To handle the volatile
part of the knowledge, the KM agent adopts the strategy pre-
sented in [15], where static and volatile knowledge is stored
in ontologies and databases, respectively, and is detected and
marked at modeling time, allowing continuous DL query
processing with enough expressiveness.

The KM agent also handles the access to the knowledge
stored in the device, providing the rest of agents with ser-
vices to update and retrieve both extensional and intensional

8Notice that, we assume that subclasses of the explicitly defined
domain/range inherit the quality of being also part of the domain/range of the
property (following the inheritance model of object-oriented programming).

VOLUME 8, 2020 80037



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

knowledge. This task includes to be in charge of processing
GS-QL queries against the local ontology on the device posed
by other local agents, and agents which belong to other
users/devices, through the Endpoint agent.

2) ENDPOINT AGENT
Apart from interacting with users, a device in our approach
can interact with an external agent through the Endpoint
agent. The task of the Endpoint agent is to offer an interface
to the processing capabilities of the device to other agents.
This way, whenever a request is posed against the Endpoint
agent, it decides how to handle it, forwarding the query to
the KM agent if appropriate. All the knowledge access is
limited to a single entry point which implements the required
access control mechanisms to detect whether an agent can
execute a query over the knowledge or not. Thus, if the
Endpoint agent receives a query posed by an agent from
another device (on behalf of another user), it can evaluate the
privacy preferences of the user to control access and limit the
sensitive information returned as a result.

Semantic Web technologies have been used in the lit-
erature to represent and enforce user privacy preferences,
also called privacy policies. For instance, in [24] the authors
used a semantic policy language to represent policies and
reason over such language to enable access control to data
in RDF stores. Although it is out of the scope of this
work to deal with privacy issues, we took it into account to
design the Endpoint agent which can use a similar approach
to [24] to enforce access control over the local knowledge on
the device.

V. UPDATING KNOWLEDGE
In this section, we focus on the knowledge update that devices
in our approach continuously perform. This task is performed
by two static agents that reside in each device, namely,
the Context Updater and Ontology Updater agents. In the
following, we detail the behavior of each of such agents.

FIGURE 7. Context Updater agent (CU) tasks.

A. CONTEXT UPDATER AGENT
The Context Updater agent (CU from now on) is in charge of
making appropriate decisions taking into account the current
context of the user and her device. For that, the CU agent per-
forms the following tasks (see Figure 7): context extraction
and context change detection.

1) CONTEXT EXTRACTION
The CU agent infers new information about the context of the
user from low-level sensory information obtained from both
the device sensors and other CU agents, using the technique
explained in [25]. Firstly, it infers the high-level context of the
user continuously from low-level sensory data (e.g., the CU
could infer that the user is running from the readings of
her accelerometer). Then, the CU agent requests other CUs
around to send their inferred high-level context information.9

The CU agents use this exchanged information to enrich the
context of their users (e.g., if a user device has no location
information, the location of other users around can be used
to enrich it) or even fix it (e.g., the readings of the GPS
sensor could be erroneous and the information obtained from
other devices could help to fix it). This process is performed
continuously as some of the pieces of a user context are
highly-volatile and change frequently, such as the location.

2) CONTEXT CHANGE DETECTION
Whenever the CU agent infers a new context for the user,
it is in charge of detecting significant changes (e.g., when the
user moves to a different city). These changes of context are
used to reevaluate the information (e.g., services) that might
be interesting for the user by the Ontology Updater agent.

B. ONTOLOGY UPDATER AGENT
The Ontology Updater agent (OU) is in charge of keeping
the knowledge on the local ontology on the device updated.
OU agents from different devices learn from their interac-
tions as they exchange part of their local ontologies and data,
integrating them in their local knowledge. In this scenario,
appropriate knowledge management is crucial in order to
keep the approach scalable (otherwise, a device would end
up handling huge amounts of information, which might even
not be related to the current context of the user). For that,
each OU agent performs the following tasks (see Figure 8):
knowledge exchange and maintenance.

FIGURE 8. Ontology Updater agent (OU) tasks.

1) KNOWLEDGE EXCHANGE
Whenever two devices meet (i.e., they connect to the same
network or they establish their own ad hoc network), their
OU agents exchange knowledge so both devices learn from

9Notice that the privacy preferences of their users are checked by the
Endpoint agent before exchanging information as explained before.

80038 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

the interaction, increasing the information that a particular
device has about its environment. To restrict the information
exchanged, OU agents only exchange their active ontologies
(i.e., the knowledge relevant to the user’s current context)
and associated data. This process is performed continu-
ously, tracking the list of devices recently contacted to avoid
exchanging the same information with the same devices all
over.

When OU agents exchange knowledge the privacy prefer-
ences of their users are checked by the Endpoint agent before
retrieving the knowledge to share in order to avoid disclo-
sures. Finally, OU agents rely on a digital signature schema
to enforce trust on the exchanged pieces of knowledge: each
OU agent checks the validity of the signature/certificate of
the user/company which defined each particular piece of
knowledge (for instance, each service) before integrating it
(note that the knowledge definer might be different from the
knowledge exchanger).

2) KNOWLEDGE MAINTENANCE
Instead of integrating all the knowledge in an ever-growing
ontology (which might lead to scalability problems), the OU
keeps active just a module of the ontology which applies
to the current user’s context, while storing information that
might be interesting in other contexts in secondary modules.
Thus, the size of the ontology which will be used during
the capturing of a user information need and its processing
is minimized (local reasoning on current mobile devices has
been shown feasible for small and medium ontologies [14])
whereas no knowledge is forgotten.10

FIGURE 9. Steps involved in the management of knowledge.

As Figure 9 shows, whenever the CU agent informs the
OU agent about a significant change on the user context,
the OU agent starts the process of selecting the knowledge
that might be of interest to the user. For that, it first checks
the current active ontology to obtain which part is still of
interest (e.g., definitions of services which do not depend
on the specific location of the user and so might be always
interesting for her) and which not. To extract such knowl-
edge, the OU agent uses different ontology modularization
techniques [27] exploiting the information about the current

10Serialization and incremental reasoning are two desirable characteristics
of the DL reasoner used in each device; however, as noted in [26] there is no
current reasoner which supports both at the same time. Thus, incremental
reasoning should be more important.

context obtained from the CU agent (e.g., the new city where
the user is). In parallel, the OU agent checks the secondary
ontology, where different modules labeled using the context
(in our case, the city) are stored, to find more interesting
information. Afterwards, the interesting knowledge from the
active and secondary ontologies are integrated to become the
new active module, whereas the rest is also integrated and
stored in the secondary ontology.

3) KNOWLEDGE INTEGRATION
As explained in Section III, devices have a pre-shared ontol-
ogy which is extended by service definers in order to ontolog-
ically describe their services and the terms needed to do so.
While this predefined vocabulary is useful to provide a base
common knowledge model, the vocabulary extensions made
by different vendors are likely not to be completely aligned,
even when dealing with similar domains. For example, two
different contributors might define a service to find transports
and a service to find taxis without explicitly linking them,
even though that the relation might be obvious. Therefore,
when receiving knowledge from other devices and before
integrating them, the OU agent has to align the exchanged
schemas [28].

In our approach, we advocate to combine different tech-
niques in order to extract synonym as well as subsumption
relationships between terms (which is strongly helped by
the pre-shared vocabulary). In particular, knowledge integra-
tion is performed by using the techniques explained in [29],
[30] and in [31], which help in discovering synonymy and
subsumption relationships between concepts from the local
ontology of the user device and ontologies shared with it.

In the following section, we explain how this knowledge
is used to express the user information needs, which involves
helping the user to select the appropriate service, enabling her
to input her constraints, and finally, translating this informa-
tion into a formal request.

VI. MANAGING USER INTERACTION
Devices in our approach interact with their users to provide
them with the available services depending on their context,
helping them to express their needs. Recalling the architec-
ture of a device (Section II-A), there are two static agents
within each device which handle the interaction with the
users:
• Alfred, which stores information from the user such
as her preferences or the information provided when
interacting with the system that could be used to help
in selecting services that might be interesting for her or
to fill in parameters attending to previous selections by
the user.

• ADUS, which generates graphical user interfaces
(GUIs) for applications, in a context with heterogeneous
devices, considering their features. ADUS generates
dynamically the interfaces needed when an agent wants
to interact with the user as explained in [32], [33]. For
this, such an agent must make a petition to the ADUS

VOLUME 8, 2020 80039



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

agent along with the associated interface specification
from the ontology (see interface property in Figure 3).

ADUS is able to create interfaces to obtain input from the
user for usual types such as booleans, numbers, or strings,
as well as more complex types such as instances of concepts
defined in the ontology, locations/areas, and descriptions of
images. ADUS can be extended to support other types of
information and widgets, provided that they are defined in
the ontology, and the code or module needed to capture such
information is deployed and incorporated to the ADUS agent.

On the other hand, to help capturing the user information
needs and translating them into a formal request in order
to avoid ambiguities, our approach relies on an extra agent
which is created on demand, the User Request Manager
agent. The URM agent performs three main tasks11 (see
Figure 10): 1) Service Selection, 2) Parameter Provision,
and 3) Service Handling.

FIGURE 10. User Request Manager agent (URM) tasks.

A. SERVICE SELECTION
The URM is in charge of obtaining the services (based on
a location or not) that are relevant for a user in a particular
situation. To start a service selection, the user can choose to
select a service from a displayed list of available services,
or by selecting an entity on a displayed map (e.g., objects
displayed as the result of a previous request, or a particular
GPS coordinate12). Alfred captures such an interaction, and
creates a new URM agent with the information captured from
the user. By default, the URM obtains the available services
by querying the active ontology with the user’s context infor-
mation (i.e., location and current activity).

When the user has selected a particular entity, the URM
retrieves the services that are related to such entity instead.
For that, firstly, the URM obtains a list of entities which
geographically contain the selected one. For example, if the
user selected the MoMa museum in a map, the URM would
obtain the city (location) in which the museum is, and
‘‘Museum’’, which is the class to which the entity belongs to.
Then, for each entity obtained before (instances and

11For the detailed algorithms followed by the URM agent in the request
generation process, we refer the reader to [23].

12It might be the current user’s location.

concepts), the URM obtains all the services which are related
to it.13

If no service is retrieved or the user does not find an
appropriate one, the URM queries the secondary modules in
order to maximize the chances to find the required service.
The result of this task is a list of services along with their
families to be shown to the user for her to select one.

B. PARAMETER PROVISION
The result of the previous step is the selection of a family
of services (i.e., concepts that are subclass of Service) or a
particular service (i.e., an instance of such concepts). For
example, the user could select the family of ‘‘Find Trans-
portation’’ services or the specific ‘‘Find MTA Transporta-
tions’’ service (which is the service provided by New York’s
Metropolitan Transportation Authority). In fact, a user that
wants to find transports regardless of the provider of this
information would use the former one, whereas a user that
wants the information offered by a specific provider would
select the latter.

Firstly, the URM has to obtain the parameters of such
services, if any. These parameters, which have been defined
when the service was modeled, are the formal parameters
that the service requires to be invoked or that can be used
to restrict the information returned by the service. Thus,
depending on the selected entity, the URM has to obtain the
set of parameters to be fulfilled as follows:

• Service family: The user has selected a family of services
that share a set of formal parameters needed and a set
of returned objects. We will denote such a family of ser-
vices as SServ. The URM consults the ontology to obtain
all the constraints of the type SServ v parameter :?x,
which define the minimum set of parameters that such a
service has to receive. The result is a set {fp1, . . . , fpn}
of parameters that are applicable to that service.

• Particular service: The user has selected a particular
instance of a service. In this case, firstly, the URM con-
sults the service family of the selected instance. Then,
the URM obtains all the parameters that correspond
to the service due to the concept hierarchy (as in the
previous item). Finally, as this service might have extra
or constant value parameters, the URM extends (and
overrides) the previous result set {fp1, . . . , fpn} with
the parameters applicable to such a particular instance
obtained by consulting the Service ontology via param-
eter property. This would be retrieved using the clause
PropertyValue(< serviceSelected >, parameter, ?ip).

In both cases, the result is a set of parameters which
have to be assigned a value to in order to be able to invoke
the service or to filter its results out. The parameters that
have a predefined value are not required from the user and
are automatically filled for the final request. For the rest of
them, to obtain the actual values of the parameters, the URM

13In particular, the URMexplores the provides, returns, and interestingFor
properties to check whether a service is relevant for such entity.

80040 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

relies on ADUS and Alfred. Each parameter comes along
with information about their expected value to be entered
(e.g., a location, a boolean, or even an instance of a concept
defined in the ontology).

Notice that there are three types of ‘‘parameters’’ shown to
the user: 1) parameters defined in the ontology through the
hasParameter property; 2) location for LBS; and 3) provider
in the case of services provided by several providers. A ser-
vice might not have any parameter at all, although typically
services will have parameters of the first type used to filter
out the information returned. LBS will need, by definition,
a location which might have to be requested to the user.
Finally, external services (e.g., provided by other devices
as explained in Section III-B) might need the user to select
the specific provider. For example, if the user selected the
external service provided by taxis to ‘‘pick her up’’, she will
have to select the specific taxi, or any or even all, through the
Graphical User Interface. In this last case, the list of specific
providers (e.g., taxis) is obtained executing a GS-QL against
the local knowledge.

C. SERVICE HANDLING
With the service selected by the user (recall that there are
three types of services possible) and the values that the user
introduced for the parameters associated with such service,
the goal of this task is to create the formal request. This
request could be later processed against the local knowledge
by the KM agent and even against external knowledge on
other devices using approaches to process queries against
other devices [7]–[9].

In the case of a querying service, the goal of this step is to
translate the information provided by the user into a formal
query using GS-QL (the detailed algorithm can be found
in [9]). For that, the URM agent exploits the information in
the model to translate the definition of:

1) The target object(s) (i.e., the entities that the service
returns) by including: 1) the specific target(s) of such
service modeled in the local ontology (through the
returns property), and the ontological definition of the
target of such service (different devices could have
different information in their local ontologies and thus,
the ontological definition might be needed to under-
stand the request); and 2) constraints to fulfill the
parameters and values that the user selected.

2) The location of interest, in the case of a LBS, using
the special location parameters included by the user.
A WHERE clause (see Section IV-A) is generated for
each different location selected by the user or modeled
in the service definition and the previous definition of
the target objects are included in them.

In the case of an invoked service, the information provided
by the user is included in the invocation, as specified by the
call included in the ontology. Also, for services that contain
an execution plan the querying services in it are translated
to formal GS-QL queries and invoked services are translated
into invocations. Note how the user does not need to be aware

neither of the details of the query language, nor the schema
and the definitions of available services in order to translate
her information needs into a formal request.

VII. DEALING WITH USE CASES
In this section, we describe three different LBS, as rep-
resentation of many others, that can be handled by our
approach. First, we showcase how those LBS can be modeled
using the ontology presented in Section III. Then, we explain
the most important steps involved in the interaction with the
user (as explained in Section VI).
Looking for Transportation: In our first scenario, a person

arrives in a foreign city and needs to find transportation.
Let’s imagine that John is visiting Zaragoza (Spain); he has
just arrived at the railway station of Zaragoza and wants to
find transportation that could carry him to his hotel (‘‘Hotel
Palafox’’). It is the first time that John visits Spain and he does
not know anything about transportation there, but he would
prefer a private transport that could carry him directly to the
destination.
Helping Firefighting: In our second scenario, the coordi-

nator of a firefighting team in charge of the suppression of
a wildfire needs information about his team and the envi-
ronment. Let’s imagine that John is the coordinator of a
wildfire suppression team in Yellowstone National Park, and
is interested in obtaining information about fire outbreaks and
the firefighter team under his command (which consists of
five firefighters, two firefighting trucks, and a helicopter).
In particular, John needs information about the location of
each of the members of the team as well as their sensors
readings. Also, he needs the approximate location of the fire
outbreaks to have information about the affected area.
Handling Sport Events Broadcasting: In the third scenario,

a Technical Director (TD) needs assistance in the live broad-
casting of a sport event. In this case, let’s imagine that John
is the TD in charge of the live broadcasting of La Bandera de
la Concha 2019, a famous rowing race celebrated annually
in San Sebastian (Spain). Among the many tasks that John
has to perform, the most important one is to select the camera
to broadcast at each moment. John is an experienced TD and
has some specific shots in his mind to broadcast. So, he would
like to define them and then obtain the list of cameras (from
the broadcasting company and even from the audience) that
could provide them.

A. KNOWLEDGE MODELING
To handle the first scenario, our approach needs knowl-
edge about transportation services in the area as well as the
surroundings (e.g., about the previously mentioned hotel).
Figure 11 shows an excerpt of the ontology which models
a definition of the different services to find transports. The
general Find Transportation service returns any type of trans-
portation and could be part of the local knowledge of the
device prior to arriving in Zaragoza. This service will be
processed as a query as explained in Section VI-C. The Find
Bus Tuzsa service is a particular service that operates in the

VOLUME 8, 2020 80041



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

FIGURE 11. Excerpt of the ontology for the ‘‘Looking for Transportation’’
scenario.

city and returns the location of buses belonging to the local
bus corporation of Zaragoza through a web service (which
was unknown for John). Notice also that we define other
services to obtain the location of bus stops and information
about buses from them.

Let’s imagine that the knowledge about Zaragoza and the
different transportation means which operate in it has been
shared by a device in the tourist information center at the
railway station. This knowledge has been integrated into the
local ontology on John’s device. Therefore, the moment John
reaches the railway station, his device learns this knowl-
edge by autonomously communicating with the information
center.

FIGURE 12. Excerpt of the ontology for the ‘‘Helping Firefighting’’
scenario.

To manage the second scenario, we define the knowledge
in Figure 12. First, we define a service to monitor wild fires
which returns the location of fire outbreaks as well as the
location of any personnel or vehicle involved in the fire
suppression (the Fire Monitoring service). Additionally, this
service returns also the location of any person that might be

in danger. To model this, we first defined the type of returned
information semantically as those instances of People that
fulfill isIn Dangerous Area, and defined such area as High
Temperature Area (hasTemperature > 50) and High Level of
CO2 Area (hasCO2 > 400).14 This shows that more com-
plex definitions of concepts can be modeled thanks to the
generality and flexibility of our approach. Finally, we defined
information about John and his team, including the members
and equipment.

As in the previous scenario, this knowledge could have
been defined by a knowledge engineer working for the fire-
fighting unit and shared with John’s device before departing
from the station.

The third scenario, needs a service to obtain cameras that
could provide a specific view of different objects. We defined
the general service Find Camera as an implementation of
such services (see Figure 13 for an excerpt of the ontology).
This service returns entities of type Camera, which could be
even attached to a mobile devices such as an smartphone,
and has parameters such as the distance from the camera
to the objects inside the field-of-view and the visibility of
such objects. Notice that, for the latter we have modeled that
such parameter can be obtained through a specific GUI (a 3D
Query-by-example interface). Also, we have defined two ser-
vices provided by these cameras to ask them to take pictures
and videos and share themwith the requester, the Take Picture
and Take Video services, respectively.

FIGURE 13. Service to find cameras that could obtain a certain shot.

We have defined also a service to manage the broadcasting
of a sport event (see Figure 14 for an excerpt of the ontology)

14Temperatures are measured in Celsius degrees and CO2 in ppm (parts
per million).

80042 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

FIGURE 14. Excerpt of the ontology for the ‘‘Handling Sport Events
Broadcasting’’ scenario.

and a specific instance of this service for the rowing race
in the example (BroadcastingBanderaConcha2019). Notice
that, this service obtains information about the rowing boats
participating in the race and the cameras of the broadcaster
(using the Find Camera service modeled in Figure 13). Also,
we have defined knowledge related to the rowing race which
is used in combination with the previous definition of the
service. This includes the participants of the race and cameras
managed by the broadcasting company, as well as possible
interesting locations for the broadcast (such as the ciaboga
area which is the turning point for the boats). All this knowl-
edge would be defined by the broadcasting company and its
information system would share it with the TD’s device.

B. USER INTERACTION MANAGEMENT
We show the most important steps that explain how our
approach deals with the previous scenarios focusing on the
request generation part (i.e., translating the user information
needs into a GS-QL query). For some of them we will use
screenshots of an Android prototype we developed based on
the ideas presented in this paper.

1) SERVICE SELECTION
First, the user needs to interact with the system to show her
interest in a specific service. This exploratory discovery of
services can be done in different ways. For example, in the
first scenario John types in Hotel Palafox in a search bar
(see Figure 15(a)). A User Request Manager (URM) agent is
created which finds an instance of the hotel class whose name
corresponds to that string, and therefore understands that the
user is interested in a hotel. The URMdeduces, after querying
the local ontology on the user device, that there are two LBS
related to hotels in its local ontology: Find Transportation
and Room Reservation. Remember that the URM looks for
services that are somehow related to the concept Hotel what-
ever the name of the property that references such a concept is
(we do not assume any predefined schema in the definition of
services). In this case, the properties are parameter (because
Hotel is a subclass of Destination, which is a parameter of
the Find Transportation service) and provides (becauseHotel

FIGURE 15. Screenshots of the prototype executing the first scenario.

provides the Room Reservation service), respectively. The
user then selects the Find Transportation service. In the case
of the rest of the scenarios, let’s imagine that the user taps
on the service tab where a URM agent displays a list of ser-
vice which can be interesting for him. For instance, the Fire
Monitoring service appears in this list for the coordinator
of the firefighter team as the user selected the firefighter
profile and it matches the profile linked to the service through
the interestingFor property. Similarly, the TD of the third
scenario selects the Manage Broadcasting service to obtain
the real-time location of the rowing boats and the cameras
under his control. The TD is interested in broadcasting a shot
of the local team rowing boat (Donostiarra). For that he first
wants to obtain a list of cameras that could provide such a
shot to select one of them and broadcast its feed using the
Find Cameras service.

2) PARAMETER PROVISION
The URM created for each scenario obtains from the local
ontology the parameters of the selected service. In the case
of the Find Transportation service, the URM obtains from
the local ontology the parameters of such a service, (Price,
Shareable, Door2Door, and Luggage). The user shows his
interest in a transport Door2Door (indicating that this is
mandatory) that admits Luggage, if possible. In the case of
the Fire Monitoring service, the parameter is the location to
monitor. For the Find Cameras service, the URM obtains
that one of the parameters associated with the service in the
ontology is the definition of a sample shot.

Then ADUS generates a GUI to fill in these parameters.
For example, Figure 15(b) shows the GUI generated to fill in
the parameters for theFind Transportation service. In the case
of services with parameters related to a location (e.g., theFire
Monitoring service) the URM offers the user a map through
ADUS to select such location of interest. ADUS displays a

VOLUME 8, 2020 80043



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

3DQBE (3D Query-By-Example) interface [34] (linked to
the parameter through the interface property) to define the
specific shot of the rowing boat to retrieve. On that interface,
the user defines the kind of shot to obtain by rotating the
camera view and even including other objects in the scene.
The interface translates this sample shot into: ‘‘An image
showing 50% of the top view and 70% of the right side view
of Kaiku, and 40% of the front view and 15% of the right side
view of any other rowing boat’’.

3) SERVICE HANDLING
With the information defined by the user, the URM can
handle the selected service. This handling might result in the
invocation of an external service or the processing of a query.
As an example of the former, we can cite the Find Bus Tuzsa
service in the first scenario, which is an instance of the Find
Transportation service available for that specific geographic
area (Zaragoza) and time: the URM can obtain information
about buses in the city from a web service. In the case of
services that require the processing of a query, the URM has
to translate the user needs into a formal GS-QL query. For
instance, the URM handling the Find Transportation service
infers that objects belonging to the Taxi, Bus, and Shuttle
classes fulfill the user preferences and provide transport ser-
vices. With this information the URM generates the query
in Figure 16. The query includes the inferred interesting trans-
ports (Taxi, Shuttle, and Bus) as well as the general definition
of interesting transport that the user selected (a Transport
that is door2door and admits luggage). The URM includes
transports that do not fulfill completely the requirements of
the user (i.e., Bus) to maximize the chances of obtaining
results.

FIGURE 16. Formal query for the first scenario (Find Transportation).

For the second use case, the actual query generated is sim-
ilar to the previous (see Figure 17) and target types are Fire-
fighters, Fire Outbreaks, and the type defined as People and
isIn Dangerous Area (i.e., instances of the People class that

FIGURE 17. Formal query for the second scenario (Fire Monitoring).

FIGURE 18. Formal query for the third scenario (Handling Event
Broadcasting).

are located in an area classified as Dangerous Area). Notice
that the definition of what a dangerous area is is included in
the query too. The query for the third use case contains two
parts (see Figure 18), the first one (first CASE clause) defines
the video stream to obtain as showing the specific shot that the
TD defined. As this might be too restrictive, the second part
(the second CASE clause) defines also the video stream as
showing the ‘‘Kaiku’’ rowing boat. Also, notice that the query
selects, in addition to the video streamURL, some parameters
about the camera such as the location, direction, and field-of-
view. These parameters can be used later to identify whether
the camera can obtain the requested shot or not.

4) UPDATING KNOWLEDGE
In all the scenarios, while the URM agent interacts with the
user, the Ontology Updater (OU) agent is actively updating
the local knowledge on the device through interactions with
other devices. This way, the OU on the device of the tourist
in the first scenario discovers that there exist moving objects

80044 VOLUME 8, 2020



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

classified as Bikecab (an unknown subclass of Taxi for the
ontology of the user). This new knowledge enriches the user
device knowledge and enables the URM to infer that bikecabs
also fulfill the user preferences and the query being processed
is edited to reflect it in the next reevaluation of the query.

5) CONCLUSIONS
We have shown how our approach can be used to model and
handle different interesting LBS. The information provided
by the user (a click on a map, selecting service, filling a
user-friendly form) is enough for our approach to generate a
formal query to retrieve interesting information for the user.
For instance, John did not know anything about specific trans-
portation means in the city (e.g., buses in Zaragoza) and our
approach managed all this knowledge for him and even keep
it updated when meeting other devices (e.g., learning about
bikecabs). We have also shown that our approach can handle
more complex specification of user preferences (such as the
3DQBE interface to visually define the kind of camera shot
the TD wants to obtain) and also more complex definition of
relevant data to capture (such as the specification of people
that are in a dangerous area which implies inferring whether
a specific geographic area is dangerous or not). Finally,
we have shown how our approach can integrate existing
third-party data sources specified in ontology descriptions of
the services providers (e.g., existing web services to find the
location of buses in the city).

By leveraging our approach, a system that monitors trans-
ports, cameras, or fire outbreaks, could process the detailed
formal queries generated to offer the user the exact informa-
tion she needs. This way, that system would need to focus
just on obtaining information about those elements and do
not need to deal with the complexities related to interacting
with different users that have different information needs and
knowledge about a specific scenario.

VIII. RELATED WORK
The main goal of our approach is to provide users with
multiple services, based on her location or not, helping her
to express her information needs and keeping the knowl-
edge about available services updated. Up to the author’s
knowledge, no other work has proposed a general and
flexible system based on semantics to: 1) handle diverse
LBS, and 2) capture the user information needs into formal
requests related to such services. Therefore, we will pro-
vide an overview of contributions to some specific research
areas related to our proposal. Firstly, we present works
focused on providing LBS and location-dependent queries,
which are the building blocks of LBS. Secondly, we present
Service-Oriented Architectures, which are generally focused
on providing services to build applications (i.e., B2B ser-
vices). This kind of services would be considered external
ones in our approach. Moreover, within SOA approaches,
we highlight Semantic Web Services, which are closely
related to our goal of modeling services using ontologies.

A. LOCATION-BASED SERVICES
Location-Based Services (LBS) have been defined before as
‘‘services that integrate a mobile device’s location or position
with other information so as to provide added value to a
user’’ [1]. Although LBS appeared in the 90s, the research
community is still actively working on research challenges
associated with them [35]. There are plenty of applications
in the literature to provide users with specific location-based
services [36]. For example, taxi searching [2], helping fire-
fighting [3], detecting and recommending nearby friends [4],
or multimedia retrieval in sport events [5], among many oth-
ers. Also, there are some proposals of architectures to provide
LBS. For example, in [37] an architecture to support LBS
applications is presented. The Base Stations (BS) serving
cells in a cellular network contain a geolocation server and
database that gathers information about mobile devices in
the area and their requests. This way, when a mobile device
connects with a BS and executes a service registered in the
local registry, the server can execute the service using the
information in the database and return the result to the mobile
device. In [38] a LBS system is presented with a similar
decentralized architecture. In this system, a local registry is
placed in each cell of the cellular network system which
enables providers to register their services. The system run-
ning on each Base Transceiver Station (BTS) which serves
a specific cell broadcasts the information from its local reg-
istry to devices connected to the BTS. Then, mobile devices
can execute a call to specific services. The main difference
between these approaches and ours is that their decentral-
ized architecture is based on a set of BS which maintain
information about objects and services in their cell whereas
we do not assume the existence of a fixed infrastructure.
Another difference is that our approach also helps the user to
express her information needs and integrates new information
about services using semantic techniques for interoperability.
The Snap4City platform [39] provides a centralized architec-
ture in which geographical and statistical data from different
sources is collected to enable developers to create LBS. The
platform uses the Km4City multiontology [40] to represent
geographical information using a common metamodel. As in
the previous case, the main difference with our system is the
decentralized architecture presented in this paper.

B. SERVICE-ORIENTED ARCHITECTURES
Context-aware frameworks simplify the development of
context-aware applications/services (see [41] for a survey on
context-aware systems). For example, the highly referenced
Service-Oriented Context-Aware Middleware (SOCAM)
architecture [42] supports the building of context-aware
mobile services. SOCAM is based on a centralized server
which gathers context data from context providers and offers
it to clients. Context-aware services can be built by defining
rules which specify under which circumstances an action has
be performed. SOCAM uses a set of OWL ontologies for
modeling the context information that context-aware services

VOLUME 8, 2020 80045



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

can use. As explained in [43], most of these architectures
are based on a centralized server which contains the services
available and offer them to the user. However, in our approach
each device independently handles the knowledge related to
services and keep it updated thought the interactionwith other
devices. Also, our proposal takes into account the process to
capture the user information needs.

The service oriented nature of our proposal along with
the use of ontologies in order to describe the scenarios and
the different elements of the handled services could bring
to mind Semantic Web Services [28], [44]. According to
the W3C definition: ‘‘a Web service is a software system
designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with
other Web-related standards’’.15 This is, Web Services are
oriented to achieve system interoperability. On top of this
technology, Semantic Web Services appeared [28], which are
Web Services whose functionality is described using onto-
logical terms and semantic annotations, aiming at enabling
automatic and dynamic interaction between software sys-
tems. However, the Web Service’s stack is designed to make
a service available to other programs using Web technolo-
gies, while the notion of service handled in our distributed
architecture is oriented completely to provide services to
the final user. Moreover, our approach is aimed at provid-
ing location-based services, using all the available resources
(i.e., locally integrated knowledge, the distributed architec-
ture of devices, or even third-party services - which might
include Web Services). Thus, instead of adopting an exist-
ing formalism [45] to extend it and complexly define our
services, we have advocated for keeping a simpler model,
relying on the simplicity of our schema to both: 1) make it
possible to perform a light-weight yet flexible service dis-
covery instead of using more complex approaches [46] which
might overload mobile devices; and 2) make the definition of
services easier for service providers. The proposed model is
not aimed at matchmaking or automatic service composition
(a provider has to provide the workflow if a composed service
is required), but at providing a context-aware search of rele-
vant services within a distributed architecture which lacks of
a previously global and shared schema (which is achieve via
knowledge sharing among devices).

IX. CONCLUSIONS AND FUTURE WORK
In this paper, we have detailed an approach for the manage-
ment of knowledge related to Location-Based Services (LBS)
as well as for helping users to express their information
needs. The management of knowledge is based on the mod-
eling and maintenance of contextual information about users
and their devices, as well as information about services

15https://www.w3.org/TR/ws-arch, last accessed on 20th March, 2020.

and functionalities. To be useful, this knowledge is kept
updated by leveraging the collaboration between mobile
devices equipped with out approach. Also, we presented a
query language for the system based on SPARQL, a stan-
dard semantic query language, which can be used to obtain
information from a the local knowledge in a device. Besides,
we explained how our approach leverages the knowledge
about services and the user to understand her informa-
tion needs. An agent offers users services that might be
interesting for them and capture their preferences to gen-
erate a formal user request expressed in our query lan-
guage. Finally, we illustrated the flexibility of our approach
applying it to three heterogeneous use cases. The con-
tributions of the approach presented in this paper are
the following:

1) It enables devices to exchange knowledge related to
services which might be interesting for their users.
Through their interactions, devices exchange ontolo-
gies which each node integrates into their local knowl-
edge so they can learn from the interaction. At the same
time, it maintains the local knowledge on the device
updated while taking into account its size to enable
efficient reasoning.

2) It offers to the user the available services which might
be interesting for her depending on her context and
interactions with the system. This way, it relieves the
user frommanaging specific knowledge about services.
Also, it helps users to select the most appropriate ser-
vice through a guided process which interacts with her
to obtain her specific information needs.

3) It translates the user requirements into formal requests
inGS-QL, a SPARQL-like query languagewe designed
incorporating extensions of SPARQL to handle seman-
tic and location constraints. This language decou-
ples our approach from a specific scenario increasing
its flexibility. Also, it can be used by external ser-
vices/users/applications to obtain information from the
local knowledge of a device.

As future work, we plan to focus on the processing of the
user requests expressed in GS-QL generated as a result of the
process explained in this paper. As we introduced in [8], [9],
the use of mobile agents can be beneficial for this processing
as they can be deployed to locations where the information
might be available.

REFERENCES
[1] J. Schiller and A. Voisard, Location-Based Services. SanMateo, CA, USA:

Morgan Kaufmann, 2004.
[2] C.-R. Dow, D.-B. Nguyen, S.-C. Wang, S.-F. Hwang, and M. F. Tsai,

‘‘A geo-aware taxi carrying management system by using location based
services and zone queuing techniques on Internet of Things,’’ Mobile Inf.
Syst., vol. 2016, pp. 1–10, 2016, doi: 10.1155/2016/9817374.

[3] S. G. Hong, K.-H. Son, H. Lee, M. Bae, and K. B. Lee, ‘‘Augmented IoT
service architecture assisting safe firefighting operation,’’ in Proc. Global
Internet Things Summit (GIoTS), Jun. 2018, pp. 1–6.

[4] H. Bagci and P. Karagoz, ‘‘Context-aware friend recommendation for
location based social networks using random walk,’’ in Proc. 25th
Int. Conf. Companion World Wide Web (WWW) Companion, 2016,
pp. 531–536.

80046 VOLUME 8, 2020

http://dx.doi.org/10.1155/2016/9817374


R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

[5] S. Ilarri, E. Mena, A. Illarramendi, R. Yus, M. Laka, and G. Marcos, ‘‘A
friendly location-aware system to facilitate the work of technical directors
when broadcasting sport events,’’Mobile Inf. Syst., vol. 8, no. 1, pp. 17–43,
2012.

[6] B. Gedik and L. Liu, ‘‘MobiEyes: A distributed locationmonitoring service
using moving location queries,’’ IEEE Trans. Mobile Comput., vol. 5,
no. 10, pp. 1384–1402, Oct. 2006.

[7] S. Ilarri, E. Mena, and A. Illarramendi, ‘‘Location-dependent queries in
mobile contexts: Distributed processing usingmobile agents,’’ IEEE Trans.
Mobile Comput., vol. 5, no. 8, pp. 1029–1043, Aug. 2006.

[8] R. Yus, E. Mena, S. Ilarri, and A. Illarramendi, ‘‘SHERLOCK: Semantic
management of location-based services in wireless environments,’’ Perva-
sive Mobile Comput., vol. 15, pp. 87–99, Dec. 2014.

[9] R. Yus, ‘‘Semantic management of location-based services in wireless
environments,’’ Ph.D. dissertation, Dept. Comput. Sci. Syst. Eng., Univ.
Zaragoza, Zaragoza, Spain, Mar. 2016.

[10] R. Yus and E. Mena, ‘‘Emergency management using SHERLOCK,’’ in
Proc. 13th Annu. Int. Conf. Mobile Syst., Appl., Services (MobiSys), 2015,
p. 495.

[11] R. Yus and E. Mena, ‘‘Continuous processing of real-time multimedia
requests using semantic techniques,’’ in Proc. 13th Int. Conf. Adv. Mobile
Comput. Multimedia (MoMM), 2015, pp. 216–220.

[12] T. R. Gruber, ‘‘Toward principles for the design of ontologies used for
knowledge sharing?’’ Int. J. Hum.-Comput. Stud., vol. 43, nos. 5–6,
pp. 907–928, Nov. 1995.

[13] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
The Description Logic Handbook. Theory, Implementation and Applica-
tions. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[14] C. Bobed, R. Yus, F. Bobillo, and E.Mena, ‘‘Semantic reasoning onmobile
devices: Do androids dream of efficient reasoners?’’ J. Web Semantics,
vol. 35, pp. 167–183, Dec. 2015.

[15] C. Bobed, F. Bobillo, S. Ilarri, and E. Mena, ‘‘Answering continuous
description logic queries: Managing static and volatile knowledge in
ontologies,’’ Int. J. Semantic Web Inf. Syst., vol. 10, no. 3, pp. 1–44,
Jul. 2014.

[16] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, ‘‘Towards a better understanding of context and context-
awareness,’’ in Proc. 1st Int. Symp. Handheld Ubiquitous Comput. (HUC),
1999, pp. 304–307.

[17] J. Bernad, C. Bobed, and E. Mena, ‘‘Estimating local coverage areas
for location dependent queries,’’ in Proc. 33rd Annu. ACM Symp. Appl.
Comput. (SAC), 2018, pp. 940–947.

[18] ‘‘Introduction to BPMN,’’ IBM Cooperation, White Paper,
2004, vol. 2. [Online]. Available: https://www.omg.org/bpmn/
Documents/Introduction_to_BPMN.pdf

[19] S. Ilarri, C. Bobed, and E. Mena, ‘‘An approach to process continuous
location-dependent queries on moving objects with support for location
granules,’’ J. Syst. Softw., vol. 84, no. 8, pp. 1327–1350, Aug. 2011.

[20] E. Prud’hommeaux and A. Seaborne, ‘‘SPARQL query language for
RDF,’’ in W3C Recommendation, vol. 15. 2008. [Online]. Available:
https://www.w3.org/TR/rdf-sparql-query/

[21] R. Battle and D. Kolas, ‘‘GeoSPARQL: Enabling a geospatial semantic
Web,’’ Semantic Web J., vol. 3, no. 4, pp. 355–370, 2011.

[22] E. Sirin and B. Parsia, ‘‘SPARQL-DL: SPARQL query for OWL-DL,’’ in
Proc. 3rd Int. Workshop OWL Experiences Directions (OWLED), vol. 258,
2007, pp. 1–10.

[23] Additional Material: A Knowledge-Based Approach to Enhance Provision
of Location-Based Services in Wireless Environments. Accessed: Apr. 30,
2020. [Online]. Available: http://sid.cps.unizar.es/LBSManagement

[24] A. Padia, T. Finin, and A. Joshi, ‘‘Attribute-based fine grained access
control for triple stores,’’ inProc. 3rd Int. Workshop Soc., Privacy Semantic
Web Policy Technol. (PrivOn), 2015, pp. 1–15.

[25] R. Yus, P. Pappachan, P. K. Das, T. Finin, A. Joshi, and E. Mena, ‘‘Seman-
tics for privacy and shared context,’’ in Proc. 2nd Int. Workshop Soc.,
Privacy Semantic Web Policy Technol. (PrivOn), 2014.

[26] C. Bobed, F. Bobillo, E. Mena, and J. Z. Pan, ‘‘On serializable incremen-
tal semantic reasoners,’’ in Proc. Knowl. Capture Conf. (K-CAP), 2017,
pp. 187–190.

[27] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, Modular Ontologies
Concepts, Theories and Techniques for Knowledge Modularization (Lec-
ture Notes in Computer Science), vol. 5445. Springer, 2009.

[28] J. Euzenat and P. Shvaiko, Ontology Matching, vol. 18. Springer, 2007.

[29] R. Yus, E. Mena, and E. Solano-Bes, ‘‘Generic rules for the discovery
of subsumption relationships based on ontological contexts,’’ in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent Technol. (WI-IAT),
Dec. 2015, pp. 309–312.

[30] F. Bobillo, C. Bobed, and E.Mena, ‘‘On the generalization of the discovery
of subsumption relationships to the fuzzy case,’’ in Proc. IEEE Int. Conf.
Fuzzy Syst. (FUZZ-IEEE), Jul. 2017, pp. 1–6.

[31] J. Gracia and K. Asooja, ‘‘Monolingual and cross-lingual ontology match-
ing with CIDER-CL: Evaluation report for OAEI 2013,’’ in Proc. 8th Int.
Workshop Ontol. Matching (OM), 2013, pp. 1–8.

[32] N. Mitrovic, J. A. Royo, and E. Mena, ‘‘ADUS: Indirect generation of
user interfaces on wireless devices,’’ in Proc. 7th Int. Workshop Mobility
Databases Distrib. Syst. (MDDS), 2004, pp. 662–666.

[33] N. Mitrovic, C. Bobed, and E. Mena, ‘‘Dynamic user interface architecture
for mobile applications based on mobile agents,’’ in Proc. 5th Int. Work-
shop Methods, Eval., Tools Appl. Creation Consumption Structured Data
e-Soc. (Meta4es), 2016, pp. 282–292.

[34] R. Yus, S. Ilarri, and E. Mena, ‘‘Real-time selection of video streams
for live TV broadcasting based on query-by-example using a 3D model,’’
Multimedia Tools Appl., vol. 74, no. 8, pp. 2659–2685, Apr. 2015.

[35] H. Huang, G. Gartner, J. M. Krisp, M. Raubal, and N. Van de Weghe,
‘‘Location based services: Ongoing evolution and research agenda,’’
J. Location Based Services, vol. 12, no. 2, pp. 63–93, Apr. 2018.

[36] J. Raper, G. Gartner, H. Karimi, and C. Rizos, ‘‘Applications of
location-based services: A selected review,’’ J. Location Based Services,
vol. 1, no. 2, pp. 89–111, Jun. 2007.

[37] R. Beaubrun, B. Moulin, and N. Jabeur, ‘‘An architecture for delivering
location-based services,’’ Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 7,
pp. 160–166, 2007.

[38] M. D’Souza and V. S. Ananthanarayana, ‘‘Decentralized registry based
architecture for location-based services,’’ in Proc. 6th Int. Conf. Ind. Inf.
Syst., Aug. 2011, pp. 136–139.

[39] P. Bellini, P. Nesi, M. Paolucci, M. Soderi, and P. Zamperlin, ‘‘Snap4city
platform: Semantic to improve loca-tion based services,’’ in Proc. 15th Int.
Conf. Location-Based Services, 2019, p. 237.

[40] P. Nesi, C. Badii, P. Bellini, D. Cenni, G. Martelli, and M. Paolucci,
‘‘Km4City smart city API: An integrated support for mobility services,’’ in
Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), May 2016, pp. 1–8.

[41] K. Haruna,M. Akmar Ismail, S. Suhendroyono, D. Damiasih, A. Pierewan,
H. Chiroma, and T. Herawan, ‘‘Context-aware recommender system: A
review of recent developmental process and future research direction,’’
Appl. Sci., vol. 7, no. 12, p. 1211, 2017.

[42] T. Gu, X. H.Wang, H. K. Pung, and D. Q. Zhang, ‘‘An ontology-based con-
text model in intelligent environments,’’ in Proc. Commun. Netw. Distrib.
Syst. Modeling Simulation Conf. (CNDS), 2004.

[43] M. Baldauf, S. Dustdar, and F. Rosenberg, ‘‘A survey on context-aware
systems,’’ Int. J. Ad Hoc Ubiquitous Comput., vol. 2, no. 4, pp. 263–277,
2007.

[44] H. Nacer andD. Aissani, ‘‘SemanticWeb services: Standards, applications,
challenges and solutions,’’ J. Netw. Comput. Appl., vol. 44, pp. 134–151,
Sep. 2014.

[45] H. H. Wang, N. Gibbins, T. Payne, A. Patelli, and Y. Wang, ‘‘A survey
of semantic Web services formalisms,’’ Concurrency Computation: Pract.
Exper., vol. 27, no. 15, pp. 4053–4072, Oct. 2015.

[46] L. D. Ngan and R. Kanagasabai, ‘‘Semantic Web service discovery: State-
of-the-art and research challenges,’’ Pers. Ubiquitous Comput., vol. 17,
no. 8, pp. 1741–1752, Dec. 2013.

ROBERTO YUS received the Ph.D. degree in com-
puter science from the University of Zaragoza,
Spain, in 2016, researching on issues related
to semantic data management in distributed and
mobile environments. During his Ph.D., he was
a Visiting Researcher for a year in the ebiquity
research group at the University of Maryland,
Baltimore, and at the Information Systems Group,
University of California, Irvine, USA. He is cur-
rently a Postdoctoral Scholar with the Department

of Computer Science, University of California, Irvine. His current research
interest includes privacy issues in datamanagement on the Internet of Things.

VOLUME 8, 2020 80047



R. Yus et al.: Knowledge-Based Approach to Enhance Provision of LBS in Wireless Environments

CARLOS BOBED received the degree in com-
puter science and the Ph.D. degree in computer
science from the University of Zaragoza, Spain,
in 2005 and 2013, respectively. After taking his
Ph.D., he was a Visiting Researcher in the Uni-
versity of Aberdeen, U.K., and the University
of Rennes, France, where he was a Postdoctoral
Researcher as well. He is currently a Research
Scientist / Engineer with everis / NTT Data. He is
the author of several research publications in inter-

national journals and conferences, and has served as a reviewer of interna-
tional journals and as a Program Committee member of many international
conferences. His research interests include semantic Web and its associated
technologies, mobile computing, and natural language processing.

EDUARDO MENA is currently an Associate Pro-
fessor with the Department of Computer Science
and System Engineering, University of Zaragoza,
Spain, where he is also the Head of the research
group Sistemas de Informacion Distribuidos (SID)
(Distributed Information Systems). He is the
author of several research publications in interna-
tional journals, conferences, and workshops. Also,
he is author of the book Ontology-Based Query
Processing for Global Information Systems which

describes the OBSERVER system, considered one of the classic projects
from mid-90’s in the area of global information systems, in collaboration
with Dr. A. Sheth. His work has resulted in more than 180 publications and
(according to Google Scholar) he accumulates more than 4000 citations with
an H-index of 29. He has also served as a reviewer of international journals,
and as a Program Committee member of many international conferences
and workshops. Since 1991, he has been developed his research work in
the area of query processing in distributed and heterogeneous environments,
with special emphasis on the use of knowledge representation systems based
on Description Logics to describe ontologies, and mobile agent technology
and its application to mobile computing. His research interest areas include
interoperable and heterogeneous data systems, semantic Web, ontologies
and knowledge representation languages, mobile computing, and the Internet
computing.

80048 VOLUME 8, 2020


