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Exploiting temporal information of light propagation cap-
tured at ultra-fast frame rates has enabled applications such
as reconstruction of complex hidden geometry and vision
through scattering media. However, these applications
require high-dimensional and high-resolution transport
data, which introduces significant performance and storage
constraints. Additionally, due to different sources of noise
in both captured and synthesized data, the signal becomes
significantly degraded over time, compromising the quality
of the results. In this work, we tackle these issues by propos-
ing a method that extracts meaningful sets of features to
accurately represent time-resolved light transport data. Our
method reduces the size of time-resolved transport data
up to a factor of 32, while significantly mitigating variance
in both temporal and spatial dimensions. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.383130

Transient imaging methods [1] typically exploit time-resolved
data on the order of nano- [2] to femtoseconds [3], involving
spatiotemporal data structures to represent light propagation.
Related applications such as reconstruction of hidden geometry
[4,5] require exhaustive scans of the scene at multiple camera
and light locations, resulting in five-dimensional data. Monte
Carlo methods for transient rendering [6,7] allow to accurately
simulate time-resolved light transport. As such, they have
become a helpful instrument for analysis and benchmarking,
and for use as a data source for machine learning approaches
[8,9]. This increased dimensionality and high temporal resolu-
tion yield massive discretized representations of light transport
that hamper the efficiency in practical applications. While
methods to increase computational performance exist [10],
memory and bandwidth are still limiting constraints. Moreover,
these sorts of time-resolved signals are degraded by either the
attenuation of captured light or the variance in Monte Carlo
simulations. Therefore, noise removal and reconstruction algo-
rithms become key to develop robust imaging methods. Feature
extraction and representation in alternative domains have been
extensively used for reconstruction and compression of different
types of signals. There exist a wide variety of encoding and fast

decoding methods for low-dynamic-range image and video
data, where exploiting frequency characteristics predominates
in most widespread compression algorithms [11]. Closer to our
domain of application, representing time-resolved light trans-
port by a combination of Gaussians and exponential functions
has been proved useful for applications such as illumination
decomposition [12] and imaging in scattering media [13].

However, while compression and denoising methods have
been extensively researched for steady-state images and video,
time-resolved light transport has distinctive properties that we
exploit in this Letter. First, light propagation is heavily struc-
tured in both time and space: the magnitude and frequency of
the signal decrease over time due to multiple convolutions and
attenuations of scattered light (see Fig. 1, right); moreover, tem-
poral propagation is strongly correlated to spatial features of the
scene, since light time-of-flight depends in part on the optical
paths through the scene. Second, due to temporal delays in light
propagation, similar temporal patterns can occur at different
times. In Fig. 1 (blue, red, yellow), we can see how the temporal
delay of the initial peak is directly proportional to the depth at
different points of the scene. Finally, time-resolved transport
is particularly prone to noise, due to either signal attenuation
in captured data or slow convergence rates in simulation (see
Fig. 1, right). These characteristics pose several challenges
when finding alternative representations of time-resolved light
transport. We take into account all these aspects to design a
method for compressing and recovering transient light transport
data based on encoder–decoder neural networks. We leverage
existing databases [8] to learn sets of spatiotemporal features
and build lightweight representations of time-resolved transport
up to 32 times smaller than the original signal. This work is a
formalization and continuation of our preliminary results [14].

Let L Eω(t), t ∈ [0,∞) be a function that represents time-
resolved radiance in a scene from a viewing direction Eω. While
L Eω(t) is continuous, this function does not have closed-form
solutions for general scenes. As a consequence, in prac-
tice, L Eω(t) is represented by a discrete set of radiance values
L i j [0, 1, . . . , T − 1] ∈RT—either measured or computed—
uniformly distributed over time. Each L i j [k] represents the
integrated radiance over a time interval 1t centered at a time tk ,
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Fig. 1. Left: simulated steady-state render of the Altar scene.
Middle: transient image of the scene. Right: time-resolved radiance at
marked points of the scene.

at pixel H[i, j , k] of a transient image HM×N×T (Fig. 1, mid-
dle). For simplicity, we will use L i j (t) to refer to these discretized
radiance profiles at positions {i, j } of a transient imageH.

In order to obtain accurate but small representations of
time-resolved pixels L i j (t) ∈RT , we analyze and exploit the
aforementioned properties of transient light transport to intro-
duce a compression and denoising method. Recent works
[8,15,16] explicitly described the strong spatiotemporal cor-
relation and convolutional nature of light transport. Inspired
by this, we propose to use convolutional encoder–decoders to
learn two mappings. First, we learn an encoding function E(·) to
extract a set of features fL from some discretized input data X :

E(X ′)= fL , where X ′ = g (X ). (1)

The function g (·) represents a transformation function
applied to the input X . Second, we learn a decoding function
D(·), such that

D( fL)= Y ′, where g−1(Y ′)= L̂ i j (t), (2)

which estimates the target time-resolved radiance L i j (t)≈
L̂ i j (t) based on the feature vector fL .

The resulting fL of the encoding function will be the com-
pressed representation of the signal L i j (t). The choice of X is
key to ensure that the encoding function E has enough infor-
mation to obtain a feature vector fL representative enough for
the decoder D to accurately estimate L i j (t). Functions g , E,
and D must account for the aforementioned challenges of time-
resolved radiance: exponential decay and reduced frequency
over time, arbitrary propagation delays, and signal noise.

Finally, since the data can have arbitrary temporal resolution,
it is desirable to handle temporal profiles of arbitrary length with
the same compression ratio. We thus introduce several design
choices on the input data X , the transformation function g , and
the encoder and decoder operations E, D.

Input data. To leverage the local spatiotemporal coherence
of light transport, we propose to use a time-resolved spatial
neighborhood X ≡ 〈L i j 〉 centered at L i j as input for the
feature extraction step [Eq. (1)]. Time-resolved signal has a
high dynamic range with exponential decay over time due to
recursive light bounces. To prevent the encoding step from
ignoring low-valued radiance features, we define a logarithmic
transformation g over the input data as

g (X )=

{
log10(X )− log10(ε) X ≥ ε
0 X < ε

. (3)

The threshold ε and offset log10(ε) ensure all resulting values
are above zero and prevent input values close to zero going
to infinity. In our experiments, not applying a logarithmic
transformation made our optimization fall into local min-
ima resulting in zero-valued outputs. We set a threshold of
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Fig. 2. Our proposed architecture. The encoder extracts a total
of T/32 features fL from a 9× 9× T spatial neighborhood in log-
arithmic space X ′ = g (〈L i j 〉), centered at the time-resolved pixel
L i j to compress. The decoding step uses these features to recover the
time-resolved pixel L̂ i j = g −1(Y ′) with a set of deconvolutions and
residual convolution blocks.

ε= 1e − 7 based on radiance value distributions of our training
and validation datasets. In practice, a neighborhood of size
9x9 allowed us to find enough spatio-temporal features while
significantly mitigating noise in the recovered signal.

Encoding step. To extract a set of representative features
from the spatial neighborhood 〈L i j 〉, we design a fully convo-
lutional learnable encoding function E [Eq. (1)]. The function
is composed of 3D convolutional filters (see Fig. 2, left) that
operate over both spatial and temporal dimensions. These fil-
ters exploit spatiotemporal structures of light transport while
simultaneously discarding noise in the signal. The fully con-
volutional nature of this function allows us to keep a constant
compression ratio over arbitrary temporal resolutions. To enable
this, the filters simultaneously perform the following opera-
tions: a) progressively reduce the size of the spatial dimensions
to 1× 1 in the innermost layer (i.e., the compressed signal)
by controlling the padding over the fixed-size spatial neigh-
borhood 〈L i j 〉; b) sequentially apply strides of size two in the
temporal dimension. Each layer of this function works similarly
to a downsampling operation. However, since the filters are
optimized based on a minimized loss between the estimated
and reference signals, the encoding learns to extract the most
representative features. Each element of the resulting vector
fL encodes features from a bounded time interval of the input
〈L i j 〉 (see Fig. 3, left). Note that while our encoding function
is computationally expensive due to 3D convolution opera-
tions, it needs to be run only once per each time-resolved pixel
when compressing our signal. We design this function with five
convolutional layers that generate a feature vector fL 32 times
smaller than the original signal L i j (t) to be compressed. This
compression ratio can be varied by retraining with different
numbers of convolutional layers, but in practice, we found that
this number provides a good trade-off among size reduction,
denoising, and preservation of features.

Decoding step. Given a set of features fL , we aim to learn a
decoding function D [Eq. (2)] that estimates the target uncom-
pressed signal L i j . Note that we do not want to estimate the
whole input 〈L i j 〉, but just the central time-resolved pixel L i j .
We design the function D to perform a set of 1D temporal
deconvolutions and convolutions that operate over the features
fL extracted by the encoding step [Eq. (1)]. This step works as
an upsampling operation with learnable 1D filters. Following
previous works on deep residual nets [17], we apply residual
connections between deconvolution blocks (see Fig. 2). The key
aspect of our decoding function is that, by construction, it learns
a nonlinear mapping between every feature and a corresponding
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Fig. 3. Our encoder generates features that result in equally shaped
radiance patterns at bounded time intervals of the decoder output
(bottom left), which are then combined over the temporal domain in
an overlapped manner (bottom right).

time interval 1t over the recovered signal. This ensures that
our method can handle arbitrary propagation delays that yield
similar radiance patterns placed over the temporal dimension.
In Fig. 3, left, we illustrate this by changing the value of a sin-
gle feature at different positions of fL , resulting in equivalent
temporal profiles over the corresponding time intervals. More
importantly, the convolutional blocks in our decoder (see Fig. 2,
right) ensure each time instant t is covered by multiple features,
and therefore its radiance value L(t) is the sum of multiple
nonlinear mappings of the features that cover that time instant,
allowing for increased complexity in the recovered signal. This
is illustrated in Fig. 3, right, where adjacent features map to
overlapping time intervals in the decoded radiance.

Training and loss function. As in classic encoding–decoding
architectures, we perform simultaneous training of E and D
parameters. We optimize these by minimizing an error function
L between the reference L i j and the decompressed time-
resolved radiance L̂ i j . Since our encoding function operates
over a logarithmic transformation of radiance [Eq. (3)], the
features fL handled by the decoder D and in consequence the
resulting output Y ′ =D( fL) [Eq. (2)] are also in logarithmic
space of radiance. To keep a good trade-off between estimating
peak direct illumination and indirect illumination, we apply
an exponential transformation over both the decoding output
D( fL) and the log-space central pixel g (L i j (t)), and minimize
the mean squared error over these, having

L=
1

T

T−1∑
t=0

(
bg (L i j (t)) − bD( fL )(t))2

, (4)

where b is the base of the exponential function. In practice, we
found that choosing b = 2 provides good results for successfully
decompressing both direct illumination peaks and smooth indi-
rect bounces (see Fig. 4).

Dataset. For training and validation, we rely on the publicly
available Zaragoza-DeepToF transient dataset [8], which con-
tains a sufficiently large number of complex scenarios to prevent
overfitting in our approach. It contains 1050 time-resolved
simulations for a wide variety of architectural scenarios, with
a spatial resolution of 300× 300 and a temporal resolution of
4096 pixels at 16.6 ps/pixel. For training, we randomly select
a total of 860,000 pixel neighborhoods of size 9× 9 from 145
scenes. For validation, we select a total of 370,000 inputs from
37 completely different scenes. While global illumination
introduces correlation between patches, our validation set is
uncorrelated with the training set, since the patches come from
different scenarios. Our training is unsupervised, where our
target L i j is the central pixel of the input neighborhood 〈L i j 〉.
Although the simulations in the dataset are not completely noise
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Fig. 4. Results of the Altar scene (see Visualization 1), with refer-
ence frames (left). Training with our exponential transform MSE loss
[center, Eq. (4)] is able to recover strong direct peaks, while a MSE loss
applied over the logarithmic-space of the output (right) fails to recover
these features.

free, our method based on 3D convolutions is capable of extract-
ing spatiotemporal features while simultaneously removing
high-frequency variance from noisy data.

Figure 6 shows reference frames of the Room scene from the
validation set (top row), and the resulting frames after com-
pressing each reference time-resolved pixel to 128 features and
decompressing them back to 4096 pixels (second row). The
bottom row shows the full time-resolved signal at the marked
location, with the reference (blue) and our recovered radiance
(green), and the timestamps of the frames. Our trained decoder
successfully recovers most radiance features of the scene using
a compressed representation of the radiance 32 times smaller
than the original. Table 1 compares compression ratios for three
standard high-dynamic range (HDR) compression libraries—
RGBE, OpenEXR using wavelet/Huffman compression, and
HDF5 with gzip—for all the validation scenes shown in this
article, showing that our method yields smaller representations
(3.1% of the original signal) than other approaches (8.8% to
28.4%). Please refer to Visualization 1 for the entire frame
sequences.

One of the pathological problems in transient light transport
data is the presence of different types of noise in the signal. In
particular, Monte Carlo-based transient rendering methods
suffer from high variance due to uneven distributions of samples
over time [6]. Our fully convolutional encoder is capable of
extracting the most significant features by performing 3D spa-
tiotemporal convolutions. In Fig. 5, we can observe the results
of the denoising in two extreme cases with higher-order indirect
illumination in the Building and Balcony validation scenes. Our
approach does not force the compressed features (shown in red)
to retain light transport properties. However, while the sam-
ples at the target time-resolved pixel L i j (blue) present a lot of
variance, the spatiotemporal neighboring samples (brown color
scale) contain relevant information that our encoder uses to
extract the most significant features to decode our reconstructed

Table 1. Reduction Ratios for the Validation Scenes
Illustrated in This Letter for Standard Libraries
Supporting HDR Compression

Scene HDF5 OpenEXR RGBE Ours

Altar (Fig. 4) 9.5% 8.8% 8.9% 3.1%
Balcony (Fig. 5, left) 12.7% 9.8% 13.4% 3.1%
Building (Fig. 5, right) 17.1% 12.9% 16.6% 3.1%
Room (Fig. 6) 28.4% 20.1% 24.9% 3.1%

https://doi.org/10.6084/m9.figshare.11964906
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Fig. 5. Higher-order indirect illumination results in the Balcony (left) and Building (right) scenes from the validation set. Images show selected ref-
erence frames (top) and our denoised frames (bottom) after encoding and decoding each time-resolved pixel. Plots show our time-resolved profiles
at marked pixels (green), reference samples of that pixel (blue), compressed features (red), and all the spatiotemporal input samples analyzed by our
encoder, color-coded by the distance to the center of the neighborhood 〈L i j 〉.
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Fig. 6. Room scene results, showing high decompression accuracy,
recovering both high- and low-frequency features in the temporal
domain. Top: reference frames. Center: our resulting frames after
decompression. Bottom: time-resolved transport at the marked
location (top-left).

signal. Finally, Fig. 7 shows how our method generalizes to real
data captured in non-line-of-sight configurations (e.g., [4,5]),
where the temporal profiles present much smoother features due
to illumination being scattered by an auxiliary capture wall.

In conclusion, we have presented a new method for com-
pressing and denoising transient light transport data. By
observing the characteristics of light transport in the temporal
domain, we have demonstrated how spatiotemporal 3D convo-
lutions are capable of extracting most meaningful features even
in extremely noisy conditions. This leads to a compressed signal,
from which the original can be recovered with significantly less
variance by means of a convolutional decoder. Transient imag-
ing methods and hardware present critical trade-offs between
capture time and signal noise. Our method can mitigate this,
while reducing the computational time required to post-process
the data. We believe that our pipeline could be applied to large
captured datasets, once acquisition processes become faster.

4 16
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time (ns) time (ns) time (ns)Hidden scene 4 16 4 16

Reference
Ours

Fig. 7. Results for real data (blue) captured on a non-line-of-sight
setup (left) [5]. The plots show our results (green) at different points of
the captured grid.
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