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Abstract: Omnidirectional and 360° images are becoming widespread in industry and in consumer
society, causing omnidirectional computer vision to gain attention. Their wide field of view allows
the gathering of a great amount of information about the environment from only an image. However,
the distortion of these images requires the development of specific algorithms for their treatment and
interpretation. Moreover, a high number of images is essential for the correct training of computer
vision algorithms based on learning. In this paper, we present a tool for generating datasets of
omnidirectional images with semantic and depth information. These images are synthesized from
a set of captures that are acquired in a realistic virtual environment for Unreal Engine 4 through
an interface plugin. We gather a variety of well-known projection models such as equirectangular
and cylindrical panoramas, different fish-eye lenses, catadioptric systems, and empiric models.
Furthermore, we include in our tool photorealistic non-central-projection systems as non-central
panoramas and non-central catadioptric systems. As far as we know, this is the first reported tool for
generating photorealistic non-central images in the literature. Moreover, since the omnidirectional
images are made virtually, we provide pixel-wise information about semantics and depth as well
as perfect knowledge of the calibration parameters of the cameras. This allows the creation of
ground-truth information with pixel precision for training learning algorithms and testing 3D vision
approaches. To validate the proposed tool, different computer vision algorithms are tested as line
extractions from dioptric and catadioptric central images, 3D Layout recovery and SLAM using
equirectangular panoramas, and 3D reconstruction from non-central panoramas.

Keywords: computer vision; omnidirectional cameras; virtual environment; deep learning;
non-central systems; image generator; semantic label

1. Introduction

The great amount of information that can be obtained from omnidirectional and 360° images
makes them very useful. Being able to obtain information from an environment using only one shot
makes these kinds of images a good asset for computer vision algorithms. However, due to the
distortions they present, it is necessary to adapt or create special algorithms to work with them. New
computer vision and deep-learning-based algorithms have appeared to take advantage of the unique
properties of omnidirectional images. Nevertheless, for a proper training of deep-learning algorithms,
big datasets are needed. Existing datasets are quite limited in size due to the manual acquisition,
labeling and post-processing of the images. To make faster and bigger datasets, previous works such
as [1-5] use special equipment to obtain images, camera pose, and depth maps simultaneously from
indoor scenes. These kinds of datasets are built from real environments, but need post-processing
of the images to obtain semantic information or depth information. Tools like LabelMe [6] and new
neural networks such as SegNet [7] can be used to obtain automatic semantic segmentation from the
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real images obtained in the previously mentioned datasets, yet without pixel precision. Datasets such
as [8,9] use video sequences from outdoor scenes to obtain depth information for autonomous driving
algorithms. In addition, for these outdoor datasets, neural networks are used to obtain semantic
information from video sequences [10,11], in order to speed up and enlarge the few datasets available.

Due to the fast development of graphic engines such as Unreal Engine [12], virtual environments
with realistic quality have appeared. To take advantage of this interesting property, simulators such as
CARLA [13] and SYNTHIA [14] recreate outdoor scenarios in different weather conditions to create
synthetic datasets with labeled information. If we can define all the objects in the virtual environment,
it is easier to create a semantic segmentation and object labeling, setting the camera pose through
time and computing the depth for each pixel. These virtual realistic environments have helped to
create large datasets of images and videos, mainly from outdoor scenarios, dedicated to autonomous
driving. Other approaches use photorealistic video games to generate the datasets. Since these games
already have realistic environments designed by professionals, many different scenarios are recreated,
with pseudo-realistic behaviors of vehicles and people in the scene. Works such as [15] use the video
game Grand Theft Auto V (GTA V) to obtain images from different weather conditions with total
knowledge of the camera pose, while [16,17] also obtaining semantic information and object detection
for tracking applications. In the same vein, [18,19] obtain video sequences with semantic and depth
information for the generation of autonomous driving datasets in different weather conditions and
through different scenarios, from rural roads to city streets. New approaches such as the OmniScape
dataset [20] uses virtual environments such as CARLA or GTA V to obtain omnidirectional images
with semantic and depth information in order to create datasets for autonomous driving.

However, most of the existing datasets have only outdoors images. There are very few synthetic
indoor datasets [21] and most of them only have perspective images or equirectangular panoramas.
Fast development of computer vision algorithms demands ever more omnidirectional images and that
is the gap between the resources that we want to fill in this work. In this work we present a tool to
generate image datasets from a huge diversity of omnidirectional projection models.

We focus not only on panoramas, but also on other central projections, such as fish-eye lenses [22,23],
catadioptric systems [24] and empiric models such as Scaramuzza’s [25] or Kannala-Brandt’s [26]. Our
novelty resides in the implementation of different non-central-projection models, such as non-central
panoramas [27] or spherical [28] and conical [29] catadioptric systems in the same tool.

The composition of the images is made in a virtual environment from Unreal Engine,
making camera calibration and image labeling easier. Moreover, we implement several tools to
obtain ground-truth information for deep-learning applications, for example layout recovery or
object detection.

The main contributions of this work can be summarized as follows:

e Integrating in a single framework several central-projection models from different omnidirectional
cameras as panoramas, fish-eyes, catadioptric systems, and empiric models.

e  Creating the first photorealistic non-central-projection image generator, including non-central
panoramas and non-central catadioptric systems.

e Devise a tool to create datasets with automatic labeled images from photorealistic virtual
environments.

o Develop automatic ground-truth generation for 3D layout recovery algorithms and object
detection.

The next section of this work is divided in 4 main parts. In the first one, Section 2.1, we
introduce the virtual environment in which we have worked. Section 2.2 presents the mathematical
background of the projection models implemented and in Sections 2.3 and 2.4 we explain how the
models are implemented.
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2. Materials and Methods

The objective of this work is to develop a tool to create omnidirectional images enlarging existing
datasets or making new ones to be exploited by computer vision algorithms under development.
For this purpose, we use virtual environments, such as Unreal Engine 4 [12], from where we can get
perspective images to compose 360° and omnidirectional projections. In these environments, we can
define the camera (pose, orientation and calibration), the layout, and the objects arranged in the scene,
making it easier to obtain ground-truth information.

The proposed tool includes the acquisition of images from a virtual environment created with
Unreal Engine 4 and the composition of omnidirectional and 360 images from a set of central and
non-central camera systems. Moreover, we can acquire photorealistic images, semantic segmentation
on the objects of the scene or depth information from each camera proposed. Furthermore, given
that we can select the pose and orientation of the camera, we have enough information for
3D-reconstruction methods.

2.1. Virtual Environments

Virtual environments present a new asset in the computer vision field. These environments
allow the generation of customized scenes for specific purposes. Moreover, great development of
computer graphics has increased the quality and quantity of graphic software, obtaining even realistic
renderings. A complex modeling of the light transport and its interaction with objects is essential to
obtain realistic images. Virtual environments such as POV-Ray [30] and Unity [31] allow the generation
of customized virtual environments and obtain images from them. However, they do not have the
realism or flexibility in the acquisition of images we are looking for. A comparative of images obtained
from acquisitions in POV-Ray and acquisitions in Unreal Engine 4 is presented in Figure 1.

(b)

Figure 1. (a): Kannala—Brandt projection obtained from Unreal Engine 4. (b): Kannala—Brandt

projection obtained from POV-Ray.

The virtual environment we have chosen is Unreal Engine 4, (UE4) [12], which is a graphic engine
developed by EpicGames (https:/ /www.epicgames.com). Being an open-source code has allowed
the development of a great variety of plugins for specific purposes. Furthermore, realistic graphics
in real time allows the creation of simulations and generation of synthetic image datasets that can be
used in computer vision algorithms. Working on virtual environments makes easier and faster the
data acquisition than working on the field.

In this work, we use UE4 with UnrealCV [32], which is a plugin designed for computer vision
purposes. This plugin allows client-server communication with UE4 from external Python scripts (see
Figure 2) which is used to automatically obtain many images. The set of available functions includes
commands for defining and operating virtual cameras; i.e., fixing the position and orientation of the
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cameras and acquiring images. As can be seen in Figure 3, the acquisition can obtain different kinds of
information from the environment (RGB, semantic, depth or normals).

However, the combination of UE4+UnrealCV only allows perspective images, so it is necessary to
find a way to obtain enough information about the environment to obtain omnidirectional images and
in particular to build non-central images. For central omnidirectional images, the classical adopted
solution is the creation of a cube map [33]. This proposal consists of taking 6 perspective images from
one position so we can capture the whole environment around that point. We show that this solution
only works for central projections, where we have a single optical center that matches with the point
where the cube map has been taken. Due to the characteristics of non-central-projection systems,
we make acquisitions in different locations, which depend on the projection model, to compose the
final image.

Unreal Engine 4 External program

Virtual Environment Command Computer Vision Algorithm

UnrealCV UnrealCV
Server Client

Figure 2. Client-server communication between Unreal Engine 4 and an external program
via UnrealCV.

Response

(b) ()
Figure 3. Capture options available in UnrealCV. (a): Lit RGB image; (b): Object mask; (c): Depth;

(d): Surface normal.

2.2. Projection Models

In this section, we introduce the projection models for the different cameras that are implemented
in the proposed tool. We are going to explain the relationship between image—plane coordinates and
the coordinates of the projection ray in the camera reference. We distinguish two types of camera
models: central-projection camera models and non-central-projection camera models. Among the
central projection cameras, we consider:

Panoramic images: Equirectangular and Cylindrical

e  Fish-eye cameras, where we distinguish diverse lenses: Equi-angular, Stereographic, Equi-solid angle,
Orthogonal

e  Catadioptric systems, where we distinguish different mirrors: Parabolic and Hyperbolic
Scaramuzza model for revolution symmetry systems

e Kannala-Brandt model for fish-eye lenses

Among the non-central projection cameras, we consider:

e  Non-central panoramas
Catadioptric systems, where we distinguish different mirrors: Spherical and Conical
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2.2.1. Central-Projection Cameras

Central-projection cameras are characterized by having a unique optical center. That means
that every ray coming from the environment goes through the optical center to the image.
Among omnidirectional systems, panoramas are the most used in computer vision. Equirectangular
panoramas are 360°-field-of-view images that show the whole environment around the camera. This
kind of image is useful to obtain a complete projection of the environment from only one shot. However,
this representation presents heavy distortions in the upper and lower part of the image. That is because
the equirectangular panorama is based on spherical coordinates. If we take the center of the sphere
as the optical center, we can define the ray that comes from the environment in spherical coordinates
(6, ¢). Moreover, since the image plane is an unfolded sphere, each pixel can be represented in the
same spherical coordinates, giving a direct relationship between the image plane and the ray that
comes from the environment. This relationship is described by:

(6, (P) = ((Zx/xmux - 1)7'[, (1/2 - y/ymax>77) ’ 1)

where (x,y) are pixel coordinates and (Xuax, Ymax) the maximum value, i.e., the image resolution.

In the case of cylindrical panoramas, the environment is projected into the lateral surface of a
cylinder. This panorama does not have a 360° practical field of view, since the perpendicular projection
to the lateral surface of the environment cannot be projected. However, we can achieve up to 360° on
the horizontal field of view, FOV}, and theoretical 180° on the vertical field of view, FOV,,, that usually
is reduced from 90° to 150° for real applications. We can describe the relationship between the ray that
comes from the environment and the image plane as:

(0, ¢9) = ((2x/xmax —1)FOV}, /2, (1 — 2y /Ymax)FOV, / 2) 2)

Next, we introduce the fish-eye cameras [22]. The main characteristic of this kind of camera is the
wide field of view. The projection model for this camera system has been obtained in [34], where a
unified model for revolution symmetry cameras is defined. This method consists of the projection of
the environment rays into a unit radius sphere. The intersection between the sphere and the ray is
projected into the image plane through a non-linear function # = h(¢), which depends on the angle
of the ray and the modeled fish-eye lens. In Table 1 h(¢) for the lenses implemented in this work
is defined.

Table 1. Definition of h(¢) = ? for different fish-eye lenses.

Equi-Angular  Stereographic Orthogonal Equi-Solid Angle
fo 2ftan(p/2)  fsing fsin(¢/2)

For catadioptric systems, we use the sphere model, presented in [24]. As in fish-eye cameras,
we have the intersection of the environment’s ray with the unit radius sphere. Then, through a
non-linear function, we project the intersected point into a normalized plane. The non-linear function,
h(x), depends on the mirror we are modeling. The final step of this model projects the point in the
normalized plane into the image plane with the calibration matrix H., defined as H. = K.R:M,, where
K, is the calibration matrix of the perspective camera, R, is the rotation matrix of the catadioptric
system and M, defines the behavior of the mirror (see Equation (3)).

fe 0 up Y- 0 0
Ke=10 f, oo|[;Mc=| 0 ¢-¥ of, 3)
0 0 1 0 0 1
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where (fy, fy) are the focal length of the camera, and (1o, vo) the coordinates of the optical center in
the image, the parameters ¥ and ¢ represent the geometry of the mirror and are defined in Table 2, d is
the distance between the camera and the mirror and 2p is the semi-latus rectum of the mirror.

Table 2. Definition of ¥ and ¢ for different mirrors.

Catadioptric System 4 Y

K . d+2p
Hyper-catadioptric 0<¢ <1 VAR

Para-catadioptric 1 1+2p

The last central-projection models presented in this work are the Scaramuzza and Kannala-Brandt
models. Summarizing [25,26], these empiric models represent the projection of a 3D point into the
image plane through non-lineal functions.

In the Scaramuzza model, the projection is represented by Ap = Ag(u”) = PX. The non-lineal
function, g(u”) = (u”,9", f(u”,v")), is defined by the image coordinates and a n-grade polynomial
function f(u”,v") = ag + a1p + a0> + - - - +anpN, where p is defined as the distance of the pixel to the
optical center in the image plane, and [ag, 41, . . ., ay]| are calibration parameters of the modeled camera.

In the Kannala-Brandt camera model, the forward projection model is represented as:

i) L@d@) )

Cx

+ , 4)

SRR

Cy

where r = \/x% 4 2, (cy, cy) are the coordinates of the optical center and d(6) is the non-linear function
which is defined as d(0) = 6 + k10% + k0% + k367 + k46°, where 0 = arctan(r/z) and [ky, ko, k3, k4] are
the parameters that characterize the modeled camera.

2.2.2. Non-Central-Projection Cameras

Central-projection cameras are characterized by the unique optical center. By contrast,
in non-central-projection models, we do not have a single optical center for each image. For the
definition of non-central-projection models, we use Pliicker coordinates. In this work, we summarize
the models; however, a full explanation of the models and Pliicker coordinates is described in [35].

Non-central panoramas have similarities with equirectangular panoramas. The main difference
with central panoramas is that each column of the non-central panorama shares a different optical center.
Moreover, since central panoramas are the projection of the environment into a sphere, non-central
panoramas are the projection into a semi-toroid, as can be seen in Figure 4a. The optical center of
the image is distributed in the trajectory of centers of the semi-toroid. This trajectory is defined as a
circle, dashed line in Figure 4a, whose center is the revolution axis. The definition of the rays that go to
the environment from the non-central system is obtained in [27], given as the result of Equation (5).
The parameter R, is the radius of the circle of optical centers and (6, ¢) are spherical coordinates in the
coordinate system.

NT T
= <§ (;") = (sin @ cos@,sin ¢sinb, cos ¢, R sin ¢ sinf, —R, sin ¢ cos 0, 0) 5)
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(a) Non-central panorama (b) Non-central Catadioptric

Figure 4. Non-central systems schemes.

Finally, spherical and conical catadioptric systems are also described by non-central-projection
models. Just as with non-central panoramas, a full explanation of the model can be found on [28,29].

Even though the basis of non-central and central catadioptric systems is the same, we take a
picture of a mirror from a perspective camera, the mathematical model is quite different. As in
non-central panoramas, for spherical and conical mirror we also use the Pliicker coordinates to define
projection rays; see Figure 4b. For conical catadioptric systems, we define Z, = Z. + R, cot ¢, where Z,
and R, are geometrical parameters and cot¢ = (z + rtan27)/(ztan27 — r), where 7 is the aperture
angle of the cone. When these parameters are known, the 3D ray in Pliicker coordinates is defined by:

NT T
== ({,‘ C) = (sin @ cos6,sin ¢ sinb, cos ¢, —Z,sin ¢ sin6, Z, sin ¢ cos 0, 0) 6)

For the spherical catadioptric system, we define the geometric parameters as Zs = Z,, + R;,
Zye1 = Zs/Rs, > = x* + y? and p? = x? + y? + z2. Given the coordinates at a point of the image plane,
the Equation (7) defines the ray that reflects on the mirror:

g = (5 E)T = (—x&,y&,—@, est,est,O)T, (7)

where § = 2127} — 2z, /772 — 30?72

rel rel

27 (—1*Z2, + p*) —zp* and y = (—r2Z%, + p?)Z2,.

+0%5e = (=12 +22)Z2, +2\/yz +p% { = 2r*zZ}, — zp*7?

rel

2.3. Central Cameras Simulator

In this section, we describe the simulator, the interaction with UnrealCV and how are the projection
models are implemented. The method to obtain omnidirectional images can be summarized in
two steps:

e Image acquisition: the first step is the interaction with UE4 through UnrealCV to obtain the
cube map from the virtual environment.

e Image composition: the second step is creating the final image. In this step we apply the
projection models to select the information of the environment that has been acquainted in the
first step.

For central-projection images, the two steps are independent from each other. Once we
have a cube map, we can build any central-projection image from that cube map. However,
for non-central-projection images, the two steps are mixed. We need to compute where the optical
center is for each pixel and make the acquisition for that pixel. Examples of the images obtained for
each projection model can be found in the Appendix A.
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2.3.1. Image Acquisition

The image acquisition is the first step to build omnidirectional images. In this step we must
interact with UE4 through UnrealCV using Python scripts. Camera pose and orientation, acquisition
field of view and mode of acquisition are the main parameters that we must define in the scripts to
give the commands to UnrealCV.

In this work, we call cube map to the set of six perspective images that models the full 360°
projection of the environment around a point; concept introduced in [33]. Notice that 360° information
around a point can be projected into a sphere centered in this point. Composing a sphere from
perspective images requires a lot of time and memory. Simplifying the sphere into a cube, as seen in
Figure 5a, we have a good approximation of the environment without losing information; see Figure 5b.
We can make this affirmation since the defined cube is a smooth atlas of the spherical manifold S?
embedded in R3.

To create central-projection systems, the acquisition of each cube map must be done from a single
location. Each cube map is the representation of the environment from one position—the optical center
of the omnidirectional camera. That is why we use UE4 with UnrealCV, where we can define the camera
pose easily. Moreover, the real-time renderings of the realistic environments allows fast acquisitions of
the perspective images to build the cube maps. Nevertheless, other virtual environments can be used
to create central-projection systems whenever the cube map can be built with these specifications.

/ - s
/ o /
- e Z il
\_\
f e B [N, >
.' Y F - |
’ 5 U] ..t I 'Yh L B . s Pl I
I',\\‘\\ y . | " .
% S /
\ /
. A A
P e S s . y e
7 0
o il
A
V% ==

@) (b)

Figure 5. (a): Simplification of the sphere into the cube map; (b): Unfolded cube map from a scene.

Going back to UnrealCV, the plugin gives us different kinds of capture modes. For our simulator,
we have taken 3 of these modes: lit, object mask and depth.

In the lit mode, UnrealCV gives a photorealistic RGB image of the virtual environment. The degree
of realism must be created by the designer of the scenario. The second is the object mask mode. This
mode gives us semantic information of the environment. The images obtained have a colored code to
identify the different objects into the scene. The main advantage of this mode is the pixel precision for
the semantic information, avoiding the human error in manual labeling. Moreover, from this capture
mode, we can obtain ground-truth information of the scene and create specific functions to obtain
ground-truth data for computer vision algorithms, as layout recovery or object detection. The third
mode is depth. This mode gives a data file where we have depth information for each pixel of the
image. For the implementation of this mode in the simulator, we keep the exact data information and
compose a depth image in grayscale.
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2.3.2. Image Composition

Images from central-projection cameras are composed from a cube map acquired in the scene.
The composition of each image depends on the projection model of the camera, but they follow the
same pattern.

The Algorithm 1 shows the steps in the composition of central-projection images. Initially, we
get the pixel coordinates from the destination image that we want to build. Then, we compute the
spherical coordinates for each pixel through the projection model of the camera we are modeling.
With the spherical coordinates we build the vector that goes from the optical center of the camera
to the environment. Then, we rotate this vector to match the orientation of the camera into the
environment. The intersection between this rotated vector and the cube map gives the information
of the pixel (color, label, or distance). In contrast to the coordinate system of UE4, which presents a
left-handed coordinate system and different rotations for each axis (see Figure 6a), our simulator uses a
right-handed coordinate system and spherical coordinates, as shown in Figure 6b. Changing between
the coordinate systems is computed internally in our tool to keep mathematical consistency between
the projection models and the virtual environment.

Algorithm 1: Central-projection composition

Input: Set-up of final image (Camera, Resolution, type, ...)
Load cube map
while Go through final image do
get pixel coordinates
compute spherical coordinates -> Apply projection model of omnidirectional camera
compute vector/light ray -> Apply orientation of the camera in the environment
get pixel information -> Intersection between light ray and cube map
end

zA ZA

p > ®

Y cp\wgzi X Y

(a) UE4 coordinate system (b) OmniSCV coordinate system

Figure 6. (a): Coordinate system used in graphic engines focused on first-person video games;
(b): Coordinate system of our image simulator.

Equirectangular panoramas have an easy implementation in this simulator since equirectangular
images are the projection of the environment into a sphere. Then, the destination image can be defined
in spherical coordinates directly from the pixel coordinates as:

2u v
9 o (Mmax B 1) & (P N (1/2 - Umax) 7TI (8)

where these equations define the range of the spherical coordinates as —77 < 0 < mand —7/2 < ¢ <
/2.
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In the cylindrical model we also use spherical coordinates, but defined with the restrictions of
the cylindrical projection. In the definition of the Equation (9) we can see that two new parameters
appear. The FOV}, parameter represents the horizontal field of view of the destination image, which
can go up to 360°, and can be changed by the simulator user. The FOV;, parameter models the height
of the lateral surface of the cylinder from the optical center point of view.

2u FOV, 20\ FOV,
= —_ 1 M = 1 —_
( ) Vi, ( UW) v, ©)

where the range of the spherical coordinates are —FOV},/2 < 8 < FOV},/2 and —FOV,/2 < ¢ <
FOV,/2.

In fish-eye cameras we have a revolution symmetry, so we use polar coordinates. We transform
the pixel coordinates into polar coordinates with the next equation:

(7,0) = (\/ (11— 119)2 + (v — v9)2, arctan((1g — 1) / (v — vo))> , (10)

where we define (ug, v9) = (Umax/2, Vmax/2).

Given this definition, the range of the polar coordinates is 0 < # < +/(u2,, + 02,,,)/4 and
—71 < 6 < 1. However, we crop #pax = min(tmax /2, Umax/2) in order to constrain the rendered pixels
in the camera field of view. After obtaining the polar coordinates, we get the spherical coordinates
for each pixel through the projection model. In Table 3 we have the relationship between the polar
coordinate 7 and the spherical coordinate ¢ given by the projection model of fish-eye cameras.

Table 3. Relationship between # and ¢ from the fish-eye projection model.

Equi-angular Stereographic Orthogonal Equi-Solid Angle
p="7r/f ¢ =2arctan(?/2f) ¢ =arcsin(?/f) ¢ = 2arcsin(?/f)

where f is the focal length of the fish-eye camera.

On catadioptric systems, we define the parameters ¢ and # that model the mirror as shown in
Table 4. We use polar coordinates to select what pixels of the image are rendered, but we apply the
projection model on the pixel coordinates directly.

Table 4. Definition of ¢ and # for central mirrors.

Catadioptric System 4 1

Para-catadioptric 1 —2p
d —2p
\d2+4p? \d2+4p?

Hyper-catadioptric

For computing the set of rays corresponding to the image pixels, we use the back-projection
model described in [36]. The first step is projecting the pixel coordinates into a 2D projective space:
p=(u,v)T — 6= (%17,2)". Then, we re-project the point into the normalized plane with the inverse
calibration matrix of the catadioptric system as & = H_ 19, (see Section 2.2). Finally, through the inverse
of the non-linear function /(x), shown in the Equation (11), we can obtain the coordinates of the ray
that goes from the catadioptric system to the environment.

HHVEH A=)+
247+ 2
e RV Gl GRS
Y R+t b
L+ 2+ (- (2 + )
‘ AP+ 2 ¢

v="h"1(s) =

N = R
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These projection models give us an oriented ray that comes out of the camera system. This ray
is expressed in the camera reference. Since the user of the simulator can change the orientation of
the camera in the environment in any direction, we need to change the reference system of the ray to
the world reference. First, we rotate the ray from the camera reference to the world reference. Then
we rotate again the ray in the direction of the camera inside the world reference. After these two
rotations, we have changed the reference system of the ray from the camera to the world reference,
taking into account the orientation of the camera in the environment. Once the rays are defined, we
get the information from the environment computing the intersection of each ray with the cube map.
The point of intersection has the pixel information of the corresponding ray.

2.4. Non-central Camera Simulator

The simulator for non-central cameras is quite different from the central camera one. In this case,
we can neither use only a cube map to build the final images nor save all the acquisitions needed.
The main structure proposed to obtain non-central-projection images is shown in Algorithm 2. Since
we have different optical centers for each pixel in the final image, we group the pixels sharing the
same optical center, reducing the number of acquisitions needed to build it. The non-central systems
considered group the pixel in different ways, so the implementations are different.

Algorithm 2: Non-central-projection composition

Input: Set-up of final image (Camera, Resolution, type, ...)
while Go through final image do
get pixel coordinates
compute optical center
make image acquisition -> Captures from UnrealCV
compute spherical coordinates -> Apply projection model
get pixel information -> Intersection with acquired images
end

From the projection model of non-central panoramas, we get that pixels with the same u coordinate
share the same optical center. For each coordinate u of the image, the position for the image acquisition
is computed. For a given center (X, Y, ZC)T, and radius R, of the non-central system, we have to
compute the optical center of each u coordinate.

(Xoc, Yo, ZOC)T = (X, Ye, ZC)T + Rc(cos 6 cos ¢, sin 0, cos 0 sin ¢) T (12)
9:(2” —1>7‘[ (13)
Umax

To obtain each optical center, we use Equation (12), where 6 is computed according to Equation (13)
and ¢ is the pitch angle of the non-central system. Once we have obtained the optical center, we make
the acquisition in that location, obtaining a cube map. Notice that this cube map only allows the
obtaining of information for the location it has acquired. This means that for every optical center of the
non-central system, we must make a new acquisition.

¢ = (1/2 — ) s (14)

Umax

Once the acquisition is obtained from the correct optical center, we compute the spherical
coordinates to cast the ray into the acquired images. From the Equation (13) we already have one of
the coordinates; the second is obtained from the Equation (14).
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Table 5. Definition of cot¢$ and Z, for different mirrors.

Mirror Z, cot ¢
Conical Z;+ Rccot¢p (1+rtan(27))/(tan(27) —71)
Spherical —Z/s Zs(6+€)/6

In non-central catadioptric systems, pixels sharing the same optical center are grouped in
concentric circles. That means we go through the final image from the center to the edge, increasing
the radius pixel by pixel. For each radius, we compute the parameters Z, and cot ¢ as in Table 5, which
depend on the mirror we want to model (see Section 2.2). The parameter Z, allows us to compute the
optical center from where we acquire a cube map of the environment.

(u,v) = (Umax/2 + 7080,V /2 — rsinB) (15)

Once the cube map for each optical center is obtained, we go through the image using polar
coordinates. For a fixed radius, we change 6 and compute the pixel to color, obtained from Equation (15).
Knowing 0 and ¢, from Table 5, we can cast a ray that goes from the catadioptric system to the cube
map acquired. The intersection gives the information for the pixel.

In these non-central systems, the number of acquisitions required depends on the resolution of
the final non-central image. That means, the more resolution the image has, the more acquisitions
are needed. For an efficient composition of images, we need to define as fast as possible the pose
of the camera in the virtual environment for each optical center. That is one of the reasons we use
Unreal Engine 4 as a virtual environment, where we can easily change the camera pose in the virtual
environment making fast acquisitions, since the graphics work in real time.

3. Results

Working on an environment of Unreal Engine 4 [12] and the simulator presented in this paper,
we have obtained a variety of photorealistic omnidirectional images from different systems. In the
Appendix A we have several examples of these images. To evaluate if our synthetic images can be
used in computer vision algorithms, we compare the evaluation of four algorithms with our synthetic
images and real ones. The algorithms selected are:

o  Corners For Layouts: CFL [37] is a neural network that recovers the 3D layout of a room from an

equirectangular panorama. We have used a pre-trained network to evaluate our images.
e  Uncalibtoolbox: the algorithm presented in [34] is a MatLab toolbox for line extraction and

camera calibration for different fish-eye and central catadioptric systems. We compare the

calibration results from different images.
e OpenVSLAM: a virtual Simultaneous Location and Mapping framework, presented in [38],

which allows use of omnidirectional central image sequences.
e 3D line Reconstruction from single non-central image which was presented in [39,40] using

non-central panoramas.

3.1. 3D Layout Recovery, CFL

Corners For layouts (CFL) is a neural network that recovers the layout of a room from one
equirectangular panorama. This neural network provides two outputs: one is the intersection of walls
or edges in the room and the second is the corners of the room. With those representations, we can
build a 3D reconstruction of the layout of the room using Manhattan world assumptions.

For our evaluation, we have used a pre-trained CFL (https://github.com/cfernandezlab/CFL)
network with Equirectangular Convolutions (Equiconv). The training dataset was composed by
equirectangular panoramas built from real images and the ground truth was made manually, which
increases the probability of mistakes due to human error. The rooms that compose this dataset are
4-wall rooms (96%) and 6-wall rooms (6%).


https://github.com/cfernandezlab/CFL
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To compare the performance of CFL, the test images are divided into real images and synthetic
images. In the set of real images, we have used the test images from the datasets STD2D3D [4],
composed of 113 equirectangular panoramas of 4-wall rooms, and the SUN360 [3], composed of
69 equirectangular panoramas of 4-wall rooms and 3 of 6-wall rooms. The set of synthetic images
are divided in panoramas from 4-wall rooms and from 6-walls rooms. Both sets are composed by
10 images taken on 5 different places in the environment in 2 orientations. Moreover, for the synthetic
sets, the ground-truth information of the layout has been obtained automatically with pixel precision.

The goal of these experiments is testing the performance of the neural network in the different
situations and evaluate the results using our synthetic images and comparing with those obtained
with the real ones. In the figures above the ground-truth generation can be seen, Figures 7a,c and 8a,c,
and the output of CFL, Figures 7b,d and 8b,d, for a equirectangular panorama in the virtual
environments recreated. On the 4-wall layout environment we can observe that the output of CFL
is similar to the ground truth. This seems logical since most of the images from the training dataset
have the same layout. On the other hand, the 6-wall layout environment presents poorer results.
The output from CFL in this environment only fits four walls of the layout, probably due to the gaps in

the training data.
(b) (©) (d)

Figure 7. Results of CFL using a synthetic image from a 4-wall environment. (a): Edges ground truth;

(b): Edges output from CFL; (c): Corners ground truth; (d): Corners output from CFL.

(b) (0) (d)

Figure 8. Results of CFL using a synthetic image from a 6-wall environment. (a): Edges ground truth;

(b): Edges output from CFL; (¢): Corners ground truth; (d): Corners output from CFL.

To quantitatively compare the results of CFL, in Table 6 we present the results using real images
from existing datasets with the results using our synthetic images. We compare five standard metrics:
Intersection over union of predicted corner/edge pixels (IoU), accuracy Acc, precision P, Recall R and
F1 Score Fy.

Table 6. Comparative of results of images from different datasets. OmniSCV contains the images
created with our tool on a 6-wall room and a 4-wall room. The real images have been obtained from
the test dataset of [2,4].

Edges Corners
IoU Acc P R R IoU Acc P R K

6-wall OmniSCV  0.424 0.881 0.694 0.519 0.592 0370 0974 0547 0.526 0.534
4-wall OmniSCV 0474 0901 0.766 0.554 0.642 0.506 0985 0.643 0.698 0.669
Real images 0.452 0.894 0.633 0.588 0.607 0.382 0.967 0.758 0425 0.544

Test Images
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3.2. Uncalibtoolbox

The uncalibtoolbox is a MatLab toolbox where we can compute a line extraction and calibration
on fish-eye lenses and catadioptric systems. This toolbox makes the line extraction from the image
and computes the calibration parameters from the distortion on these lines. The more distortion the
lines present in the image, the more accurate the calibration parameters are computed. Presented
in [34], this toolbox considers the projection models to obtain the main calibration parameter 7,; of the
projection system. This #,; parameter encapsulates the distortion of each projection and is related with
the field of view of the camera.

On this evaluation we want to know if our synthetic images can be processed as real images
on computer vision algorithms. We take several dioptric and catadioptric images generated by our
simulator and perform the line extraction on them. To compare the results of the line extraction, we
compare with real images from [34].

In the previous Figures, we presented four equi-angular fish-eye, Figure 9, and two catadioptric
systems, Figure 10. The behavior of the line extraction algorithm of uncalibtoolbox for the synthetic
images of our simulator is similar to the real images presented in [34]. That encourages our
work, because we have made photorealistic images that can be used as real ones for computer
vision algorithms.

Figure 9. Line extraction on fish-eye camera. (ab): Real fisheye images from examples of [34];
(c,d): Synthetic images from our simulator.

(a) (d)
Hyper-catadioptric Para-catadioptric Hyper-catadioptric Para-catadioptric

Figure 10. Line extraction on catadioptric systems. (a,b): Real catadioptric images from examples
of [34]; (c,d): Synthetic images from our simulator.

On the other hand, we compare the accuracy of the calibration process between the results
presented in [34] and the obtained with our synthetic images. The calibration parameter has been
obtained testing 5 images for each r,; and taking the mean value. Since we impose the calibration
parameters in our simulator, we have selected 10 values of the parameter r,;, in the range 0.5 < r;; <
1.5, in order to compare our images with the results of [34]. The calibration results are presented in the
Figure 11.
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Figure 11. Normalized result for the calibration parameters using different omnidirectional cameras.
(a): Calibration results from [34]; (b): Calibration results using images from our simulator.

3.3. OpenVSLAM

The algorithm presented in [38] allows the obtaining of a SLAM for different cameras,
from perspective to omnidirectional central systems. This open-source algorithm is based on an
indirect SLAM algorithm, such as ORB-SLAM [41] and ProSLAM [42]. The main difference with other
SLAM approaches is that the proposed framework allows definition of various types of central cameras
other than perspective, such as fish-eye or equirectangular cameras.

To evaluate the synthetic images generated with OmniSCV, we create a sequence in a virtual
environment simulating the flight of a drone. Once the trajectory is defined, we generate the images
where we have the ground truth of the pose of the drone camera.

The evaluation has been made with equirectangular panoramas of 1920 x 960 pixels through a
sequence of 28 seconds and 30 frames per second. The ground-truth trajectory as well as the scaled
SLAM trajectory can be seen in Figure 12. In the Appendix B we include several captures from the
SLAM results as well as the corresponding frame obtained with OmniSCV. We evaluate quantitatively
the precision of the SLAM algorithm computing the position and orientation error of each frame respect
to the ground-truth trajectory. We consider error in rotation, ¢y, and in translation, ¢, as follows:

(Tt Tr (RgtRestT) 1
€ = arccos | —=———— | ; &g = arccos , (16)
|tgt||test| 2

where tot, Rgt are the position and rotation matrix of a frame in the ground-truth trajectory and test, Rest
are the estimated position up to scale and rotation matrix of the SLAM algorithm in the same frame.
The results of these errors are shown in Figure 13.
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Trajectory

Figure 12. Visual odometry from SLAM algorithm. The red line is the ground-truth trajectory while
the blue line is the scaled trajectory of the SLAM algorithm.
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Figure 13. (a): Position error of the SLAM reconstruction. (b): Orientation error of the SLAM
reconstruction. Both errors are measured in degrees.

3.4. 3D Line Reconstruction from Single Non-Central Image

One of the particularities of non-central images is that line projections contain more geometric
information. In particular, the entire 3D information of the line is mapped on the line projection [43,44].

For evaluating if synthetic non-central images generated by our tool conserve this property, we
have tested the proposal presented in [40]. This approach assumes that the direction of the gravity
is known (this information could be recovered from an inertial measurement unit (IMU)) and lines
are arranged in vertical and horizontal lines. Horizontal lines can follow any direction contained
in any horizontal plane (soft-Manhattan constraint). The non-central camera captures a non-central
panorama of 2048 x 1024 pixels with a radius of R = 1m and an inclination of 10 degrees from the
vertical direction.

A non-central-depth synthetic image has been used as ground truth of the reconstructed points
(see Figure 14b). In Figure 14a we show the extracted line projections and segments on the non-central
panoramic image; meanwhile, Figure 15 presents the reconstructed 3D line segments. We have omitted
the segments with low effective baseline in the 3D representation for visualization purposes.
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Figure 14. (a) Extracted line projections and segments on the non-central panorama. (b) Ground-truth

(@) (b) (©)

Figure 15. 3D line segments reconstructed from line extraction in non-central panorama. In red the

point-cloud obtained from depth-map.

2
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reconstructed 3D line segments. In black the ground truth. In blue the circular location of the optical
center and the Z axis. In green the axis of the vertical direction. (a) Orthographic view. (b) Top view. (c)
Lateral view.

4. Discussion

From our tool we have obtained RGB, depth and semantic images from a great amount of
omnidirectional projection systems. These images have been obtained from a photorealistic virtual
world where we can define every parameter. To validate the images obtained from our tool, we have
made evaluations with computer vision algorithms that use real images.

In the evaluation with CFL we have interesting results. On one hand, we have obtained results
comparable to datasets with real images. This behavior shows that the synthetic images generated
with our tool are as good as real images from the existing datasets. On the other hand, we have
made different tests changing the layout of our scene, something that cannot be done in real scenarios.
On these changes we have realized that CFL does not work properly with some layouts. This happens
because existing datasets have mainly 4-wall rooms to use as training data and the panoramas have
been taken in the middle of the room [2,4]. This makes it hard for the neural network to generalize for
rooms with more than 4 walls or panoramas that have been taken in different places inside the room.
Our tool can aid in solving this training problem. Since we can obtain images from every place in the
room and we can change the layout, we can fill the gaps of the training dataset. With bigger and richer
datasets for training, neural networks can improve their performance and make better generalizations.

In the evaluation with uncalibtoolbox, we have tested catadioptric systems and fish-eye lenses.
We have compared the precision of the toolbox for real and synthetic images. In the line extraction,
the toolbox has no problems nor makes any distinction from one kind of images or the other. That
encourages our assumptions that our synthetic images are photorealistic enough to be used as
real images. When we compare the calibration results, we can see that the results of the images
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obtained from [34] and the results from our synthetic images are comparable. There are no big
differences in precision. The only different values observed are in hyper-catadioptric systems. For the
hyper-catadioptric systems presented in [34], the computed calibration parameters differ from the real
ones while in the synthetic hyper-catadioptric systems, we have more accurate parameters. A possible
conclusion of this effect is the absence of the reflection of the camera in the synthetic images. For those,
we have more information of the environment in the synthetic images than in real ones, helping the
toolbox to obtain better results for the calibration parameters. From the results shown, we can conclude
that our tool can help to develop and test future calibration tools. Since we are the ones that set the
calibration of the system in the tool, we have perfect knowledge of the calibration parameters of the
image. However, real systems need to be calibrated a priori or we must trust the calibration parameters
that the supplier of the system gives us.

In the evaluation of the SLAM algorithm, we test if the synthetic images generated with our
tool can be used in computer vision algorithms for tracking and mapping. If we compare the results
obtained from the OpenVSLAM algorithm [38], with the ground-truth information that provides our
tool, we can conclude that the synthetic images generated with OmniSCV can be used for SLAM
applications. The position error is computed in degrees due to the lack of scale in the SLAM algorithm.
Moreover, we observe the little position and orientation error of the camera along the sequence (see
Figure 13), keeping the estimated trajectory close to the real one. Both errors are less than 8 degrees
and decrease along the trajectory. This correction of the position is the effect of the loop closure of
the SLAM algorithm. On the other hand, we obtain ground-truth information of the camera pose
for every frame. This behavior encourages the assumptions we have been referring to in this section:
that synthetic images generated from our tool can be used as real ones in computer vision algorithms,
obtaining more accurate ground-truth information too.

Finally, in the evaluation of the non-central 3D line fitting from single view we can see how the
non-central images generated with our tool conserve the full projection of the 3D lines of the scene. It
is possible to recover the metric 3D reconstruction of the points composing these lines. As presented
in [39] this is only possible when the set of projecting skew rays composing the projection surface of
the segment have enough effective baseline.

5. Conclusions

In this work, we present a tool to create omnidirectional synthetic photorealistic images to be used
in computer vision algorithms. We devise a tool to create a great variety of omnidirectional images,
outnumbering the state of the art. We include in our tool different panoramas such as equirectangular,
cylindrical and non-central; dioptric models based on fish-eye lenses (equi-angular, stereographic,
orthogonal and equi-solid angle); catadioptric systems with different kinds of mirrors as spherical,
conical, parabolic and hyperbolic; and two empiric models, Scaramuzza’ and Kannala—Brandt's.
Moreover, we get not only the photorealistic images but also labeled information. We obtain semantic
and depth information for each of the omnidirectional systems proposed with pixel precision and
can build specific functions to obtain ground truth for computer vision algorithms. Furthermore,
the evaluations of our images show that we can use synthetic and real images equally. The synthetic
images created by our tool are good enough to be used as real images in computer vision algorithms
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Appendix A.

In this appendix we present an example of illustrations obtained with our system. We present
the 39 different types of omnidirectional images that can be obtained with the tool presented in this
work. We offer 13 projection models with 3 different image options to get diverse information. These
models are divided in 3 panoramic models, 4 kinds of fish eye lenses, catadioptric systems with 4
different mirrors and 2 empiric models for central projection models with revolution symmetry.

The code for creating these images, as well as these images, will be available in https://github.
com/Sbrunoberenguel /OmniSCV.

Appendix A.1. Panoramas

(a) Equirectangular (b) Cylindrical (c) Non-Central

Figure A1. Lit mode.

(a) Equirectangular (b) Cylindrical (c) Non-Central

Figure A2. Semantic mode.

(a) Equirectangular (b) Cylindrical (c) Non-Central

Figure A3. Depth mode.
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Appendix A.2. Fish Eye Lenses

STy

(a) Equiangular (b) (c) Orthogonal (d) Equi-solid
lens Stereographic lens angle lens
lens

Figure A4. Lit mode.

(a) Equiangular (b) (c) Orthogonal (d) Equi-solid
lens Stereographic lens angle lens
lens

Figure A5. Semantic mode.

(a) Equiangular (b) (c) Orthogonal (d) Equi-solid
lens Stereographic lens angle lens
lens

Figure A6. Depth mode.
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Appendix A.3. Catadioptric System

(a) Parabolic (b) Hyperbolic (c) Spherical (d) Conical
mirror mirror mirror mirror

Figure A7. Lit mode.

(a) Parabolic (b) Hyperbolic (c) Spherical (d) Conical
mirror mirror mirror mirror

Figure A8. Semantic mode.

.

(a) Parabolic (b) Hyperbolic (c) Spherical (d) Conical
mirror mirror mirror mirror

Figure A9. Depth mode.
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Appendix A.4. Empiric Models

(b) (c) (e) Scaramuzza’s
Scaramuzza’s Kannala-Brandt model Kannala-Brandt
model model model

(c) Lit mode (f) Semantic mode

(h) @)

Scaramuzza’s Kannala-Brandt
model model
(i) Depth mode

Figure A10. Scaramuzza and Kannala-Brandt empiric models.

Appendix B.

In this appendix we show the initial frame, frame 105, frame 575 and final frame obtained from the
OpenVSLAM algorithm [38]. The full sequence can be found in https://github.com/Sbrunoberenguel /
OmniSCV.


https://github.com/Sbrunoberenguel/OmniSCV
https://github.com/Sbrunoberenguel/OmniSCV
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