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Abstract: Mitochondrial oxidative phosphorylation disorders are extremely heterogeneous conditions.
Their clinical and genetic variability makes the identification of reliable and specific biomarkers
very challenging. Until now, only a few studies have focused on the effect of a defective oxidative
phosphorylation functioning on the cell’s secretome, although it could be a promising approach
for the identification and pre-selection of potential circulating biomarkers for mitochondrial
diseases. Here, we review the insights obtained from secretome studies with regard to oxidative
phosphorylation dysfunction, and the biomarkers that appear, so far, to be promising to identify
mitochondrial diseases. We propose two new biomarkers to be taken into account in future
diagnostic trials.

Keywords: oxidative phosphorylation system; mitochondrial DNA; mitochondrial diseases; secretome;
biomarkers; fibroblast growth factor 21; growth differentiation factor 15; vascular endothelial growth
factor; interleukine-6

1. Introduction

The secretome represents proteins that are secreted by a cell. Secretory proteins play important
roles in communication between cells and, as a consequence, may coordinate and regulate biological
activities [1–3]. Secretory factor-mediated signal transduction determines physiological processes
such as proliferation, growth, differentiation, migration, and metabolic regulation [4]. Furthermore,
because these secretory proteins are released into blood plasma, they are widely accepted to play
important roles in biological responses and homeostasis of the whole body and are closely related to
disease development including metabolic and neural diseases [5]. Secretome studies are at the focus
of understanding physiological or pathological conditions. The identification of circulating proteins
capable of being routinely used for diagnosis, prognosis, risk stratification, and therapeutic monitoring
is currently of great interest [6]. Secretome analyses have been previously carried out for many
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pathophysiological conditions such as hypoxia, diabetes, and anti-cancer drug treatment [7–9], but very
few of these are related to mitochondrial oxidative phosphorylation (OXPHOS) system diseases.

2. Oxidative Phosphorylation System

Mitochondria play important roles in cellular energy production, metabolism, and cellular
signaling [10–12]. Mitochondrial bioenergetics touch nearly every aspect of the cell. In addition to
providing most of the energy, the mitochondria generate reactive oxygen species (ROS). Given the role
that mitochondria play in a great number of cellular processes, it is not unsubstantiated to think that
mitochondrial function and dysfunction could result in modifications of the cell secretome.

Over 1500 proteins are required for normal mitochondrial function [13,14]. Of these, only approximately
90 proteins are directly involved in the electron transport chain (ETC) and the production of adenosine
triphosphate (ATP), i.e., the OXPHOS system. OXPHOS requires the transport of electrons to molecular
oxygen by the mitochondrial respiratory chain which involves four multi-subunit complexes known as
complexes I, II, III, and IV (CI, CII, CIII and CIV) and two mobile electron carriers, coenzyme Q (CoQ)
and cytochrome c (Figure 1). The respiratory chain generates a transmembrane proton gradient that is
channeled by complex V (also known as ATP synthase, CV) to synthesize ATP [15].
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Figure 1. Oxidative phosphorylation (OXPHOS) system. OM, IMS, IM, and M code for mitochondrial outer
membrane, intermembrane space, mitochondrial inner membrane, and mitochondrial matrix, respectively;
ETC, electron transport chain; CI, CII, CIII, CIV, CV, and Cyt c, code for respiratory complexes I, II, III, IV,
ATP synthase, and cytochrome c, respectively; Q, coenzyme Q10; NADH and NAD+, reduced and oxidized
forms of nicotinamide adenine dinucleotide; FADH2 and FAD, reduced and oxidized forms of flavin
adenine dinucleotide, H+, protons; e−, electrons; ATP, ADP, and Pi, adenosine triphosphate, adenosine
diphosphate, and inorganic phosphate, respectively; H2O, water; O2, oxygen; ROS, reactive oxygen
species. OXPHOS inhibitors: rotenone, capsaicin; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;
TTFA: thenoyltrifluoroacetone; antimycin A; NaCN: sodium cyanide; hydrogen sulfide; sodium azide;
oligomycin; FCCP: carbonyl cyanide 4-[trifluoromethoxy] phenylhydrazone.

Almost all of the cell’s redox reactions ultimately feed electrons into the respiratory chain. CI and
CII mediate the electron transfer from NADH and FADH2, respectively, to CoQ. CIII receives electrons
from reduced CoQ and funnels electrons to cytochrome c. CIV ends the respiratory chain by accepting
electrons from cytochrome c and using them to fully reduce oxygen to water [15]. The mitochondrial
respiratory chain is the main source of ROS, particularly by CI and CIII (Figure 1). Excessive ROS
might damage lipid membranes, proteins, and nucleic acids and have a role in the pathogenesis of
mitochondrial diseases [10].
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Mitochondria contain their own DNA, the mitochondrial DNA (mtDNA). Human mtDNA encodes
13 structural protein subunits of the OXPHOS system, and 2 ribosomal RNAs (rRNAs) and 22 transfer
RNAs (tRNAs) that are required for intra-mitochondrial protein synthesis [16,17].

Apart from the 13 proteins encoded by the mtDNA, the rest of the mitochondrial proteins
are encoded by the nuclear genome. These are translated in the cytoplasm and imported into the
mitochondria. The OXPHOS system assembly requires the presence of tens of different factors.
Altogether, well over 100 genes govern the process of oxidative phosphorylation, and mutations in any
of these genes can cause an OXPHOS defect [17,18].

3. OXPHOS Dysfunction and Disease

Defective OXPHOS function results in disease. Mitochondrial diseases are the most common
form of inherited metabolic disorders [10]. The pathophysiology of mitochondrial diseases is
complex and involves genetic mutations in mtDNA or nDNA. In patients with mtDNA mutations,
inheritance and clinical presentation are further complicated by the presence of multiple mtDNA
genomes in an individual cell, which can often lead to a mixture of mutated and wild-type genomes,
called heteroplasmy. The level of heteroplasmy is crucial in determining the extent of cellular
dysfunction. Conventionally, mitochondrial diseases are a consequence of a primary defect in oxidative
phosphorylation, the process by which cells produce ATP [10]. To further complicate the issue, acquired
conditions, e.g., exposure to chemicals, can also lead to OXPHOS dysfunction.

Mitochondrial diseases are clinically heterogeneous, can occur at any age, and can manifest with
a wide range of clinical symptoms. Mitochondrial diseases can also involve any organ or tissue and
characteristically involve multiple systems, typically affecting organs that are highly dependent on
aerobic metabolism, and are often relentlessly progressive with high morbidity and mortality [19].
The heterogeneity in the clinical manifestation of mitochondrial diseases means that both diagnosis
and management of these disorders are extremely difficult. Diagnosis often relies on genetic testing,
in addition to histochemical and biochemical analysis of tissue biopsies. Establishing the molecular
mechanisms that are responsible for the exceptional variability and tissue specificity of disease
manifestations remains challenging [10].

In addition to the modifications in the local tissue environment, it is feasible that metabolic
alterations in the tissues affected by mitochondrial dysfunction also reshape global metabolic signals at
the whole-organism level. In this case, secreted molecules could influence how disease manifest in
other tissues and potentially serve as biomarkers obtained from the peripheral blood [18].

4. OXPHOS Dysfunction Modifies the Protein Secretion by the Cells

Transmitochondrial cell lines called cytoplasmic hybrids, or cybrids, can be used to confidently
link a phenotype to mtDNA mutations. These cells share nDNA and differ in their mtDNA. Prigione
and Cortopassi [20] used cybrids of osteosarcoma 143B cells bearing mtDNA deletions and found
that these deletions decreased cellular ATP production and the secretion of fibronectin (FN) and
osteoprotegerin (OPG). As a positive control they included a rho zero (rho0) cell line, experimentally
depleted of mtDNA, which showed the same results. As negative control cells, they used cells that had
been cybridized with nonpathogenic mtDNAs. In the same study, CI inhibitor rotenone (Figure 1)
recapitulated the decrease in ATP production as well as the inhibition of synthesis and secretion of FN
and OPG, suggesting that these are all consequences of decreased energy status [20].

Other genetic manipulations that impaired the OXPHOS system, also modify the protein secretion
by the cells. A knock-in mouse for mutated thymidine kinase 2 (TK2), a deoxyribonucleoside kinase
required for mtDNA synthesis, showed mtDNA depletion in white adipose tissue accompanied with
reduced fat accumulation. These mice also showed a severe reduction in mRNA and circulating
protein levels of leptin, an adipose-derived hormone involved in the regulation of food intake and
energy expenditure [21]. Mouse 3T3-L1 cells knocked down for the mitochondrial transcription factor
A (TFAM), a key activator of mitochondrial transcription as well as a participant in mitochondrial
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genome replication, showed a decrease in mtDNA copy number, levels of ETC subunits, CI and CIV
activities, and oxygen consumption. These cells also showed a diminished expression at both mRNA
and secreted protein levels of another hormone, adiponectin, that regulates glucose levels and fatty acid
catabolism [22]. Adiponectin mRNA expression was also decreased in TFAM knocked down human
mesenchymal stem cells (hMSCs) [23]. Mouse 3T3-L1 or adipose-tissue-derived stem cells (mASCs) that
lacked the growth arrest and DNA damage-inducible proteins-interacting protein 1 (GADD45GIP1),
a mitochondrial translation/assembly factor for mtDNA-encoded polypeptides, expressed lower levels
of mtDNA-encoded subunits and resulted in profound impairment of OXPHOS function. The cells
displayed disrupted adipocyte differentiation, accompanied by a reduced adiponectin expression [24].
Fibroblast growth factor 21 (FGF21) and angiopoietin-like 6 (ANGPTL6), were highly induced in
another model of homozygous GADD45GIP1-deficient mouse embryonic fibroblasts. This group later
generated adipocyte-specific GADD45GIP1-deficient mice (AdKO). Adipose tissue from AdKO mice
displayed significantly reduced levels of OXPHOS subunits compared to that from the control group.
Protein expression of ANGPTL6 and FGF21 was also higher in the white adipose tissue and brown
adipose tissue of AdKO mice as were their levels in serum [25].

Chemical manipulation of the OXPHOS system can also affect protein secretion (Figure 1).
CI inhibitor rotenone decreased adiponectin secretion in rat adipocytes and adiponectin mRNA
expression in hMSCs [23,26]. Capsaicin, another CI inhibitor, decreased leptin and increased adiponectin
expression in 3T3-L1 adipocytes [27]. The CIII inhibitor antimycin A reduced adiponectin mRNA
levels in mouse 3T3-L1 cells [28]. Finally, the CV inhibitor oligomycin diminished adiponectin mRNA
levels and secreted adiponectin in mouse 3T3-L1 cells [22,28].

Some therapeutic drugs that impair OXPHOS function are widely used in humans. This is the
case for nucleoside reverse-transcriptase inhibitors (NRTIs) used against the human immunodeficiency
virus (HIV) which can inhibit the mitochondrial polymerase gamma (POLG), responsible for mtDNA
replication. NRTIs decreased adiponectin mRNA expression and protein secretion in mouse 3T3-L1
and 3T3-F442A cells and in primary human subcutaneous preadipocytes [29–31]. Systemic adiponectin
levels were also reduced in patients under antiretroviral therapy [32]. Our group studied the
effect of NRTIs on the OXPHOS system during differentiation of human adipose-derived stem cells
(hASCs). The experiments showed that 2′,3′-dideoxycytidine (ddC), a specific inhibitor of POLG
mtDNA synthesis, reduced adipocyte differentiation and leptin secretion by hASCs-derived adipocytes
and this was accompanied with significantly reduced mtDNA levels [33]. Linezolid (LIN) is a
ribosomal antibiotic with effects on mitochondrial translation and OXPHOS function. In our hands,
at concentrations below the steady-state peak serum concentrations [34], LIN decreased CIV activity
and inhibited mitochondrial protein synthesis in hASCs. LIN also impaired differentiation of hASCs
as indicated by decreased intracellular triglycerides (TGs) and secreted leptin [33]. In agreement,
chloramphenicol (CAM), another mitochondrial translation inhibitor, tends to decrease the levels
of secreted leptin as well [33]. These results indicate that the OXPHOS dysfunction modifies the
adipokine secretion.

5. OXPHOS Dysfunction and Secretomic Studies

In view of the above-mentioned results, we analyzed the effect of LIN on the whole adipocyte
secretome by a mass-spectrometry-based secretome profiling. 48 h serum-free cell culture medium was
collected and processed according to [35,36]. Samples were analyzed by nano-liquid chromatography
coupled with an ion-trap mass spectrometer [37]. Following this procedure, the culture and adipocyte
differentiation of hASCs in the presence or absence of LIN yielded changes in thirteen secreted proteins.
Surprisingly, we did not find adiponectin and leptin in the secretome analysis by mass spectrometry
despite the fact that, using enzyme-linked immunosorbent assay (ELISA), we previously observed a 4-
and 6-fold increase, respectively, in their culture medium levels [33]. However, leptin is mainly detected
with antibody-based methods and its absence is not a rare observation for this kind of analysis [38].
We focused in four proteins not related with cytoskeleton or extracellular matrix: fatty acid-binding
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protein 4 (FABP4), apolipoprotein E (APOE), plasminogen activator inhibitor 1 (PAI-1), and complement
factor D (adipsin). FABP4 and APOE levels increased with normal adipocyte differentiation, but LIN
partially counteracted this increase. APOE was found specifically in the cell culture medium of
adipocytes and was not present in hASCs. Adipsin amount also increased during differentiation and
this was potentiated by LIN. PAI-1 quantity decreased over the adipocyte differentiation, but LIN
partially inhibited this drop. Fibronectin (FN) secretion was decreased after adipocyte differentiation.
This reduction was somewhat mitigated when differentiation was performed in the presence of LIN [39].
FN secretion was earlier found to be decreased in cybrid cells bearing mtDNA deletions and showing
a reduced ATP production [20]. The cell lines used in the two experiments (143B cells vs. adipocytes)
and the proliferating or differentiating stages could explain the discrepancy between these results.

Defects in OXPHOS function may result in pathological production of ROS. Conversely,
ROS overproduction can lead to OXPHOS dysfunction [40]. Meyer, at al. [41] studied the effect
of ROS on human stem-cell-derived retinal pigmented epithelium (RPE) secretome. RPE samples
were stressed with paraquat (PQ), an inducer of mitochondrial ROS production, and the levels of
mitochondrial CI and CII subunits were decreased. The secreted proteome was quantified by mass
spectrometry. Twenty-four-hour serum-free cell culture medium was processed and analyzed by
nanoflow liquid-chromatography-tandem mass spectrometry analysis (nano-LC-MS/MS). They found
that ROS decreased FN, complement cascade factors, and APOE secretion. Growth differentiation factor
15 (GDF15) was highly upregulated [41]. Noteworthy, FN, APOE, and several factors of the complement
secretion were modified in secretome analysis under OXPHOS dysfunction conditions [39,41].

Besides the last two studies mentioned above, no other secretomic analyses related to OXPHOS
dysfunction have been published so far, although studies of specific proteins secreted by the cells
under several conditions affecting OXPHOS function are mentioned later.

6. Biomarkers for OXPHOS Dysfunction

Biomarkers are indicators of biologic or pathogenic processes used for disease diagnosis, for monitoring
the disease progression, and for patient response to therapeutic interventions. Since diagnosis of
mitochondrial disorders is challenging, the identification of easily-accessible biomarkers is of utmost
importance. Because OXPHOS dysfunction has the capacity to modify the secretome, some effort has
been carried out to discover secreted mitochondrial disease-specific biomarkers or regulators of secretory
signals [5]. However, given the complexity of the OXPHOS diseases, it is likely that the future diagnostic
tool will not rely on a single biomarker alone but a combination of many, a “biosignature”, is required [42].

In the past years, serum FGF21 and serum GDF15 have emerged as two promising diagnostic
biomarkers for mitochondrial diseases [18,43–47]. They have been subsequently validated in patient
cohorts [48].

7. Fibroblast Growth Factor 21

FGF21 is a member of the fibroblast growth factor superfamily. Circulating FGF21 in humans
derives mainly from the liver, but is also known to be secreted by adipocytes, myocytes, and the
pancreas [49]. FGF21 is a hormone-like cytokine known to play key roles in glucose and lipid
metabolism and it is currently being pursued as a therapeutic drug for obesity and T2-diabetes [50].
FGF21 has been associated with anti-inflammatory properties in various tissues [51].

FGF21 has been found to be related to OXPHOS dysfunction, as it was induced in a late-onset
mitochondrial myopathy mouse model, a transgenic mouse expressing a mutation in the twinkle
mtDNA helicase (TWNK) [52]. Transcriptomic analysis in this model indicated that respiratory
chain-deficient skeletal muscle initiated a specific pseudo-starvation response, which was associated with
considerable changes in the serum amino acid, lipid, and cytokine levels [53]. Interestingly, the serum
response followed closely the progression of the pathological findings in the skeletal muscle and responded
to treatment; the serum amino acid profile and cytokine levels were normalized after ketogenic diet,
along with the reduction in ultrastructural mitochondrial abnormalities [53,54]. Subsequently it was
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confirmed that blood FGF21 levels were highly increased in patients with primary muscle-manifesting
respiratory chain deficiencies, mostly those caused by pathogenic mutations in mitochondrial DNA,
correlated with disease severity and respiratory chain-deficient muscle fibers [18,55]. Therefore, serum
FGF21 was reported as a potential biomarker for mitochondrial diseases [18].

The increased FGF21 secretion observed in the muscles of patients suffering from mitochondrial
myopathy was recapitulated in vitro with mitochondrial respiratory chain inhibitors. FGF21 secretion
was increased in differentiated mouse C2C12 myotubes treated with an inhibitor of complex II (TTFA,
thenoyltrifluoroacetone), a respiratory chain uncoupler (FCCP, carbonyl cyanide 4-[trifluoromethoxy]
phenylhydrazone), or the complex IV inhibitor sodium azide in a dose-dependent manner [55] (Figure 1).

Recently, it was found that the highest induction of FGF21 response occurs in mitochondrial
disorders that primarily or secondarily affect mitochondrial translation, such as direct mutations of
translation machinery or mtDNA deletions leading to imbalance of mtDNA-encoded tRNAs and
rRNAs but not mutations in structural respiratory chain complexes or their assembly factors [56].
mtDNA maintenance disorders, such as those caused by nuclear gene mutations in POLG, TWNK,
or thymidine phosphorylase (TYMP), also caused mtDNA deletions or point mutations and induced
FGF21 [57–59]. Consistent with human data, mouse models accumulating multiple mtDNA deletions
in skeletal muscle [52,60], or those with a single large heteroplasmic mtDNA deletion [61], induced
FGF21, clearly linking mtDNA deletions to the cytokine response [56].

8. Growth Differentiation Factor 15

GDF15 is a cytokine of the transforming growth factor β (TGF-β) superfamily, which is expressed
mainly in the placenta, kidney, liver, lung, pancreas, and prostate [62–64]. Expression of GDF15
in nearly all tissues suggests its general importance in essential cellular functions [65]. It has an
essential role in regulating the cellular response to stress signals and inflammation, being involved
in suppression of inflammation in early pregnancy, cancer, and cardiovascular diseases. Moreover,
GDF15 is expressed in the choroid plexus acting as a potent neurotrophic factor for motor and sensory
neurons [64].

We identified GDF15 as a potential diagnostic biomarker for mitochondrial diseases by a gene
expression study in TK2-deficient human skeletal muscles [45]. GDF15 mRNA levels were dramatically
increased in muscle from patients with TK2 mutations and the protein was constitutively secreted by
skeletal muscle cells.

In order to validate the feasibility of GDF15 as a serum biomarker, its concentration was measured in
the serum of 17 patients with mitochondrial diseases as well as in that of 13 patients with other pediatric
diseases as a control [46]. GDF15 levels were significantly increased in the serum of mitochondrial
disease patients and could clearly distinguish mitochondrial disease patients from control patients.
The value of GDF15 for evaluating the therapeutic efficacy of pyruvate was remarkable [46,66].

Later [47] it was found that GDF15 was significantly elevated in mitochondrial disease patients,
and appeared to increase with the clinical severity of the disease. In this study, mean GDF15 levels
were ranked in the following order: Leigh syndrome (LS); mitochondrial encephalopathy, lactic
acidosis, and stroke-like episodes (MELAS); Kearns–Sayre syndrome (KSS); overlapping MELAS/LS;
and mitochondrial encephalopathy and lactic acidosis (MELA).

9. Fibroblast Growth Factor 21 vs Growth Differentiation Factor 15

Many biomarker studies in the last few years have been focused on both FGF21 vs GDF15
simultaneously, comparing their sensitivity and specificity as mitochondrial biomarkers. They were
tested in a large patient cohort with different mitochondrial defects and it was found that GDF15 showed
a higher sensitivity and specificity than FGF21 [47]. We have subsequently compared circulating GDF15
and FGF21 levels in a cohort consisting exclusively of children with a diagnosis of mitochondrial
disease which included patients with mutations in both mtDNA and nDNA [67]. The results indicate
that GDF15 is a sensitive and specific biomarker to guide the diagnosis of this group of complex genetic
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diseases. Furthermore, it was shown that the combined use of GDF15 and FGF21 was more efficient
in identifying patients than either factor alone. This strategy would be useful for example to select
patients for comprehensive genetic analysis, which is still expensive and not available in all centers.

Considering the above data in patients, we determined whether mitochondrial dysfunction affects
GDF15 gene expression in muscle cells [67]. To this end, C2C12 myotubes were treated with antimycin
A or oligomycin (CIII and CV inhibitors, respectively, Figure 1) which caused a dramatic induction of
GDF15 gene expression, as well as of FGF21 gene expression. In parallel experiments, the effects of
antimycin A and oligomycin were determined in human LHCN-M2 myotubes. Similar induction was
observed in human LHCN-M2 myotubes under the same conditions. Previous studies have shown that
ROS production was involved in the induction of FGF21 expression by experimental mitochondrial
dysfunction [68]. Effectively, treatment of C2C12 myotubes with the ROS scavenger, Trolox, blunted
antimycin- and oligomycin-induced FGF21 expression. In contrast, the induction of GDF15 by
the mitochondrial function inhibitors was insensitive to the presence of the ROS scavenger [67].
As mentioned above, GDF15 was highly upregulated after chronic ROS in a human stem cell-derived
RPE model [41], pointing to different regulatory pathways or experimental conditions acting in the
two models [41,67]. However, as with FGF21 [69], it was shown that serum GDF15 does not correlate
with disease severity in a large cohort of adult m.3243A>G mtDNA mutation carriers [70]. On the
other hand, GDF15 seems to be more indicative of mitochondrial diseases regardless of clinical
phenotype, whereas FGF21 sensitivity for mitochondrial diseases is higher when muscle manifestations
are present [45]. It seems that GDF15 levels in serum are higher in mitochondrial disease patients
with multisystem involvement, like MELAS or Pearson/KSS patients [47]. Likewise serum FGF21,
serum GDF15 seems to be a more specific marker for mitochondrial diseases due to mitochondrial
translation and mtDNA maintenance defects, as opposed to those resulting from impaired respiratory
chain complex or assembly factors [71]. Similarly to FGF21, the reliability and efficacy of GDF15 as a
biomarker of mitochondrial diseases remains to be tested in others patient cohorts [42].

Presently, both FGF21 and GDF15 are more sensitive and specific than currently-used clinical
diagnostic markers of mitochondrial disorders such as lactate, pyruvate, creatine kinase, alanine,
or organic acids [47,67,71]. However, they are yet to be incorporated into formal diagnostic pathways.
It is possible that future studies will identify additional biomarkers that, together with or separately
from these two, may help in the diagnosis of mitochondrial diseases.

10. Vascular Endothelial Growth Factor

Another secreted protein which is modified by OXPHOS dysfunction is VEGF. VEGF represents a
family of signaling proteins involved in both vascular development and angiogenesis [72]. Increased
VEGF mRNA expression, and stimulation of the angiogenic pathway, were found in paraganglioma
and pheochromocytoma tumors carrying mutations in nDNA-encoded CII subunits SDHB and SDHD
that result in decreased CII activity [73,74]. Similarly, increased VEGF mRNA and protein expression
were found in human embryonic kidney HEK293 cells carrying mutations in the nDNA-encoded CIII
subunit UQCRB with decreased OXPHOS function [75]. Human SK-Hep1 hepatoma rho0 cells express
more VEGF mRNA and protein than parental cells with mtDNA, rho+ cells. Conditioned medium from
these rho0 cells increased the formation of tube-like structures from human umbilical vein endothelial
cells and new blood vessels in chorioallantoic membrane assays [76]. An inducible mtDNA-depletor
mouse expressing a dominant-negative mutation in the polymerase domain of POLG, induced mtDNA
depletion in various tissues. These mice showed reduced mtDNA content, reduced mitochondrial
gene expression and OXPHOS enzyme activities, and increased expression of VEGF mRNA, especially
in skin [77]. Cybrids obtained from mouse Lewis lung carcinoma cells, harboring a CI mutation and
having an OXPHOS defect, showed increased VEGF mRNA and protein levels and higher ability to
induce neoangiogenesis than those with no mtDNA mutation [78,79].

Given these previous observations, OXPHOS inhibitors were used to cause mitochondrial
dysfunction and VEGF levels were analyzed (Figure 1). In accordance, in vitro pretreatment of human
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adipose-derived stroma cells with CI or CIII inhibitors (rotenone or antimycin, respectively) increased
VEGF secretion [80]. Another CI inhibitor (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP),
frequently used to model Parkinson disease, also increased the number of VEGF-expressing neurons
and blood vessels in the substantia nigra of parkinsonian-rendered monkeys [81]. Administration of
CIV inhibitor, sodium cyanide, to human brain microvascular pericytes resulted in increased expression
of VEGF, and hydrogen sulfide, another CIV inhibitor, also has proangiogenic effects [82,83]. The ATP
synthase inhibitor oligomycin increased VEGF protein production in the human U-937 monocytic cell
line [84]. Likewise, 4-hydroxy-2-nonenal (4-HNE), an oxidative stress inducer, increased mtDNA point
mutations and reduced CIII and CIV activity and oxygen consumption in primary rheumatoid arthritis
synovial fibroblasts (RASF). 4-HNE also increased RASF VEGF immunofluorescence staining and
VEGF secretion. The number of tube-like structures produced by human umbilical vein endothelial
cells was also increased by 4-HNE RASF-conditioned medium [85].

The above data indicates that OXPHOS dysfunction increases VEGF expression and secretion as
well as pathological angiogenesis, which is a feature of many OXPHOS disorders. Therefore, VEGF
might be tested as a potential biomarker for certain mitochondrial diseases.

11. Interleukin-6

IL6 is a well-known myokine [5] as well as a pro- and anti-inflammatory cytokine [86]. Changes
in IL6 secretion have been observed after manipulations that compromise the OXPHOS function.
MSCs obtained from atherosclerosis subjects have greater levels of mitochondrial ROS and oxidative
stress than non-atherosclerosis MSCs. Atherosclerotic-MSCs display a higher reduction of mitochondrial
membrane potential, mitochondrial respiration (OCR: key metric of OXPHOS), and sensitivity to
electron transport chain inhibitors than nonatherosclerotic-MSCs. Atherosclerotic-MSCs have also
decreased levels of CI subunit NDUFB8, CII subunit SDHB, CIII subunit core 2, and CIV subunit
p.MT-CO2 [87]. Despite being cultured under normoxic conditions, atherosclerotic-MSCs have
increased hypoxia-inducible factor 1α (HIF-1α) protein levels. Given the higher abundance of HIF-1α
in atherosclerotic-MSCs, key cytokines in the MSC medium were evaluated. Atherosclerotic-MSCs
secrete higher levels of IL6, C-X-C motif chemokine ligand 8 (CXCL8), and monocyte chemoattractant
protein-1/C-C motif chemokine ligand 2 (CCL2) than nonatherosclerotic-MSCs in both resting and
primed conditions. Moreover, CV inhibitor oligomycin-induced mitochondrial dysfunction (Figure 1)
of nonatherosclerotic-MSCs leads to an increase in ROS levels and to a shift in the cytokine/chemokine
secretome similar to atherosclerotic-MSCs. Of relevance, oligomycin treatment had no impact on the
atherosclerotic-MSC secretome [87]. To note, when atherosclerotic-MSCs were treated with the ROS
scavenger N-acetyl-l-cysteine and measured key cytokines and chemokines of the MSC secretome,
the levels of IL6, CXCL8, and CCL2, were diminished, and the atherosclerotic-MSCs survival and
immunopotency were enhanced [87]. Furthermore, the mitochondria-targeted ROS scavengers, Trolox,
MitoCP, and MitoTempo similarly improved the atherosclerotic-MSCs immunomodulatory capacity.
Therefore, it seems that the impaired mitochondrial function of atherosclerotic-MSCs underlies their
altered secretome and reduced immunopotency.

In a Kupffer-cell model of trauma-hemorrhage, the ATP levels were decreased and this was accompanied
by a decline in TFAM and mtDNA-encoded p.MT-CO1 from CIV [88]. Also, IL6 and TNF-α production
capacities were increased following trauma-hemorrhage. Administration of 17ß-estradiol following
trauma-hemorrhage increased ATP levels and normalized Tfam, MT-CO1 mRNA and p.MT-CO1 levels
as well as IL6 and TNF-α production capacity. These results suggest that 17ß-estradiol-upregulated
ATP production and improved OXPHOS function in Kupffer cells leads to downregulation of cytokine
release following trauma-hemorrhage.

In other experiments carried out, C57BL/6J (B6)-mice-derived Lewis lung carcinoma rho0 P29
cells were cybridized with mtDNA from senescence-accelerated mice P1 carrying the m.11181A>G
mutation in the MT-ND4 gene. These cybrids overproduce ROS, and, when co-cultured with dendritic
cells from B6 mice, induced IL6 secretion was observed from B6 cells [89]. Moreover, mutations in
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POLG gene (A467T and W748S) in Alpers disease patients lead to a fatal brain and liver mitochondrial
depletion syndrome with reduced activity of respiratory chain enzyme complexes [90]. Later it was
observed that Alpers patients have elevated IL6, CXCL8, and IFN-c levels in cerebrospinal fluid [91].
The above studies indicate that IL6 secretion increases along with mitochondrial OXPHOS dysfunction
so IL6 could be tested as a potential biomarker for mitochondrial diseases.

12. Biosignatures

FGF21, GDF15, as well as VEGF and IL6, have been associated individually with a range of
non-mitochondrial diseases, encompassing cancer, obesity, renal disease, diabetes, and liver disease,
although many of them are characterized by an OXPHOS dysfunction [92,93]. Additionally, serum
FGF21 is variably increased in non-mitochondrial myopathies [56,94].

Moreover, the commonly-observed co-regulation of secretome proteins, as demonstrated above,
is not only observed in the context of mitochondrial dysfunction. Parallel changes for secreted FGF21,
GD15, VEGF, and IL6 proteins have been demonstrated under several physiological or pathological
conditions. In a study to evaluate FGF21 as a marker of mitochondrial dysfunction in the context of
acute-on-chronic liver failure, FGF21 levels and IL6 were found increased in peripheral blood samples
of the patients [95]. Moreover, FGF21 and IL6 serum levels were higher in patients with ulcerative colitis
and irritable bowel syndrome [96] and significantly elevated in patients with severe compared with
mild acute pancreatitis [97]. Levels of GDF15 and IL6 have been found increased in acute heart failure
patients [98], the two proteins were also increased in anemic T2 diabetes (T2D) patients compared
with non-anemic T2D patients [99]. Finally, positive correlation was demonstrated between GDF15
and IL6 in patients suffering from early stages of chronic kidney disease [100]. Secretome proteins
may also be coordinately regulated in response to environmental factors such as temperature and
hazardous substances. For many years, the IL6 has been known to be secreted in response to cold
environment and in response to noradrenaline in mouse brown adipocytes in primary culture [101].
Similarly, GDF15 is intensely secreted by brown fat upon exposure to cold and brown adipocytes after
noradrenergic stimulation in mice [102,103]. Recently, FGF21 and IL6 were both found induced in a
mouse model of cold-induced thermogenesis [104]. IL6, FGF21, and GDF15 levels were also elevated
in patients with myocardial infarction treated with therapeutic hypothermia [105]. Finally, it was
shown that nickel can induce the production of IL6 [106–108] as well as several other secreted signaling
proteins including GDF15 and VEGF in keratocytes [109].

As these biomarkers seem to behave in a correlative manner in several disease and environmental
conditions, we propose that their combination as a “biosignature” for mitochondrial diseases warrants
further investigation (Figure 2).
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13. Conclusions

Heterogeneity is a well-recognized feature of virtually all parameters associated with OXPHOS
diseases. Some metabolites firmly established in the clinical investigation of mitochondrial diseases,
such as lactate, have a poor diagnostic sensitivity and specificity [48]. Recent developments in this
field point at FGF21 and GDF15 as more sensitive and specific than currently-used clinical diagnostic
markers, but this needs to be confirmed in other and large patient cohorts before being incorporated into
routine diagnostic trials. Moreover, several secreted proteins together would increase their value further
and be adequate to define a mitochondrial disease fingerprint. None of the markers discussed here is
a specific biomarker of OXPHOS disease. However, given the ease of their determination in blood,
the levels of these secreted proteins could be useful, together with other clinical clues, to determine if
a suspected patient should proceed to a more invasive procedure, such as a muscle biopsy, to study
histochemical and biochemical markers of OXPHOS disease [110]. In addition, the determination of
the secreted protein levels could be useful in patients already diagnosed with an OXPHOS disease to
predict their prognosis and response to treatment [48]. Although the secretion of several proteins is
modified in response to OXPHOS dysfunction there are no reports on the secretome of patients with
OXPHOS diseases. Therefore, secretome studies on patients with confirmed OXPHOS disease are
warranted. These studies should include patients with non-OXPHOS diseases with major involvement
of the muscle and/or nervous system, the most affected tissues in mitochondrial diseases. Moreover,
different technical approaches must be considered in order to increase the number of proteins whose
secretion is modified upon OXPHOS dysfunction.

Author Contributions: Conceptualization: N.G.-P., E.R.-P., and M.P.B.-B.; writing of the manuscript: N.G.-P.,
E.R.-P., and M.P.B.-B., critical review: M.P.B.-B., C.J.-M., J.M., and E.R.-P., investigation: A.V.-S., E.L.-G., S.E., E.I.,
and P.M., project administration, funding acquisition, supervision, writing—original draft: N.G.-P., C.J.-M., J.M.,
M.P.B.-B, and E.R.-P. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: We would like to thank Santiago Morales for his assistance with figures. This work was
supported by grants from Instituto de Salud Carlos III [FIS-PI17/00021 and PI17/00166]; Fundación Mutua Madrileña
MMA17/01; Precipita-FECYT crowdfunding program (PR194); Gobierno de Aragón (Grupos Consolidados
B33_17R) and FEDER 2014-2020 “Construyendo Europa desde Aragón”; Asociación de Enfermos de Patología
Mitocondrial (AEPMI); Plan Nacional de I + D + I, and Instituto de Salud Carlos III (ISCIII), Subdirección General
de Evaluación y Fomento de la Investigación Sanitaria, project PI19/0122 and co-funded with European Regional
Development Fund (ERDF) “A way to achieve Europe”. The CIBERER is an initiative of the ISCIII.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kapur, S.K.; Katz, A.J. Review of the adipose derived stem cell secretome. Biochimie 2013, 95, 2222–2228.
[CrossRef]

2. Lehr, S.; Hartwig, S.; Lamers, D.; Famulla, S.; Müller, S.; Hanisch, F.G.; Cuvelier, C.; Ruige, J.; Eckardt, K.;
Ouwens, D.M.; et al. Identification and validation of novel adipokines released from primary human
adipocytes. Mol. Cell. Proteomics 2012, 11, M111.010504. [CrossRef] [PubMed]

3. Stastna, M.; Van Eyk, J.E. Secreted proteins as a fundamental source for biomarker discovery. Proteomics
2012, 12, 722–735. [CrossRef] [PubMed]

4. Farhan, H.; Rabouille, C. Signalling to and from the secretory pathway. J. Cell Sci. 2011, 124, 171–180. [CrossRef]
[PubMed]

5. Song, P.; Kwon, Y.; Joo, J.Y.; Kim, D.G.; Yoon, J.H. Secretomics to discover regulators in diseases. Int. J. Mol.
Sci. 2019, 20, 3893. [CrossRef] [PubMed]

6. Anjo, S.I.; Manadas, B. A translational view of cells’ secretome analysis - from untargeted proteomics to
potential circulating biomarkers. Biochimie 2018, 155, 37–49. [CrossRef] [PubMed]

7. Shin, J.; Kim, G.; Kabir, M.H.; Park, S.J.; Lee, S.T.; Lee, C. Use of composite protein database including search
result sequences for mass spectrometric analysis of cell secretome. PLoS ONE 2015, 10, e0121692. [CrossRef]

http://dx.doi.org/10.1016/j.biochi.2013.06.001
http://dx.doi.org/10.1074/mcp.M111.010504
http://www.ncbi.nlm.nih.gov/pubmed/21947364
http://dx.doi.org/10.1002/pmic.201100346
http://www.ncbi.nlm.nih.gov/pubmed/22247067
http://dx.doi.org/10.1242/jcs.076455
http://www.ncbi.nlm.nih.gov/pubmed/21187344
http://dx.doi.org/10.3390/ijms20163893
http://www.ncbi.nlm.nih.gov/pubmed/31405033
http://dx.doi.org/10.1016/j.biochi.2018.05.007
http://www.ncbi.nlm.nih.gov/pubmed/29782891
http://dx.doi.org/10.1371/journal.pone.0121692


Int. J. Mol. Sci. 2020, 21, 3374 11 of 16

8. Shin, J.; Rhim, J.; Kwon, Y.; Choi, S.Y.; Shin, S.; Ha, C.W.; Lee, C. Comparative analysis of differentially
secreted proteins in serum-free and serum-containing media by using BONCAT and pulsed SILAC. Sci. Rep.
2019, 9, 1–12. [CrossRef]

9. Adhikari, S.; Chen, L.; Huang, P.; Tian, R. Proteomic analysis of secreted proteins from cell microenvironment.
In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1662, pp. 45–58.

10. Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.;
Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2016, 2, 1–22. [CrossRef]

11. Munnich, A.; Rotig, A.; Cormier-Daire, V.; Rustin, P. Clinical Presentation of Respiratory Chain Deficiency
Arnold Munnich. In The Online Metabolic and Molecular Bases of Inherited Disease; Valle, D.L., Antonarakis, S.,
Ballabio, A., Beaudet, A.L., Mitchell, G.A., Eds.; MacGraw Hill: New York, NY, USA, 2006.

12. Schoffner, J. Oxidative Phosphorylation Diseases. In The Online Metabolic and Molecular Bases of Inherited
Disease; MacGraw Hill: New York, NY, USA, 2006.

13. Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Scott, B.; Ong, S.; Walford, G.A.; Sugiana, C.; Boneh, A.;
William, K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134,
112–123. [CrossRef]

14. Calvo, S.E.; Mootha, V.K. The Mitochondrial Proteome and Human Disease. Annu. Rev. Genomics Hum.
Genet. 2017, 176, 139–148. [CrossRef] [PubMed]

15. Vafai, S.B.; Mootha, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491,
374–383. [CrossRef] [PubMed]

16. Anderson, S.; Bankier, A.T.; Barrell, B.G.; De Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.;
Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome.
Nature 1981, 290, 457–465. [CrossRef] [PubMed]

17. Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision
of the cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999, 23, 147. [CrossRef]

18. Suomalainen, A. Biomarkers for mitochondrial respiratory chain disorders. J. Inherit. Metab. Dis. 2011, 34,
277–282. [CrossRef]

19. McFarland, R.; Taylor, R.W.; Turnbull, D.M. A neurological perspective on mitochondrial disease.
Lancet Neurol. 2010, 9, 829–840. [CrossRef]

20. Prigione, A.; Cortopassi, G. Mitochondrial DNA deletions induce the adenosine monophosphate-activated
protein kinase energy stress pathway and result in decreased secretion of some proteins. Aging Cell 2007, 6,
619–630. [CrossRef]

21. Villarroya, J.; Dorado, B.; Vilà, M.R.; Garcia-Arumí, E.; Domingo, P.; Giralt, M.; Hirano, M.; Villarroya, F.
Thymidine kinase 2 deficiency-induced mitochondrial dna depletion causes abnormal development of
adipose tissues and adipokine levels in mice. PLoS ONE 2011, 6, e29691. [CrossRef]

22. Wang, C.H.; Wang, C.C.; Huang, H.C.; Wei, Y.H. Mitochondrial dysfunction leads to impairment of insulin
sensitivity and adiponectin secretion in adipocytes. FEBS J. 2013, 280, 1039–1050. [CrossRef]

23. Zhang, Y.; Marsboom, G.; Toth, P.T.; Rehman, J. Mitochondrial respiration regulates adipogenic differentiation
of human mesenchymal stem cells. PLoS ONE 2013, 8, e77077. [CrossRef]

24. Ryu, M.J.; Kim, S.J.; Choi, M.J.; Kim, Y.K.; Lee, M.J.; Lee, S.E.; Chung, H.K.; Jung, S.B.; Kim, H.-J.; Kim, K.S.;
et al. Mitochondrial oxidative phosphorylation reserve is required for hormone- and PPARγ agonist-induced
adipogenesis. Mol. Cells 2013, 35, 134–141. [CrossRef] [PubMed]

25. Kang, S.G.; Yi, H.S.; Choi, M.J.; Ryu, M.J.; Jung, S.; Chung, H.K.; Chang, J.Y.; Kim, Y.K.; Lee, S.E.; Kim, H.W.;
et al. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21.
J. Endocrinol. 2017, 233, 105–118. [CrossRef] [PubMed]

26. Szkudelski, T.; Nogowski, L.; Szkudelska, K. Short-term regulation of adiponectin secretion in rat adipocytes.
Physiol. Res. 2011, 60, 521–530. [CrossRef] [PubMed]

27. Hsu, C.L.; Yen, G.C. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1
cells. J. Agric. Food Chem. 2007, 55, 1730–1736. [CrossRef]

28. Chevillotte, E.; Giralt, M.; Miroux, B.; Ricquier, D.; Villarroya, F. Uncoupling protein-2 controls adiponectin
gene expression in adipose tissue through the modulation of reactive oxygen species production. Diabetes
2007, 56, 1042–1050. [CrossRef]

http://dx.doi.org/10.1038/s41598-019-39650-z
http://dx.doi.org/10.1038/nrdp.2016.80
http://dx.doi.org/10.1016/j.cell.2008.06.016
http://dx.doi.org/10.1146/annurev-genom-082509-141720
http://www.ncbi.nlm.nih.gov/pubmed/20690818
http://dx.doi.org/10.1038/nature11707
http://www.ncbi.nlm.nih.gov/pubmed/23151580
http://dx.doi.org/10.1038/290457a0
http://www.ncbi.nlm.nih.gov/pubmed/7219534
http://dx.doi.org/10.1038/13779
http://dx.doi.org/10.1007/s10545-010-9222-3
http://dx.doi.org/10.1016/S1474-4422(10)70116-2
http://dx.doi.org/10.1111/j.1474-9726.2007.00323.x
http://dx.doi.org/10.1371/journal.pone.0029691
http://dx.doi.org/10.1111/febs.12096
http://dx.doi.org/10.1371/journal.pone.0077077
http://dx.doi.org/10.1007/s10059-012-2257-1
http://www.ncbi.nlm.nih.gov/pubmed/23456335
http://dx.doi.org/10.1530/JOE-16-0549
http://www.ncbi.nlm.nih.gov/pubmed/28184000
http://dx.doi.org/10.33549/physiolres.931971
http://www.ncbi.nlm.nih.gov/pubmed/21401303
http://dx.doi.org/10.1021/jf062912b
http://dx.doi.org/10.2337/db06-1300


Int. J. Mol. Sci. 2020, 21, 3374 12 of 16

29. Stankov, M.; Lücke, T.; Das, A.; Schmidt, R.; Behrens, G.; HIV/AIDS, G.C.N. Relationship of mitochondrial
DNA depletion and respiratory chain activity in preadipocytes treated with nucleoside reverse transcriptase
inhibitors. Antivir. Ther. 2007, 12, 205–216.

30. Stankov, M.V.; Schmidt, R.E.; Behrens, G.M.N. Zidovudine impairs adipogenic differentiation through
inhibition of clonal expansion. Antimicrob. Agents Chemother. 2008, 52, 2882–2889. [CrossRef]

31. Stankov, M.V.; Lücke, T.; Das, A.M.; Schmidt, R.E.; Behrens, G.M.N. Mitochondrial DNA depletion and
respiratory chain activity in primary human subcutaneous adipocytes treated with nucleoside analogue
reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 2010, 54, 280–287. [CrossRef]

32. Hammond, E.; McKinnon, E.; Nolan, D. Human immunodeficiency virus treatment–induced adipose tissue
pathology and lipoatrophy: Prevalence and metabolic consequences. Clin. Infect. Dis. 2010, 51, 591–599. [CrossRef]

33. Llobet, L.; Toivonen, J.M.; Montoya, J.; Ruiz-Pesini, E.; López-Gallardo, E. Xenobiotics that affect oxidative
phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found
in human blood. Dis. Model. Mech. 2015, 8, 1441–1455. [CrossRef]

34. Dryden, M.S. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J. Antimicrob.
Chemother. 2011, 66, 7–15. [CrossRef] [PubMed]

35. Merrill, M.H.; Fleisher, M.S. Factors involved in the use of organic solvents as precipitating and drying
agents of immune sera. J. Gen. Physiol. 1932, 16, 243–256. [CrossRef] [PubMed]

36. Frazier, T.P.; Gimble, J.M.; Kheterpal, I.; Rowan, B.G. Impact of low oxygen on the secretome of human
adipose-derived stromal/stem cell primary cultures. Biochimie 2013, 95, 2286–2296. [CrossRef] [PubMed]

37. Reales-Calderon, J.A.; Corona, F.; Monteoliva, L.; Gil, C.; Martinez, J.L. Quantitative proteomics unravels
that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence
determinants of Pseudomonas aeruginosa. J. Proteom. 2015, 127, 352–364. [CrossRef] [PubMed]

38. Zvonic, S.; Lefevre, M.; Kilroy, G.; Floyd, Z.E.; DeLany, J.P.; Kheterpal, I.; Gravois, A.; Dow, R.; White, A.;
Wu, X.; et al. Secretome of primary cultures of human adipose-derived stem cells: Modulation of serpins by
adipogenesis. Mol. Cell. Proteomics 2007, 6, 18–28. [CrossRef]

39. Llobet, L.; Bayona-Bafaluy, M.P.; Pacheu-Grau, D.; Torres-Pérez, E.; Arbones-Mainar, J.M.; Navarro, M.Á.;
Gómez-Díaz, C.; Montoya, J.; López-Gallardo, E.; Ruiz-Pesini, E. Pharmacologic concentrations of linezolid
modify oxidative phosphorylation function and adipocyte secretome. Redox Biol. 2017, 13, 244–254. [CrossRef]

40. Passarelli, C.; Tozzi, G.; Pastore, A.; Bertini, E.; Piemonte, F. GSSG-mediated Complex I defect in isolated
cardiac mitochondria. Int. J. Mol. Med. 2010, 25, 95–99.

41. Meyer, J.G.; Garcia, T.Y.; Schilling, B.; Gibson, B.W.; Lamba, D.A. proteome and secretome dynamics of
human retinal pigment epithelium in response to reactive oxygen species. Sci. Rep. 2019, 9, 1–12. [CrossRef]

42. Boenzi, S.; Diodato, D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 2018, 62,
443–454.

43. Kajiyama, M.; Kawamura, I.; Fujita, A.; Hamamoto, K.; Nishi, Y.; Kitano, A.; Matsuda, I.; Ohtani, Y.; Miike, T.
A case of mitochondrial encephalomyopathy with cardiomyopathy due to decreased complex I and IV
activities. Brain Dev. 1989, 21, 369–373.

44. Davis, R.L.; Liang, C.; Edema-Hildebrand, F.; Riley, C.; Needham, M.; Sue, C.M. Fibroblast growth factor 21
is a sensitive biomarker of mitochondrial disease. Neurology 2013, 81, 1819–1826. [CrossRef] [PubMed]

45. Kalko, S.G.; Paco, S.; Jou, C.; Rodríguez, M.A.; Meznaric, M.; Rogac, M.; Jekovec-Vrhovsek, M.; Sciacco, M.;
Moggio, M.; Fagiolari, G.; et al. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a
role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel
biomarker for mitochondrial myopathies. BMC Genom. 2014, 15, 91. [CrossRef] [PubMed]

46. Fujita, Y.; Ito, M.; Kojima, T.; Yatsuga, S.; Koga, Y.; Tanaka, M. GDF15 is a novel biomarker to evaluate efficacy
of pyruvate therapy for mitochondrial diseases. Mitochondrion 2015, 20, 34–42. [CrossRef] [PubMed]

47. Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.;
et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 2015,
78, 814–823. [CrossRef]

48. Steele, H.E.; Horvath, R.; Lyon, J.J.; Chinnery, P.F. Monitoring clinical progression with mitochondrial disease
biomarkers. Brain 2017, 140, 2530–2540. [CrossRef]

49. Morovat, A.; Weerasinghe, G.; Nesbitt, V.; Hofer, M.; Agnew, T.; Quaghebeur, G.; Sergeant, K.; Fratter, C.;
Guha, N.; Mirzazadeh, M.; et al. Use of FGF-21 as a biomarker of mitochondrial disease in clinical practice.
J. Clin. Med. 2017, 6, 80. [CrossRef]

http://dx.doi.org/10.1128/AAC.01505-07
http://dx.doi.org/10.1128/AAC.00914-09
http://dx.doi.org/10.1086/655765
http://dx.doi.org/10.1242/dmm.021774
http://dx.doi.org/10.1093/jac/dkr072
http://www.ncbi.nlm.nih.gov/pubmed/21521707
http://dx.doi.org/10.1085/jgp.16.2.243
http://www.ncbi.nlm.nih.gov/pubmed/19872703
http://dx.doi.org/10.1016/j.biochi.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/23880643
http://dx.doi.org/10.1016/j.jprot.2015.06.009
http://www.ncbi.nlm.nih.gov/pubmed/26102536
http://dx.doi.org/10.1074/mcp.M600217-MCP200
http://dx.doi.org/10.1016/j.redox.2017.05.026
http://dx.doi.org/10.1038/s41598-019-51777-7
http://dx.doi.org/10.1212/01.wnl.0000436068.43384.ef
http://www.ncbi.nlm.nih.gov/pubmed/24142477
http://dx.doi.org/10.1186/1471-2164-15-91
http://www.ncbi.nlm.nih.gov/pubmed/24484525
http://dx.doi.org/10.1016/j.mito.2014.10.006
http://www.ncbi.nlm.nih.gov/pubmed/25446397
http://dx.doi.org/10.1002/ana.24506
http://dx.doi.org/10.1093/brain/awx168
http://dx.doi.org/10.3390/jcm6080080


Int. J. Mol. Sci. 2020, 21, 3374 13 of 16

50. Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241.
[CrossRef]

51. Fisher, F.F.; Kleiner, S.; Douris, N.; Fox, E.C.; Mepani, R.J.; Verdeguer, F.; Wu, J.; Kharitonenkov, A.; Flier, J.S.;
Maratos-Flier, E.; et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive
thermogenesis. Genes Dev. 2012, 26, 271–281. [CrossRef]

52. Tyynismaa, H.; Peltola-Mjösund, K.; Wanrooij, S.; Lappalainen, I.; Ylikallio, E.; Jalanko, A.; Spelbrink, J.N.;
Paetau, A.; Suomalainen, A. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a
late-onset mitochondrial disease in mice. Proc. Natl. Acad. Sci. USA 2005, 102, 17687–17692. [CrossRef]

53. Tyynismaa, H.; Carroll, C.J.; Raimundo, N.; Ahola-erkkilä, S.; Wenz, T.; Ruhanen, H.; Guse, K.; Hemminki, A.;
Peltola-Mjøsund, K.E.; Tulkki, V.; et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol.
Genet. 2010, 19, 3948–3958. [CrossRef]

54. Ahola-Erkkilä, S.; Carroll, C.J.; Peltola-Mjösund, K.; Tulkki, V.; Mattila, I.; Seppänen-Laakso, T.; Orešič, M.;
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