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Abstract. In the last years, several authors studied a class of continuous-time
semi-Markov processes obtained by time-changing Markov processes by hitting

times of independent subordinators. Such processes are governed by integro-
differential convolution equations of generalized fractional type. The aim of

this paper is to develop a discrete-time counterpart of such a theory and to

show relationships and differences with respect to the continuous time case. We
present a class of discrete-time semi-Markov chains which can be constructed as

time-changed Markov chains and we obtain the related governing convolution

type equations. Such processes converge weakly to those in continuous time
under suitable scaling limits.

1. Introduction. It is well-known that the memoryless property of homogeneous
Markov processes imposes restrictions on the waiting time spent in a state, which
must be either exponentially distributed (in the continuous time case) or geo-
metrically distributed (in the discrete time case). Indeed, the exponential and
the geometric distributions are the only to enjoy the lack of memory property.
However, in many applied models it is useful to relax the Markov assumption in
order to allow arbitrarily distributed waiting times in any state. This leads to
semi-Markov processes. The theory of semi-Markov processes was introduced by
Lévy [35] and Smith [62] and was developed in many subsequent works, such as
[13, 17, 22, 27, 30, 32, 53, 54].

Since their introduction, semi-Markov processes have been mostly studied in the
continuous time case, while discrete time processes are rarer in the literature (see
e.g. [2] and the references therein). Time is usually assumed to be continuous, even
if some physical theories claim that it could be discrete; however, it is true that
we observe nature at discrete time instants. Moreover, in many applications the
time scale is intrinsically discrete. For instance, in DNA analysis, any approach is
based on discrete time because one deals with (discrete) sequences of four bases:
A, T, C, G. Also, the techniques of text recognition are based on discrete-time
models. In reliability theory, one could be interested in the number of times (e.g.
days, hours) that a specific event occurs. Thus, discrete-time semi-Markov processes
undoubtedly deserve a more in-depth analysis and the aim of the present paper is
to give a contribution in this direction.
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In this paper we study the large class of semi-Markov chains which is generated
by time-changing a discrete-time Markov chain by discrete-time renewal counting
processes, that is with compositional inverses of increasing random walks with i.i.d.
positive integer jumps. A little variant of such processes is proved to be governed
by equations of the form

∞∑
τ=0

(
p(x, t)− p(x, t− τ)

)
µ(τ) = Gxp(x, t), t ∈ N, (1)

where p(x, t) is the probability that the process is in state x at time t, µ is a
probability mass function supported on the positive integers and Gx is related to the
generator of the original Markov chain. In the case in which the waiting times follow
a discrete Mittag–Leffler distribution (see Section 4 for its definition), equation (1)
reduces to

(I − B)αp(x, t) = Gxp(x, t) t ∈ N, α ∈ (0, 1), (2)

where B is the backward shift operator in the time-variable, that is Bp(x, t) =
p(x, t− 1), while I −B is the discrete-time derivative and (I −B)α is its fractional
power.

By this construction, a class of discrete-time semi-Markov processes arises, which
enjoys interesting statistical properties and is suitable for some types of applications
in which time is intrinsically discrete. For instance, in [2], the authors construct
nonparametric estimators for the main characteristics of discrete-time semi-Markov
systems and study their asymptotic behavior; they also show some applications in
reliability theory and biology. Note that the mathematical techniques in [2] are
specific to discrete time and do not fit well with the continuous time case.

Recently, the theory of semi-Markov processes in continuous time has regained
much interest. The literature concerning this topic is vast: see for example [3, 28,
29, 37, 38, 41, 42, 64]. Consult also [18, 49, 56], where the theory has been extended
to models of motions in heterogeneous media. Following the theory, a semi-Markov
process of this kind can be obtained by time-changing a Markov process by the
inverse hitting time of a subordinator and can be seen as scaling limits of continuous-
time random walks (CTRWs). Such processes are known to be governed (see the
review in Section 2.2) by integro-differential equations, which, in the most general
form, can be written as∫ ∞

0

(p(x, t)− p(x, t− τ))ν(dτ) = Gxp(x, t), t ∈ R+, (3)

where Gx is the generator of the original Markov process, ν is the Lévy measure
of the underlying subordinator, while the operator on the left-hand side is usually
called generalized fractional derivative. The reason of this name is that in the case
where the random time is an inverse β-stable subordinator, equation (3) reduces to

∂β

∂tβ
p(x, t) = Gxp(x, t), t ∈ R+, (4)

where dβ

dtβ
is the Caputo fractional derivative of order β ∈ (0, 1).

Note that, formally, (3) is the continuous version of (1), in the same way as (4)
is the continuous version of (2). Here we prove that a similar but non equivalent
scheme holds in discrete time. In fact our treatise on the discrete-time case goes
actually beyond the classical scheme of the standard CTRW-theory, essentially for
three reasons. First, the class of discrete-time processes studied in this paper is



ON DISCRETE-TIME SEMI-MARKOV PROCESSES 3

not trivially given by sampling continuous-time semi Markov processes at integer
times (see, for example, the discussion in remark 13). Second, this paper includes
the case where the original process X(n) is a generic discrete-time Markov chain
on a general state space, thus without restricting us the to random walks with i.i.d.
jumps in Rd. Third, we show that a connection with (generalized) time-fractional
equations also exists in discrete time, and not only after the continuous-time limit.

The structure of the paper is the following. In Section 2, besides a brief liter-
ature overview, we introduce the time change of discrete-time Markov chains and
we present renewal chains and their inverse counting processes; special attention is
devoted to the Bernoulli process (related to identical sequential trials) and to the
Sibuya process (related to sequential trials with memory), which are discrete-time
approximations of the Poisson process and the inverse stable subordinator, respec-
tively. Section 3 contains our main results on discrete-time semi-Markov chains
and generalized fractional difference equations, together with some results on path
space convergence in the continuous time limit. Finally, Section 4 is devoted to
the so-called fractional Bernoulli counting processes, which are discrete-time ap-
proximations of the fractional Poisson process studied in several papers such as
[5, 6, 31, 36, 39].

2. Literature overview and preliminary results.

2.1. Time-change of discrete-time processes. For the sake of clarity, we recall
two important definitions in probability theory: n–divisibility and infinite divisi-
bility. A random variable X is said to be n–divisible if there exist i.i.d. random
variables Y1, Y2, ..., Yn, such that

X
d
= Y1 + Y2 + ....+ Yn.

Instead, a random variable X is said to be infinitely divisible if for each n ∈ N there
exist i.i.d. random variables Y n1 , Y

n
2 , ..., Y

n
n such that

X
d
= Y n1 + Y n2 + ...+ Y nn .

Both definitions are actually connected to stochastic processes with stationary and
independent increments. We briefly recall some related facts, for a more in-depth
discussion consult, for example, [[63], Chapter 1]. On one hand, n–divisibility is
related to random walks defined by the partial sums

X(n) =

n∑
j=1

∆j n ∈ N, (5)

where the ∆j are i.i.d. random variables.
On the other hand, the notion of infinite divisibility is intimately related to Lévy

processes. The definition of Lévy process makes sense only in continuous time
case. Indeed, a process is called Lévy if, besides having independent and stationary

increments, it is continuous in probability, i.e. X(s)
p→ X(t) if s → t (see, for

example, [1] for basic notions).
Lévy processes with non decreasing sample paths are called subordinators (for an

overview see [8]). They are often used as models of random time for the construction
of time-changed Markov processes (on this point consult, for example, [1], [58], [59]
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and [65]). A subordinator σ(t) has Laplace transform

Ee−ησ(t) = e−tf(η), with f(η) = bη +

∫ ∞
0

(1− e−ηx)ν(dx), η > 0,

where b > 0 and the Lévy measure ν is such that
∫

(0,∞)
(x ∧ 1)ν(dx) < ∞. We

let b = 0 and only consider strictly increasing subordinators, i.e. those such that∫∞
0
ν(dx) =∞. The inverse hitting time process

L(t) = inf{x ≥ 0 : σ(x) > t} = sup{x ≥ 0 : σ(x) ≤ t}

is non decreasing, and thus it can be used as a random time to construct time-
changed processes.

In particular, if {M(t)}t∈R+ is a Markov process, the composition {M(L(t))}t∈R+

is a semi-Markov process, which has been deeply studied, having an interesting con-
nection to many different topics, such as anomalous diffusion, continuous time ran-
dom walk limits and integro-differential and fractional equations (see [40], chapter
8 of [29] and the references therein).

One of the main goals of this paper is to develop some aspects of the theory of
time-change for discrete time Markov processes. The discrete-time analogue of a
subordinator is a random walk of type (5) with positive integer jumps

σd(n) =

n∑
j=1

Zj , n ∈ N, Zj ∈ N, σd(0) = 0. (6)

Its inverse process is given by

Ld(t) = max{n ∈ N0 : σd(n) ≤ t}, t ∈ N0, (7)

where N0 = N ∪ {0}. Indeed Ld(t) = 0 for 0 ≤ t < Z1, Ld(t) = 1 for Z1 ≤ t <
Z1 + Z2, and so forth.

So, given a discrete-time Markov chain {X (t)}t∈N0
and an independent process

{Ld(t)}t∈N0 of type (7), we here study the time-changed process {X (Ld(t))}t∈N0 .
We refer to [63] for some definitions and techniques on the time change of discrete-
time processes.

2.2. Brief review on continuous-time semi-Markov chains. We here sum-
marize some facts known in the literature concerning the continuous-time case. Let
us consider a continuous-time Markov chain {X(t)}t∈R+ on the discrete space S

X(t) = Xn, Vn ≤ t < Vn+1, with V0 = 0, Vn =

n−1∑
k=0

Ek, (8)

where {Xn}n=0,1,..., is a discrete-time Markov chain in S, whose stochastic matrix
is defined as

Hij = P (Xn+1 = j|Xn = i)

and the waiting times Ek are exponentially distributed:

P (Ek > t|Xk = i) = e−λit t ≥ 0. (9)

The transition probabilities

pij(t) = P (X(t) = j|X(0) = i), i, j ∈ S,
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are known to solve (see for example [44]) the Kolmogorov backward equations

d

dt
pij(t) =

∑
l∈S

λi(Hil − δil)plj(t), pij(0) = δij , (10)

as well as the related forward equations.
We now consider a semi-Markov process {Y (t)}t∈R+ which is constructed in the

same way of (8) except for the distribution of the waiting times, which are no longer
exponentially distributed:

Y (t) = Xn Tn ≤ t < Tn+1 where T0 = 0, Tn =

n−1∑
k=0

Jk, (11)

where the waiting times follow an arbitrary continuous distribution

P (Jk > t|Xk = i) = F i(t).

We are interested in a particular subclass of (11): taking any strictly increasing
subordinator {σ(t)}t∈R+ , independent of {X(t)}t∈R+ , we assume that the waiting
times J0, J1, . . . are such that

P (Jk > t|Xk = i) = P (σ(Ek) > t|Xk = i), (12)

where Ek are distributed as in (9). The main result concerning such a class of semi-
Markov processes (which also justifies the choice of the compound exponential law
Jk = σ(Ek) for the waiting times) is the following: let L(t) be the right continuous
inverse process of σ(t), the following time-change relation holds:

{Y (t)}t∈R+ = {X(L(t))}t∈R+ ,

where X and L are independent. A heuristic proof of this fact is the following: by
using the definition (8), we have

X(L(t)) = Xn Vn ≤ L(t) < Vn+1 (13)

namely

X(L(t)) = Xn σ(V −n ) ≤ t < σ(Vn+1)

and thus the waiting times are such that Jn = σ(Vn+1)− σ(Vn)
d
= σ(Vn+1 − Vn) =

σ(En) (where we used the fact that σ has independent and stationary increments).
The transitions functions solve the following equation:

Dt pij(t)− ν(t)pij(0) =
∑
l∈S

λi(Hil − δil)plj(t), pij(0) = δij , (14)

where λi are the rates of the En, while ν is the Lévy measure of the subordinator
σ, ν(t) =

∫∞
t
ν(dy) and

Dt pij(t) =

∫ ∞
0

(
pij(t)− pij(t− τ)

)
ν(dτ) =

d

dt

∫ t

0

pij(t− τ)ν(τ)dτ.

Equation (14) is analogous to (10), but the time derivative d
dt on the left side

is replaced by the operator Dt, which is sometimes called generalized fractional
derivative. The reason of this name is that in the case where σ is an α-stable
subordinator, we have ν(dx) = αx−α−1dx/Γ(1− α) and (14) reduces to

dα

dtα
pij(t)−

t−α

Γ(1− α)
pij(0) =

∑
l∈S

λi(Hil − δil)plj(t), pij(0) = δij , (15)
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where

dα

dtα
pij(t) =

d

dt

∫ t

0

pij(t− τ)
τ−α

Γ(1− α)
dτ

is the Riemann–Liouville fractional derivative. In such a case, the waiting times
have distribution

P (Jn > t|Xn = i) = E(−λitα) (16)

where E(x) =
∑∞
k=0

xk

Γ(1+αk) is the Mittag–Leffler function; indeed, by a simple

conditioning argument, it is easy to check that the composition Jn = σ(En) has
Laplace transform

E
(
e−sJn |Xn = i

)
=

λi
λi + sα

s ≥ 0, (17)

which is also the Laplace transform of − d
dtE(−λitα). For analytical properties of

the Mittag–Leffler function and its role in fractional calculus consult [57]; see also
[4] and [19] for some applications on relaxation phenomena.

There is an extensive literature concerning the topics recalled in this section: see
for example [3, 26, 28, 29, 40, 37, 41, 38, 42]. See also [20] for some applications and
[25] for recent analytic results on fractional differential equations. Moreover, semi-
Markov models of motion in heterogeneous media are studied in [18, 49, 56], where
fractional equations of type (15) of state dependent order α = α(x) arise. Consult
also [48] where the authors study Markov processes time-changed by independent
inverses of additive subordinators.

Remark 1. An important case is that of processes making jumps of height 1, i.e.
Hij = 1 if j = i + 1 almost surely. If besides λi = λ for all i ∈ S, they can be
constructed as Poisson processes time-changed by inverses of subordinators (this is a
class of renewal counting processes including the so-called fractional Poisson process
studied e.g. in [5, 6, 31, 36, 39]). Other models of fractional point processes are
studied in [45, 46, 47]. Thus, our investigation in the discrete time starts from the
discrete analogue of renewal processes, known as renewal chains, which are treated
in the next subsection.

2.3. Renewal chains. In the following we will make extensive use of generating
functions. We recall that the generating function of a real sequence {at}t∈N0

is
defined by the power series

Ga(u) =

∞∑
t=0

utat

for all u ∈ R such that |u| ≤ R, where R ≥ 0 is the radius of convergence. Since
Ga can be differentiated term by term at all u inside the radius of convergence, the
sequence {at}t∈N0

can be uniquely reconstructed from the generating function by

setting at = G(t)
a (0)/t!, where G(t)

a (·) denotes the tth derivative of Ga(·). A useful
property is that the convolution of two sequences {at}t∈N0 and {bt}t∈N0 , which is

defined as {a∗b}t∈N0
=
∑t
k=0 akbt−k, has generating function Ga∗b(u) = Ga(u)Gb(u).

We now recall the notion of renewal chain; for a deeper insight consult [[2],
Chapter 2]. Let W be a positive, integer valued random variable. Let W0,W1, . . . ,
be i.i.d. copies of W . Consider the increasing random walk

Tn = W0 +W1 + . . .Wn−1 n ∈ N Wj ∈ N T0 = 0. (18)
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Obviously (18) has the same form of (6), but here, intuitively, the Tn should be seen
as the successive instants when a specific event occurs (and we call them renewal
times) while the Wn represent the waiting times. The process {Tn}n∈N0

is called
renewal chain or discrete-time renewal process.

Its inverse

C(t) = max{n ∈ N0 : Tn ≤ t}, t ∈ N0, (19)

is a counting process representing the number of renewals up to time t. We now
recall a useful result.

Proposition 1. Let GC(m,u) =
∑∞
t=0 u

tP (C(t) = m), |u| < 1, be the generating
function of the sequence {P (C(t) = m)}t∈N0 . Then

GC(m,u) =
1

1− u
(EuW )m(1− EuW ). (20)

Proof. Observe that {C(t) ≥ m} if and only if {Tm ≤ t}. Then P (C(t) = m) =
P (Tm ≤ t, Tm+1 > t). Furthermore, since {Tm+1 ≤ t} implies {Tm ≤ t} we have
P (C(t) = m) = P (Tm ≤ t)− P (Tm+1 ≤ t), and computing the generating function
of both members, (20) is obtained.

We now focus on two types of renewal chains together with their related counting
processes, which are called Bernoulli and Sibuya counting processes, respectively.
In the continuous-time limit, they converge to a Poisson process and to an inverse
stable subordinator, respectively.

2.3.1. The Bernoulli counting process and the Poisson process. Consider a sequence
of Bernoulli trials, i.e. independent trials such that at each time step you can record
the occurrence of either 1 event (with probability p) or of 0 events (with probability
q = 1−p). Let N(t) be the number of events up to time t, which follows a binomial
distribution P (N(t) = k) =

(
t
k

)
pkqt−k, k = 0, ..., t. The waiting times between

successive events are independent geometric random variables.

Definition 2.1. A Bernoulli counting process, denoted by {N(t)}t∈N0 , is a counting
process of the type (19) such that the waiting times Mi, i = 0, 1, . . . , have common
geometric distribution P (Mi = k) = pqk−1, k ∈ N.

By using (20) and the fact that EuMi = pu
1−qu , the generating function of

{P (N(t) = m)}t∈N0
reads

GN (m,u) =
(pu)m

(1− qu)m+1
. (21)

Note that {N(t)}t∈N0 is a Markov process due to the independence of trials and to
the lack of memory property of geometric distribution.

Let now pk(t) = P (N(t) = k). A simple conditioning argument gives

pk(t) = q pk(t− 1) + p pk−1(t− 1) t ∈ N. (22)

Re-writing the first member as pk(t) = q pk(t) + p pk(t) and then dividing by q, one
obtains a finite difference equation governing the Bernoulli counting process:

(I − B)pk(t) = −λpk(t) + λpk−1(t− 1), t ∈ N, (23)

where λ = p/q, B is the shift operator acting on the time variable such that Bp(t) =
p(t− 1) and I − B is the discrete derivative acting on the time variable.
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It is well-known that the Bernoulli process converges to the Poisson process under
a suitable scaling limit. To see this intuitively (rigorous results on convergence will
be given later), let the time steps have size 1/n (and thus the geometric waiting
times scale as Mi → Mi/n) and let the parameter p of the geometric distribution
be substituted by λ/n. In the limit n → ∞ each Mi converges to an exponential
random variable of parameter λ.

Moreover, one could formally observe that, under the above scaling, equation
(23) reads

pk(t)− pk
(
t− 1

n

)
= −λ

n
pk(t) +

λ

n
pk−1

(
t− 1

n

)
, t ∈

{
1

n
,

2

n
, . . .

}
. (24)

Dividing by 1/n and letting n→∞, we formally get

d

dt
pk(t) = −λpk(t) + λpk−1(t), t ∈ R+,

which is the forward equation governing the Poisson process.

2.3.2. The Sibuya counting process and the inverse stable subordinator. Consider
now a sequence of trials, each having two possible outcomes, such that the proba-
bility of success is not constant in time. If a success has just occurred, we assume
that the probability of success in the r-th successive trial is equal to α/r, where
α ∈ (0, 1). Unlike the Bernoulli process, which is Markovian, such a process has a
memory, since it remembers the time elapsed from the previous success. In place
of the geometric distribution of the Bernoulli process, the time Z in which the first
success occurs here follows the so-called Sibuya(α) distribution (consult [15, 52])

P (Z = k) = (1− α)
(
1− α

2

)
....

(
1− α

k − 1

)
α

k

= (−1)k−1

(
α

k

)
k = 1, 2, . . . (25)

having generating function

EuZ = 1− (1− u)α. (26)

On this point, it is interesting to note that any discrete density {pk}k∈N can be
expressed as

pk = (1− α1)(1− α2) . . . (1− αk−1)αk k ∈ N,

for αk = pk/
∑∞
r=k pr, and thus an interpretation within the sequential trial scheme

makes sense. The Sibuya case is obtained by assuming αk = α
k .

Unlike the geometric distribution, which has an exponential decay, the Sibuya
distribution has power-law decay, as (see formula 2.5 in [40])

P (Z = k) = (−1)k−1

(
α

k

)
∼ α

Γ(1− α)
k−1−α, as k →∞. (27)

Now, we consider a random walk of type (6) defined by the partial sums of i.i.d.
Sibuya random variables

σα(n) =

n∑
j=1

Zj n ∈ N, σd(0) = 0. (28)

We define the process {Lα(t)}t∈N0
as the inverse of {σα(t)}t∈N0

:

Lα(t) = max{n ∈ N0 : σα(n) ≤ t} t ∈ N0. (29)
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We call {Lα(t)}t∈N0 Sibuya counting process, as it counts the number of successes
up to time t in the case of Sibuya trials. By (20) and (26), the sequence {P (Lα(t) =
m)}t∈N0

has generating function

GLα(m,u) = (1− u)α−1
[
1− (1− u)α

]m
. (30)

Note that (30) can be expanded as

GLα(m,u) =

∞∑
t=0

ut
( m∑
r=0

(
m

r

)
(−1)r(−1)t

(
αr + α− 1

t

))

=

∞∑
t=0

ut
( m∑
r=0

(−1)r
(
m

r

)(
t− αr − α

t

))
,

where in the last step we used that (−1)w
(
a−1
w

)
=
(
w−a
w

)
for a > 0. Hence Lα(t)

has discrete density

P (Lα(t) = m) =

m∑
r=0

(−1)r
(
m

r

)(
t− αr − α

t

)
, m = 0, 1, . . . . (31)

A crucial point is that the Sibuya counting process {Lα(t)}t∈N0
is a discrete-

time approximation of the inverse stable subordinator. We remind that a sta-
ble subordinator {σ∗(t)}t∈R+ is an increasing Lévy process with Laplace transform
Ee−ξσ∗(t) = e−tξ

α

, α ∈ (0, 1), while its inverse hitting time process is defined as

L∗(t) = inf{x : σ∗(x) > t} = sup{x : σ∗(x) ≤ t}. (32)

The following Proposition, regarding convergence of the one dimensional distribu-
tion, is an anticipation of a more general result that will be treated in Proposition
5 where we will state that a suitable scaling of {σα(btc)}t∈R+ and {Lα(btc)}t∈R+

(where btc denotes the biggest integer less than or equal to t) respectively converge
to a stable subordinator and its inverse in the Skorokhod J1 sense and also in the
sense of finite dimensional distributions.

Proposition 2. Let n ∈ N, t ∈ R+. For any t, the random variable n−αLα(bntc)
converges in distribution to L∗(t) as n→∞.

Proof. We remind (see e.g. [16], formula 1.11) that L∗(t) has a density:

P (L∗(t) ∈ dx) =
1

tα
W−α,1−α

(
− x/tα

)
dx,

where Wη,γ(z) =
∑∞
r=0

zr

r!Γ(ηr+γ) is the Wright function. Then, for every a < b,

with a, b ∈ R+, we have to show that

lim
n→∞

P{a ≤ n−αLα(bntc) ≤ b} =

∫ b

a

W−α,1−α
(
− x/tα

)
tα

dx. (33)

By (31), we have

P (Lα(bntc) = s) =

s∑
r=0

(
s

r

)
(−1)r

(
bntc − α(r + 1)

bntc

)

=

s∑
r=0

Γ(s+ 1)

Γ(s− r + 1)r!
(−1)r

Γ
(
bntc − α(r + 1) + 1

)
Γ
(
1− α(r + 1)

)
Γ
(
bntc+ 1

) .
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Taking s of the form s = bnαhc, with h ∈ R+, and using Tricomi formula

Γ(z + c)

Γ(z + d)
= zc−d

(
1 +O(1/z)

)
c, d ∈ R, (34)

we write

P (Lα(bntc) = bnαhc) ∼ 1

(nt)α

bnαhc∑
r=0

(−h
tα

)r 1

r!Γ(1− α(r + 1))

(
1 +O

( 1

nα

))
∼ 1

(nt)α

∞∑
r=0

(−h
tα

)r 1

r!Γ(1− α(r + 1))

∼ 1

(nt)α
W−α,1−α

(
− s/(nt)α). (35)

We use a regular partition of an interval (a, b]. Let xi = (i+ banαc)/nα, 0 ≤ i ≤ `,
and ` = max{i : xi ≤ b}. Note that xi+1 − xi = 1/nα, and since Lα(bntc) is a
discrete random variable,

P{anα ≤ Lα(bntc) ≤ bnα} =

bbnαc∑
s=danαe

P [Lα(bntc) = s].

Substituting, in (35), each term with its asymptotic value, we obtain

P{anα ≤ Lα(bntc) ≤ bnα} ∼ 1

tα

bbnαc∑
s=danαe

1

nα
W−α,1−α

(
−s

(nt)α

)

∼ 1

tα

bbnαc∑
s=banαc

1

nα
W−α,1−α

(
−s

(nt)α

)
. (36)

The correspondence between i and xi is one to one and the interval [x0, x`+1] con-
tains the given [a, b]. In addition observe that x0 ≤ a < x1 < x2 < · · · < x` ≤ b <
x`+1, then (36) may be written as follows:

P{anα ≤ Lα(bntc) =≤ bnα} ∼ 1

tα

`−1∑
i=0

(xi+1 − xi)W−α,1−α
(
−xi
tα

)
, (37)

which is the Riemann sum converging to the integral on the right-hand side of
(33).

We now compute the auto-correlation function of the process {Lα(t)}t∈N0 .

Proposition 3. The Sibuya counting process {Lα(t)}t∈N0
is such that

E[Lα(t)] =

(
t+ α

t

)
− 1, (38)

E[Lα(t)2] =2

(
t+ 2α

t

)
− 3

(
t+ α

t

)
+ 1, (39)

E[Lα(t1)Lα(t2)] =

min(t1,t2)∑
`=1

(
`+ α− 1

`

)[(t1 − `+ α

t1 − `

)
+

(
t2 − `+ α

t2 − `

)
− 1
]
. (40)
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Moreover, as t2 →∞,

Corr[Lα(t1), Lα(t2)] =
Cov[Lα(t1), Lα(t2)]√
V[Lα(t1)]V[Lα(t2)]

∼ C t−α2 , (41)

where C = C(t1, α).

Proof. In the following, we will use that

(−1)t
(
−a
t

)
=

(
a+ t− 1

t

)
, a > 0, (42)

and
t∑

τ=0

(−1)τ
(
−a
τ

)
= (−1)t

(
−a− 1

t

)
=

(
a+ t

t

)
. (43)

Note that (42) can be easily proved by expanding the binomial coefficients, while
(43) can be checked by computing the generating function of both members. We
now need to derive the mean time spent by the Sibuya random walk (28) at the
location t:

∞∑
x=0

P (σα(x) = t) = (−1)t
(
−α
t

)
=

(
α+ t− 1

t

)
. (44)

Formula (44) can be easily proved by computing (using (26)) the generating function
of the left-hand side

∞∑
x=0

∞∑
t=0

utP (σα(x) = t) =

∞∑
x=0

Euσα(x) = Euσα(0) +

∞∑
x=1

(EuZ)x = (1− u)−α,

which is also the generating function of (−1)t
(−α
t

)
. By using (42), (43) and (44) we

obtain

ELα(t) =

∞∑
x=1

P (Lα(t) ≥ x) =

∞∑
x=1

P (σα(x) ≤ t) =

t∑
τ=0

∞∑
x=1

P (σα(x) = τ)

=

t∑
τ=0

(
(−1)τ

(
−α
τ

)
− δ0(τ)

)
=

(
t+ α

t

)
− 1,

and, by means of (34), we have

ELα(t) ∼ C3t
α as t→∞, (45)

where C3 = C3(α). For t1 ≤ t2 we have

E[Lα(t1)Lα(t2)] =

∞∑
x=1

∞∑
y=1

P (Lα(t1) ≥ x, Lα(t2) ≥ y)

=

∞∑
x=1

∞∑
y=1

P (σα(x) ≤ t1, σα(y) ≤ t2)

=

t1∑
τ1=0

t2∑
τ2=0

∞∑
x=1

∞∑
y=1

P (σα(x) = τ1, σα(y) = τ2)

=

t1∑
τ1=0

t2∑
τ2=τ1

∞∑
x=1

∞∑
y=x

P (σα(x) = τ1)P (σα(y − x) = τ2 − τ1)
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+

t1−1∑
τ2=0

t1∑
τ1=τ2+1

∞∑
y=1

∞∑
x=y+1

P (σα(y) = τ2)P (σα(x− y) = τ1 − τ2)

where in the last step we used that σα has independent and stationary increments.
By using (42), (43), (44), we have

E[Lα(t1)Lα(t2)]

=

t1∑
τ1=0

t2∑
τ2=τ1

(
α+ τ2 − τ1 − 1

τ2 − τ1

)((
α+ τ1 − 1

τ1

)
− δ0(τ1)

)

+

t1−1∑
τ2=0

t1∑
τ1=τ2+1

(
α+ τ1 − τ2 − 1

τ1 − τ2

)((
α+ τ2 − 1

τ2

)
− δ0(τ2)

)

=

t1∑
τ1=1

(
α+ t2 − τ1
t2 − τ1

)(
α+ τ1 − 1

τ1

)
+

t1−1∑
τ2=1

[(
α+ t1 − τ2
t1 − τ2

)
− 1

](
α+ τ2 − 1

τ2

)

=

t1∑
`=1

(
`+ α− 1

`

)[(t1 − `+ α

t1 − `

)
+

(
t2 − `+ α

t2 − `

)
− 1
]

and this proves (40). In the end, (39) can be obtained by putting t1 = t2 and
doing straightforward calculations (to this scope it is useful to recall formula 1.53

in [57], which states that
∑k
j=0

(
α
j

)(
β
k−j
)

=
(
α+β
k

)
). By assuming t1 ≤ t2, we now

investigate the asymptotic behaviour of the correlation function for t2 →∞ and t1
fixed. First, by using (42) and (43), we have that

cov
(
Lα(t1), Lα(t2)

)
=

t1∑
`=1

(
`+ α− 1

`

)[(t1 − `+ α

t1 − `

)
+

(
t2 − `+ α

t2 − `

)
− 1
]

−
((

t1 + α

t1

)
− 1

)((
t2 + α

t2

)
− 1

)
=

t1∑
`=1

(−1)`
(
−α
`

)[(t1 − `+ α

t1 − `

)
+

(
t2 − `+ α

t2 − `

)
− 1
]

−
t1∑
`=1

(−1)`
(
−α
`

)((
t2 + α

t2

)
− 1

)

=

t1∑
`=1

(−1)`
(
−α
`

)[(t1 − `+ α

t1 − `

)
+

(
t2 − `+ α

t2 − `

)
−
(
t2 + α

t2

)]
=

t1∑
`=1

(−1)`
(
−α
`

)[(t1 − `+ α

t1 − `

)
+

Γ(t2 − `+ α+ 1)

Γ(t2 − `+ 1)Γ(α+ 1)
− Γ(t2 + α+ 1)

Γ(t2 + 1)Γ(α+ 1)

]
.

By (34) we have

cov
(
Lα(t1), Lα(t2)

)
∼ C1 as t2 →∞, where C1 = C1(t1, α). (46)

We further have

V ar
(
Lα(t2)

)
= 2

(
t2 + 2α

t2

)
−
(
t2 + α

t2

)2

−
(
t2 + α

t2

)
∼ C2(α)t2α2 as t2 →∞,

(47)
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where in the last step we expanded the binomial coefficients and used again (34).
Putting all together, we have

corr
(
Lα(t1), Lα(t2)

)
=

cov
(
Lα(t1), Lα(t2)

)√
V ar(Lα(t1))

√
V ar(Lα(t2))

∼ C t−α2 t2 →∞.

where C = C(t1, α).

3. Discrete-time semi-Markov chains. Consider a discrete-time homogeneous
Markov chain {X (t)}t∈N0

on the discrete space S with transition matrix

Aij = P (X (t+ 1) = j|X (t) = i), i, j ∈ S, ∀t ∈ N0.

The set of functions

Pij(t) = P (X (t) = j|X (0) = i)

satisfy the backward equation

Pij(t) =
∑
k∈S

AikPkj(t− 1) (48)

by virtue of the Chapman-Kolmogorov equality. If the process is in the state i ∈ S
at time t, then at time t+ 1 it remains in the same state with probability qi = Aii,
while it makes a jump to a different state with probability pi = 1 − Aii. Thus, if
Aii ∈ (0, 1), the waiting time in the state i has geometric distribution of parameter
pi, if Aii = 0 then the waiting time is equal to 1 almost surely (which can be
considered a degenerate geometric law), while Aii = 1 implies that i is an absorbing
state and the waiting time is infinity. Under the assumption Aii < 1 for each i ∈ S,
equation (48) can be re-written as

Pij(t) = qi Pij(t− 1) + pi
∑
l∈S

Hil Plj(t− 1) (49)

where Hij is the probability of a jump from i to j conditioned to the fact that i 6= j.
The matrix

Hij =

{
0 j = i
Aij

1−Aii j 6= i

defines a new Markov chain {Xn}n∈N0
in S:

Hij = P (Xn+1 = j|Xn = i). (50)

By construction, all the waiting times of {Xn}n∈N0
are equal to 1 almost surely.

Now, the original Markov chain {X (t)}t∈N0
can also be re-written in the alternative

form of a discrete-time jump process having geometric (possibly degenerate) waiting
times Mk

X (t) = Xn Vn ≤ t < Vn+1 with V0 = 0, Vn =

n−1∑
k=0

Mk (51)

with

P (Mk = r|Xk = i) = qr−1
i pi pi ∈ (0, 1] r = 1, 2, . . . k = 0, 1, 2 . . .

In some sense, Markovianity of {X (t)}t∈N0 is a consequence of both markovianity
of {Xn}t∈N0 and the lack of memory of the geometric distribution.
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From now on, we will consider discrete-time homogeneous semi-Markov chains,
i.e. processes constructed in the same way of (51) except for the law of the waiting
times, which are now no-longer geometrically distributed:

Y(t) = Xn Tn ≤ t < Tn+1 where T0 = 0, Tn =

n−1∑
k=0

Jk (52)

where Hij is the same matrix defined in (50), while the waiting times are such that

P (Jk = r|Xk = i) = f(r, i)

for an arbitrary discrete density f(r, i) on r = 1, 2, . . . . Note that the conditional
distribution of the waiting time Jk is time-homogeneous, i.e. depends only on the
position of the process and not on the number k.

We are actually interested in two particular subclasses of (52). Such subclasses
consist of semi-Markov chains that are constructed as particular modifications of
the Markov chain (51), in the sense that the new waiting times Jk are given by par-
ticular functions of the geometrically distributed waiting times Mk. In the following
definition we propose these two models.

Definition 3.1. Let {X (t)}t∈N0 be a Markov chain of type (51), having waiting
times Mk with geometric law P (Mk = r|Xk = i) = piq

r−1
i , r = 1, 2, ..., pi ∈ (0, 1].

Let {σd(t)}t∈N0
be a random walk of type (6), independent of {X (t)}t∈N0

, whose
jumps Z1, Z2, . . . are i.i.d. copies of a positive integer-valued random variable Z.

i) We say that (52) is a semi-Markov chain of type A if the waiting times Jk have
the compound geometric form

Jk = σd(Mk) =

Mk∑
i=1

Zi (53)

and thus having generating function

E(uJk |Xk = i) =
piEuZ

1− qiEuZ
. (54)

ii) We say that (52) is a semi-Markov chain of type B if the waiting times Jk
have the compound shifted geometric form

Jk = 1 + σd(Mk − 1) = 1 +

Mk−1∑
i=1

Zi (55)

and thus having generating function

E(uJk |Xk = i) =
piu

1− qiEuZ
. (56)

Observe that if pi ∈ (0, 1), then the Jk follow a standard compound geometric
law, while in the degenerate case pi = 1 we have Mk = 1 and Jk = Zk almost
surely. Note that, for both semi-Markov chains of type A and B, the waiting times
are delayed with respect to those of the original Markov ones, i.e. Jk ≥Mk almost
surely, being the Zj strictly positive.

In the special case in which Z ∼ Sibuya(α), the random variables Jk follow the
discrete Mittag–Leffler distributions of type A and B, which will be respectively
defined in (75) and (78).
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Remark 2. The reason why we are interested in waiting times having compound
geometric type distributions is due to the analogy with the related continuous time
processes treated in the literature. Indeed, as said in Section 2.2, we focused on
a subclass of continuous time semi-Markov processes with waiting times following
a compound exponential distribution σ(Ek), where Ek is the exponential waiting
time of the original Markov process and σ is an independent subordinator (for
example, in the case of fractional processes, σ is a stable subordinator and σ(Ek)
follows the Mittag–Leffler distribution). In discrete time, the subordinator σ is
replaced by the increasing random walk σd (see (6)) and the exponential distribution
is replaced by the (possibly degenerate) geometric one. With such a choice of
compound geometric waiting times, we will prove that these discrete-time semi-
Markov chains retain important features of the related continuous time processes
(and converge to them under suitable scaling limits). In particular, our type A
chains exhibits the property of time-change construction, while type B chains are
governed by convolution equations of generalized fractional type.

3.1. Semi-Markov chains of type A: The time change construction.

Theorem 3.2. Let {X (t)}t∈N0 be a Markov chain of type (51) having no absorb-
ing states and let {σd(t)}t∈N0 be an independent random walk of type (6), whose
inverse is {Ld(t)}t∈N0

defined in (7). Then the time changed process {Y(t)}t∈N0
=

{X (Ld(t))}t∈N0
is a semi-Markov chain of type A (according to Definition 3.1).

Proof. Since the jumps of Ld are at most of size 1, both the jumps of X and Y are
described by the chain Xn. By using definition (51) we have

X (Ld(t)) = Xn Vn ≤ Ld(t) < Vn+1 with V0 = 0, Vn =

n−1∑
k=0

Mk (57)

where each Mk is finite since there are no absorbing states. Definition (7) implies
that

X (Ld(t)) = Xn σd(Vn) ≤ t < σd(Vn+1).

Thus the waiting times are given by

Jn = σd(Vn+1)− σd(Vn)
d
= σd(Vn+1 − Vn) = σd(Mn) =

Mn∑
i=1

Zi

as σd has independent and stationary increments.

3.1.1. Time-changing Markov chains with i.i.d. jumps. We now gain more insights
on a particular subclass of semi-Markov chains of type A. We consider Markov
chains of type (51) with values in a discrete state space S ⊆ R, having independent
and stationary increments, i.e. the transition matrix elements Aij only depend on
the jump j − i. Such processes can be equivalently written as the random walk

X(t) =

t∑
j=1

Xj t ∈ N X(0) = 0, (58)

where X1, X2, ... are i.i.d. random variables. Let σd be an increasing random walk
of type (6), independent of (58), with inverse Ld defined in (7). We are interested
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in the time-changed process

Y (t) = X(Ld(t)) =

Ld(t)∑
j=1

Xj t ∈ N, Y (0) = 0. (59)

By Theorem 3.2, we have that (59) is a semi-Markov chain of type A.
The time-change (59) introduces a memory tail effect, which is evident by inves-

tigating the behavior of the auto-correlation function

ρ(s, t) =
cov(Y (t);Y (s))√
V arY (t)

√
V arY (s)

s ≤ t s ∈ N t ∈ N.

A remarkable example of this fact is analyzed in the following proposition, where
we prove that in the case where Ld is the Sibuya counting process (defined in (29)),
then, for fixed s and large t, the autocorrelation function of Yα(t) = X(Lα(t)) ex-

hibits a different decay with respect to the t−
1
2 decay characterizing the original

Markov chain X. This seems to be useful in many applications, such as the prob-
lem of modeling memory effects in evolving graphs (see [50], [51]). The following
Proposition is the discrete-time counterpart of the analogous result holding in con-
tinuous time, when considering Lévy processes time-changed by inverse α-stable
subordinators (see [33] for the computation of the auto-correlation function). This
is consistent with the fact that the Sibuya counting process is just a discrete time
approximation of the inverse stable subordinator.

Proposition 4. Let {X(t)}t∈N0
be a process of type (58), such that X1 has finite

mean and variance, and let {Ld(t)}t∈N0 be a counting process of type (7), indepen-
dent of {X(t)}t∈N0 . Let {Y (t)}t∈N0 be the process defined in (59). Then

a) {Y (t)}t∈N0
has auto-correlation function

ρ(s, t)

=
cov(Ld(t);Ld(s))(EX1)2 + ELd(s)V arX1√

V ar[Ld(t)](EX1)2 + ELd(t)V arX1

√
V ar[Ld(s)](EX1)2 + ELd(s)V arX1

,

with s ≤ t.
b) Consider the Sibuya counting process {Lα(t)}t∈N0 . Then, for fixed s and large

t, {Yα(t)}t∈N0
= {X(Lα(t))}t∈N0

has auto-correlation function

ρα(s, t) ∼ k1

tα
if EX1 6= 0

and

ρα(s, t) ∼ k2

tα/2
if EX1 = 0,

where k1 = k1(s) and k2 = k2(s).

Proof. a) First observe that

E[X(t)X(s)] = E[(X(t)−X(s))X(s)] + E[X(s)2]

= E[X(t)−X(s)]E[X(s)] + V ar[X(s)] + (EX(s))2

= (t− s)s(EX1)2 + sV arX1 + s2(EX1)2

= ts(EX1)2 + sV arX1
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where we have used independence and stationarity of the increments and
the fact that EX(t) = tEX1 and V arX(t) = tV arX1. Then, a standard
conditioning argument yields

E[X(Ld(t))X(Ld(s))]

=

∞∑
w=0

∞∑
v=0

E[X(w)X(v)]P
(
Ld(t) = w,Ld(s) = v

)
=

∞∑
w=0

∞∑
v=0

(
wv(EX1)2 + vV arX1

)
P
(
Ld(t) = w,Ld(s) = v

)
= E(Ld(t)Ld(s))(EX1)2 + ELd(s)V arX1.

Taking into account that

EX(Ld(t)) = EX1ELd(t)
by Wald formula, we have

cov
(
X(Ld(t));X(Ld(s))) = cov(Ld(t);Ld(s))(EX1)2 + ELd(s)V arX1

whence, in the special case s = t we have

V ar[X(Ld(t))] = V ar[Ld(t)](EX1)2 + ELd(t)V arX1.

Then the auto-correlation function reads

ρ(s, t) =
cov
(
X(Ld(t));X(Ld(s)))√

V ar[X(Ld(t))]
√
V ar[X(Ld(s))]

=
cov(Ld(t);Ld(s))(EX1)2 + ELd(s)V arX1

h(t)h(s)
,

where h(t) =
√
V ar[Ld(t)](EX1)2 + ELd(t)V arX1.

b) Since (45), (47) and (46) state that for fixed s and large t the following relations
hold:

cov(Lα(t);Lα(s)) ∼ C1 V ar[Lα(t)] ∼ C2t
2α ELα(t) ∼ C3t

α,

then by straightforward calculations we obtain the result.

3.1.2. Continuous-time limits of discrete-time random walks. As often mentioned
in previous sections, many of the processes studied in this paper are discrete approx-
imation of continuous-time processes: the increasing random walks of type (6) and
their inverses of type (7) respectively converge to subordinators and their inverses,
discrete-time Markov chains converge to continuous-time Markov processes, and so
forth. In this section we prove rigorous results on continuous-time limits. For the
notion of Skorokhod J1 and M1 topology, and an exhaustive treaty on path space
convergence, consult, for example, [9], [60] and [67]. In the following, we denote by
D[0,∞) the space of cádlág functions x : [0,∞)→ R.

As a first result (that we have already anticipated in section 2.3.2), we state that
the Sibuya random walk (28) and its inverse (29) are discrete-time approximations
of the stable subordinator and its inverse respectively. The following proposition
indeed gives convergence of finite dimensional distributions and also convergence in
J1 sense. The proof is not reported since it follows as a special case of the theory
given in [40], [37] and all the references therein. The key point of the proof is that
is that the Sibuya distribution lies in the domain of attraction of a stable law. For
convenience of the reader, we recall that a random variable Z lies in the domain of
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attraction of a stable law if, given Z1, Z2, ..., Zn independent copies of Z, it holds
that

cn(Z1 + Z2 + ...+ Zn)
d→ S, (60)

where S is stable, for some cn → 0.

Proposition 5. Under the following scaling limit, the Sibuya random walk (28) and
its inverse (29) respectively converge to a α−stable subordinator and to its inverse
in the sense of finite dimensional distributions:

{n− 1
ασα(bntc)}t∈R+

fdd−→ {σ∗(t)}t∈R+ , n→∞,

{n−1Lα(bn 1
α tc)}t∈R+

fdd−→ {L∗(t)}t∈R+ , n→∞, (61)

where bac denotes the largest integer less than a (or equal to a). The convergence
also holds in weak sense under the J1 topology on D[0,∞).

We now study the continuous-time limit of the same subclass of semi-Markov
chains of type A which has been considered in section 3.1.1, namely those processes
obtained by time changing Markov chains having i.i.d. jumps.

We firstly construct a rescaled version of such processes. Consider a sequence of
discrete-time Markov chains with i.i.d. jumps, indexed by the parameter n:

X(n)(t) =

t∑
j=1

X
(n)
j t ∈ N X(n)(0) = 0. (62)

Furthermore we consider a sequence of rescaled random walks with positive jumps
of type (6), indexed by n:

σ
(n)
d (t) =

t∑
j=1

Z
(n)
j , t ∈ N, (63)

such that Z
(n)
j may now have, in general, real values. Its inverse counting process

L
(n)
d (t) = max{k ∈ N0 : σ

(n)
d (k) ≤ t} t ∈ R+ (64)

allows us to define the time-changed process

Y (n)(t) = X(n)(L
(n)
d (t)), t ∈ R+.

We also consider

X(n)(btc) =

btc∑
j=1

X
(n)
j , σ

(n)
d (btc) =

btc∑
j=1

Z
(n)
j , t ∈ R+.

In the following we denote by D(W ) the set of points of discontinuity of the
process W, namely D(W ) = {t > 0 : W (t−) 6= W (t)}.

Theorem 3.3. If, for n→∞, the following three conditions hold:

i) X(n)(bntc) converges to a Lévy Process A(t) in J1 sense,

ii) σ
(n)
d (bntc) converges to a subordinator σ(t) in J1 sense,

iii) the limit processes A(t) and σ(t) are such that D(A)∩D(σ) = ∅ almost surely,

then Y (n)(t) = X(n)(L
(n)
d (t)) converges in M1 sense to the time changed process

A(L(t)), where L is the inverse of σ.
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Proof. We follow the same steps as in [[3], Theorem 3.1] and [[38], Theorem 2.1].
We also make use of the continuous mapping theorem (see [[67], Theorem 3.4.3] and

[66]). By ii), we have that n−1L
(n)
d (t) converges to L(t) in M1 topology by a contin-

uous mapping argument (a random function is mapped into its inverse). Then, by

another continuous mapping argument, where the couple
(
X(n)(bntc), n−1L

(n)
d (t)

)
is mapped into the composition, the proof is completed.

Remark 3. Theorem 3.3 applies, for instance, to random walks whose jumps lie
in the domain of attraction of a stable law (indeed, following the same steps as
in proof of Prop. 5, we actually get the hypotheses i) and ii) on J1 convergence).
But, to be able to understand the importance of Theorem 3.3, it is natural to
wonder which other random walks converge in J1 sense, that is, if there exists
some simple criterion to characterize random walks converging in J1 sense under
a suitable scaling limit. One answer is given by Skorokhod in Theorem 2.7 of

[61]: a sequence of processes ξn(t) =
∑bntc
k=1 ξ

n
k , such that the ξnk are i.i.d. for each

n, converges weakly in J1 topology to the process ξ(t) if for each t the random

variable ξn(t) converges in distribution to ξ(t). So, if the addends X
(n)
j in (62) are

such that X(n)(bntc) d→ A(t) for any t ∈ R+, then X(n)(bntc) converges weakly to

the Lévy process A(t) under the J1 topology. For suitable sequences P (X
(n)
j = 0),

the limit Lévy process A(t) will have finite activity, that is it will be a continuous-

time Markov chain with i.i.d. jumps. In the same way, if the positive addends Z
(n)
j

in (63) are such that σ
(n)
d (bntc) d→ σ(t) for any t ∈ R+, then σ

(n)
d (bntc) converges

weakly to a subordinator σ(t) in J1 sense.

Remark 4. Conversely, one could wonder if, given a continuous-time semi-Markov
process A(L(t)), there exists a discrete-time semi-Markov chain converging to it
under a suitable scaling limit. The answer is positive. The first step is to observe
that, given the limit processes A(t) and σ(t), there exist approximating discrete-
time random walks converging to them. This is due to a well-known result on
triangular array convergence (see, for example, [[24], page 442] and also [21] for
a complete discussion): since, for each t, the random variables A(t) and σ(t) are

infinitely divisible, there exist i.i.d. random variables X
(n)
k and i.i.d. random vari-

ables Z
(n)
k such that X(n)(bntc) =

∑bntc
k=1 X

(n)
k converges in distribution to A(t) and

σ
(n)
d (bntc) =

∑bntc
k=1 Z

(n)
k converges in distribution to σ(t) (furthermore Theorem 2.7

in [61] guarantees also J1 weak convergence). Then, once identified σ
(n)
d , one uses

its inverse L
(n)
d to construct the semi-Markov process Y (n)(t) = X(n)(L

(n)
d (t)).

3.2. Semi-Markov chains of type B: Generalized fractional finite-difference
equations. We note that, by some algebraic manipulations, equation (49) govern-
ing the Markov chain {X (t)}t∈N0 can be re-written in the form of a finite difference
equation:

(I − B)Pij(t) =
∑
l∈S

λi(HilB − δil)Plj(t), Pij(0) = δij , (65)

where λi = pi
qi

, δij denotes the Kronecker delta, Bp(t) = p(t−1) is the shift operator

acting on the time variable, and hence I − B represents the discrete-time derivative.
Equation (65) is a discrete-time version of equation (10) governing continuous

time Markov chains. This fact can be heuristically seen by making use of a suitable
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scaling limit. Indeed, assume that the time steps have size 1/n, so that the shift
operator acts as B1/np(t) = p(t − 1/n). Then scale λi → λi/n and divide both
members of (65) by 1/n. The equation reads

I − B1/n

1/n
Pij(t) =

∑
l∈S

λi(Hil B1/n − δil)Plj(t), t ∈
{

1

n
,

2

n
, . . .

}
, Pij(0) = δij ,

(66)

and the continuous time limit n→∞ gives

d

dt
Pij(t) =

∑
l∈S

λi(Hil − δil)Plj(t), Pij(0) = δij t ∈ R+, (67)

which is the Kolmogorov backward equation (10).
We now consider a semi-Markov chain of type B (according to Definition 3.1) and

we denote by γ(t) the (discrete) time spent by the process in the current position:

γ(t) = inf{k ∈ N : Y(t− k) 6= Y(t)} γ(0) = 1.

Starting from a generic renewal time τ (i.e. such that γ(τ) = 1), which is a re-
generation time for the process, we derive a system of backward equations for the
transition functions

pij(t) = P (Y(t+ τ) = j|Y(τ) = i, γ(τ) = 1)

= P (Y(t) = j|Y(0) = i, γ(0) = 1) i, j ∈ S t ∈ N0,

where the last equality follows by time homogeneity. Such a system is given by (68)
of the following theorem.

Theorem 3.4. The set of functions {pij(t), i, j ∈ S, t ∈ N0}, under the initial
condition pij(0) = δij, solve the following system of equations:

D̃t pij(t)− P (Z > t)pij(0) =
∑
l∈S

λi(HilB − δil)plj(t) + λipij(0) δ0 t, (68)

where

D̃t pij(t) =

∞∑
τ=0

(
pij(t)− pij(t− τ)

)
P (Z = τ), t ∈ N0, (69)

while B is the shift operator such that Bp(t) = p(t− 1) and λi = pi/qi.

Remark 5. It is remarkable to note that (68) (governing discrete-time semi-Markov
chains) can be obtained by (65) (governing the corresponding Markov ones), by
substituting the discrete-time derivative on the left-hand side with the convolution

operator D̃t. Conversely, D̃t reduces to the discrete derivative I − B in the trivial
case where Z = 1 almost surely.

This is analogous to what happens in continuous time, where equation (14) (gov-
erning semi-Markov processes) is obtained from (10) (governing Markov processes)
by changing the time derivative with the generalized fractional derivative

Dt pij(t) =

∫ ∞
0

(
pij(t)− pij(t− τ)

)
ν(dτ) t ∈ R+.

Equation (68) can be interpreted as a discrete-time version of (14), where the in-
tegral in the time variable is replaced by a series, the Lévy measure ν is replaced
by the discrete density of Z and the tail of the Lévy measure ν is replaced by the
survival function of Z.
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Remark 6. We call the operator (69) generalized fractional discrete derivative.
The reason of this name is that in the case where Z follows the Sibuya distribution
(25), the operator (69) reduces to the fractional power of the discrete derivative.
Indeed, by simple calculations, we have

D̃t pij(t) =

∞∑
τ=0

(
pij(t)− pij(t− τ)

)
P (Z = τ)

=

∞∑
τ=1

(
pij(t)− pij(t− τ)

)
(−1)τ−1

(
α

τ

)

=

∞∑
τ=0

(
α

τ

)
(−1)τpij(t− τ)

= (I − B)αpij(t),

where B is the shift operator in the time variable, such that Bp(t) = p(t − 1).
We observe that such operator also appears in ARFIMA models (see [23]). The
interested reader can find a pioneering study of the operator (69) in [43].

Proof of Theorem 3.4. The discrete-time renewal equation reads

pij(t) =

t∑
τ=0

∑
l∈S

HilP (J0 = τ |X0 = i)plj(t− τ) + P (J0 > t|X0 = i)δij .

By applying the generating function to both members we have

p̃ij(u) =
∑
l∈S

HilE(uJ0 |X0 = i)p̃lj(u) +

∞∑
t=0

utP (J0 > t|X0 = i)δij . (70)

Note that for any positive and integer valued random variable Y we have

∞∑
t=0

utP (Y > t) =

∞∑
t=0

ut
∞∑

k=t+1

P (Y = k) =

∞∑
k=1

k−1∑
t=0

utP (Y = k)

=

∞∑
k=1

1− uk

1− u
P (Y = k) =

1− EuY

1− u
. (71)

Hence, using (56) we have

∞∑
t=0

utP (J0 > t|X0 = i) =
1− E(uJ0 |X0 = i)

1− u

=
1

1− u
1− qiEuZ − piu

1− qiEuZ
=
pi + qi

1−EuZ
1−u

1− qiEuZ
.

Thus, (70) becomes

p̃ij(u) =
∑
l∈S

Hil
piu

1− qiEuZ
p̃lj(u) +

pi + qi
1−EuZ

1−u
1− qiEuZ

δij .

and can be re-written as

p̃ij(u)− qiEuZ p̃ij(u) =
∑
l∈S

Hil pi u p̃lj(u) +

(
pi + qi

1− EuZ

1− u

)
δij .
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Taking the inverse transform (by using (71) for the variable Z), the previous equa-
tion becomes

pij(t)− qi
∞∑
τ=0

pij(t− τ)P (Z = τ) =
∑
l∈S

Hil pi plj(t− 1) + (piδ0t + qiP (Z > t) )δij

where the summation is extended to infinity because pij(t) = 0 for t < 0. Writing
pij(t) = pipij(t) + qipij(t) on the left-hand side, and dividing both sides by qi (with
the position λi = pi/qi) we obtain the desired equation.

Remark 7. We can retrace the same steps as in the proof of Theorem 3.4 in order
to find a fractional-type equation governing the Sibuya counting process (29). Let
J0 ∼ Sibuya(α) and Hij = 1 if j = i+ 1. We have

(I − B)αp(i+1) j(t)− (−1)t
(
α− 1

t

)
δij = p(i+1) j(t)− pij(t),

which is a discrete-time version of equation ∂αt l(x, t) = −∂xl(x, t)+ν(t)δij governing
the inverse stable subordinator.

Remark 8. To be exhaustive, we specify that also semi-Markov chains of type
A have governing equations involving the operator (69). However, such equations
have a cumbersome form, which is certainly not the fractional counterpart of the
Markovian equation (65). The interested reader can find them by writing the related
Markov renewal equation and following the same steps as in the proof of Theorem
3.4.

3.2.1. Continuous-time limit of the governing equation. Convergence of (68) to (14)
can be easily obtained in the special case in which Z is regularly varying of order
α ∈ (0, 1). For convenience of the reader, we recall below the notion of regular
variation (for further details consult [11] and [12]):

Definition 3.5. A non negative random variable Z is said to be regularly varying
of order α if its survival function satisfies one of the following equivalent conditions:

a) P (Z > t) = t−αL(t), with L a slowly varying function (i.e. limn→∞
L(nt)
L(n) = 1).

b) limn→∞
P (Z>nt)
P (Z>n) = t−α.

Moreover, observe that the class of regularly varying distributions includes the
Sibuya distribution (25). If Z is regularly varying, then, under a suitable scaling
limit, equation (68) converges, for t > 0, to equation (15) governing fractional
processes, i.e. Markov processes time changed by an independent inverse stable
subordinator. Indeed, by letting the time steps have size 1/n and by the scaling

Z → Z

n
λi → λiP (Z > n)Γ(1− α) ∀i ∈ S α ∈ (0, 1),

then, for t ∈ { 1
n ,

2
n , . . . }, equation (68) reads

∞∑
τ= 1

n

(
pij(t)− pij(t− τ)

) 1

Γ(1− α)

P (Z = nτ)

P (Z > n)
− 1

Γ(1− α)

P (Z > nt)

P (Z > n)
pij(0)

=
∑
l∈S

λi(HilB 1
n
− δil)plj(t), (72)
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where B 1
n
p(t) = p(t− 1

n ). Taking into account that 1

P (Z = nt)

P (Z > n)
∼ αt−α−1 1

n
for large n, (73)

in the limit n→∞ equation (72) reduces to∫ ∞
0

(
pij(t)− pij(t− τ)

) ατ−α−1

Γ(1− α)
dτ − t−α

Γ(1− α)
δij

=
∑
l∈S

λi(Hil − δil)plj(t) t ∈ R+

which coincides with (15).

4. A remarkable special case: The fractional Bernoulli processes. We here
analyze a special case of the theory expounded in the previous section, by construct-
ing two processes which are discrete-time versions of the fractional Poisson process.
We recall that the fractional Poisson process is a continuous time counting pro-
cess whose i.i.d. waiting times J0, J1, . . . , have common law P (Jk > t) = E(−λtα),

α ∈ (0, 1), where E(x) =
∑∞
k=0

xk

Γ(1+αk) is the Mittag–Leffler function. As recalled

in Section 2.2, it is obtained by the composition of a Poisson process with an inde-
pendent inverse stable subordinator. For some references, consult [5, 6, 31, 36, 39];
see also [7] and [34] for time-inhomogeneous extensions of the model. The fractional
Poisson process is intimately connected to fractional calculus as its state probabili-
ties solve the forward equation

dα

dtα
pk(t)− t−α

Γ(1− α)
pk(0) = −λpk(t) + λpk−1(t) (74)

where dα

dtα pk(t) denotes the Riemann–Liouville fractional derivative. We propose
two discrete-time approximations of such a process, respectively called fractional
Bernoulli of types A and B (in the sense of the classification of semi-Markov chains
given in the previous section). We have been inspired by [52], where the author
defines a so-called Discrete Mittag–Leffler distribution. The reason of this name is
that such a distribution converges to the classical continuous Mittag–Leffler distri-
bution (16) under a suitable scaling limit. We here define two distributions, named
discrete Mittag–Leffler distributions of type A and B, which are similar to that
studied in [52], on which we base the definition of the related Bernoulli processes.

4.1. Fractional Bernoulli process of type A.

Definition 4.1. Let M be a geometric random variable with law P (M = k) =
pqk−1, k ∈ N, and let the Zj be i.i.d. Sibuya random variables as in (25). A

1 Since Z is slowly varying, we have

P (Z = nt)

P (Z > n)
=

P (Z > nt− 1) − P (Z > nt)

P (Z > n)
=

(nt− 1)−αL(nt− 1) − (nt)−αL(nt)

n−αL(n)

=
(nt)−αL(nt)

[
(1 − 1

nt
)−α L(nt−1)

L(nt)
− 1

]
n−αL(n)

.

Thus, using the properties of the slowly varying function L and the expansion (1− 1
nt

)−α ∼ 1+ α
nt

for large n, the proof is complete.
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random variable JA is said to follow a DMLA (i.e. discrete Mittag–Leffler of type
A) distribution if it can be expressed as a compound geometric sum

JA =

M∑
k=1

Zk

and thus has generating function

EuJ
A

=
1− (1− u)α

1 + q
p (1− u)α

, α ∈ (0, 1). (75)

Remark 9. DMLA is a discrete approximation of the Mittag–Leffler distribution
(16). Indeed by rescaling

Zk →
Zk
n

JA → JA

n

p

q
= λ→ λ

nα
, (76)

we obtain the rescaled random variable

JA(n) =
1

n

M(n)∑
j=1

Zj (77)

such that

lim
n→∞

Ee−sJ
A(n)

=
λ

λ+ sα
s ∈ R+,

where λ/(λ + sα) is the Laplace transform of the Mittag–Leffler distribution (see
(17)).

We are now ready to define a discrete-time approximation of the fractional Pois-
son process.

Definition 4.2. Let TAn = JA0 + JA1 + . . . JAn−1 be a renewal chain of type (18),

with waiting times JA0 , J
A
1 , . . . , having common DMLA distribution. The related

counting process

{NA(t)}t∈N0
= max{n ∈ N0 : TAn ≤ t}

is called fractional Bernoulli counting process of type A.

In the case α = 1, we have Zk = 1 for each k almost surely, and JA defined in

(75) reduces to a geometric random variable JA
d
= M and thus the counting process

NA reduces to the Bernoulli counting process N defined in section 2.3.1.
We now give an important time-change relation regarding {NA(t)}t∈N0 .

Proposition 6. Let {N(t)}t∈N0
be a Bernoulli counting process and {Lα(t)}t∈N0

be an independent Sibuya counting process defined in (29). For each t ∈ N0, the
following equality holds in distribution

NA(t)
d
= N(Lα(t)).

Proof. By using (20) with waiting times (75), the generating function of {NA(t)}t∈N
reads

GNA(m,u) = (1− u)α−1 (p− p(1− u)α)m

(p+ q(1− u)α)m+1
.
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The same form can be obtained by computing the generating function of N(Lα(t))
by a simple conditioning argument

GNA(m,u) =

∞∑
t=0

utP (N(Lα(t)) = m) =

∞∑
t=0

∞∑
j=0

utP (N(j) = m)P (Lα(t) = j)

=

∞∑
j=0

P (N(j) = m)GLα(j, u) = (1− u)α−1 (p− p(1− u)α)m

(p+ q(1− u)α)m+1

where we used (30) and (21).

The above proposition shows that NA exhibits a time-change construction sim-
ilar to that of the fractional Poisson process. Indeed, while NA is given by the
composition of a Bernoulli with a Sibuya process, the fractional Poisson process is
given by the composition of a Poisson process with an inverse stable subordinator.
The meaning of this construction is clear if we recall that the Bernoulli and Sibuya
processes converge the Poisson process and to the inverse stable subordinator re-
spectively.

4.2. Fractional Bernoulli process of type B.

Definition 4.3. Let M be a geometric random variable with law P (M = k) =
pqk−1, k ∈ N, and let the Zj be i.i.d. Sibuya random variables as in (25). A
random variable JB is said to follow a DMLB (e.g. discrete Mittag–Leffler of type
B) distribution if it can be expressed as a compound shifted geometric sum

JB = 1 +

M−1∑
k=1

Zk

and thus has generating function

EuJ
B

=
u

1 + q
p (1− u)α

, α ∈ (0, 1). (78)

Remark 10. DMLB is a discrete approximation of the Mittag–Leffler distribution
(16). Indeed by rescaling

Zk →
Zk
n

JB → JB

n

p

q
= λ→ λ

nα
, (79)

we obtain the rescaled random variable

JB(n) =
1

n
+

1

n

M(n)−1∑
j=1

Zj , (80)

such that

lim
n→∞

Ee−sJ
B(n)

=
λ

λ+ sα
, s ∈ R+,

where λ/(λ + sα) is the Laplace transform of the Mittag–Leffler distribution (see
(17)).

We now define another discrete-time approximation of the fractional Poisson
process.
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Definition 4.4. Let TBn = JB0 + JB1 + . . . JBn−1 be a renewal chain of type (18),

with waiting times JB0 , J
B
1 , . . . , having common DMLB distribution. The related

counting process

{NB(t)}t∈N0
= max{n ∈ N0 : TBn ≤ t}

is called fractional Bernoulli counting process of type B.

In the case α = 1, we have Zk = 1 for each k almost surely, and JB defined in

(78) reduces to a geometric random variable JB
d
= M and thus the counting process

NB reduces to the Bernoulli counting process N .
We observe that the process NB has an interesting connection to fractional cal-

culus, as pk(t) = P (NB(t) = k) solves a forward equation which is analogous to
(23) governing N , but where the discrete-time derivative I − B is replaced by its
fractional power (I − B)α :

(I − B)αp(t) =

∞∑
k=0

(
α

k

)
(−1)kp(t− k).

Proposition 7. For t ∈ N0, the state probabilities pk(t) = P (NB(t) = k) solve the
following system

(I − B)αpk(t) = −λpk(t) + λpk−1(t− 1), k ≥ 1, (81)

(I − B)αp0(t)− (−1)t
(
α− 1

t

)
= −λp0(t) + λδ0t. (82)

under the initial condition pk(0) = δ0k.

Proof. By computing the generating function of both members of (82) one has

(1− u)αp̃0(u)− (1− u)α−1 = −λp̃0(u) + λ,

which gives

p̃0(u) =
λ+ (1− u)α−1

λ+ (1− u)α
.

By further computing the generating function of both members of (81) one has

(1− u)αp̃k(u) = −λp̃k(u) + λu p̃k−1(u).

Solving the last equation by iteration, we have

p̃k(u) =
λu

λ+ (1− u)α
p̃k−1(u) =

(λu)k

[λ+ (1− u)α]k
p̃0(u) =

(λu)k[λ+ (1− u)α−1]

[λ+ (1− u)α]k+1
,

which coincides with the generating function obtained by (20) with waiting times
(78), and this concludes the proof.

Remark 11. Note that for t 6= 0 equations (81) and (82) can be written in compact
form as

(I − B)αpk(t)− P (Z > t)pk(0) = −λpk(t) + λpk−1(t− 1), t ∈ N, (83)

where Z is the Sibuya random variable defined in (25).
We let the time steps have size 1/n and, following (79), we scale λ→ λ/nα and

Z → Z/n. Thus (83) becomes

(I − B 1
n

)αpk(t)− P
(
Z

n
> t

)
pk(0)
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= − λ

nα
pk(t) +

λ

nα
pk−1(t− 1

n
), t ∈

{
1

n
,

2

n
, . . .

}
,

where B 1
n
pk(t) = pk

(
t− 1

n

)
, namely(

I − B 1
n

1
n

)α
pk(t)− nαP (Z > nt)pk(0)

= −λpk(t) + λpk−1

(
t− 1

n

)
, t ∈

{
1

n
,

2

n
, . . .

}
.

We let n→∞ and recall that the operator on the left-hand side

lim
n→∞

(
I − B 1

n

1
n

)α
is known as Grünwald–Letnikov derivative (see [[57] Chapter 4, sect. 20]), and
coincides with the fractional Riemann–Liouville derivative. Moreover, by using
(42) and (34), we have

P (Z > nt) = (−1)nt
(
α− 1

nt

)
∼ (nt)−α

Γ(1− α)
, as n→∞.

Thus, formally, the limiting equation coincides with the forward equation (74) gov-
erning the fractional Poisson process.

Remark 12. We note that (7) is in the forward form. By adapting (68) we can
also write the backward equation. Indeed, for λi = λ ∀i ∈ S, Hij = 1 if j = i + 1
and Z following the Sibuya distribution, then the waiting times follow a DMLB
distribution (see (78)) and (68) reduces to

(I − B)αpij(t)− (−1)t
(
α− 1

t

)
δij = λp(i+1), j(t− 1)− λpij(t) + λδijδ0 t.

4.3. Convergence to the fractional Poisson process. We finally prove that,
under a suitable limit, both the fractional Bernoulli counting processes {NA(t)}t∈N0

and {NB(t)}t∈N0
defined in this section converge to a fractional Poisson process.

The convergence holds in the sense of finite dimensional distributions and also in
J1 Skorokhod sense.

Let J
A(n)
0 , J

A(n)
1 , . . . be i.i.d. copies of JA(n), defined in (77), and let T

A(n)
k =

J
A(n)
0 +J

A(n)
1 +· · ·+JA(n)

k−1 be the renewal chain associated with the counting process

N
(n)
A (t) = max{y ∈ N0 : TA(n)

y ≤ t} t ∈ R+.

Moreover, let J
B(n)
0 , J

B(n)
1 , . . . be i.i.d. copies of JB(n) defined in (80) and let

T
B(n)
k = J

B(n)
0 + J

B(n)
1 + · · · + J

B(n)
k−1 be the renewal chain associated with the

counting process

N
(n)
B (t) = max{y ∈ N0 : TB(n)

y ≤ t} t ∈ R+.

Finally, let W0,W1, . . . , be i.i.d. random variables with common Mittag–Leffler law
(16) and let Tk = W0 + W1 + · · · + Wk−1 be the renewal process whose counting
process is the fractional Poisson process

Π(t) = max{y ∈ N0 : Ty ≤ t}, t ∈ R+.

Proposition 8. Under the scaling limit (79) and (76), we have that:
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a) for n→∞ ,

{N (n)
A (t)}t∈R+

fdd−→ {Π(t)}t∈R+ , {N (n)
B (t)}t∈R+

fdd−→ {Π(t)}t∈R+ .

where
fdd−→ denotes convergence of finite dimensional distributions.

b) for n→∞,

{N (n)
A (t)}t∈R+

J1−→ {Π(t)}t∈R+ , {N (n)
B (t)}t∈R+

J1−→ {Π(t)}t∈R+ , onD[0,∞),

where
J1−→ denotes convergence in weak sense under the J1 Skorokhod topology

on the space of cádlág functions D[0,∞).

Proof. a) The proof proceeds along the same lines for both processes A and B. For

the sake of brevity, we only show the proof for case A. Since J
A(n)
k

d−→ Wk for
each k, where Wk has a Mittag–Leffler distribution (16), then, fixed r ∈ N, the

vector
(
J
A(n)
0 , J

A(n)
1 , . . . , J

A(n)
r−1

)
converges in distribution to

(
W0,W1, . . . ,Wr−1

)
.

Let Tk = W0 +W1 + · · ·+Wk−1. By considering the function h(x0, x1, . . . , xr−1) =
(x0, x0 +x1, x0 +x1 +x2, . . . , x0 +x1 + · · ·+xr−1), a continuous mapping argument
gives (

T
A(n)
1 , . . . , TA(n)

r

)
= h(J

A(n)
0 , J

A(n)
1 , . . . , J

A(n)
r−1

)
d→ h
(
W0,W1, . . . ,Wr−1

)
=
(
T1, . . . , Tr

)
.

Hence, by fixing r times t1, . . . , tr in R+ and r numbers m1, . . . ,mr in N, we have

P
(
N

(n)
A (t1) ≤ m1, . . . , N

(n)
A (tr) ≤ mr

)
= P

(
TA(n)
m1

≥ t1, . . . , TA(n)
mr ≥ tr

)
n→∞−→ P

(
Tm1

≥ t1, . . . , Tmr ≥ tr
)

= P
(
Π(t1) ≤ m1, . . . ,Π(tr) ≤ mr

)
.

b) It is sufficient to apply Theorem 3 in [10]. Indeed N
(n)
A (t) has non decreasing

sample paths and, according to the proof of statement a) above, it converges in the
sense of finite dimensional distribution to a fractional Poisson process, the latter
being continuous in probability.

Remark 13. There are many possible discrete-time approximations of the Frac-
tional Poisson process (at least one for each different discrete version of the Mittag–
Leffler distribution). We have only presented two of these possible approximating
processes. None of these two is trivially given by sampling the fractional Poisson
process at integer times (as well as the Bernoulli process is not given by the Poisson
process sampled at integer times). Indeed, by sampling the fractional Poisson pro-
cess at integer times, we obtain a process with jumps of size possibly greater than
1. In general, the discrete-time semi-Markov processes treated in this paper are not
obtained by sampling the related continuous-time processes at discrete times.
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l’opérateur fractionnaire, preprint, arXiv:1111.1898v1.

[44] J. R. Norris, Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics,
2, Cambridge University Press, Cambridge, 1998.

[45] E. Orsingher and F. Polito, Fractional pure birth processes, Bernoulli , 16 (2010), 858–881.
[46] E. Orsingher and F. Polito, On a fractional linear birth-death process, Bernoulli , 17 (2011),

114–137.

[47] E. Orsingher, F. Polito and L. Sakhno, Fractional non-linear, linear and sub-linear death
processes, J. Stat. Phys., 141 (2010), 68–93.

[48] E. Orsingher, C. Ricciuti and B. Toaldo, Time-inhomogeneous jump processes and variable
order operators, Potential Anal., 45 (2016), 435–461.

[49] E. Orsingher, C. Ricciuti and B. Toaldo, On semi-Markov processes and their Kolmogorov’s

integro-differential equations, J. Funct. Anal., 275 (2018), 830–868.

[50] A. Pachon, F. Polito and L. Sacerdote, Random graphs associated to some discrete and
continuous time preferential attachment models, J. Stat. Phys., 162 (2016), 1608–1638.

[51] A. Pachon, L. Sacerdote and S. Yang, Scale-free behaviour of networks with the copresence
of preferential and uniform attachment rules, Phys. D , 371 (2018), 1–12.

[52] R. N. Pillai and K. Jayakumar, Discrete Mittag–Leffler distributions, Statist. Probab. Lett.,

23 (1995), 271–274.

[53] R. Pyke, Markov renewal processes with finitely many states, Ann. Math. Statist., 32 (1961),
1243–1259.

[54] R. Pyke, Markov renewal processes with infinitely many states, Ann. Math. Statist., 35 (1964),
1746–1764.

[55] M. Raberto, F. Rapallo and E. Scalas, Semi-Markov graph dynamics, PLoS ONE , 6 (2011).

[56] C. Ricciuti and B. Toaldo, Semi-Markov models and motion in heterogeneous media, J. Stat.
Phys., 169 (2017), 340–361.

[57] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory

and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
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