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Abstract 
 
Exposure to hypoxia elicits widespread physiological responses that are critical for successful 
acclimatization; however, these responses may induce apparent maladaptive consequences. For 
example, recent studies conducted in both the laboratory and field (e.g. high-altitude) have 
demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several 
proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia 
including: a) changes in blood flow patterns (i.e. shear stress), b) increased inflammation and 
production of reactive oxygen species (i.e. oxidative stress), c) heightened sympathetic nervous 
activity, and d) increased red blood cell concentration and mass leading to elevated nitric-oxide 
scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known 
about endothelial function in indigenous populations who have chronically adapted to 
environmental hypoxia for millennia (e.g. the Peruvian, Tibetan, and Ethiopian highlanders). There is 
some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have 
preserved endothelial function at high-altitude, but less is known about the Ethiopian highlanders. 
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However, Andean highlanders suffering from chronic mountain sickness, which is characterized by 
an excessive production of red blood cells, have markedly reduced endothelial function. This review 
will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in 
lowlanders and highlanders. Elucidating the pathways responsible for vascular 
adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low 
oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of 
vascular function at high-altitude will clinically benefit the globally estimated 85 million high-altitude 
residents.  
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List of Abbreviations: 
 
EE, excessive erythrocytosis 

FIO2, fraction inspired of oxygen 

FMD, flow-mediated dilatation 

GTN, glyceryl trinitrate, or nitroglycerin 

Hb, haemoglobin  

LBNP, lower-body negative pressure 

NO, nitric oxide 

OSS, oscillatory shear stress 

ROS, reactive oxygen species 

SaO2, arterial haemoglobin saturation of oxygen 

SNA, sympathetic nervous activity 

Introduction: 

The vast majority of humans dwell at or slightly above sea level (i.e. <1500m) where the availability 

of oxygen is abundant. When ascending to high altitude, oxygen concentration stays constant (i.e. 

~21%), but atmospheric pressure drops, resulting in a decreased partial pressure of inspired oxygen 

and saturation of arterial haemoglobin (SaO2). The lowered oxygen availability at high altitude, 

termed hypobaric hypoxia, poses a physiological challenge to organisms reliant upon aerobic 

metabolism. Once restricted to mountaineers and explorers, there is a growing number of sea level 

residents sojourning to high altitude (>2500m). Due to a combination of the expansive growth of the 
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internet and affordable air travel, the once considered exotic regions are now well documented and 

accessible. This can be exemplified by the tragic overcrowding at Sagarmatha (i.e. Mount Everest), 

where there have already been 11 deaths in 2019 after the Nepalese government issued a record 

381 permits (Government of Nepal, 2019). Globally, it has been estimated that >100 million 

individuals travel to high altitude locations each year, largely for tourism and religious pilgrimages 

(Burtscher, 1999; Basnyat, 2014).  

 In contrast to lowland born residents, select populations have lived at high altitude for 

millennia. These populations, Peruvian (i.e. Andean), Tibetan, and Ethiopian highlanders, seem to 

have acquired distinctive physiological phenotypes while living in their respective hypoxic 

environments. Although there is considerable debate regarding specific durations, the general 

consensus is that the Old World plateaux (Ethiopian and Tibetan) have been settled for longer than 

the Altiplano in the New World (Andeans; Aldenderfer, 2006; Beall, 2006, 2007; Alkorta-Aranburu et 

al., 2012; Zhang et al., 2018), as outlined in figure 1. High altitude physiology research offers 

valuable insight into the mechanism(s) underpinning adaptation to hypoxaemia, which holds clinical 

relevance to diseases characterized by low levels of oxygen (e.g. heart failure, stroke, chronic 

obstructive pulmonary disease; Berger & Grocott, 2017). Moreover, understanding the fundamental 

aspects of chronic high altitude acclimatization in indigenous populations may permit a unique 

perspective on the long-term consequences of these vascular adaptations. Indeed, characterizing 

the physiological traits in these indigenous populations may inform local health care and clinical 

practice for the global estimated 85 million high altitude residents (Beall, 2014).  

The acute and chronic physiological adaptations that occur with exposure to high altitude 

(>2500m) aim to acclimatize the human body to increase oxygen delivery. Some of these processes 

are noticeable, such as an increase in ventilation, while others are imperceptible, such as elevations 

in haemoglobin concentration ([Hb]) and mass, and reductions in blood bicarbonate levels. More 

recently, it has been suggested that some of these adaptations may compromise vascular function, 
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and more specifically, the endothelium. The objective of this review is to provide an overview and 

inform our current understanding of how hypoxaemia influences endothelium-dependent 

vasodilation, from acute and chronic perspectives. Herein, we highlight the laboratory- and field-

based literature in lowlanders and in the Andean, Tibetan, and Ethiopian highlanders.  

The initial sections of this review is dedicated to describing the impact of hypoxaemia on 

endothelial function in lowlanders and discusses what are currently considered the primary 

mechanism(s) responsible for these changes, including: 1) pro-atherogenic blood flow patterns, 2) 

oxidative-inflammatory-nitrosative stress, 3) elevated sympathetic nervous activity (SNA), and 4) 

increased haemoglobin concentration and mass leading to increased nitric-oxide (NO) scavenging. 

The latter portion of the review details the impact of life-long exposure to hypoxaemia in the distinct 

high altitude indigenous populations, and we conclude the review by briefly discussing the 

implications of these collective findings.  

Hypoxia and endothelial function in lowlanders 

There are several different methods used to measure the many aspects of endothelial function in 

humans. Given the scope of this review, we focus primarily on endothelial-dependent vasodilation as 

a marker of endothelial function. Below, we highlight the studies that employed arguably the most 

popular methods used to assess endothelial function in humans: 1) non-invasive conduit artery flow-

mediated dilation (i.e. FMD) in response to a shear stress stimulus (i.e. endothelial-dependent 

vasodilation), sometimes combined with subsequent administration of a donor (e.g. glyceryl 

trinitrate; GTN) to assay smooth muscle sensitivity to exogenous NO (i.e. endothelial-independent 

vasodilation); and 2) invasive intra-arterial infusion of vasoactive substances such as acetylcholine 

and sodium nitroprusside to assess endothelial-dependent and endothelial-independent smooth 

muscle NO-mediated vasodilation, respectively. Comprehensive reviews on these techniques have 

been published elsewhere (Tousoulis et al., 2005; Thijssen et al., 2011).  
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There are advantages and disadvantages associated with laboratory- and field-based hypoxia 

research. The laboratory offers a controlled environment with equipment, supplies, and personnel 

readily available; however, its ecological validity remains in question since there are many variables 

encountered during high altitude field research that are not encountered in the laboratory, such as 

reduced atmospheric pressure (with the exception of hypobaric chambers), cold and arid climates, 

increased ultraviolet exposure, differences in diet, and exercise (i.e. trekking). To add further 

complexity, variability in these encountered stressors at high altitude makes between study 

comparisons difficult in certain instances (e.g. trekking vs automobile ascent; differences in length 

and severity of altitude exposure). Nevertheless, in order to gain a broad understanding on how 

hypoxaemia alters human physiological function both variations of experimentation are required 

(i.e. laboratory- and field-based). Below, we discuss the impact of hypoxaemia on endothelial 

function and the proposed mechanism(s) that govern these changes.  

 

Studies in acute hypoxia (laboratory)  

Administering hypoxia in laboratory-based studies is usually conducted using modified 

inspired gases or hypobaric chamber. A study by Frøbert et al. (2008) assessed the ratio of 

brachial artery FMD (60 seconds post-occlusion) to endothelial-independent vasodilation 

(i.e. GTN) five-minutes after steady-state breathing of 12.5% O2 (~4000m equivalent). The 

authors found that endothelial-dependent function was reduced in middle-aged men with 

and without cardiovascular health risk factors (Frobert et al., 2008). Similarly, in more recent 

studies using a slightly more severe degree of hypoxia (FIO2 = 0.11; equivalent to ~5000m), it 

was found that endothelial function decreased following 20-minutes (Tremblay et al., 

2018b), and after 1, 3.5, and 5.5 hours of exposure (Lewis et al., 2014). Following a 30-
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minute exposure to moderate (end-tidal partial pressure of oxygen = 75mmHg [equivalent 

to ~2000m]) or severe (end-tidal partial pressure of oxygen = 50mmHg [equivalent to 

~4600m]) isocapnic hypoxia, endothelial function was reduced even after accounting for 

reduced shear stress stimulus (Lewis et al., 2017). Although the mechanism(s) responsible 

for the observed decline in shear stress during acute hypoxia remain unknown, these 

authors attributed it to heightened sympathetic vascular constraint (Weisbrod et al., 2001). 

In contrast, 15-minutes of severe isocapnic hypoxia (end-tidal partial pressure of O2 = 45 

mmHg; equivalent to ~5000m) did not reduce endothelial function in healthy adults (Rieger 

et al., 2017). The latter study suggests that 15-minutes of hypoxia exposure may not be 

enough to elicit a reduction in endothelial function. Although these studies utilized highly 

sophisticated methods that allow for breath-by-breath end-tidal gas control (i.e. end-tidal 

forcing), is should be noted that these studies are likely less applicable to high altitude 

investigations, since the partial pressure of end-tidal CO2 is inherently reduced at high 

altitude due to increases in ventilation. These aforementioned studies are also subject to 

the confounds of elevated end-tidal CO2, which may induce alterations in blood flow 

patterns and increase SNA (Somers et al., 1989; Vantanajal et al., 2007; Steinback et al., 

2009), which is known to reduce endothelial function via mechanisms related to vascular 

constraint (described in more detail below).  

Another study found no change in endothelial function after 4 hours in a hypobaric 

chamber simulating ~4000m; however, the FMD test incorporated a proximal, rather than 

distal, cuff occlusion compared to all other studies conducted in hypoxia (Iglesias et al., 

2015). Consistency in the methodology used to conduct an FMD test is of critical importance 

since cuff placement has been shown to influence the degree of endothelial function 
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observed (Agewall et al., 2001). An alternative method to assess vascular function, albeit 

typically in the resistance (i.e. microvascular) blood vessel bed, is to utilize forearm intra-

arterial infusions. There has only been one investigation that examined the effect of 

hypoxaemia on endothelial function at rest in the laboratory using this approach (Berger et 

al., 2005), and this technique has yet to be completed at high altitude likely due to its 

invasive nature and need for adequate highly trained medical support. The study by Berger 

and colleagues (2005) found that endothelial-dependent vasodilation in response to intra-

arterial (brachial) infusion of acetylcholine was impaired in high altitude pulmonary oedema 

susceptible patients (exaggerated hypoxic pulmonary vasoconstriction), but preserved in 

control participants following 4 hours of 12% O2 (~4500m equivalent; Berger et al., 2005). 

These data indicate that systemic hypoxic endothelial dysfunction contributes to the 

exaggerated increase in pulmonary artery pressure, which may increase susceptibility to 

high altitude pulmonary oedema (see figure 2).  

 

Studies at high altitude  

Upon ascent to high altitude between 3800-5050m, a decrease in endothelial function has been 

observed in most (Lewis et al., 2014; Bakker et al., 2015; Tymko et al., 2017b; Tremblay et al., 2018a; 

Tremblay et al., 2018b), but not all studies (Bruno et al., 2016; Tremblay et al., 2017; Tymko et al., 

2017a). The disparity between the literatures might be due to different methodological approaches 

between investigations. For example, the three studies that reported reductions in FMD involved 

ascent to high-altitude over 7-10 days of trekking for several hours each day at altitudes >3700m in 

the Himalaya (Lewis et al., 2014; Bakker et al., 2015; Tymko et al., 2017b; Tremblay et al., 2018a; 

Tremblay et al., 2018b). The study by Lewis et al. (2014) observed reduced FMD and endothelium-
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independent vasodilation after 3 (shear stress stimulus was unchanged), and 12-14 days (shear stress 

stimulus was reduced), at 5050m following an 8-day trek. Importantly, the reductions in endothelial 

function were accompanied by impairments in smooth muscle function (i.e. reduced vasodilation in 

response to GTN) – indicating that the reduced vasodilatory response may be due to impaired 

smooth muscle vasodilation rather than endothelial function (Lewis et al., 2014).  

As part of a separate expedition in the same region, Bakker et al. (2015) tested the 

hypothesis that dietary nitrate supplementation, to increase NO bioavailability, would prevent high 

altitude trekking associated decreases in endothelial function. After 5 days above 2500m, 

participants were tested at 4200m, and endothelial function was decreased after placebo 

administration, but preserved with dietary nitrate supplementation compared to pre-trek baseline 

levels (acquired at 1370m). Following 4 weeks of trekking, endothelial function remained reduced 

one day after returning to 1370m. Thus, high altitude trekking expeditions are associated with 

reductions in endothelial function. This may be due to reductions in NO bioavailability [as suggested 

by Bakker et al. (2015)], decreased vascular smooth muscle function (Lewis et al., 2014), or 

potentially, a reduced FMD shear stress stimulus.  

In contrast, the studies that reported no change in endothelial function involved participants 

without AMS ascending rapidly to high altitude via cable car (Bruno et al., 2016), and healthy 

participants traveling to high altitude via automobile [studies part of the same research expedition 

(Tymko et al., 2017a; Tremblay et al., 2018b)]. The methodological difference between these studies 

raises the possibility of a moderating impact of trekking exercise at altitude, in addition to the 

severity of altitude exposure. To expand on the latter point, the collective findings from these field 

research studies suggest that a high altitude threshold exists for reduced endothelial function in-

between 3500 and 4000m. This threshold is likely variable between participants, but should be a 

consideration for future research. The length of hypoxia exposure is also an important consideration; 

however, it seems that endothelial function is reduced early on during the acclimatization process 
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(1-3 days; Lewis et al., 2014; Tremblay et al., 2018a), but no studies have investigated the impact of 

long-term acclimatization (i.e. several months) in otherwise healthy lowlanders. In addition, smooth 

muscle function (i.e. GTN or SNP administration) should be considered in future studies to dissociate 

endothelial-dependent and endothelial-independent vascular function. The primary mechanism(s) 

that govern these hypoxaemia-related changes in endothelial function are discussed in the following 

several sections.  

 

Shear stress 

The direction and magnitude of shear stress acutely and chronically regulates endothelial function 

(reviewed in Green et al., 2017; see abstract figure), and it is calculated as the product of shear rate 

(4 x peak envelope blood velocity / arterial diameter), and if collected, adjusted to whole blood 

viscosity (Gnasso et al., 2001). Arterial segments that are chronically exposed to low and/or 

oscillatory shear stress [OSS; nearly equal parts of forward shear stress (antegrade; towards 

periphery) and backward shear stress (retrograde; towards heart)], due to vessel geometry, such as 

arterial branch points and curvatures, preferentially develop atherosclerotic lesions (Caro et al., 

1969). Low mean shear stress may facilitate early atheroma by reducing mass transport from the 

arterial wall, which is one of the primary reasons exercise, an intermittent episodic high shear stress 

stimulus, is vasoprotective in nature (Caro et al., 1971). Furthermore, OSS is enhanced with aging 

(Casey et al., 2012), pre-eclampsia (Scholten et al., 2014), menopause (Somani et al., 2019), and 

anabolic steroid use (de Souza et al., 2019). To examine the causality of OSS it can be 

experimentally-induced in otherwise healthy upstream arteries by inflating a pneumatic cuff on the 

forearm to a moderate pressure (~50-75 mmHg; Thijssen et al., 2009; Tremblay et al., 2019a). 

Exposure to 20-30 minutes of low and/or OSS has been shown to reduce brachial artery endothelial 

function in healthy humans (Thijssen et al., 2009; Tremblay et al., 2019a). However, populations with 
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pre-existing endothelial dysfunction (i.e. aging, chronic obstructive pulmonary disease, 

cardiovascular diseases) may be less susceptible to OSS induced reductions in endothelial function 

(Schreuder et al., 2015; Thijssen et al., 2015; Barak et al., 2017), indicating a potential floor effect as 

opposed to resistance to OSS per se. In contrast, episodic increases in antegrade shear stress (e.g. 

exercise or heating) improves endothelial function (Carter et al., 2014; Green et al., 2017), and 

induces an athero-resistant endothelial phenotype (reviewed in: Green et al., 2017).  

Reductions in endothelial function have shown to be mediated, at least in part, due to 

alterations in shear stress (i.e. increases in retrograde shear stress; Thijssen et al., 2009). Acute and 

sustained hypoxic exposure has been shown to increase retrograde shear stress (Iwamoto et al., 

2015; Katayama et al., 2016; Lewis et al., 2017; Tremblay et al., 2018a; Tremblay et al., 2018b), and 

decrease mean shear stress (Lewis et al., 2017; Tremblay et al., 2018a; Tremblay et al., 2018b). 

These pro-atherogenic alterations in shear stress have a well-established deleterious impact on 

endothelial function (Padilla et al., 2009; Thijssen et al., 2009; Tremblay et al., 2019a), and thus, 

alterations in baseline shear stress magnitude and pattern may contribute to the observed 

reductions in endothelial function. To further investigate the effects of shear stress on endothelial 

function, two studies during the 2016 UBC-Nepal Expedition (Willie et al., 2018) examined 

endothelial function and performed measures of blood viscosity to calculate the shear stress 

stimulus during a 9-day trekking ascent to 5050m, and following 5-7 days at 5050m (Tremblay et al., 

2018a; Tremblay et al., 2018b). Brachial artery endothelial function was decreased at 4371m (day 7 

of trekking) and remained reduced upon arrival, and after 5-7 days at 5050m while the shear stress 

stimulus remained unchanged (Tremblay et al., 2018a; refer to figure 3). Blood viscosity increased 

during ascent and remained elevated after 5-7 days at 5050m, and as such, played a crucial role in 

determining the shear stress stimulus for the FMD test; had blood viscosity not been taken into 

account, the shear stress stimulus, would have been underestimated by ~20-30% (Tremblay et al., 
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2018a; Tremblay et al., 2018b). This highlights the importance of blood viscosity measures in 

interpreting shear stress and endothelial function with high altitude exposure.  

However, the deleterious impact of atherogenic shear stress on endothelial function during 

hypoxia may be specific to the upper limb. Although similar shear stress changes occur in the 

superficial femoral artery on ascent to 5050m, endothelial function is preserved (Tremblay et al., 

2018a; see figure 3). This may be due to a localized benefit of trekking on the exercised limb; it has 

previously been shown that increased antegrade shear, even in the presence of some increase in 

retrograde diastolic shear, enhances endothelial function, whereas unopposed increases in 

retrograde shear are detrimental to function (Green et al., 2017). However, this explanation remains 

speculative in the context of hypoxia, and little is known regarding changes in lower limb endothelial 

function in hypoxia. In contrast, when baseline shear stress is unchanged and endothelial function is 

preserved at high altitude, the endothelium appears to be more vulnerable to OSS associated 

dysfunction (Tremblay et al., 2017). In addition to shear stress, changes in baseline conduit artery 

diameter can impact the degree of observed FMD (Atkinson & Batterham, 2013). Indeed, hypoxia-

associated increases in OXINOS stress and SNA facilitate a haemodynamic milieu that is often seen 

with aging and disease at sea level that promotes pro-atherogenic shear stress patterns in the 

upstream conduit arteries.  

 

Oxidative-inflammatory-nitrosative (OXINOS) stress 

Another proposed mechanism that impacts vascular endothelial health relates to the molecular 

disruption of redox control, derived as the balance between antioxidants and pro-oxidants (see 

abstract figure). A “tipping of the balance” favoring the latter results in oxidative-inflammatory 

stress, characterized by an excessive formation of free radicals, reactive oxygen species (ROS), lipid 

peroxidants and inflammation. This has the potential to limit NO bioavailability subsequent to its 
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diffusion-controlled reaction with superoxide radicals (O ) that ultimately forms peroxynitrite 

(ONOO-), giving rise to nitrosative stress (Gryglewski et al., 1986). 

NO + O  
                      

→                 ONOO-     

These reaction pathways, known collectively “OXINOS” (oxidative-inflammatory-nitrosative) stress, 

can directly impact the vasculature and contribute towards endothelial dysfunction (Bailey et al., 

2013; Bailey, 2019b). Elevated oxidative stress has been associated with structural damage to the 

vasculature and exists in several different cardiovascular disease states (Schachinger et al., 2000; 

Gokce et al., 2002). Interestingly, vitamin C, a ROS scavenger, has little effect on endothelial function 

in healthy humans (Chambers et al., 2001), but improves endothelial function in populations with 

elevated OXINOS stress (Taddei et al., 1998; Chambers et al., 2001). Administration of vitamin C 

prevents reductions in endothelial function incurred by exposure to low and OSS (Johnson et al., 

2013), implicating that OXINOS stress as a contributing mechanism responsible for low and OSS 

induced reductions in endothelial function. 

To what extent acute hypoxia impacts free radical formation and the corresponding link to 

endothelial function has been complicated by a traditional reliance on indirect, non-specific 

biological “footprints” of oxidative damage that exhibit markedly different thermodynamic and 

kinetic properties (Bailey et al., 2004). Only few studies have employed electron paramagnetic 

resonance spectroscopy, which represents the most direct, specific, and sensitive analytical 

technique for the molecular detection and characterisation of free radicals, sine qua non (Bailey et 

al., 2018). In the studies that have, acute and chronic exposure to normobaric/hypobaric hypoxia has 

consistently been shown to promote the systemic (Bailey et al., 2009a; Woodside et al., 2014), 

skeletal (Bailey et al., 2004), pulmonary (Bailey et al., 2010), and cerebral (Bailey et al., 2009b; Bailey 

et al., 2017; Bailey et al., 2018) formation of a variety of free radical species including lipid-derived 

alkoxyl radicals (LO·) that have the thermodynamic capacity to inactivate NO· and impair endothelial 



2



2



 

Running Head: Hypoxia and Endothelial Function 

 

 
This article is protected by copyright. All rights reserved. 

13 
 

function and associated metrics of arterial function (Bailey et al., 2009b; Bailey et al., 2013; see 

figure 4). In support, both the systemic and regional bioavailability of bioactive NO metabolites has 

consistently been shown to be reduced by hypoxia with a corresponding elevation in 3-nitrotyrosine 

(3-NT; Bailey et al., 2009b; Bailey et al., 2010), a surrogate biomarker of ONOO- formation, indirectly 

confirming oxidative annihilation of NO· that proceeds at diffusion-controlled rates (Bailey et al., 

2011):  

(O 

2 /LO· + NO 




k  1620 x 109 M .s

1

 ONOO-   
nitrationetyro sin

  3-NT) 

Several competing theories have been proposed to explain the source and underlying 

mechanism(s) that serve to promote oxidation in hypoxia, which remains controversial given the 

fundamental importance of molecular O2 for peroxyl radical formation and subsequent propagation 

of the lipid peroxidation chain. Accumulating evidence in vitro has identified increased mitochondrial 

O2
•- release by complex III of the electron transport chain possibly by increasing ubisemiquinone 

lifetime with ROS release to the intermembrane space notwithstanding separate contributions from 

extra-mitochondrial sources including NADPH oxidase/xanthine oxidase/phospholipase A2 

activation, haeme auto-oxidation and liberation of catalytic iron with the capacity to promote 

Fenton and Haber–Weiss–mediated formation of the hydroxyl radical (Bailey et al., 2018). However, 

it is important to emphasize that while historically considered as toxic, mutagenic “accidents” of in-

vivo chemistry limited to cellular oxidative damage and vascular pathophysiology, recent evidence 

has identified that given the emerging role of reactive oxygen-nitrogen species as important signal 

transductions, a physiological level of (elevated) OXINOS appears hormetically beneficial during 

lifelong adaptation to the hypoxia of high altitude in order to preserve cellular O2 homeostasis 

(Bailey, 2019b). In support, systemic OXINOS has been shown to be permanently elevated in healthy 

well-adapted highlanders compared to lowlander controls, whereas the OXINOS response is more 

exaggerated (i.e. marking the transition from physiological to pathological) in maladapted patients 
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suffering from high altitude illness and vascular endothelial dysfunction (Bailey et al., 2013; Bailey et 

al., 2019a). 

 

Sympathetic nervous activity  

The organization of the peripheral sympathetic nervous system is important for the control of blood 

flow to various tissues and organs in order to meet metabolic demand on a moment-by-moment 

basis. Sympathetic neural fibers release noradrenaline, which binds to α- and β-adrenergic receptors 

located on the surface of smooth muscle cells, which usually signal for vasoconstriction and 

vasodilation, respectively (see abstract figure). A classic methodology utilized to elevate SNA is 

through lower-body negative pressure (LBNP), which reduces central blood volume and signals for 

increased SNA based on afferent feedback from cardiopulmonary and arterial baroreflexes. Lower-

body negative pressure has been shown to reduce endothelial function in some (Hijmering et al., 

2002; Thijssen et al., 2014), but not all investigations (Dyson et al., 2006; Tymko et al., 2017b), 

without altering smooth muscle function or the FMD shear stress stimulus (Hijmering et al., 2002).  

The discrepancy between these investigations may be due to differences in the magnitude 

of LBNP (i.e. suction level) or duration of exposure. Intra-arterial infusion of phentolamine, a non-

selective α-adrenergic receptor inhibitor, prevents the reduction in endothelial function during 

LBNP, suggesting that heightened SNA contributes to the LBNP-induced endothelial impairment 

(Hijmering et al., 2002). However, LBNP also induces pro-atherogenic shear stress in the brachial 

artery (Padilla et al., 2010; Thijssen et al., 2014), which could, independent of sympathetic 

vasoconstrictor tone, provoke reductions in endothelial function (see shear stress section). Thijssen 

et al. (2014) sought to delineate these mechanisms (i.e. SNA vs atherogenic shear stress), by 

employing a similar magnitude of LBNP with 1) forearm heating to reduce retrograde shear patterns 

observed during moderate LBNP (i.e. ~35 mmHg) and 2) forearm cuff inflation to exaggerate 
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increases in atherogenic shear stress. Lower-body negative pressure reduced endothelial function in 

the non-heated limb, but this reduction was abolished in the heated arm, which led the authors to 

conclude that SNA per se was not directly responsible for reduced endothelial function during LBNP, 

but SNA reduces endothelial function indirectly via increases in retrograde shear stress (Thijssen et 

al., 2014). In support of this theory it was recently demonstrated that mild levels of LBNP (e.g. -10 

mmHg) elicited a significant increase in SNA, but did not alter retrograde shear, and consequently, 

did not alter endothelial function (Tymko et al., 2017b). In addition, more recent studies have shown 

that post-exercise reductions in endothelial function are prevented with α-adrenergic blockade 

(Atkinson et al., 2015; Tymko et al., 2017a), providing more evidence of the strong influence of SNA 

on endothelial function. 

Acute hypoxia (Saito et al., 1988; Leuenberger et al., 1991; Duplain et al., 1999; Fisher et al., 

2018), and chronic high altitude exposure (Duplain et al., 1999; Hansen & Sander, 2003; Fisher et al., 

2018; Simpson et al., 2019), has been associated with heighted SNA (see figure 5). The mechanism(s) 

underpinning the increase in sympathetic neural outflow during hypoxia exposure remains unclear; 

however, there is evidence that elevated peripheral chemoreflex drive (Somers et al., 1989), red 

blood cell production (Oshima et al., 2018), intracranial pressure (Schmidt et al., 2018), and 

pulmonary artery pressure (Moore et al., 2011), may be responsible. Worth noting, the 

mechanism(s) responsible for sympathetic nervous “hyper”-activity in hypoxia seem to be influenced 

by the length of exposure; for example, the peripheral chemoreflex has been shown to mediate 

increases in SNA during acute (Somers et al., 1989), but not chronic exposure (Hansen & Sander, 

2003; Fisher et al., 2018; Simpson et al., 2019). 

Heightened SNA has been shown to reduce endothelial function in a number of studies at 

sea level (Hijmering et al., 2002; Thijssen et al., 2014; Atkinson et al., 2015; Tymko et al., 2017a), but 

only few have attempted to test the direct link between hypobaric hypoxia associated elevated SNA 

and reductions in endothelial function. A sea level hypoxic chamber study conducted by Lewis et al. 
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(2014) discovered that following 4 hours of hypoxic exposure (FIO2 = 0.11; equivalent altitude 

~5000m), administration of α1-adrenergic receptor blockade reversed the ~28-36% observed 

reduction in endothelial function compared to normoxia, suggesting that elevated α1-adrenergic SNA 

contributes to the impairment in endothelial function in acute hypoxia. Recently, two high altitude 

studies have explored the impact of SNA on endothelial function immediately after moderate-

intensity exercise at 3800m (Tymko et al., 2017a), and mild lower-body differential pressure at 

5050m (Tymko et al., 2017b); however, these studies showed that altering SNA at high altitude had 

no effect on endothelial function on acclimatized lowlanders. Sympathetic nervous activity may also 

alter conduit artery diameter, which directly influences the degree of observed FMD (Atkinson & 

Batterham, 2013). Although there are inconsistencies with available data showing that brachial 

artery baseline diameter does not change (Lewis et al., 2014; Bakker et al., 2015), or slightly 

decreases (Tremblay et al., 2017; Tymko et al., 2017a; Tymko et al., 2017b; Tremblay et al., 2018a), 

with high altitude exposure; allometrically correcting for baseline diameter is an important 

consideration when investigating the impact of hypoxaemia on endothelial function (Atkinson & 

Batterham, 2013). A summary of all laboratory and field studies that investigated the impact of 

hypoxia on endothelial function in lowlanders is provided in table 1.  

 

Impact of hypoxia on endothelial function in highlanders 

Humans are the only mammals to have colonized all of Earth’s most extreme environments, and the 

mechanism(s) of human adaptation in the different domains have naturally attracted the attention 

of physiologists for centuries. Permanent settlements and sojourners at high altitude are subject to 

potent environment stressors, specifically to hypoxaemia, as well as cold, arid climates, increased 

ultraviolet radiation, and undergo various physiological adaptations and acclimatization. Hence, 

populations that have thrived at high altitude for millennia have evolved distinct physiological 
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phenotypes. Physiological comparisons between these populations are difficult due to differences in 

residing altitudes, physical activity, and diet. The following section is dedicated to summarizing our 

current understanding on how, and if, these high altitude populations have adapted from a vascular 

function perspective.  

 

Andean highlanders with and without Chronic Mountain Sickness 

There is good evidence that the Andean plateau has been populated for at least 7,000 years 

(Aldenderfer, 2008; Haas et al., 2017). The Quechua and Aymara populations of this region present 

with what can be considered an exaggerated form of typical lowlander high altitude adaptation with 

increased [Hb] levels and haematocrit, together increasing the oxygen content in arterial blood, so 

that it actually exceeds that of lowlanders at sea level (Beall, 2007). As a result, blood viscosity 

increases, eliciting opposing increases in shear stress and vascular resistance, the balance of which 

determines oxygen delivery and influences endothelial function. Healthy male and female Andean 

highlanders display similar endothelial function compared to lowlanders at sea level (Kametas et al., 

2002; Rimoldi et al., 2012; Bailey et al., 2013), despite higher haematocrit and blood viscosity and 

elevated OXINOS (Bailey et al., 2013), suggesting preserved endothelial function. In addition, oxygen 

administration (to normalize the hypoxaemia) does not improve endothelial function in this 

population (Rimoldi et al., 2012). Pregnant Andean highlanders present with lower blood viscosity 

and haematocrit compared to non-pregnant female Andeans (Kametas et al., 2002; Kametas et al., 

2004), and do not present impairments in endothelial function during pregnancy. These data 

indicate that in healthy Andean highlanders, endothelial function does not appear compromised by 

hypobaric hypoxia; however, more work is required to determine this since the authors of these 

studies did not control or correct for between-group differences in shear stress stimuli.  
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The haematological response to hypoxia is characterized by erythropoiesis, which 

leads to increased [Hb] and thereby increases the oxygen carrying capacity of the blood 

(Pugh, 1964; Faura et al., 1969; Ge et al., 2002). Although this response is generally 

beneficial, when exaggerated or ineffective at improving oxygenation, erythrocytosis can 

become pathogenic. Chronic mountain sickness is characterized by excessive erythrocytosis 

(EE), defined as *Hb+ ≥21 g dl-1 in men and ≥19 g dl-1 in women (Leon-Velarde et al., 2005), 

and the presence of signs and symptoms, defined by the Qinghai CMS score. By comparison, 

the Canadian Blood Services classifies normal [Hb] levels as between 14-18 g dl-1 in men and 

12-16 g dl-1 in women. Chronic mountain sickness is diagnosed based on the presence of EE 

combined with three or more of the following symptoms: breathlessness, palpitations, sleep 

disturbance, cyanosis, dilation of veins, paresthesia, headache, or tinnitus (Leon-Velarde et 

al., 2005). An estimated 5-10% of all high altitude dwellers are at risk of developing EE 

(Leon-Velarde et al., 2005; Villafuerte & Corante, 2016); however, this varies depending on 

the population studied. Excessive erythrocytosis is extremely rare in Tibetan high altitude 

natives (Pei et al., 1989), but highly prevalent in some Andean highlander communities 

(Monge et al., 1989; Monge et al., 1992).  

In Cerro de Pasco, EE, independent of hypoxaemia, is associated with increased 

cardiovascular risk, calculated using the Framingham General Cardiovascular Risk Score 

(Corante et al., 2018). Rimoldi et al. (2012) reported increased arterial stiffness (carotid-

femoral pulse-wave velocity and augmentation index), carotid intima-media thickness, and 

decreased endothelial function in individuals with CMS compared to age-matched healthy 

Andeans. These patients did not present traditional cardiovascular risk factors, thus the 

vascular dysfunction is likely specific to CMS rather than pre-existing cardiovascular 
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complications, and this provides important initial evidence of endothelial dysfunction 

(endothelium-independent vasodilation was similar between healthy and unhealthy groups) 

in this population. Andeans with EE ([Hb] > 21 g/dL) present with lower endothelial function 

compared to healthy Andeans (Rimoldi et al., 2012; Bailey et al., 2013; Tremblay et al., 

2019b); which improves with oxygen administration (Rimoldi et al., 2012), and 

haemodilution (Tremblay et al., 2019b), suggesting that hypoxaemia, hyperviscosity and/or 

high [Hb] contribute to this apparent impairment (see figure 6). Participants with CMS also 

presented exaggerated markers of OXINOS stress compared to Andeans without CMS, 

providing a potential mechanism for the vascular dysfunction (Bailey et al., 2013).  

In high-altitude EE, haemodilution and bloodletting to reduce [Hb] have been noted 

to improve the clinical symptoms associated with CMS (Leon-Velarde et al., 2005), 

pulmonary function (Cruz et al., 1979), oxygen transport (Winslow et al., 1985), and cardiac 

output (Manier et al., 1988). The attendant reductions in iron stores (Zheng et al., 2006), 

[Hb], blood viscosity may contribute to observed acute increases in endothelial function. 

Elevated blood viscosity increases vascular resistance, thereby reducing blood flow for a 

given perfusion pressure (Richardson & Guyton, 1959). Simultaneously, high blood viscosity 

increases shear stress at a given shear rate, leading to endothelium-dependent vasodilator 

production, decreasing vascular resistance. Thus, a balance between the resistance and 

shear stress mediated dilatation effects of elevated viscosity influences blood flow 

(Intaglietta, 2009; Salazar Vazquez et al., 2010). Further adding to the complexity, [Hb] is a 

potent NO scavenger (Azarov et al., 2005; refer to abstract figure), and can reduce 

endothelial-derived NO to nitrite-nitrate. Additionally, the diffusive conductance from 

endothelial cells to red blood cells increases as the plasma layer separating the circulating 
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red blood cells and endothelium narrows, which occurs with increases in haematocrit 

(Salazar Vazquez et al., 2008). Thus, increases in [Hb] leads to higher blood viscosity, which 

causes opposing increases in vascular resistance and shear stress-associated vasodilation, 

and increases NO scavenging.  

 

Tibetan highlanders 

Human habitation of the Tibetan plateau has been ~4x longer compared to the Andean plateau (i.e. 

30-40,000 years; Zhang et al., 2018). Tibetans present a lower than expected [Hb] accompanied by 

lower arterial oxygen content; a counterintuitive strategy given the low levels of available oxygen 

where they reside (>3000m). Consequently, blood viscosity is markedly lower in Sherpa (direct 

descendants of the Tibetans) relative to the Andeans. This alternative adaptation may be inherited 

from Denisovan-based ancestors (Huerta-Sanchez et al., 2014), an archaic hominid group that may 

have occupied the Tibetan Plateau at least ~160 thousand years ago (Chen et al., 2019). Tibetans 

possess a high peripheral blood flow phenotype, characterized by an elevated forearm blood flow, 

decreased vascular resistance, and increased exhaled and circulating NO metabolites (Erzurum et al., 

2007). However, this may not be as pronounced or evident in the Sherpa (Schneider et al., 2001; 

Bruno et al., 2014; Tremblay et al., 2018a). A high-flow phenotype, as observed in Tibetan 

highlanders, may decrease the likelihood of developing adverse shear stress patterns at altitude, and 

thus, serve as a protective mechanism to preserve conduit artery endothelial function. Sherpa 

display similar brachial artery endothelial function to acclimatized lowlanders (Lewis et al., 2014), 

but slightly lower compared with lowlanders at sea level (Bruno et al., 2014; Lewis et al., 2014). 

Despite their hypoxaemic phenotype, Sherpa do not demonstrate any change in endothelial function 

with oxygen administration (Bruno et al., 2014); this contrasts Andeans, as those with SpO2 <90% 

present an increase in endothelial function with oxygen administration (Rimoldi et al., 2012). In 

Lhasa, Tibet, Tibetans present lower endothelial function and baseline arterial diameter compared 
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to Han Chinese (Yang et al., 2016). In Kathmandu (1400m), partially de-acclimatized Sherpa who live 

and work at high altitude present similar endothelial function compared to lowlanders (Tremblay et 

al., 2018a). On ascent to 5050m, although both Sherpa and lowlanders demonstrate changes in 

shear stress, only lowlanders experience reductions in endothelial function (Tremblay et al., 2018a). 

Thus, Sherpa may be resistant to hypoxia- and/or shear stress-associated reductions in endothelial 

function.  

 

Ethiopian highlanders 

Evidence for the occupancy of the Ethiopian highlands is elusive; however, artifacts, presumably 

from Homo erectus/ergaster, have been found at altitudes of 2,300-2,400m along the rim of the Rift 

Valley dating back to 1.5 million years ago (Clark & Kurashina, 1979; Williams et al., 1979; de la 

Torre, 2011). More recent estimates suggest that humans have populated the Ethiopian highlands 

anywhere from 500-70,000 years ago (Aldenderfer, 2003; Pleurdeau, 2005). Despite the possibility 

that humans or hominids have ventured to high altitudes in East Africa much earlier than Tibetans or 

Andeans, very little is known regarding their physiological phenotype of Amhara people residing in 

and around the Simien Mountains. Intriguingly, Amhara highlanders present a phenotype distinct 

from Tibetans and Andeans, by appearing to have a low [Hb] and higher than expected SaO2, 

potentially due to an increased affinity of [Hb] for oxygen (Beall et al., 2002; Beall, 2006). 

Conceivably, these three phenotypes (healthy Tibetan, Andean, and Ethiopian highlanders) 

represent distinct evolutionarily-driven strategies which permit survival and encourage oxygen 

delivery at high altitude (Beall, 2006). One study design employed to investigate Amhara highlanders 

compared individuals living in the Amhara region (Simien Mountains) to Oromo highlanders, who 

have resided at high altitude in the Bale mountains for only ~500 years (Lewis, 1966). The Oromo 

present lower SaO2 and higher [Hb] than Amhara highlanders (Lundgrin et al., 2013; Cheong et al., 

2017), suggesting the Oromo present a similar response to high altitude as lowlanders. An adaptive 
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vascular phenotype has been suggested in Amhara highlanders, based upon urinary levels of nitrate 

and cyclic guanosine monophosphate (Cheong et al., 2017); however, these are indirect and non-

specific measures and no studies of the systemic vasculature have been conducted in this 

population. 

 

Conclusions 

The objective of this review was to summarize the current understanding of how hypoxia 

(normobaric and hypobaric) affects endothelial function in lowlanders and permanent highlander 

populations. The primary mechanism(s) that alter endothelial function pertain to shear stress and 

blood flow patterns, oxidative and inflammatory stress, sympathetic nervous activity, and 

haemoglobin and blood viscosity. Importantly, each of these mechanism(s) are altered during 

chronic hypoxia exposure, and most likely, all contribute to reduced endothelial-dependent function 

observed in lowlanders at altitudes >3500-4000m. Due to limited data sets, the impact of chronic 

hypoxia exposure from an evolutionary perspective is less clear. There is mounting evidence 

indicating that Sherpa and healthy Andean highlanders have similar endothelial function compared 

to lowlanders at sea level; however, endothelial function in Ethiopian highlanders remains unknown. 

Additionally, Andeans suffering from chronic mountain sickness have markedly reduced endothelial 

function. The clinical implications and physiological consequences of “impaired” endothelial function 

at high altitude in lowlanders remains in question. A major limitation to the current available 

literature is that the principal method utilized to quantify the effect of hypoxia on endothelial 

function has been restricted to the forearm (i.e. brachial artery flow-mediated dilation), likely due to 

this technique being easily accessible and non-invasive. Despite the logistical hurdles encountered 

with high altitude field research, future studies should consider employing methodologies that focus 
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on more clinically relevant vasculature (e.g. coronary arteries), and test multiple vascular beds (e.g. 

microvasculature, separate limbs.  

 Although hypoxaemia is generally considered to yield negative health consequences in both 

acute and chronic settings, but the human body is resilient, and through several different avenues, 

we can acclimatize to impressive altitudes. In fact, hypoxia may be protective to some extent, as 

indicated by studies demonstrating reduced atherosclerosis (in mice; Kang et al., 2016), lower 

mortality rates from coronary disease (Faeh et al., 2009; reviewed in Burtscher, 2014), and lower 

incidences of certain types of cancer (reviewed in Thiersch & Swenson, 2018), even after correcting 

for important confounders such as age, sex, education, and urbanization. In light of these studies it is 

possible that reduced NO-mediated vascular function at high altitude is not pathogenic, but perhaps 

a necessary, physiological consequence for acclimatization; however, more work is required to 

elucidate the full clinical implications of reduced endothelial function at altitude.  
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Tables 

Table 1. Summary of studies that have performed flow-mediated dilation in hypoxic 

conditions in lowlanders. 

Study Population Level of 

Hypoxia 

Duration Impact on 

FMD 

Study Comments 

Acute – laboratory 

Frobert et 

al. (2008) 

10 men 

increased 

CV risk; 

10 healthy 

men 

12.5% 5 

minutes 

↓ FMD 

(3%)  

Diameter measured at 60-

seconds post-cuff release 

GTN performed in 

normoxia 

Rieger et 

al. (2017) 

16 young, 

healthy 

Isocapnic 

PETO2=50 

15 

minutes 

↔ FMD  Repeated 1h, 24h, and 48h 

after RIPC or sham 
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mmHg 

Lewis et 

al. (2017) 

12 young, 

healthy 

Isocapnic 

PETO2=75 

mmHg, 

and 

PETO2=50 

mmHg 

30 

minutes 

↓ FMD 

(17%, and 

45%) 

GTN performed after 60 

minutes of isocapnic 

hypoxia. ↓ SRAUC, 

corrected-RH-FMD GTN, 

FMD/GTN. Greater 

reduction in 50 vs 74. ↑ 

retrograde shear, ↓ mean, ↓ 

antegrade 

(Lewis et 

al., 2014) 

11 young, 

healthy  

11% 60 

minutes 

210 

minutes 

330 

minutes 

↓ FMD 

(28%, 

33%, and 

36%) 

α1-adrenergic receptor 

blockade prior to FMD 

abolished the hypoxia-

related reductions in FMD 

Iglesias et 

al. (2015) 

10 healthy 

male 

sportsmen or 

mountaineers 

Hypobaric 

chamber, 

4000m 

4h ↔ FMD Proximal FMD cuff 

placement 

(Tremblay 

et al., 

2018b) 

15 young, 

healthy men 

11% 20 

minutes 

↓ FMD 

(29%) 

Imposed oscillatory shear 

did not further reduce FMD 

Acute – Field, passive ascent 

Bruno et 

al. (2016) 

22 AMS-, 

healthy 

3842m 4h ↔ FMD  ↑ SRAUC (AMS-) 

 12 AMS+, 

healthy 

3842m 4h ↓ FMD 

(43%) 

↔ SRAUC (AMS-) 

Frick et 

al. (2006) 

18 men with 

metabolic 

syndrome 

1700m Day of 

arrival 

↔ FMD No change in GTN,  

proximal cuff placement 

Sustained – Passive  

Tremblay 

et al. 

12 young, 

healthy 

3800m Day 2/3 ↔ FMD ↑ SRAUC, ↓ diameter. ↓ RH-

FMD post-oscillatory shear 
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(2017) stress. 

Tymko et 

al. 

(2017a) 

9 young, 

healthy 

3800m 

 

Day 3-7 ↔ FMD Decreased diameter, ↔ 

SRAUC.  

α1-adrenergic receptor 

blockade did not impact 

baseline RH-FMD. 

α1-adrenergic receptor 

blockade resulted in larger 

post-exercise RH-FMD. 

Rieger et 

al. (2017) 

12 young, 

healthy 

3800m Day 8-

12 

↔ FMD Repeated 1h, 24h, and 48h 

post RIPC/sham  

Sustained – trekking 

(Lewis et 

al., 2014) 

12 healthy 5050m Day 3 

and 12-

14 after 

8-day 

trek 

↓ FMD 

(14%) 

Acetazolamide administered 

during ascent. 

↓ GTN, ↔ FMD/GTN, ↔ 

SRAUC day 3, ↓ SRAUC day 

12-14  

Bakker et 

al. (2015) 

11 young, 

healthy 

Trekking 

above 

2500m 

Measures 

at 3700m, 

4200m 

3700m: 

3 days 

trekking, 

one day 

residing 

at 

3700m 

4200m: 

5 days 

above 

2500m 

↓ FMD 

(42%) 

FMD stimulus calculated as 

peak blood flow / peak 

diameter. No change in 

FMD with beetroot juice 

supplementation at 3700m. 

Baseline measures made at 

1370m. 

Frick et 

al. (2006) 

18 men with 

metabolic 

syndrome 

Trekking 

at 1700m 

3 weeks ↓ FMD 

(49%) 

Decreased diameter. FMD 

remained reduced 6 weeks 

after return to lower altitude 

(Tremblay 

et al., 

2018b) 

15 young, 

healthy men 

5050m Days 5-

7 after 

9-day 

trek 

↓ FMD 

(25%) 

Imposed oscillatory shear 

did not further reduce FMD 
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(Tremblay 

et al., 

2018a) 

22 young, 

healthy (2 

female) 

3440m 

4371m 

5050m 

Day 4 

Day 7 

Day 10 

of trek 

↔ FMD 

↓ FMD 

(36%) 

↓ FMD 

(46%) 

Reduced brachial artery 

FMD at 4371m and 5050m, 

but no changes in 

superficial femoral FMD 

(Tymko et 

al., 

2017b) 

14 young, 

healthy 

5050m Days 

11-14 

after 9-

day trek 

↓ FMD 

(18%) 

 

Mild changes in SNA did 

not alter FMD. 

SNA not assessed at high 

altitude.  

Definition of abbreviations: GTN, glyceryl trinitrate; FMD, reactive hyperemia flow-

mediated dilation; RIPC, remote ischemic precondition; SNA, sympathetic nerve activity; 

SRAUC, shear rate area under the curve. 

 

 

 

Figure Legends 

Abstract Figure: Overview of the conventional mechanism(s) that govern endothelial function in 
normoxic and hypoxic humans. This figure depicts the primary mechanism(s) governing changes in 
endothelial-dependent vascular smooth muscle vasodilation. Chronic, hypoxia (normobaric and 
hypobaric) results in 1) an increase in pro-atherogenic shear stress, 2) heightened sympathetic 
nervous activity, 3) elevations in oxidative-nitrosative-inflammatory (OXINOS) stress defined by a 
free radical/inflammation-mediated reduction in vascular nitric oxide bioavailability, and 4) during 
chronic hypoxia exposure leading to increased red blood cell concentration – increased red blood 
cell mediated nitric oxide scavenging. Arterial segments that are chronically exposed to low, and 
oscillatory shear stress preferentially develop atherosclerotic lesions (Caro et al., 1969; Ku et al., 
1985). Increased pro-atherogenic shear stress during hypoxia may be related to increased 
sympathetic nervous system outflow, which results in increased norepinephrine (i.e. NE) release 
sympathetic ganglia (T1-T5, upper body vasculature; T6-L2, lower body vasculature) onto α and β 
adrenergic receptors, which signal for smooth muscle vasoconstriction and vasodilation, 
respectively. A stimulus (e.g. shear stress) results in a release of endothelial endogenous calcium, 
which binds to calmodulin, and activates endothelial nitric oxide synthase (eNOS). The production of 
eNOS converts L-arginine into L-citrulline, and while doing so, releases nitric oxide. The newly 
produced nitric oxide is able to diffuse across the endothelial cell membrane and into the nearby 
smooth muscle cells. Within the smooth muscle cells, nitric oxide activates guanylate cyclase, and 
guanylate cyclase converts guanosine 5’-triphosphate (GTP) into cyclic guanosine 3’,5’-
monophosphate (cGMP). The cGMP upregulates cGMP dependent protein kinase G (PKG), which 
acts to inhibit myosin light chain kinase resulting in smooth muscle cell relaxation (Adelstein et al., 
1978; Kerrick & Hoar, 1981). Upregulated cGMP also phosphorylates voltage-gated potassium 
channels resulting in potassium cellular extrusion, contributing to smooth muscle relaxation (Irvine 
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et al., 2003). In addition, there is some evidence that suggests that NO may independently activate 
voltage-gated potassium channels (Bolotina et al., 1994).  
 

 
Figure 1: Timeline summary of the proposed Ethiopian, Tibetan, and Andean highlander 
settlements. Historical records indicate that the Oromo tribe of Ethiopia has only been settled in the 
highlands for ~500 years (Lewis, 1966); however, the Amhara tribe has been living at altitude 
potentially up to 70,000 years based on archaeological evidence (Lewis, 1966; Aldenderfer, 2003; 
Pleurdeau, 2005). Humans are thought to have occupied the Tibetan plateau for ~30-40,000 years 
(Zhang et al., 2018), and eventually crossed a land bridge that once connected present day Russia 
and Alaska, which facilitated North and South American settlements and eventually migrating to the 
Andes ~7-10,000 years ago (Aldenderfer, 2008; Haas et al., 2017).  
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Figure 2: The effect of normobaric hypoxia on endothelial function in participants prone to 

developing high altitude pulmonary oedema and healthy controls. Forearm blood flow (FBF) 

response to acetylcholine after exposure to normoxia and hypoxia in nine mountaineers susceptible 

to high-altitude pulmonary oedema and nine healthy mountaineers (control). Figure adapted from 

(Berger et al., 2005) 
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Figure 3: Effect of high altitude on shear stress and endothelial function in lowlanders and Sherpa. 
Upon ascent to high altitude, mean shear stress is reduced, but retrograde shear stress is elevated at 
high altitude in both lowlanders and Sherpa highlanders. In lowlanders, brachial artery endothelial 
function is reduced at 4371m and 5050m, whereas Sherpa have preserved endothelial function. In 
contrast, no changes in endothelial function was observed in the superficial femoral artery in both 
lowlanders and Sherpa. Figure adapted from (Tremblay et al., 2018a). 
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Figure 4: Free radical production with hypoxia exposure. Representative figure displaying electron 
paramagnetic resonance spectroscopic detection of α-phenyl-tert-butyl-nitrone in normoxia (21% 
O2) and after 9-h passive exposure to hypoxia (12.9% O2). Figure adapted from (Bailey et al., 2009b) 
 

 
Figure 5: The effect of high altitude on resting muscle sympathetic nervous activity in lowlanders 

and Sherpa. Ascent to high altitude increases basal muscle sympathetic nervous activity in 

lowlanders, and to a lesser extent in Sherpa. Heightened sympathetic nervous activity is proposed as 

a potential mechanism responsible for reduced endothelial function at high altitude; however, the 

direct mechanism link between sympathetic nervous activity and endothelial function at high 

altitude has not been assessed. Figure adapted from (Simpson et al., 2019), and units for muscle 

sympathetic nervous activity are expressed in burst frequency (number of bursts per minute) and 

burst incidence (the number of bursts per 100 heart beats).  
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Figure 6: The effects of haemodilution on brachial artery endothelial function in Andeans with 

excessive erythrocytosis at 4300m. Haemodilution resulted in a significant reduction in 

haemoglobin concentration and blood viscosity, and an increase in endothelial function assessed by 

brachial artery flow-mediated dilation. Figure adapted from (Tremblay et al., 2019b). 

 


