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Abstract: In this work, the role of the contact stiffness in the measurement of principal variables in
fretting wear tests is assessed. Several fretting wear tribometers found in the literature, including one
developed by the authors, are analysed and modelled using numerical methods. The results show
the importance of the tribosystem stiffness and tangential contact stiffness in the displacement sensor
calibration and in the correct numerical modelling of fretting wear tests, especially for flat-to-flat
contact configuration. The study highlights that, in most cases, direct comparisons between fretting
results with severe wear obtained with different tribometers cannot be performed if the contact
stiffness is not properly considered during the development of the experiments.
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1. Introduction

Fretting is related to at least two solid bodies in contact and subjected to oscillating forces which
cause some microscopic relative tangential displacement. The magnitude of the relative tangential
displacement usually ranges from 1 to 300 µm [1,2]. Fretting leads to two main surface damage
processes along the contact area: wear of the surfaces and the initiation and propagation of fatigue
cracks. In this way, fretting tests are usually classified in fretting fatigue and fretting wear tests.

One of the most common tests found in the literature, usually named as fretting wear test or
plain fretting test, is where an alternative tangential relative displacement δ is applied to a line contact
between two bodies as sketched in Figure 1a. The macro relative tangential displacement δ is usually
applied cyclically under constant amplitude in one of the bodies while keeping the other body fixed.
If the relative macro displacement amplitude δa is not enough to cause slip s in all the contacting points,
the contact is said to be under partial slip conditions (PSC). On the other hand, if all the contact area is
sliding, the contact condition is said to be under gross slip conditions (GSC). The representation of the
tangential load versus the relative tangential displacement during a fretting cycle gives the friction
hysteresis cycle or, in other words, the fretting loop when related to fretting problems. Based on the
well-known Cattaneo-Mindlin analysis [3,4], the narrow elliptical hysteresis loop shape is related with
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the PSC where the whole cycle is in micro-slip regime (see Figure 1b) [5]. On the contrary, the fretting
loop shape in GSC shows a wider hysteresis loop, similar to a parallelogram shape (Figure 1c) [5].
Two distinct parts are observed in GSC: the micro-slip regime and the gross slip regime. The slope of
the loop is related with the micro-slip regime where a significant part of the relative displacement is
accommodated in the elastic deformation of the bodies in contact. On the other hand, the flat-topped
part is associated with gross slip regime once the Coulomb limit is reached. During the gross slip
regime, the tangential load is supposed to be independent of the displacement amplitude, and the
relationship between the tangential load and the normal load is called the coefficient of friction µGP.
However, experimental fretting loops do not usually follow the idealized shape, specially under severe
wear conditions, and the calculation is commonly not straightforward [6]. Several methods can be
found in the literature to assess µGP [7].
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Figure 1. (a) Sketch of a plain fretting test; Schematic representation of frictional hysteresis loops
obtained in a plain fretting test between elastic bodies with a cylinder to flat contact configuration using
an Amontons-Coulomb friction model under (b) partial slip conditions and (c) gross slip conditions.

In a fretting loop, the tangential contact stiffness is defined by the slope of the micro-slip regime.
However, the micro-slip curve is theoretically non-linear as shown in its close form solution assuming
elastic half-spaces and smooth surfaces [5,8]. Furthermore, other mechanisms that may affect the
micro-slip region and tangential contact stiffness, such as the effect of the surface asperities, are usually
hidden or difficult to assess when measuring the displacement between two points far away from
the contact. This is caused by the large contribution of the displacement accommodated in the bulk
deformation of the contacting bodies and system fixtures in the total displacement measured [9].
Nonetheless, the contact tangential stiffness is commonly calculated using curve linearization just
after motion reversal, including the tangential stiffness belonging to the deformation of the bodies and
the tribosystem.

The main variables in fretting tests are the normal contact force P, the tangential contact force Q
and the micro-slip at the points in contact s. Strain gauges attached to proving rigs were traditionally
employed in rotating bridge fretting tests to apply the contact load [2]. Nevertheless, force transducers
in combination with different force actuators are more commonly employed for the application and
measurement of the contact loads [10–12]. However, in specific applications such as steam generator
tubes, fiber Fabry-Perot force sensors with reduced volume and high performance have been developed
to assess the fretting damage [13,14]. In the literature, it is common to found screw-type mechanisms
attached to springs [12,15,16], deadweight mechanisms [11,17–20] or servo-hydraulic systems [10,21,22]
to apply a constant normal contact load. The fretting motion and tangential or bulk load are usually
imposed using servo-hydraulic systems [16,22–24], mechanical linkages [15,19] or piezo-electric
actuators [17,20] depending on the load requirements in terms of frequency and magnitude.
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The micro-slip along the contact interface is considered the most difficult variable to measure
in-situ in fretting testing. Thus, the slip amplitude sa at each contact point is usually unknown during
the experiments. Usually, the global or mean slip is usually extrapolated from the measured relative
displacement measured δ. In most cases, δ is measured between two reference points relatively far away
from the contact. In some cases, the measurement is performed between the specimen fixtures or directly
with the displacement applied on the actuators. Sensors usually employed to measure the displacement
are extensometers [12,25], linear variable differential transformers (LVDT) [11,21,26–28], capacitive
position sensors [17] or laser displacement sensors [19]. Furthermore, the displacement sensors need to
be carefully calibrated to consider the loads and compliance of the interference parts. On the other hand,
recent several optical methods such as digital image correlation [29,30], fiber optic sensors [31] or laser
interferometry [8,32,33] have allowed the relative tangential displacement measurement between two
points close to the contact or to obtain the full field displacement of the contacting bodies. Therefore,
the interference of the elastic displacement accommodated on the bodies in contact and fixtures is
reduced. It should also be noted the required high precision in the measurement of the contact relative
displacement, which is usually an order of magnitude below the micrometre.

The most common way to directly quantify the slip amplitude as a unique variable along the
contact in a fretting test is by calculating the range of the displacement amplitude when the tangential
load is zero δ0 (see Figure 1c) [5]. This variable gives us a mean value of the slip amplitude along
the contact. An estimation of the full slip solution along the contact can be obtained using finite
element analysis (FEA), but assuming significant simplifications. In the literature, finite element (FE)
models usually consider part of the geometry of the contacting bodies, ignoring the fixtures and other
elements to reduce the computational cost. In order to replicate the measured fretting loops, the applied
boundary conditions, which usually neglect the rotation of the parts in contact, must consider the
system and contact stiffness. Otherwise, the FE model would over constrain the motion of the bodies.
Thus, the slip along the contact would not be correctly estimated.

In this work, fretting loops obtained by several fretting wear tribometers are analysed in order to
estimate the system and contact stiffness and its influence in the correct test monitorization. In addition,
a numerical analysis of the system stiffness influence on the wear modelling of fretting testing is
presented using a FE numerical model. Furthermore, different hypothetical scenarios are analysed
using a parametric FEA to highlight the importance of the correct measurement of the system stiffness
and its impact on the principal fretting variables.

2. Materials and Methods

This section is organized as follows: In the first part, a description of several tribotesters is
presented, which are broadly classified into two groups. The first presented tribotester, developed
by the authors, is aimed to study an industrial application: the behaviour of thin steel wires under
fretting conditions. The second group of presented tribometers belongs to several renowned research
laboratories whose aim is the material damage quantification under plain fretting motion. In the second
part, the numerical modelling of these tribometers is presented and a detailed description is given which
is divided into two subsections. The first subsection corresponds to the fretting wear modelling of the
thin steel wires fretting tests. In the second subsection, the description of a parametric finite element
analysis of a plain fretting test is presented. Two hypothetical modelling scenarios are considered in
fretting test with a cylinder to flat and a flat to flat with rounded edges contact configuration.

2.1. Fretting Tribotesters

2.1.1. Fretting Tribosystem of Steel Wires

The steel wires fretting tribotester system shown in Figure 2 was designed and manufactured
by the Surface Technologies Research Group from Mondragon University to perform fretting wear
and fretting fatigue tests [15]. In the present study, the influence of the system stiffness on the fretting
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wear characterization was studied in detail. The test-rig employs a multi-axis sensor type 3A60 from
Interface Inc. (Atlanta, GA, USA) to measure both the applied normal and tangential force directly.
Traditionally, the normal and tangential force measurement sensors are decoupled, i.e., two uniaxial
sensors are used separately in order to measure each component. However, this approach gives rise to
a couple of disadvantages including linearity and crosstalk errors [15]. On the other hand, multiaxial
sensors allow to have the same reference point for all the force components which is a key factor for
measuring forces robustly in multiple directions.
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Figure 2. Fretting wear test apparatus: (a) Fretting wear contact module; (b) Schematic view of the
fretting wear test configuration. Reproduced with permission of MDPI [15].

A schematic view of the tribometer is shown in Figure 2. A contact force P is applied through
a screw which is connected to a spring, in order to minimize any shock loading during the test.
The spring stiffness is 1 N/mm and the normal force applied to the contact ranges between 1–10 N.
Accordingly, the spring must be compressed 0.1 mm to cause a 0.1 N increase in the normal force. Note
that diameters of steel wires in elevator ropes are usually below 0.5 mm and the range of wear depth
in the worst case is lower than 40 µm. In addition, the displacement amplitude is applied through an
eccentric mechanism connected to a DC motor. The eccentric is also connected to a mechanical system,
which is capable of reducing the applied displacement by 2–3 orders of magnitude.

Another important factor in a fretting wear test is the measurement of the displacement amplitude.
For this purpose, the Tribometer employs an RC90 fiber-optic sensor (Philtec Inc., Annapolis, MD, USA)
to measure the displacement accurately. As mentioned in the introduction section, the displacement at
the contact point could not be measured easily; however, it can be estimated indirectly through the
measurement of the displacement at the measurement module, which is captured remotely as shown in
Figure 3 (solid yellow square symbol). It should be mentioned that, the actual displacement is generated
on the location of the contact system as shown in Figure 3 (solid yellow circle symbol). Therefore,
the accuracy of the remotely estimated actual displacement depends on the magnitude of both the
applied load and compliance of the contact system. For small applied loads, the displacements of the
two points are practically the same. However, under sufficiently large applied loads, the compliance of
the contact system affects the estimation so that the displacements at measurement and displacement
points shown in Figure 3 are not the same. In this particular case, the effect of contact compliance
system should be taken into account. To this end, the two points of the tribometer are calibrated,
so that the near displacement is known with remote measurement. This calibration was carried out
by numerical simulation and validated by the displacement measured using a dial gauge indicator.
Finally, a second order polynomial equation as a function of applied loads was developed.



Sensors 2020, 20, 4152 5 of 20

Sensors 2020, 20, x FOR PEER REVIEW 5 of 19 

 

using a dial gauge indicator. Finally, a second order polynomial equation as a function of applied 
loads was developed. 

 
Figure 3. Detail of the displacement measurement module. Note that the displacement is measured 
remotely where the compliance of the contact system could influence the measurements. 

2.1.2. Fretting Wear Tribometers Using an Incomplete Contact Configuration 

The main purpose of the following fretting tribosystems is to quantify the damage tolerance or 
strength in different pairs of materials under fretting conditions. To this end, the contact 
configuration employed in these tests is usually a cylinder or a sphere clamped on to a flat surface. 
Thus, the contact problem can be solved in closed form as explained in the introduction using the 
well-known Cattaneo-Mindlin analysis [3,4]. In all these tests, a pad is clamped to a flat specimen 
under constant normal load. Next, an alternative cyclic displacement under constant amplitude is 
applied in one of the bodies and the other body is kept fixed. In this section, the main characteristics 
and differences of each tribosystem are presented. The reader is referred to the original references for 
the corresponding full tribosystem description. 

The first tribometer analysed in this work is the one used by Arnaud et al. [10]. They used a cyl.-
to-flat (CTF) contact configuration, both specimens were made of a titanium alloy. Two hydraulic 
actuators were used, one responsible to apply the constant normal load and the other responsible to 
impose a constant cyclic relative tangential displacement. The displacement was recorded directly 
from the overall displacement imposed in the hydraulic actuator. Arnaud et al. [10] also tested a flat-
to-flat with rounded edges configuration, which has a great interest because of its wide use in 
industrial applications. In addition, they observed some relative micro-rotation of the contacting 
bodies using digital image correlation during the tests, which led to contact misalignment. Another 
work belonging to the same research group is also analysed. In this case, Peteghem et al. [21] used a 
similar tribosystem configuration to the one employed by Arnaud et al. [10]. Contacting bodies were 
made of the same titanium alloy as in [10], although in this case the cylinder radius and the contact 
out of length are larger than the ones used in Arnaud et al. [10]. Another significant difference is that 
Peteghem et al. [21] monitored the tests to keep a constant δ0 instead of keeping constant δa. as in [10]. 

Three works [11,18,28] from a research group at the University of Nottingham are also analysed. 
In these works, the same contact configuration and geometry is analysed, a cylinder with a diameter 
of 12 mm is clamped by dead weight on to a fixed flat specimen. A constant cyclic tangential 
displacement is applied to the cylinder using an electromagnetic vibrator. The displacement is 
recorded using a LVDT attached to the specimen holding block. In these works, the specimens are 

Displacement point 

Measurement point 

Figure 3. Detail of the displacement measurement module. Note that the displacement is measured
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2.1.2. Fretting Wear Tribometers Using an Incomplete Contact Configuration

The main purpose of the following fretting tribosystems is to quantify the damage tolerance or
strength in different pairs of materials under fretting conditions. To this end, the contact configuration
employed in these tests is usually a cylinder or a sphere clamped on to a flat surface. Thus, the contact
problem can be solved in closed form as explained in the introduction using the well-known
Cattaneo-Mindlin analysis [3,4]. In all these tests, a pad is clamped to a flat specimen under constant
normal load. Next, an alternative cyclic displacement under constant amplitude is applied in one of
the bodies and the other body is kept fixed. In this section, the main characteristics and differences of
each tribosystem are presented. The reader is referred to the original references for the corresponding
full tribosystem description.

The first tribometer analysed in this work is the one used by Arnaud et al. [10]. They used a
cyl.-to-flat (CTF) contact configuration, both specimens were made of a titanium alloy. Two hydraulic
actuators were used, one responsible to apply the constant normal load and the other responsible to
impose a constant cyclic relative tangential displacement. The displacement was recorded directly from
the overall displacement imposed in the hydraulic actuator. Arnaud et al. [10] also tested a flat-to-flat
with rounded edges configuration, which has a great interest because of its wide use in industrial
applications. In addition, they observed some relative micro-rotation of the contacting bodies using
digital image correlation during the tests, which led to contact misalignment. Another work belonging
to the same research group is also analysed. In this case, Peteghem et al. [21] used a similar tribosystem
configuration to the one employed by Arnaud et al. [10]. Contacting bodies were made of the same
titanium alloy as in [10], although in this case the cylinder radius and the contact out of length are
larger than the ones used in Arnaud et al. [10]. Another significant difference is that Peteghem et al. [21]
monitored the tests to keep a constant δ0 instead of keeping constant δa. as in [10].

Three works [11,18,28] from a research group at the University of Nottingham are also analysed.
In these works, the same contact configuration and geometry is analysed, a cylinder with a diameter of
12 mm is clamped by dead weight on to a fixed flat specimen. A constant cyclic tangential displacement
is applied to the cylinder using an electromagnetic vibrator. The displacement is recorded using a
LVDT attached to the specimen holding block. In these works, the specimens are made of a titanium
alloy and the main differences between the tests are the applied displacement amplitude [11,18] and
the application of a coating to the specimens in one of the works [18].
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The last analysed tribometer is the one developed by Ramesh and Gnanamoorthy [19], which uses
an eccentric connected to an electric engine to impose the tangential displacement, similar to the
tribometer of steel wires presented above. The authors employed a cyl.-to-cyl. (CTC) contact
configuration. The normal contact load is applied using death weight between two crossed cylinders.
Each cylinder is made of two hardened and tempered structural steels and a laser displacement sensor
is used to measure the tangential displacement of the fixture.

Fretting loops given by the works explained above are firstly digitalised as shown in Figure 4.
Next, the fretting loops are analysed in terms of δ0, δa, Kt,m and µmax. Kt,m is taken as the mean
value calculated after linearization of the two micro-slip regimes just after reversal motion (half of the
micro-slip region is considered in the linearization) and µmax is calculated using the maximum value
of the tangential force over a cycle. In some of the works, fretting loops are shown at different instants
during the test, allowing to observe the evolution of the variables.
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literature [10,11,18] (reproduced with permission of Elsevier).

In order to obtain an estimation of the theoretical tangential contact stiffness Kt,c between the
contacting bodies, a finite element analysis is performed for each fretting test with an in-line cyl.-to-cyl.
contact configuration using a numerical model as the one presented in Section 2.2.2, but with the
specimen geometry and loads adjusted to each test. Kt,c is calculated just after motion reversal between
two points aligned to the centre of the contact and at a distance of 5 mm to the contact surface. For the
crossed cyl.-to-cyl. contact configuration the Cattaneo-Mindlin solution is used to estimate Kt,c between
two points located in the undeformed regions. The theoretical value of the tangential stiffness between
two points located in the undeformed regions of two curved smooth surfaces assuming elastic half
spaces is expressed as [3,4,34,35]:

Kt,c = 2G∗a (1)

1
G∗

=
2− ν1

4G1
+

2− ν2

4G2
(2)

being a the radius of the contact area and vi and Gi the Poisson’s ratio and shear elastic modulus of
each material in contact, respectively.

2.2. Numerical Modelling of Fretting Tests

2.2.1. Steel Wires Fretting Numerical Modelling

The crossed cylinder FE model was developed in Abaqus© 6.14 as shown in Figure 5.
Structural eight-node brick elements C3D8 were employed, with further mesh refinement at the
contact region using the partitioning technique. The master-slave contact algorithm with the Lagrange
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multiplier method was used for the contact discretization in order to obtain an accurate resolution of
the slip distribution, an aspect of great importance in fretting problems.
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As shown in Figure 6, a contact force was applied to the upper wire by means of a kinematic
coupling constraint so that the nodes were coupled to the rigid solid motion defined by a reference node.
As a result, only the movement on the normal contact axis and parallel to the direction of motion was
allowed (U1). The latter degree of freedom was applied in order to simulate the contact system stiffness,
through a compliance spring attached to the upper wire as shown in Figure 6. On the lower wire,
the fretting displacement amplitude was introduced according to the experimental measurements.
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Figure 6. FE loading and boundary conditions in the 3D fretting steel wires model.

The wear simulation methodology employed in this study was similar to the one presented by
Cruzado et al. [36] and the authors [37], where the energy wear equation was implemented in Abaqus
FEA through the UMESHMOTION user subroutine. This subroutine has the capability of interactively
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updating the nodal positions during a FEA. The reader is referred to [37] for a full description of the
wear model used in this work. The energy wear equation is defined as:

V = α
∑

E (3)

where V is the wear volume, α is the energy wear coefficient and
∑

E is the accumulated dissipated
energy. The wear modelling consists of an iterative process in which the local energy equation is solved
by means of both the shear traction and slip distributions obtained by the numerical simulation, as many
times as required by the slip increments to complete the established number of cycles. Because this
procedure has a high computational cost, a cycle jump technique is usually employed in order to
accelerate the numerical simulation. Thus, the local energy equation is defined as:

∆h(x,t) = ∆n·α·q(x,t)·∆s(x,t) (4)

where ∆h(x,t), ∆n, q(x,t) and ∆s(x,t) represent the incremental wear depth, the cycle jump, the global
energy wear coefficient, the shear traction and the relative slip at position x and time t, respectively.
A variable coefficient of wear was introduced in order to replicate the experimental test. Finally,
a friction coefficient of 0.62 was calculated from our experiments through the geometric independent
coefficient of friction method. The reader is referred to [7] for a detailed explanation of the friction
coefficient calculation.

2.2.2. Finite Element Modelling of Fretting Tests Including Tribosystem Stiffness Influence

In this section, two bidimensional FE models of a classical fretting wear test have been developed
using the FE commercial software Abaqus©. Two different line contact configurations are analysed:
a flat-to-flat with rounded edges and a cyl.-to-flat contact configuration. The work of Arnaud et al. [10]
is taken as a reference. Dimensions of flat specimens and pads given by Arnaud et al. [10] are fully
modelled. Both interfaces between the pad and specimen with the fixtures are modelled as rigid bodies
(see dashed lines in Figure 7). In all the numerical models, the specimen rigid surface translation
is fixed in the contact normal direction U1 and rotation UR3, but a cyclic alternative motion in the
tangential direction to the contact U2 is imposed with an amplitude of 35 µm. Several cycles are
simulated until obtaining a frictional numerical shakedown.

Two hypothetical scenarios of the pad boundary conditions have been established in both contact
configurations in order to introduce the stiffness of the tribosystem in the 2D FE models. Both scenarios
represent two extreme modelling situations. The 1st scenario considers that the fixture is infinitely
stiff in the out-of-plane rotation component UR3. In contrast, the 2nd scenario considers that the
fixture is infinitely stiff in the tangential direction U2. Although a real tribosystem is not able to match
these assumptions, both scenarios would allow us to analyse their individual effect on the principal
variables in each contact configuration. In the 1st scenario, the pad rigid surface rotation is completely
restricted. In addition, the rigid surface translation in the tangential direction is connected with a
spring to ground Kt,s. In the 2nd scenario, the pad rigid surface translation is fixed in the tangential
direction U2 but allowing its rotation with respect to an axis represented with cross markers in Figure 7.
Analogously to the 1st scenario, the rotational pad rigid surface motion is connected to a rotational
spring Kθ,s. Thus, the motion of the pad rigid surface is controlled in each scenario by the magnitude of
the tangential Kt,s and rotational stiffnesses Kθ,s of the springs included in each scenario. In summary,
the motion of the pad rigid surface in the 1st scenario is a translation along the U2 direction and in the
2nd scenario is a pure rotation along a perpendicular axis along the UR3 direction represented with a
cross marker in Figure 7.
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In all the finite element analyses corresponding to this subsection, linear 2D quadrilateral elements
with plane strain formulation and reduced integration (CPE4R code in Abaqus©) were used in pad and
specimen. To ensure an accurate prediction and to reduce the computational cost, a mesh sensitivity
analysis was firstly performed, leading to an element size of 5 micrometres in the contact area and 1 mm
far from the area of interest. A friction Coulomb model has been employed in the numerical model.
The surface-to-surface formulation in combination with Lagrange multipliers has been employed for
an accurate prediction of the shear traction distribution along the contact. Arnaud et al. [10] measured
a friction coefficient at the sliding transition of 0.9. The effect of the variation of the friction coefficient
on our numerical analyses is out of the scope of this paper. This way, a friction coefficient of 0.9 has
been assumed in all the simulations. Pad and specimens are modelled as homogeneous isotropic
elastic with a Young’s modulus of 116 GPa and a Poisson’s ratio of 0.3. The normal loads are 390 N/mm
and 800 N/mm for the cyl.-to-flat and flat-to-flat with rounded edges, respectively.

3. Results

The results are organized in two sections as follows: In the first section, experimental fretting loops
obtained using the steel wires fretting tribosystem are shown. The fretting loops are compared with
the numerical predictions and the differences are discussed. In the second section, the experimental
fretting loops of different tribosystems presented in the previous section of classical fretting tests are
analysed. Lastly, a numerical analysis of the tribosystem stiffness influence in some of the principal
fretting variables is presented assuming two modelling scenarios and two contact configurations.

3.1. Fretting Tribosystem of Steel Wires

3.1.1. Experimental Fretting Loops for Comparison

Fretting wear tests in this study were carried out on wire of 0.45 mm diameter cold-drawn
eutectoid carbon steel (0.8% C). A typical crossed cylinder (90◦) contact configuration employed for
all the tests. Experiments were conducted under a contact load of 2 N and an applied stroke of
2∆ = 120 µm under ambient environment. A fretting frequency of 3 Hz was applied for a duration
of 100,000 cycles. Three repetition were performed to ensure repeatability. A summary of the test
condition is presented in Table 1.
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Table 1. Fretting tribological test conditions.

Properties Symbol Unit Value Tribosystem

Contact load P N 2
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Properties Symbol Unit 

V
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u
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Tribosystem 

Contact load  P N 2  

Crossing angle 
α 

° 
9

0 

Average contact pressure  pav 

MPa 

3

1

0

0 

Maximum Hertz pressure pmax 

MPa 

4

6

5

0 

Tangential stress ratio RQ 
- 

-

1 

P 

δ
app

 

Moving wire 

Contact wire Crossing angle α ◦ 90
Average contact pressure pav MPa 3100
Maximum Hertz pressure pmax MPa 4650

Tangential stress ratio RQ - −1
Stroke 2δa µm 120

Frequency υ Hz 3
Number of cycles N - 100 × 103

Lubricant - None
Temperature T ◦C 22 ± 2
Atmosphere - Laboratory air

Relative humidity RH % 50 ± 5

Fretting loops for one of the tests conducted at different cycles are presented in Figure 8.
These fretting loops show a non-Coulomb fretting loop which is in a good agreement with author’s
previous works [7,15] in which the tests were conducted under a combined fretting wear and fretting
fatigue condition. Figure 8a shows that the fretting loop for 100 cycles is parallelogram in shape,
much like the ideal fretting loop. However, due to the continuation of cycles, the fretting loop was
transitioned so that the closed part of the loop was distorted after 10,000 cycles showing a non-Coulomb
frictional behaviour. This transition demonstrated a gradual increase in dissipated energy in the contact
interface accompanied by a simultaneous increase in wear debris loss from the contact zone and wear
track geometry effects [7]. Additionally, the differences between the displacement amplitude δa and
the slide amplitude δ0 are shown in Figure 8. In Figure 8b it can be observed that the displacement
amplitude is almost constant throughout the test, with small variations due to outliers during the
displacement measurement. On the other hand, it can be observed that the slip amplitude is always
smaller than the displacement amplitude and it decreases with the continuation of cycles due to the
non-Coulomb fretting loop behaviour. This behaviour is because the normal and friction force vectors
rotate due to wear phenomenon, as shown by several authors [6,7,38].
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Figure 8. (a) Evolution of the fretting loop at different cycles; (b) Evolution of the slip and displacement
amplitude during the test.

3.1.2. Numerical Results

Figure 9 shows the experimental and numerical fretting loop for cycles 100 and 100,000, respectively.
A typical flat topped-loop (Coulomb behaviour) can be observed at the fretting loop of 100 cycles
shown in Figure 9a. However, as the fretting cycles increase, a more distorted loop is induced during
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the test, showing a non-Coulomb frictional behaviour as shown in Figure 9b. From Figure 9b it can also
be seen that both the experimental and the numerical prediction results show a hysteresis cycle with
the same distorted behaviour, having considered the compliance of the contact system through the use
of a spring. From Figure 9a,b, it can be clearly seen that slip amplitude predicted by the numerical
simulation is higher than the experimental measurement when the contact system is assumed to be
completely rigid. On the other hand, as seen in Figure 9a,b, modelling the compliance of the test rig
using spring elements results in an accurate prediction of the fretting loop measured by the experiments.
The compliance of the spring introduced in the FE model is 167 N/mm. The compliance of the spring
was calibrated so as to reproduce the fretting loops measured at the beginning of the test as shown
in Figure 9a. With these results, it can be concluded that the compliance of the contact system is a
dominant factor controlling the fretting response of the contact interface.
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Figure 9. Comparison between the experimental and numerical results. Fretting loops: (a) 100 cycles;
(b) 100,000 cycles. (c) Evolution of the slip and displacement amplitude for numerical model considering
(non rigid) and not considering the stiffness of the contact system (rigid).

The comparison between the displacement amplitude and the slip amplitude predicted by the
numerical simulations is shown in Figure 9c. It is seen that the numerical simulation considering
the compliance of the contact system predicts accurately both the slip and displacement amplitude
evolution. On the other hand, it can be observed that the numerical model assuming a rigid contact
system is not able to capture the micro-slip part which arises due to the compliance of the contact
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system. These results reveal the importance of considering the real compliance of the contact system to
predict accurately the contact response in fretting system. On the other hand, it can be also concluded
that, although difficult, it is very important to have a very stiff contact system, so that the slip amplitude
is always very close to the displacement amplitude (i.e., the latter is always a response of the system
and difficult to control experimentally).

The transition in fretting loop reveals the effect of wear at the contact interface, which is
intensified with an increasing number of fretting cycles. This point is more clearly seen in Figure 10a,b,
which illustrate the numerical surface profile of the contact interface for fretting cycles of 100 and
100,000. Figure 10a clearly shows that the contact interface exhibits only small amount of wear for
fretting cycles of 100, while for fretting cycles of 100,000 the wear track depth is higher and it becomes
much shallower, as it is obvious in Figure 10b. This can explain why in Figure 9, the fretting loop gets
wider at the closed part of the loop. Therefore, the 3D numerical simulation demonstrates that the
distortion of the fretting loop is due to the increase in the size of the wear track throughout the number
of cycles.

One of the advantages of numerical simulation is that it is possible to observe in detail the
evolution of the wear footprint and associate it with the evolution of the fretting loop, something that
cannot be done easily in the experimental test.
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Figure 10. Detail of the contact zone (section on the axis of the applied displacement) for (a) fretting
cycles of 100, where it is observed that the wear is negligible in the contact zone and (b) fretting cycles
of 100,000, where it is observed that the wear is appreciable in the contact zone.

3.2. Analysis of Fretting Tribosystem and Contact Stiffness

3.2.1. Tangential Contact Stiffness Analysis of Different Tribosystem

Figure 11 shows an example of the curve linearization performed to obtain the slope of the
micro-slip and hence the measured contact tangential stiffness. The same procedure has been applied
for all the fretting loops analysed in this work. Table 2 summarizes the fretting loops belonging to
the works presented in Section 2.1.2. As expected, the measured tangential stiffness is lower than the
estimated theoretical values. The variation of the measured tangential stiffness ranges from −37% to
−94%. The principal reason might be that in all these tribometers the relative displacement is remotely
measured, at a distance larger than the distance employed in the calculation of the theoretical value.
Thus, the compliance of the tribosystem hinders the measurements. It should be mentioned that useful
information that could aid the interpretation of the results is not reported in the published data, such
as the position of the reference point where the displacement is measured or the sensor calibration.
In addition, other mechanisms may affect the measured contact tangential stiffness which are not
included in our theoretical estimations of the tangential stiffness such as the surface roughness [23].
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Figure 11. Fretting loop (black continuous line) and curve linearization of both micro-slip regimes
(dashed red line) for the fretting loop of Arnaud et al. [10].

The contact tangential stiffness directly affects the estimated slip amplitude, assumed as the
relative displacement amplitude when the tangential load is zero δ0. As can be observed in Table 2,
approximately 50% of the applied displacement is accommodated in the elastic deformation of the
contacting bodies or fixtures. Furthermore, if the applied displacement amplitude is kept constant
and the tangential forces increase during a test due to wear, the estimated global slip amplitude δ0

decreases as observed in the fretting loops belonging to references [11,18,19,28]. This reduction is
more significant at low slip values with high compliance fixing systems. However, the wear surface
evolution may also affect the micro-slip along the contact as well as the tangential contact stiffness.
As a direct consequence, it is not possible to stablish direct comparisons between tribosystems or
tests with different compliance. This result is also applied to tests peformed in the same tribosystem,
but using a material with significant different elastic properties. On the other hand, this phenomenon
is avoided if the global slip amplitude is kept constant during a test such as in reference [21]. Note that
two fretting loops here analysed employ coated bodies in contact [18]. Lastly, we note that the effect of
coating has been included solely in the theoretical calculation of the tangential stiffness through the
reduction of the friction coefficient to a value of 0.3 in the 2D FE model, as reported in [18].
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Table 2. Summary of the total tangential stiffness of different fretting tests found in the literature.

Ref. Contact
Conf.

Pad/Spec.
Material R [mm] P [N] a [mm] µmax δa [µm] δ0 [µm] N [cycles] Kt,m

[N/µm]
Kt,c

1

[N/µm]
(Kt,c −

Kt,m)/Kt,c [%]

[10] CTF Ti-6Al-4V 40 1950 0.549 0.93 33.22 14.12 - 88.24 139.10 -
[11] CTF Ti-6Al-4V 6 500 0.076 0.82 40.15 22.67 5.00 × 103 22.48 161.70 −86%
[11] CTF Ti-6Al-4V 6 1000 0.108 0.77 56.87 22.98 5.00 × 103 21.83 170.70 −87%
[11] CTF Ti-6Al-4V 6 500 0.076 0.96 40.37 20.41 1.00 × 105 21.84 161.70 −86%
[11] CTF Ti-6Al-4V 6 1000 0.108 0.91 60.06 19.54 1.00 × 105 21.08 170.70 −88%
[21] CTF Ti-6Al-4V 80 8523 1.286 0.59 134.89 77.17 2.50 × 102 85.58 289.20 −70%
[21] CTF Ti-6Al-4V 80 8523 1.286 0.68 141.31 71.13 3.00 × 103 79.48 289.20 −73%
[18] CTF Ti-6Al-4V (coated) 6 500 0.076 0.28 24.94 20.26 1.00 × 105 18.62 161.70 −88%
[18] CTF Ti-6Al-4V (coated) 6 500 0.076 0.44 24.00 13.67 6.00 × 105 18.38 161.70 −89%
[28] CTF Ti-6Al-4V 6 500 0.076 0.88 24.72 7.87 5.00 × 103 24.16 161.70 −85%
[28] CTF Ti-6Al-4V 6 500 0.076 0.97 24.96 5.32 5.00 × 104 23.76 161.70 −85%
[19] CTC En31/En24 5 19.6 0.087 0.51 25.69 15.01 1.00 × 103 1.19 16.03 * −93%
[19] CTC En31/En24 5 19.6 0.087 0.54 27.56 13.24 9.90 × 104 0.90 16.03 * −94%

1 The estimated tangential contact stiffness Kt,c is calculated using FEA between two equidistant points to the centre of contact at a distance of 5 mm for the in-line CTF contact configuration
and using the Cattaneo-Mindlin solution calculated between two points located in the undeformed regions for the CTC (crossed) contact configuration (*).
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3.2.2. Parametric Analysis of the Tribosystem Stiffness Influence on Contact Variables

First of all, the relationships between the tangential stiffness related with the tribosystem Kt,s and
the tangential stiffness measured in the resulting fretting loop just after the reversal motion Kt,m have
been established. The measured displacement δ is calculated between ground and a specimen node
located on the rigid surface. Note that all the nodes located on the specimen rigid surface of the model
describe the same path. Next, four cases have been analysed for each of the two scenarios presented
above. For each contact configuration, Kt,s and Kθ,s are defined using the relationships established
previously in such a way that the Kt,m calculated in the fretting loop is identical for each case in both
scenarios. Tables 3 and 4 show the values of the tangential stiffness measured in the fretting loops
obtained in our cases for each contact configuration, respectively. Furthermore, the values of the
tangential stiffnesses modelled for each case, modelling scenario and contact configuration are also
given in both tables. In addition, the maximum angle of rotation (θmax) estimated by FE in the pad
rigid surface at maximum tangential load obtained for the second scenario is also given for each contact
configuration. Note that stiffnesses in Tables 3 and 4 are given per unit length.

Table 3. Summary of the four cases analysed in first and second scenario using a cyl.-to-flat
contact configuration.

Case Kt,m [N/mm2]
1st Scenario 2nd Scenario

Kt,s [N/mm2] Kθ,s [N/rad] θmax [◦]

1 4.35 × 103 5.00 × 103 5.28 × 105 1.67 × 10−1

2 7.64 × 103 1.00 × 104 1.06 × 106 1.45 × 10−1

3 1.94 × 104 5.00 × 104 5.30 × 106 3.89 × 10−2

4 2.99 × 104 5.00 × 105 5.64 × 107 3.67 × 10−3

Table 4. Summary of the four cases analysed in first and second scenario using a flat-to-flat with
rounded edges contact configuration.

Case Kt,m [N/mm2]
1st Scenario 2nd Scenario

Kt,s [N/mm2] Kθ,s [N/rad] θmax [◦]

1 6.10 × 103 7.00 × 103 3.17 × 105 1.80 × 10−1

2 8.94 × 103 1.10 × 104 6.37 × 105 1.71 × 10−1

3 2.34 × 104 4.66 × 104 3.28 × 106 9.51 × 10−2

4 4.35 × 104 5.84 × 105 4.82 × 107 7.70 × 10−3

Figure 12 shows the main contact variables of the four cases analysed using the cyl.-to-flat contact
configuration: the fretting loop, the contact pressure and shear traction at the instant of maximum
displacement and the slip amplitude along the contact during a cycle. As can be observed, the fretting
loops obtained by both scenarios are exactly the same (both plots overlap in Figure 12), being half of
them under PSC (1 and 2) and the other half under GSC (3 and 4). In addition, no significant differences
were found for the rest of variables. It is noticeable that for a low rotational stiffness in the second
scenario, the pad rolls over the flat specimen, reaching more distant points at the specimen surface
than for the same case in the first scenario. In this way, the contacting points on the edges are changing
and so the slip amplitude slightly decreases on the edges. In the 2nd scenario, the maximum angle of
rotation measured in the pad rigid surface at maximum tangential load was 0.17◦ for case 1. This result
shows the high sensitivity of the problem to the rotational system stiffness.
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Analogously, Figure 13 shows the main contact variables of the four cases analysed but using the
flat-to-flat with rounded edges contact configuration. As shown, a slightly different fretting loop is
observed for both scenarios under PSC, although they have identical tangential stiffness after motion
reversal. On the other hand, even although the fretting loop is identical under GSC, quite significant
changes are observed in the contact pressure and shear traction distribution along the contact as shown
in Figure 13. The misalignment produced by the pad rotation for the second scenario causes a reduction
of the contact area and promotes the stress concentration at the contact edges. In addition, the slip
amplitude along the contact decreases significantly on both sides under GSC when there is lifting on
one of the sides. Similar to the cyl.-to-flat contact configuration, the maximum angle of rotation at
maximum tangential load was 0.18◦ for case 1. This result shows again the high sensitivity of the
problem to the micro-rotation of the bodies.
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In both contact configurations, significant differences were found particularly in fretting loops
closed to the transition point from PSR to GSR. For instance, the slip amplitude along the contact under
PSR for the cyl.-to-flat contact configuration decreased in the second scenario as shown in Figure 14a.
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On the other hand, in case 3 using a flat-to-flat contact configuration under GSR the slip distribution
slightly increased in the middle contact area and decreased on the edges (see Figure 14b). However,
in the same case the normal pressure and shear traction drastically changed when comparing both
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scenarios. As expected, and as a general rule, the flat-to-flat contact is more sensitive to micro-rotations
due to the misalignment of the flat surfaces.

4. Conclusions

In this work, a critical analysis of the contact and tribosystem stiffness influence on the measurement
of principal variables in fretting wear tests has been performed. The analysis combines experimental
results with numerical simulations. Several fretting wear tribometers have been reviewed, including
one developed by the authors, and analysed in order to assess the system and contact tangential
stiffness. The main conclusion is that direct comparisons between results obtained in fretting wear tests
with a different tangential contact stiffness cannot be generally performed. The tangential stiffness must
be considered in the calibration of the sensors and the fretting motion actuator control units. In this way,
system stiffness plays a fundamental role in the correct measurement of the principal variables as
shown by the numerical analyses. An accurate measurement of the main fretting variables is necessary
to establish proper damage relationships. In addition, numerical models should be equivalent to the
whole system stiffness and the necessary values need to be experimentally measured. The system
stiffness measurement should consider the micro-rotations of the fixtures, especially when using a
flat-to-flat contact configurations as shown in the parametric FEA.
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