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Abstract. Electron velocity distribution functions (EVDFs) in CO2 obtained by

means of the Monte Carlo Flux (MCF) method are compared with results from

two-term and multi-term Boltzmann solvers. The MCF method provides detailed

calculations of the EVDF through a highly efficient variance reduction technique.

Benchmark calculations of Legendre polynomial coefficients of the EVDF expansion are

reported for a wide range of reduced electric fields (E/N), showing excellent agreement

with multi-term solutions. Rate coefficients of inelastic processes calculated from

two-term Boltzmann solvers differ significantly, up to 70%, from MCF and multi-

term solutions, due to the anisotropy of the EVDF. An extension of the method

to consider the thermal distribution of the background gas is also presented. This

extension, together with an accurate description of the population of rotationally and

vibrationally excited states, provides excellent agreement with measured transport
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coefficients at low E/N . A good agreement is obtained at moderate E/N between

experimental values of dissociation rate coefficients and MCF calculations after careful

consideration and analysis of several cross sections data sets.

Keywords: Monte Carlo Flux, CO2, electron velocity distribution function,

benchmarking

1. Introduction

The investigation of electron kinetics and transport in CO2 is an important topic, since

collisions of free electrons with CO2 molecules are fundamental for the excitation of

internal degrees of freedom and electronic states, dissociation and ionization of the

molecule [1]. Initial studies on this topic focused on the description of laser kinetics [2–4]

and plasma activation of small molecules, such as CO2 [5, 6]. More recently, renewed

interest on the topic has been mainly motivated by a possible application to carbon

capture and utilization [7–9]. In terms of numerical investigations of electron kinetics,

CO2 is considered a complex gas due to the presence of a broad Ramsauer minimum in

the elastic momentum transfer cross section, together with evenly distributed electron

energy loss processes due to vibrational or electronic excitations. In the pioneering

work of Nighan [10], emphasis has been given to the evaluation of the Electron Energy

Distribution Function (EEDF) that exhibits deviations from the Boltzmann one, upon

application of an external and homogeneous electric field.

Detailed information about past and present advances in the solution of the electron

Boltzmann Equation (EBE) can be found in [11–14]. A common approach for the

solution of the EBE is the expansion of the Electron Velocity Distribution Function

(EVDF) in spherical harmonics for the angular dependence of the velocity space. Instead

of the full spherical harmonics representation, an expansion in Legendre polynomials

can be applied in cases of rotational symmetry of the distribution function around

the direction of the electric field. A considerable simplification is often obtained by
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assuming that the EVDF is well represented by the first two terms in the expansion.

This is referred in literature as two-term approximation [15]. Recently, progress in the

modelling and understanding of CO2 plasmas has been made by several groups using

the two-term approach. The kinetics of CO2 dissociation kinetics has been studied

by Bogaerts and co-authors [16–18]. In those models, the effects of several chemical

processes are taken into account in a 0D approach, by means of the codes ZDPlasKin [19]

or GLOBAL KIN [20, 21]. In particular, in ZDPlasKin, rate coefficients of electron

impact processes are computed with the two-term solver BOLSIG+ [22,23]. A detailed

investigation of electron kinetics has been performed by the Bari group [24,25] with the

use of native codes that couple a time resolved solution of the two-term EBE with the

description of vibrational and chemical kinetics. Efforts in coupling a solution of the

two-term EBE with the rate equations for vibrational and chemical kinetics have been

carried out also by the Lisbon group, with particular emphasis on the comparison with

experimental analysis of glow discharges [26, 27]. In addition, a complete set of cross

sections has been proposed by the Lisbon group [28] and optimized for the calculation

of flux transport coefficients in swarm analysis with the two-term solver LoKI-B, that

has been recently released as an open source code [29, 30]. However, the two-term

approximation obtained by an expansion in Legendre polynomials is not applicable in

absence of rotational symmetry in the velocity space [31]. In addition, the anisotropy

of the distribution is enhanced if inelastic processes give a significant contribution to

electron energy losses [32]. The two-term approach can be extended to higher orders in

the expansion, giving rise to multi-term Boltzmann solvers, that are typically applied

to accurate calculations of electron transport coefficients [13]. Another motivation for

accurate solutions of the EBE is the calculation of transport coefficients (bulk and flux)

that have been investigated in the framework of swarm analysis experiments [33, 34].

Such multi-term solvers are known to overcome the small anisotropy assumption implicit

in the two-term approach. An example of open source code that is based on a multi-

term expansion in Legendre polynomials of the EVDF is MultiBolt [35,36]. Multi-term
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solutions of the EBE to the CO2 case have been performed by Loffhagen [37] for the

study of spatial and temporal relaxation of the EVDF. In addition, the group at James

Cook University has considered the effect of magnetic fields on electron transport [11,38],

pointing out the necessity of a full spherical harmonics expansion in cases of absence

of rotational symmetry in the velocity space. A comparison of different methods to

calculate electron swarm coefficients has been presented in Segur et al. [39] and, more

recently, in Vass et al. [40] for a wide range of reduced electric fields (E/N), this last

using the IST-Lisbon set of cross sections [28]. Monte Carlo (MC) methods can also

be applied for solving the charged particles transport problem [41, 42], especially in

conditions of strong anisotropy of the distribution function in the velocity space or

when spatially dependent quantities are needed [15]. Since the MC method is mainly

based on the description of electron history from collision to collision, it is of easier

implementation than a multi-term solver. Moreover, the method is equivalent to an

infinite expansion in spherical harmonics [43]. Recently, electron impact rate coefficients

for vibrational excitation of CO2 gas molecules have been calculated using an MC

method by Vojnović et al. [44], in the presence of DC electric and magnetic fields.

In general, application of particle based methods is favoured in plasmas due to the

complexity of these last. As an example, a recent work has proposed to study the

splitting of CO2 in a plasma-enhanced catalysis system by means of a 1D Particle-In-Cell

with Monte Carlo Collisions (PIC/MCC) code [45]. An example of code based on MC

and used for calculation of electron transport properties is Magboltz, that was developed

by Biagi [46, 47]. Considerable effort has been devoted to benchmarking Boltzmann

solvers and MC codes for electrons. In particular, notable is the work of Braglia and

Romanó [48] on the calculations of electron transport coefficients in CO2. An extended

comparison, including also multi-term calculations, has been published subsequently

by Braglia, Wilhelm and Winkler [49], highlighting the inadequacy of the two-term

approach for the case of a spatially homogeneous system under the application of a

constant electric field. In spite of the excellent agreement between MC and Boltzmann
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six-term calculations, in [49] the difficulties of obtaining accurate MC calculations of

excitation rates, particularly when they are sensitive to the tail of the distribution,

are also pointed out. This is mainly due to stochastic fluctuations in the computed

EEDFs that affect the accuracy of MC results. Furthermore, MC calculations may

require considerable computational time, due to the high number of electron collisions

that have to be simulated before steady-state is attained. Moreover, being the method

intrinsically time-dependent, it can suffer from a problem of multiple time scales that

range from the inverse of the momentum relaxation frequency to the inverse of the

energy relaxation frequency. The ratio of the two time scales, for the case of electron

transport, is of the order of the electron to heavy particle mass ratio m/M [1].

Acceleration of the convergence and improvement of MC efficiency and accuracy

can be obtained by means of variance reduction techniques (VRTs) [50, 51]. Those

techniques are usually employed in MC to reduce the statistical error in the calculation of

macroscopic quantities by using different statistical weights for the simulated particles.

An example of VRT is the Monte Carlo Flux (MCF). The MCF method has been

originally proposed by Schaefer and Hui [52] for studying the electron transport

problem and applied afterwards mainly by Longo and Capitelli [15, 53]. In the MCF

method, while collisional events are still based on a MC description, a reduction of the

computational time is obtained by employing an efficient VRT. Moreover, the problem

of strongly different timescales is solved by the use of a deterministic Markov chain

for the time evolution. However, as the method has generally been overlooked, it

was never benchmarked against solutions of the EBE under the simplest stationary

and homogeneous conditions for molecular gases. The present work is an extension

of previous studies, like [49], focusing here on a systematic comparison of different

numerical methods to describe electrons in CO2. A Fortran version of MCF has

been recently implemented and benchmarked for electrons in Argon by the present

authors [54]. This reconsideration is in the perspective of an integration of MCF

in 0D/1D codes describing the interplay between electrons and chemical kinetics in
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plasmas.

In particular, considering electron transport in gases, often the cold gas

approximation is used, assuming a fixed background of target particles at rest. However,

this approximation is not valid for low reduced electric fields (E/N), when the mean

electron energy is comparable with the thermal energy of the background gas. Extension

of the Boltzmann transport equation to consider energy exchange in elastic collision

due to the thermal motions of molecules in a DC electric field has been originally

considered by Davydov. This correction term in the elastic operator, also called

Davydov-Boltzmann term [13], can be derived by an analysis of the linear EBE under

assumption of conservative collisions, expansion of the distribution function in the first

order and thermal equilibrium of the background gas molecules [55] or by considering

the analogy with a Fokker-Planck formulation [56]. In this work, the MCF method

is extended to consider the contribution of finite gas temperature of the background

gas by means of an exact Test Particle Monte Carlo technique [57]. This extension

allows one to study gas kinetics effects of electron transport at low E/N . Moreover,

considering the specific case of CO2, inconsistencies arising in neglecting the population

of internal degrees of freedom, while including effects of finite gas temperature, are

highlighted. Beside the scope of this work, another interesting application where MCF

can be advantageous compared with other EBE solvers, is in near-runaway conditions.

In fact, MCF can provide fast and accurate calculations of EVDFs at high E/N .

The paper is organized as follows. In Section 2, a description of the numerical

method is introduced. Section 3.1 presents results of benchmarked calculations of

EEDFs and anisotropic components of the EVDF, over a wide range of E/N . The

Boltzmann solvers BOLSIG+ [23] and MultiBolt [35], using a two-term and ten-term

expansion in Legendre polynomial, respectively, are used for benchmarking. Particular

emphasis is given to the accuracy of calculation of chemical rate coefficients of inelastic

processes. In Section 3.2, an upgrade of the MCF method, with the technique that

takes into account the thermal velocity distribution of the background gas, is presented.
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7

In Section 3.3, effects of gas kinetics and population of rotationally and vibrationally

excited states are analyzed for electrons in CO2. The importance of considering accurate

descriptions of excited states population is also emphasized. In Section 3.4, the use of

Biagi cross sections is tested for calculation of transport coefficients and electron impact

dissociation rate coefficients and compared with experimental measurements.

2. Numerical method

The numerical method has been described in detail in [54]. Here we report the main

characteristics of the method and code implementation and the new features added in the

present work. The case of a spatially homogeneous system, in the presence of an external

DC electric field applied along the z-direction is considered. The MCF method [52] is

used for calculation of EVDFs in pure CO2. In MCF calculations, the velocity space

is partitioned into a finite number of cells of size ∆v in the v-direction. Hence the

electron velocity distribution is obtained as a distribution defined in a discrete space.

Usually, under condition of spherical symmetry around the direction of the electric

field, such as in the present work, a 2D discretization in energy and cos θ is sufficient for

a characterization of the velocity distribution function. Furthermore, this description

allows one to rewrite the electron transport problem in the following form [15]:

ni(t+ ∆t) =
∑
j

(qji (∆t)nj (t))− ni (t)
∑
j

qij (∆t) , (1)

where ni(t) is the number of electrons in the i-th cell at time t, qji (∆t) is the

conditional transition probability of electrons moving from the i-th to the j-th cell in

velocity space within the time interval ∆t. In order to have an accurate description

of the collisional transport in velocity space, ∆t is assumed to have values that ensure

enough “mixing” of the velocity components due to scattering events, such that:

τm < ∆t << τε, (2)
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where τm is the momentum relaxation time and τε is the energy relaxation time.

In this way, the linear Boltzmann equation for electrons can be described as a discrete

Markov process where the time evolution of the system depends only on the knowledge

of accurate transition probabilities [58]. In MCF, these last are calculated with short

time MC simulations that track electron trajectories from the initial to the final cell that

is reached after ∆t. Moreover, the electron motion is followed for a time typically much

shorter than the relaxation time of the distribution function (Eq. (2)). This makes

MCF much more computationally efficient than a conventional MC method.

The numerical implementation of MCF has been performed in Fortran and it

includes three main modules that are called in the following order:

• Discretization module: This module is responsible for reading and parsing the

MCF input data. In fact, the code requires as input collisional cross sections in

LXCat format [59]. In addition, numerical parameters such as energy bin size (∆ε),

maximum energy (εmax), number of cos θ bins (ncos θ) and number of electrons per

cell (np) are required. Cross sections are interpolated in the energy range [0, εmax]

using a piecewise linear interpolation. The EVDF and quantities averaged over

it are calculated for different physical parameters, such as reduced electric field

(E/N), initial gas composition and gas temperature (Tgas) that, in this work, are

assumed to be constant.

• Monte Carlo module: In this module, transition probabilities are calculated with

MC simulations that take into account an exact description of collision statistics

with the modified time step approach [42], where each particle contributes to the

statistical sampling of transition probabilities [52]. The calculation is initiated by

inserting in each cell a uniform distribution of np electrons, whose trajectory is

traced for a time interval ∆t. The time interval is estimated using the criterion

in [54]. This heuristic procedure has been proven to give values of ∆t that

satisfy condition (2). Pseudo-random numbers from a Fortran implementation of

the Mersenne Twister algorithm [60, 61] are used to compute the time between
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subsequent collisions and the type of collision with the null-collision method [62].

Depending on the nature of the collision, random numbers are also used to compute

the electron energy and direction after the scattering [42, 63]. Effects of non-

conservative collisions are included using a dynamic list of particles, as described

in [54].

As a difference with respect to [54], two different treatments for the electron velocity

distribution of the background gas are considered. If the cold gas approximation

is used, the background of CO2 molecules is considered at rest. In this case, the

collision frequency for an electron of velocity v is calculated as

ν (v) = Nσ (v) v, (3)

where N is the gas number density, σ (v) is the collisional cross section for electron-

molecule scattering and v is the electron speed. Equation (3) is usually a good

approximation to describe electron transport in gases because of the large electron

to heavy particles mass difference and the high electron to neutral temperature

ratio, but it may become inadequate at low values of reduced electric field, such

that the mean electron energy becomes comparable with the thermal energy of

the gas. For this reason, the effect of a finite temperature of the background gas

is taken into account following a procedure introduced in [57]. According to this

treatment, for each electron collision, the velocity of the neutral background gas u

is sampled from a Maxwell-Boltzmann distribution function at Tgas. In this way,

the electron collision frequency can be written in the exact form, depending on the

electron-neutral relative velocity [64]:

ν (v) = N

∫
σ (|v − u|) |v − u|F (u) du, (4)

where F (u) is the distribution of the CO2 molecules at Tgas. The von Neumann

rejection technique is used to sample the velocity components of the vector u.

• Markov chain module: In this module, transition probabilities from MC simulations
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10

are stored in the form of a matrix. If time dependent quantities are sought, equation

(1) is solved iteratively in the form of a matrix equation. As an alternative,

the steady-state solution is retrieved by solving an eigenvalue problem using the

DGEEV subroutine of the LAPACK 3.8.0 library [65].

As output, MCF provides time-dependent or steady-state EVDFs which are used

for the computation of Legendre polynomial coefficients, chemical rate coefficients and

transport coefficients.

3. Results

Electron impact cross sections with CO2 molecules are taken from the Biagi database

[66], that includes 92 different collision processes. This set of cross sections set has

been recently transcribed from the code Magboltz v11.6 [47] and carefully checked by

comparing Boltzmann and MC calculations [66]. In particular, the dataset provides

an elastic momentum transfer cross section that takes into account the contribution

from the ground vibrational state CO2(ν1ν2ν3 = 000) (where ν1, ν2 and ν3 are the

vibrational quantum number of the symmetric stretching, bending and asymmetric

stretching mode, respectively), including rotational states and vibrational bending

mode in thermal equilibrium at 293.15 K. The elastic momentum transfer cross section

for the vibrational bending mode is tabulated separately and available in the same

database. Such a cross section takes into account the contribution of the first level of

the bending mode (CO2(010)), together with two low-lying vibrational levels (CO2(020)

and CO2(030+110)). For electron energies below 5 eV, inelastic processes are dominated

by electron impact vibrational excitation of CO2(000) that is described by a set of 14

processes. In particular, the following processes are included:

• Vibrational excitation of CO2(000) to bending mode levels with thresholds 0.083,

0.159 and 0.251 eV, corresponding to the states CO2(010), CO2(020) and CO2(030+

110).
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11

• Vibrational excitation of CO2(000) to the first vibrational level of the symmetric

stretching mode with threshold 0.172 eV (i.e. CO2(100)).

• Vibrational excitation of CO2(000) to the first vibrational level of the asymmetric

stretching mode with threshold 0.291 eV (i.e. CO2(001)).

In addition to the processes above, electron impact excitations to vibrational states

with a threshold up to 2.5 eV are taken into account. For higher electron energies,

other inelastic conservative processes are described by 79 reactions that include electron

impact excitation and dissociation. Cross sections for those processes are derived

mainly from the analysis of photoabsoption in CO2 [67]. This technique gives cross

sections for levels that are coupled with the ground electronic state through dipole

excitations [68]. Non-dipole allowed transitions are called triplet excitations and related

cross sections are optimized in Magboltz [47] to reproduce the measured Townsend

ionization coefficient [68]. In particular, for electron energies between 6 and 12 eV, the

following processes contribute to electron impact dissociation of CO2:

• Dipole allowed transitions to singlet states leading to dissociation of CO2 into CO

and O, described by 10 different processes with thresholds ranging from 6.50 to

8.75 eV.

• Dissociative excitation via CO2 triplet state with threshold 8.89 eV.

• A second group of dipole transitions to singlet states leading to dissociation of CO2

into CO and O, described by 6 different processes with thresholds ranging from

8.90 to 10.15 eV.

• Dissociative excitation with threshold 11.05 eV.

• Dissociative excitation via sum of triplets with a threshold of 11.30 eV.

Electron impact dissociation of CO2 is also considered at energies above 13.7 eV,

which is the ionization energy of CO2 into CO+
2 . In particular, the following processes

are included:
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• Dipole allowed transitions leading to dissociation, that are separated from ionization

processes based on the average of many measurements of the ionization efficiency

[67, 68], described by 25 different processes with thresholds ranging from 13.78 to

19.75 eV.

• Dissociative excitation via sum of triplets with a threshold of 25 eV.

Ionization processes of CO2 to different singly-charged and multiply-charged ions

(CO+
2

(
Ã2Πu

)
, CO+

2

(
B̃2Σ+

u

)
, CO2+

2 , O+, O2+, CO+, C+, C2+, ionization to Carbon K-

shell, ionization to Oxygen K-shell) are also included in the set. Moreover, dissociative

attachment of CO2 into CO and O− is considered.

It should be noted that other sets of electron scattering cross sections in CO2 are

available in LXCat. In particular, the IST-Lisbon database includes a comprehensive set

of cross sections that are optimized for the calculation of swarm transport coefficients

from the solution of a two-term homogeneous EBE [28]. However, in this work, for the

sake of numerical benchmarking and consistency with the MC approach implemented,

the Biagi database has been preferred since it provides a complete set of cross sections

to be used for solving the EBE under multi-term expansion or MC calculations. It is

worth noting that, at the moment, there are large discrepancies between cross sections

for electron kinetics in CO2 of different datasets. Those discrepancies involve particularly

the description of electronic excitation and dissociation processes [69]. In this respect,

this work also aims to assess the validity of Biagi cross sections for describing electron

kinetics in CO2 in Monte Carlo (or multi-term) codes.

An example of temporal evolution of the EEDF in CO2 obtained with the Biagi

cross sections is shown in Fig. 1. Calculations were performed with MCF at a constant

reduced electric field of 50 Td, assuming a fixed gas composition of pure CO2 at

N = 7.24×1022 m−3 (collapsed in the CO2(000) level). As regards numerical parameters,

the energy domain is discretized with ∆ε = 0.1 eV and εmax = 20 eV. The simulation

is initiated by placing np = 105 electrons per cell that are used for the calculation of

transition probabilities within the time interval ∆t = 1.8 × 10−9 s. The time resolved
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13

EEDF is computed by an iterative application of equation (1) to an initial Boltzmann

distribution of electrons at 300 K, until reaching steady-state at around 1.8× 10−7 s.

0 5 10 15 20
10-6

10-4

10-2

100

1.8x10-7 s
1.8x10-8 s

9.0x10-9 s
7.2x10-9 s

5.4x10-9 s
3.6x10-9 s

EE
D

F 
(e

V
-3

/2
)

Energy (eV)

1.8x10-9 s

Figure 1: Time evolution of the EEDF in CO2 under a constant reduced electric field

of 50 Td and gas number density of 7.24× 1022 m−3. A time step of ∆t = 1.8× 10−9 s

is used in MCF calculations of transition probabilities.

It is worth noting that in the energy range between 1.0 and 5.0 eV, steady-state

is established after only 5.4 × 10−9 s, that is about a factor 10 less than for the lower

energies portion (ε < 1.0 eV) and the tail of the distribution (ε > 4.0 eV). This reflects

the differences between energy and momentum relaxation frequencies in each energy

range. When steady-state is reached, a tail appears in the EEDF starting from around

7 eV following a drop in the distribution. This feature is typical of molecular gases

with high vibrational cross sections [1]. In fact, those inelastic processes act as a sharp

barrier that electrons have to overcome to reach higher energies. In addition to that, as

mentioned before, several different inelastic processes involving mainly electron impact

dissociation of CO2 are present in the energy region between 6.5 and 8.75 eV. The

CPU time for MCF simulations for these conditions, including calculations of transition

probabilities and time resolved EEDFs, is about 1 min with an Intel Fortran compiler on

an Intel Xeon CPU E5-2637 v3 @ 2.50 GHz processor. In MCF, most of the CPU time is

spent on calculation of transition probabilities, whereas the solution of the deterministic
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problem is typically very fast (of the order of a few milliseconds, depending on the size

of the matrix). In total, the CPU time from MCF calculations is about a factor 3 higher

than the one from steady-state solutions with the multi-term solver MultiBolt [35] with

similar accuracy in rate coefficient calculations, as shown in more details later in this

Section.

In the following subsection emphasis is given to benchmark calculations of Legendre

polynomial coefficients and chemical rate coefficients from MCF and Boltzmann solvers

using the two-term (BOLSIG+ [23]) and ten-term (MultiBolt [35]) expansion in

Legendre polynomials. The benchmark is limited to steady-state conditions. Two

different case studies are considered, corresponding to moderate and high E/N . For

the sake of codes benchmarking, the following assumptions have been included:

- An invariant chemical composition of pure CO2 as a background gas is considered.

In this gas, the population is collapsed in the CO2 (000) state. In this way, CO2

is modelled as an ideal gas, where the population of internal states at a finite gas

temperature is neglected. Even if the first vibrational levels of the ground state can

be largely populated already at room temperature, this strong assumption is made

for the sake of numerical benchmarking with other solvers (i.e. MultiBolt), that

do not include options for population of excited states. Extension of the model by

considering finite gas temperature is discussed in Section 3.2. Moreover, the effect

of inclusion of population of internal energy levels is shown in Section 3.3.

- The gas is weakly ionized, such that the effect of self-collisions of electrons can be

neglected (in the spirit of the linear Boltzmann equation).

- An homogeneous and time-independent electric field is considered, such that non-

local effects of electron kinetics can be neglected.

- All elastic and inelastic scattering collisions are treated as isotropic. Although

anisotropic scattering may have important effects on electron transport at high

E/N , detailed collision dynamics is not included in the Boltzmann solvers used for

benchmarking.

Page 14 of 42AUTHOR SUBMITTED MANUSCRIPT - PSST-103883.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

3.1. Cold gas approximation

The MCF method is applied to the case of electrons in CO2 by calculating the EVDF

under the cold gas approximation, in steady-state and homogeneous conditions. Results

of MCF are benchmarked in the range E/N = 20−1000 Td against the codes BOLSIG+

[23] and MultiBolt [35] for the calculation of the first three Legendre polynomial

coefficients. At low E/N values, benchmarking with the two-term solver is very good

as expected (not shown). The validity of the widely used two-term approximation is

verified for the calculation of chemical rate coefficients of inelastic processes such as

vibrational excitation and CO2 dissociation.

3.1.1. Moderate reduced electric fields: E/N = 20− 100 Td

MCF calculations are performed with the following numerical parameters: ∆ε = 0.1 eV,

εmax = 20 eV, ncos θ = 50 and np = 104. In particular, a discretization in cos θ is needed

for computing higher order Legendre polynomial coefficients, whereas setting ncos θ = 1

is sufficient for the representation of the isotropic part of the distribution. Default

numerical parameters are used in the two-term Boltzmann solver BOLSIG+ (precision

= 10−10, convergence = 10−5, number of iterations = 2000 and 100 energy intervals).

The MultiBolt solver was used in the hydrodynamic regime, under a ten-term expansion

in Legendre polynomials of the velocity distribution function with default parameters

(convergence error in mean energy = 10−6, maximum number of iterations = 2000,

energy remap = 1, number of energy intervals = 1000). In Fig. 2, it can be noticed

that the EEDFs obtained with MCF and MultiBolt present significant deviations with

respect to the ones calculated with BOLSIG+. This is particularly visible in the tail of

the distributions, for E/N < 80 Td.

The discrepancy in results from the two-term approach is mainly due to the presence

of a pronounced Ramsauer minimum in the elastic momentum transfer cross sections in

the energy range of interest. Due to the high number of vibrational excitation processes,

the collision frequency of inelastic processes reaches values comparable with the one of
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Figure 2: Zeroth order Legendre polynomial coefficient calculated with MCF, BOLSIG+

(two-term solver) and MultiBolt (ten-term solver) in CO2 at different values of constant

reduced electric field. From left to right: 20, 30, 50, 80 and 100 Td.

elastic processes. Hence, the small energy variation assumption implicit in the two-term

approach is not valid [31]. Calculations of f1 and f2 (Fig. 3), for the same values of

E/N , show that the two Legendre polynomial coefficients have absolute values similar

to the corresponding EEDFs. The strong coupling between the first three coefficients

of the expansion is another explanation for the discrepancies in results from the two-

term approach. Moreover, comparing MCF results of Fig. 2 with Figs. 3a and 3b, it

is possible to notice that higher order Legendre polynomial coefficients present slightly

higher stochastic fluctuations in the tail of the distribution. This is due to the fact that,

in MC methods, Legendre polynomial coefficients are calculated from the n-particle

distribution function, where each of the n simulated electrons contributes as a term

weighted by the respective Legendre polynomial [70]. For this reason, anisotropic

components of the distribution suffer from lower counting statistics compared to the

isotropic one.

Total chemical rate coefficients for the vibrational excitation of CO2(000) to

CO2(010), CO2(020) and CO2(110 + 030) and for electron impact dissociation are

calculated with MCF and BOLSIG+ and compared to results from MultiBolt. Results
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Figure 3: (a) First order and (b) second order Legendre polynomial coefficients

calculated with MCF, BOLSIG+ (two-term solver) and MultiBolt (ten-term solver)

at different constant reduced electric fields in CO2. From left to right: 20, 30, 50, 80

and 100 Td. Calculations of f2 are compared to results from MultiBolt only, since

BOLSIG+ solutions are truncated at the first order.

are shown in Fig. 4a and 4b, respectively. Since vibrational excitation processes have a

low energy threshold, deviation in the rate coefficients of the two-term solver BOLSIG+

is within 5%, whereas MCF results are within 1% compared with MultiBolt (Fig. 4a).

Rate coefficients of inelastic processes that have threshold near the tail of the distribution

are more sensitive to departures of the EEDF from the multi-term solution. This is

shown in Fig. 4b for the electron impact dissociation processes. In this case, the relative

difference with multi-term calculations can exceed 70%, whereas MCF deviations are

within 3%. Discrepancies between MCF results and MultiBolt calculations are mainly

due to the different energy grids in the two codes and to the presence of small stochastic

fluctuations in the EEDFs from MCF, that can be reduced by increasing the number of

simulated particles. As regards rate coefficients of inelastic processes, similar results were

obtained by Braglia and co-authors [48] when comparing a conventional MC with a two-

term solver. In particular, they pointed out the inadequacy of the two-term approach for
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calculation of certain rate coefficients, like electronic excitations, in a range of reduced

electric fields from 10 to 100 Td. In their work, using a different set of electron impact

cross sections, the error from a two-term solution was up to 40% for the rate coefficient

of electronic excitation with threshold 7.0 eV at E/N = 40 Td.
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Figure 4: Relative difference (in percent) of total rate coefficients in CO2 of (a)

vibrational excitation CO2(000) → CO2(010), CO2(020) and CO2(110 + 030) and (b)

electron impact dissociation to CO and O calculated from MCF and BOLSIG+ (two-

term solver) with respect to MultiBolt calculations (ten-term solver), at different reduced

electric fields.

3.1.2. High reduced electric fields: E/N = 400− 1000 Td

In this section we study electron transport at high E/N . As already mentioned, for

benchmarking purposes, collision dynamics of elastic and inelastic processes is assumed

to be isotropic in velocity space. This choice is dictated by the fact that none of

the other two Boltzmann solvers include options for anisotropic scattering. However,

anisotropic collision dynamics is particularly important at high E/N , since it can have

an impact on the EVDF shape and on the average quantities calculated from it [71].

Moreover, equal energy sharing between the primary and secondary electron is assumed

in ionization events. In this case, a more correct treatment of energy sharing should

include single differential cross sections [63, 72]. As an alternative, when the energy of
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the incident electron is just above the ionization threshold, a good approximation in MC

models is to distribute randomly the energy remaining, after subtracting the ionization

energy, between the primary and secondary electron with a uniform distribution. Future

investigations will focus on more advanced treatment of collision dynamics at high E/N .

In this case, the numerical parameters used in MCF are: ∆ε = 0.3 eV, εmax = 120 eV,

ncos θ = 50 and np = 104. The same numerical parameters as in previous case studies

are used for BOLSIG+ and MultiBolt. Results for EEDFs calculated at 400, 600 and

1000 Td are shown in Fig. 5.
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Figure 5: Zeroth order Legendre polynomial coefficient calculated with MCF, BOLSIG+

(two-term solver) and MultiBolt (ten-term solver) in CO2 at different values of constant

reduced electric field. From left to right: 400, 600 and 1000 Td.

Large deviations from a two-term solution can be noticed in the EEDF calculations

(Fig. 5). This is mostly due to the presence of electronic excitation and ionization

processes that are dominant for energies above 30 eV. Moreover, at such high energies,

the electron motion is driven by the presence of strong electric fields that sets a

preferential direction in velocity space. In those conditions, the first and second Legendre

polynomial coefficients for energies above 30 eV are even higher than the corresponding

isotropic component, as shown in Fig. 6. The discrepancies between two-term solutions

and the ones obtained with the other methods affect the calculation of flux transport
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coefficients, such as reduced mobility and components of the diffusion tensor (not

shown).
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Figure 6: (a) First order and (b) second order Legendre polynomial coefficients

calculated from MCF, BOLSIG+ (two-term solver) and MultiBolt (ten-term solver)

at different constant reduced electric fields in CO2. From left to right: 400, 600 and

1000 Td. Calculation of f2 are compared with MultiBolt only, since BOLSIG+ solutions

are truncated at the first order.

However, such deviations for distributions calculated with the two-term

approximation do not impact considerably the calculation of chemical rate coefficients

of inelastic processes. An example is shown in Fig. 7 for the same inelastic processes

of excitation to bending mode levels and electron impact dissociation as in the previous

section. It can be noted that BOLSIG+ calculations present relative errors within

5%, whereas MCF results are within 2%, mainly because of effects of the numerical

discretization of the energy domain.

3.2. Finite gas temperature of the background gas

The MCF model described in [54] has been upgraded to consider effects of finite gas

temperature of the background gas on the EVDF. In this section, the focus is on low

values of reduced electric fields, such that the mean electron energy is comparable with
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Figure 7: Relative difference (in percent) of total rate coefficients in CO2 of (a)

vibrational excitation CO2(000) → CO2(010), CO2(020) and CO2(110 + 030) and (b)

electron impact dissociation to CO and O calculated from MCF and BOLSIG+ (two-

term solver) with respect to MultiBolt calculations (ten-term solver), at different reduced

electric fields.

the thermal energy of the background gas. In this context, MCF results are compared

with BOLSIG+, that includes a Boltzmann-Davydov term in the elastic operator. It is

important to notice that in this subsection, the population of vibrational and rotational

levels of CO2 ground state is neglected. In this way, the background gas is treated as

an ideal one, where the gas temperature has only effects in energy exchanges between

neutral molecules and electrons in elastic collisions. Reduced electric fields between 0.5

and 1.5 Td are considered, together with gas temperatures between 300 and 1000 K. The

partial dissociation of the gas which occurs at the highest temperature has also been

neglected. As regards the MCF code, the Test Particle Monte Carlo method described

in [57] has been implemented. The scattering is treated in the centre-of-mass frame

and requires cross sections in the same reference frame. Conversion of cross sections

from the laboratory to the centre-of-mass frame depends on the thermal energy of the

target particles [73]. In this case, however, the difference between cross sections in the

two reference frames is negligible, due to the low electron-to-molecule mass ratio. As

Page 21 of 42 AUTHOR SUBMITTED MANUSCRIPT - PSST-103883.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

described in [57], in case of elastic collisions, the relative velocity vector is randomly

rotated isotropically in velocity space. In case of inelastic collisions, the relative velocity

is updated taking into account the energy loss involved in the process.

MCF calculations are performed with the following numerical parameters: ∆ε =

0.002 eV, εmax = 0.25 eV, ncos θ = 1 and np = 104. Default numerical parameters

are used in the two-term Boltzmann solver BOLSIG+ (precision = 10−10, convergence

= 10−5, number of iterations = 2000 and 100 energy intervals). Since MultiBolt does

not have an option for the description of finite gas temperature effects, it was not used

for benchmarking in this section. An example of EEDFs calculated at Tgas = 0 (cold

gas), 500 and 1000 K is shown in Fig. 8a for a constant E/N of 0.5 Td. As expected,

the finite gas temperature enhances the tail of the EEDF due to the transfer of energy

from neutral target particles to electrons. The first Legendre polynomial coefficients are

shown in Fig. 8b, where it can be noted that the effect of the gas temperature is similar

to the one for f0.

0.00 0.05 0.10 0.15 0.20 0.25
10-6

10-4

10-2

100

102

1000 KEE
D

F 
(e

V
-3

/2
)

Energy (eV)

 BOLSIG+
 MCF

Tgas = 0 K
(cold gas)

(a)

500 K

0.00 0.05 0.10 0.15 0.20 0.25
10-6

10-4

10-2

100

102

| f
1 |

 (e
V

-3
/2
)

Energy (eV)

 BOLSIG+
 MCF

Tgas = 0 K
(cold gas)

(b)

500 K
1000 K

Figure 8: (a) Zeroth and (b) first order Legendre polynomial coefficients calculated with

MCF and BOLSIG+ at 0.5 Td for different gas temperatures in CO2. Calculation at

Tgas = 0 corresponds to frozen background gas (cold gas), whereas results at Tgas = 500

or 1000 K include finite gas temperatures.
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It should be considered that, due to the necessity of sampling velocity components

of the colliding partners, this MCF extension is more computationally expensive. In

fact, while EEDF calculations with a frozen background gas require about 1 minute

only, having a finite Tgas leads to calculations that are about 3 times longer, mainly

because of the generation of additional random numbers for sampling the velocity

components of the molecules. An improvement in MCF computational performances

can be achieved, for example, by employing high performance computing techniques,

such as parallelization or multi-threading.

Effects of finite gas temperature of the background gas can also be appreciated

by comparing rate coefficients of inelastic processes at low E/N . In Fig. 9, total rate

coefficients for the vibrational excitation processes to bending mode levels (CO2(000)

→ CO2(010), CO2(020) and CO2(110 + 030)) are calculated at different Tgas from 300

to 1000 K, in a range of E/N from 0.5 to 1.5 Td and compared with results of MCF

obtained with the cold gas approximation. The relative difference of MCF results with

respect to cold gas calculations at Tgas = 0 K increases at lower values of E/N and

exceeds 80% for Tgas = 1000 K at 0.5 Td.

3.3. Effect of gas kinetics and inclusion of population of excited states

Until now, for numerical benchmarking purposes, the CO2 system has been modelled as

an ideal gas, where the population of excited states has been neglected by assuming that

vibrational states of the ground electronic state are collapsed into the CO2(000) state. In

particular, for the CO2 case, this assumption breaks down already at room temperature,

where the first vibrationally excited levels (e.g. CO2(010)) can be significantly populated

[28]. Here we compare results from the previous section with calculations that include

population of excited states. In this section, electron transport at low E/N is studied,

where the population of the first six low-energy vibrational levels of the CO2 ground

electronic state has been considered. In particular, together with the ground vibrational

state CO2(000), we consider:
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Figure 9: Relative difference (in percent) of MCF total chemical rate coefficients for

vibrational excitations (CO2(000)→ CO2(010), CO2(020) and CO2(110+030)) obtained

at Tgas = 300, 500 and 1000 K, with respect to MCF results obtained under cold gas

assumption, as a function of the reduced electric field.

• The first vibrational level of the asymmetric stretching mode (CO2(001)).

• The first vibrational level of the symmetric stretching mode (CO2(100)).

• The first three effective vibrational levels of the bending mode (i.e. CO2(010),

CO2(020) and CO2(030 + 110) with degeneracy equal to 2, 3 and 6, respectively.

The last one presents Fermi resonance between symmetric stretching and bending

mode levels.

In this way, the CO2 molecule is assumed to be a truncated system composed by

six vibrational levels of the ground electronic state, that can be populated by electron

impact vibrational excitation and de-populated through supereleastic collisions. Cross

sections for superelastic processes are calculated by assuming micro-reversibility, with

the Klein-Rosseland formula [15]. In order to correctly describe the CO2 molecule using

a MC method and the Biagi database and to compare results with different methods, the

set of cross sections requires a specific treatment. In this respect, it is important to notice

that the elastic momentum transfer cross section of the Biagi database takes into account

Page 24 of 42AUTHOR SUBMITTED MANUSCRIPT - PSST-103883.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

the contribution of the ground electronic state, rotational states and vibrational bending

mode in thermal equilibrium at a fixed T0 = 293.15 K. Since we want to populate the

aforementioned vibrational states according to a Boltzmann distribution at a generic

vibrational temperature Tvibr, a change in the elastic momentum transfer cross sections

for Tvibr 6= T0 has to be taken into account. In this work, the following formula is used,

according to the Magboltz source code v11.3 [47]:

(σel (ε))Tvibr =
1− ξbend
αground

[
(σel (ε))T0 − αbendσbend (ε)

]
+ ξbendσbend (ε) , (5)

where (σel (ε))Tvibr , (σel (ε))T0 and σbend (ε) are the cross section of elastic momentum

transfer calculated at Tvibr, the cross section provided in the Biagi database of LXCat [66]

(at T0) and the cross section of elastic momentum transfer of the bending mode (that

is tabulated separately in LXCat [66]), respectively. The term ξbend is the fractional

population of the bending mode levels (i.e. CO2(010), CO2(020) and CO2(030 + 110))

calculated at Tvibr, whereas αbend is the fractional population of the bending mode levels

at T0 and αground is the fractional population of the other vibrational levels of the

ground electronic state (i.e. αground = 1 − αbend). Note that, in case Tvibr = T0, the

calculated elastic momentum transfer cross section is equal to the one reported in the

Biagi database of LXCat (i.e. (σel (ε))Tvibr = (σel (ε))T0). The elastic momentum transfer

cross section from the Biagi database ((σel (ε))T0) is reported in Fig. 10, together with

the one calculated at Tvibr = 1000 K ((σel (ε))Tvibr) and the one of the bending mode

levels (σbend (ε)). In the energy range between 0.1 and 5.0 eV, the cross section obtained

at Tvibr = 1000 K is higher than the corresponding one at T0 = 293.15 K. This is due to

the fact that, at higher vibrational temperatures, the fractional population of bending

mode levels is higher than the one at room temperature, thus the calculated cross section

is closer to the one for bending mode levels. The increase in the elastic momentum

transfer cross section in CO2 with increasing population of vibrational states has been

investigated experimentally by Buckman and co-authors [74] and inconsistencies arising

by neglecting this effect have been noted by Haddad and Elford [75], for the calculations
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of electron drift velocities in CO2 at different gas temperatures.
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Figure 10: Elastic momentum transfer cross sections of CO2 considering the contribution

of the bending mode levels (σbend (ε)), for electron impact with molecules in the ground

electronic state at Tvibr = 1000 K ((σel (ε))Tvibr) and for electron impact with molecules

in the ground electronic state provided in the Biagi database of LXCat ((σel (ε))T0) for

thermal equilibrium at T0 = 293.15 K.

In order to be consistent with the elastic momentum transfer cross section used

in the present work, rotational excitation and de-excitation processes must be taken

into account. At present, the Biagi database of LXCat does not include rotational

cross sections. However, those processes are included in the Magboltz source code v11.3

[47]. Rotational excitation and de-excitation cross sections were calculated considering

electric quadrupole transitions that are characterized by a difference between initial and

final rotational quantum numbers of ∆J = ±2 [76]. Cross sections in [76] are valid

for low energy electrons, since the principal contribution comes from large distances of

the incoming electrons from the molecules. For energies greater than about 6.0 eV, an

artificial Born decay of 1/ε in the cross sections has been introduced, as in the Magboltz

source code [47]. In the present work, 31 rotational states of the CO2 ground state (i.e.

even values of J from 0 to 60) are considered and they are populated according to a

Boltzmann distribution at temperature Trot 6= T0. Using the formulas for cross sections
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for rotational excitations σJ,J+2 (ε) and de-excitations σJ,J−2 (ε), it is possible to subtract

their contribution from the elastic momentum transfer cross section (σel (ε))Tvibr (defined

in Eq. 5) as

(σel (ε))Tvibr, Trot = (σel (ε))Tvibr −
∑
J

[
ξexcJ σJ,J+2 (ε) + ξde−excJ σJ,J−2 (ε)

]
, (6)

where (σel (ε))Tvibr, Trot is the elastic momentum transfer cross section obtained by

considering the contribution of the population of bending mode levels at Tvibr and by

subtracting the contribution of the inelastic rotational cross sections. The terms ξexcJ

and ξde−excJ are the fractional populations at Trot of the rotational states considered in

rotational excitations and de-excitations, respectively. We note that, for the present

conditions, effects of rotational excitations and de-excitations are negligible compared

to vibrational energy losses, in agreement with [77].

In order to investigate the effect of population of energy levels of the CO2 ground

electronic state on EEDF calculations, MCF simulations have been performed. Results

are shown in Fig. 11 for a constant E/N = 0.5 Td. The same numerical parameters as

in the previous subsection were used. In particular, Fig. 11 shows a comparison of the

EEDF obtained under cold gas assumption (in which the gas temperature, rotational

and vibrational temperature are set to zero) with the one obtained by setting higher

temperatures. First of all, as noticed in the previous subsection, by setting Tgas = 500

K (6= T0) and Trot = Tvibr = 0, effects of gas kinetics are included by considering the

energy exchange with the hot target molecules. However, this approach neglects the

contribution of excited states of the ground electronic state. Moreover, we notice that

this approach is inconsistent with the use of the elastic momentum transfer cross section

from the Biagi database, that takes into account ground electronic state, bending mode

and rotational contribution in thermal equilibrium at 293.15 K. In Fig. 11, results of

EEDFs obtained at Tgas = Trot = Tvibr = 300 K and Tgas = Trot = Tvibr = 500 K

are also shown, in which vibrational and rotational states are populated according to a

Boltzmann distribution at Tvibr and Trot, respectively.
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Figure 11: Electron energy distribution functions in CO2 at 0.5 Td considering cold

gas assumption with frozen background and neglecting population of excited states;

hot background of CO2 molecules at Tgas = 500 K neglecting population of excited

states (Trot = Tvibr = 0) and hot background at Tgas = 300 K (500 K) and Boltzmann

population of rotationally and vibrationally excited states at Trot = Tvibr = 300 K (500

K).

As it can be noticed, the EEDFs obtained in these conditions present an higher

tail. This is mostly due to the presence of superelastic vibrational collisions, in

conditions where the electron temperature is comparable with Tvibr. A secondary cause

of differences between calculations at 300 and 500 K is due to the fact that higher

temperatures lead to an increase of the elastic momentum transfer cross section in the

energy range of interest (from Eq.(5) and (6)), thus leading to a higher elastic collision

frequency with respect to the inelastic one.

3.4. Comparison with experimental results

The characteristic energy (i.e. the ratio between transversal diffusion coefficient and

mobility) from BOLSIG+ [23] and MCF, using the Biagi dataset of cross sections

[66] is compared. Results are shown in Fig. 12, together with experimental values

from the Dutton database of LXCat [78] at Tgas = 195 and 300 K. As expected,
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BOLSIG+ and MCF results with a frozen background (cold gas) deviate from the

experimental values for E/N ≤ 0.2 Td, where the mean electron energy becomes

comparable with the thermal energy of the background gas. Moreover, BOLSIG+ results

including a Davydov-Boltzmann correction at 300 K deviate from experimental values

at the same Tgas and E/N < 5 eV, as well. As opposed to BOLSIG+ calculations,

in MCF the elastic momentum transfer cross section is modified using Eq.(5) and

(6), that consider population of the vibrational and rotational states of the ground

electronic state, according to a Boltzmann distribution at Tgas, as explained in the

previous subsection. Moreover, superelastic collisions are taken into account. With this

treatment, experimental values for the characteristic energy are reproduced by MCF

with an error within 3%. With this comparison, the importance of considering an

accurate description of excited states at low E/N , together with a thermal background,

is emphasized. The inclusion of those states has an effect on the EEDF through

superelastic collisions and should be consistent with the choice of the elastic momentum

transfer cross section used in the calculations.

0.01 0.1 1 10 100
10-3

10-2

10-1

100

Tgas = 195 K

 Dutton database (exp.)
 MCF
 BOLSIG+ 
 BOLSIG+ (300 K)

D
T /

 
 (e

V)

E/N (Td)

Tgas = 300 K

cold gas

Figure 12: Measured characteristic energies in CO2 [78] and calculated values from

BOLSIG+ [23] and MCF, considering cold gas approximation or finite gas temperatures.

MCF and BOLSIG+ [23] calculations of reduced mobilities (µN) using Biagi cross

sections set are compared with experimental measurements from LXCat databases

Page 29 of 42 AUTHOR SUBMITTED MANUSCRIPT - PSST-103883.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

[78–82]. Results are shown in Fig.13 for 0.01 < E/N < 100 Td at 300 K. Results

from MCF and BOLSIG+ show an agreement with experimental data within 2%. A

similar agreement, between measurements and calculations of bulk drift velocities, is

found by Vass and co-authors [40], using the IST-Lisbon cross sections set [28] in

Monte Carlo and multi-term solvers. However, it is important to notice that there are

fundamental differences between the Biagi and the IST-Lisbon datasets. In particular,

on the one hand, the Biagi elastic momentum transfer cross section and total cross

section (given by the sum of elastic and inelastic contributions) are in good agreement

with experimental measurements [83,84], within 3%. On the other hand, the IST-Lisbon

elastic momentum transfer cross section is calculated from an effective cross section,

by subtraction of the inelastic contributions (weighted by the fractional population of

each state) [28]. At 300 K, differences are found between the two datasets, leading

to an IST-Lisbon elastic momentum transfer cross section higher than the Biagi one

for energies above 3 eV. Another important difference between the two datasets lies

in the description of the inelastic processes with thresholds above 6 eV. In fact, the

Biagi set includes several cross sections for dipole-allowed and triplet excitations, as

mentioned in Section 3, whereas the IST-Lisbon set includes two different processes

with threshold of 7 and 10.5 eV, as in the Phelps database [85]. Further work is needed

to understand the differences between those cross sections sets and their impact on

calculations of other swarm parameters, such as the bulk longitudinal diffusion coefficient

multiplied by the gas number density DLN , that presents large deviations between

experimental measurements and calculations for E/N greater than 100 Td using the

currently available cross sections sets [40].

In addition, Biagi cross sections are optimized taking into account superelastic collisions

from vibrational and rotational states of the ground electronic state. The importance

of those collisions for accurate calculations of swarm data is shown in Fig.13, where

BOLSIG+ calculations of µN are also presented without superelastic process. In

particular, for 0.01 < E/N < 1 Td, the difference between BOLSIG+ results obtained
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by neglecting contributions of superelastic processes and MCF, that intrinsically includes

them, is up to 7%. A similar effect of the superelastic collisions on the EVDF and on

electron swarm parameters has been highlighted for other polyatomic molecules [86].
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Figure 13: Measured reduced mobilities in CO2 [78–82] and calculated values from MCF

and BOLSIG+ [23] at 300 K.

Electron impact rate coefficients have also been calculated using Biagi cross sections

[66] and compared with recent measurements by Morillo-Candas and co-authors [69].

In [69], dissociation rate coefficients are measured in a pulsed DC glow discharge at

moderate values of E/N (i.e. 45 Td < E/N < 110 Td) and compared with other

measurements by Corvin and Corrigan [87]. Moreover, in the same work, experimental

results are compared with results from BOLSIG+ [22], where EEDFs are obtained from a

solution of the two-term Boltzmann equation using the IST-Lisbon cross sections set [28]

and rate coefficients are calculated from several sets of cross sections from literature.

Morillo-Candas and co-authors [69] recommend the use of Polak and Slovetsky cross

sections [88] for calculations of electron impact dissociation rate coefficients in CO2, in

the E/N range investigated. In this work, EEDFs are calculated using cross sections

of the Biagi database [66], while dissociation rate coefficients are calculated using both

Polak and Slovetsky [88] and Biagi [66] cross sections. These last were not considered
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in [69]. In Fig.14, total dissociation rate coefficients obtained with BOLSIG+ and

MCF at Tgas = 300 K are compared with experimental results of Morillo-Candas and

co-authors [69] and Corvin and Corrigan [87]. In the calculations, it is assumed that

vibrational and rotational states are populated according to a Boltzmann distribution

at Tgas. Since there are uncertainties on the measurements of Corvin and Corrigan

[87] given by the total pressure change and the determination of gaseous dissociation

products in the experiment, we focus on the comparison of our numerical results with

measurements of Morillo-Candas and co-authors [69]. Moreover, for all E/N values,

large discrepancies between calculations and experimental measurements of Corvin and

Carrigan [87] are found. The measurements of [87] are also significantly different

than the ones of Morillo-Candas and co-authors and, in [69], possible causes of this

discrepancy are pointed out. Overall, the agreement between measurements of Morillo-

Candas and calculations using Biagi cross sections is relatively good up to around 60

Td, while, for higher E/N values, results of the calculations are systematically higher

than the same measurements.

MCF results suggest that the main dissociation channel, in this E/N range,

is through triplet excitation with thresholds of 8.89 eV and 11.30 eV. A smaller

contribution is given by dipole-allowed transitions with thresholds between 6.5 − 8.75

eV and 8.9 − 10.15 eV. For E/N < 70 Td, deviations between MCF and BOLSIG+

results exceed 60%, due to the anisotropy of the EVDF. Moreover, it is worth noting that

BOLSIG+ results are obtained with a modified input file of cross sections that takes into

account superelastic collisions between vibrational states and the population fractions

of those excited states and the same modified input file is used in MCF. Instead, if the

file downloaded from LXCat is used in BOLSIG+ without purposely modifying it, larger

discrepancies between MCF and BOLSIG+ are found due to the different treatment of

the excited states population (not shown).

In Fig. 14, calculations using the cross sections of Polak and Slovetsky [88] are

also shown. In those calculations, EEDFs are obtained from MCF and BOLSIG+
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Figure 14: Electron impact dissociation rate coefficients measured [69,87] and calculated

with MCF and BOLSIG+ [22] as a function of reduced electric field.

using only cross sections from the Biagi database, whereas the Polak and Slovetsky

cross section is used for computation of rate coefficients. MCF and BOLSIG+ results

obtained with Polak and Slovetsky cross sections at E/N > 70 Td are relatively closer

to experimental data of Morillo-Candas and co-authors, than the ones calculated with

Biagi cross sections.

Different sources of uncertainties could affect the results. First of all, in calculations

of dissociation rate coefficients with Biagi cross sections, excitation to singlet and

triplets states between 6 and 12 eV is assumed to be fully dissociative. An analysis

of photoabsorption spectra suggests that those excitations are related to fast processes,

like dissociation [68]. However, the dissociation fraction of those states is unknown.

Moreover, excited states in molecules have a decay path which can also occur through

vibrational relaxation and this can lead to a dissociation fraction below 100% [68].

In Fig. 14, MCF and BOLSIG+ calculations with Biagi cross sections, assuming a

dissociation fraction of 50% from states having energies between 6 and 12 eV, is shown.

This dissociation fraction is chosen to approximately match calculations at 300 K and

experimental measurements at E/N > 60 Td. For lower E/N values, discrepancies
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between MCF calculations and measurements of Morillo-Candas and co-authors [69] are

found, while a better agreement is obtained with calculations at higher gas temperatures

of about 700 K and by assuming the same value of dissociation fraction (not shown).

Further investigation is needed in order to accurately estimate the CO2 dissociation

fraction via dipole-allowed and triplet excitations. New calculations of electron impact

cross sections, like the ones in [89], are very much sought, since measurements of those

cross sections usually present large uncertainties.

In addition, it is important to mention that measurements in [69] have been

performed in conditions of gas temperatures between 300 and 700 K [90]. In particular,

results with E/N < 60 Td are obtained at higher current and pressure and thus at

higher gas temperatures [90]. This fact may explain the discrepancies between MCF

calculations with Biagi cross sections at 300 K and 50% dissociation fraction and

measurements in that range of E/N . Indeed, following the results of Fig. 11, rate

coefficients are expected to increase with Tgas. Moreover, as regards gas composition, in

experiments small fractions of dissociation products are formed [69] and those can have

a large impact in EEDF calculations, as shown in [91]. For this reason, and in order

to better estimate a correct value of dissociation fraction, experiments and calculations

performed at different controlled gas temperatures are highly sought after. From the

results of this analysis we conclude that, given the overall good agreement between

measurements and calculations, without the introduction of an additional dissociation

fraction, cross sections of Polak and Slovetsky [88] are preferred for calculations of the

electron impact dissociation rate coefficients, in this E/N range, as pointed out already

in [69].

4. Conclusions

In this work, the MCF method has been benchmarked against two-term and multi-term

solutions of the EBE for calculations of EVDFs in CO2, using the Biagi dataset of cross

sections [66]. MCF results have been obtained by means of a fully native code developed
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by the authors [54]. The study of the CO2 molecule is particularly challenging, due to the

presence of a broad Ramsauer minimum in the elastic momentum transfer cross sections

and evenly distributed energy losses due to vibrational excitations. In this framework,

MCF can potentially be considered as a reference method, faster than conventional MC

approaches, for benchmarking popular Boltzmann solvers that are based on the two-

term approximation, with the caveat that, as we have shown, each method must operate

with its most appropriate optimized set of cross sections.

The accuracy of MCF, with respect to the ten-term Boltzmann solver MultiBolt

[35], has been assessed through calculations of EVDFs and of chemical rate coefficients

for vibrational excitation and dissociation mechanisms, finding an excellent agreement.

As expected, large deviations from results obtained with the two-term solver BOLSIG+

[23] have been found at moderate E/N (between 20 and 80 Td) for calculations of rate

coefficients that are strongly sensitive to the tail of the distribution. This result shows

the importance of the choice of data and methods to describe electron kinetics in plasma

chemistry models that use these coefficients.

Subsequently, the MCF method has been upgraded to include the effect of the finite

gas temperature of the background gas. This makes MCF more reliable for calculations

at low E/N , where the cold gas approximation does not apply and thermal gas effects

have an impact on the calculation of chemical rate coefficients and swarm parameters.

Results of MCF including finite gas temperature have been benchmarked against results

of BOLSIG+ [23], that includes a Davydov-Boltzmann correction in the elastic operator,

showing excellent agreement at low fields.

Furthermore, we have extended the model to include the population of vibrational

and rotational states of the ground electronic state. In this way, CO2 molecules

are modelled as a real gas, instead of having their population collapsed into the

CO2(000) state. The inclusion of the population has an effect not only on superelastic

collisions, but also on the elastic momentum transfer cross sections. It is important

to notice that the detailed description of excited states and superelastic collisions is
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not explicitly presented in the cross sections set that is available in LXCat. However,

their inclusion is fundamental for reproducing experimental transport coefficients at

low E/N with high accuracy. In addition, the Biagi cross sections set has been used for

calculations of electron impact dissociation rate coefficients, showing good agreement

with recent measurements [69], using the Polak and Slovetsky [88] cross sections for

calculations of dissociation rate coefficients. The use of the Biagi cross sections set, that

includes a detailed description of electron energy loss mechanisms, opens up possibilities

for comparison with other cross sections sets. The need for dedicated experiments

performed at different gas temperatures, to assess the influence of temperature and

validate the results and hypotheses of models, has been highlighted.

The model will be extended to simulate electron distribution functions in time-

dependent and space-dependent electric fields and to test anisotropic scattering in

collision dynamics.
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