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Abstract
Fascioliasis has recently been included in the WHO list of Neglected Zoonotic Diseases. Besides being a major veterinary
health problem, fascioliasis has large underdeveloping effects on the human communities affected. Though scarcely considered
in fascioliasis epidemiology, it is well recognized that both native and introduced wildlife species may play a significant role
as reservoirs of the disease. The objectives are to study the morphological characteristics of Fasciola hepatica adults and eggs
in a population of Lepus europaeus, to assess liver fluke prevalence, and to analyze the potential reservoir role of the European
brown hare in northern Patagonia, Argentina, where fascioliasis is endemic. Measures of F. hepatica found in L. europaeus from
northern Patagonia demonstrate that the liver fluke is able to fully develop in wild hares and to shed normal eggs through their
faeces. Egg shedding to the environment is close to the lower limit obtained for pigs, a domestic animal whose epidemiologi-
cal importance in endemic areas has already been highlighted. The former, combined with the high prevalence found (14.28%),
suggest an even more important role in the transmission cycle than previously considered. The results obtained do not only re-
mark the extraordinary plasticity and adaptability of this trematode species to different host species, but also highlight the role
of the European brown hare, and other NIS, as reservoirs capable for parasite spillback to domestic and native cycle, representing
a potentially important, but hitherto neglected, cause of disease emergence.
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Introduction

Fascioliasis, traditionally considered as a veterinary health
problem (Kaplan 2001), has recently been included in the
World Health Organization list of Neglected Zoonotic Dis-
eases (NZDs). This consideration is due to its emergence and
re-emergence worldwide, affecting an estimated 17 million
people (Mas-Coma et al. 2009), in a phenomenon which has
partly been related to climate change (Mas-Coma et al. 2008;

Afshan et al. 2014), and to the long-term pathogenic impact of
this disease (Mas-Coma et al. 2014a). True human endemic
areas have recently been described in which fascioliasis
chronicity and superimposed repetitive infections pose patho-
logical complications, indicating this disease to have large un-
derdeveloping effects on the human communities affected
(Valero et al. 2003, 2006a, 2008).

Fasciolid flukes follow a two-host life cycle, including a
less specific adult stage which develops in many species of

*Corresponding author: pablofcuervo@gmail.com

Brought to you by | New York University Bobst Library Technical Services
Authenticated

Download Date | 6/23/15 4:56 AM



Fasciola hepatica naturally infecting Lepus europaeus 537

herbivorous mammals and even in a few omnivorous ones,
and highly specific larval stages which only develop in given
freshwater snail species of the family Lymnaeidae (Bargues
and Mas-Coma 2005). With regard to the infection of animal
reservoirs, the infectivity of the metacercarial infective stage
from different animal species isolates has experimentally
shown to be similar (Valero and Mas-Coma 2000; Valero et al.
2001a, 2011). Hence, the importance of ascertaining which
animal species, including both domestic and sylvatic, develop
a reservoir role in an endemic area.

Argentina presents a very widely distributed veterinary
problem of fascioliasis in livestock (Olaechea 2007). Addi-
tionally, a recent analysis highlights that human fascioliasis
in the country may have been overlooked in the past and its
real epidemiological situation may currently be underesti-
mated (Mera y Sierra et al. 2011). Surprisingly, geographi-
cal distribution of human infection does not fit that of
fascioliasis in livestock, suggesting other transmission and
epidemiological factors to be involved (Mera y Sierra et al.
2011).

Though scarcely considered, it is known that wildlife
species may play a significant role as reservoirs of fasciolia-
sis (Mas-Coma et al. 1988; Daszak et al. 2000; Bengis et al.
2004; Kruse et al. 2004; Polley 2005; Gayo et al. 2011; Mezo
et al. 2013). Introduced non-indigenous species (NIS) are
widely recognized as a source of disease (Daszak et al. 2000;
Kelly et al. 2009). The importance and consequences of the in-
troduction of NIS in fascioliasis has been the subject of se-
veral analyses, concerning both lymnaeids (Mas-Coma et al.
2003, 2005, 2009; Bargues and Mas-Coma 2005) and animal
reservoirs (Mas-Coma et al. 2009).

Introduced into South America at the end of 19th cen-
tury, the European brown hare (Lepus europaeus) represents
one of the most widespread species of mammals (Bonino
et al. 2010). The species has invaded almost all the exten-
sion of Argentina, Chile and Uruguay, and southern regions
of Peru, Bolivia, Paraguay, and Brazil (Bonino et al. 2010).
Despite old reports of F. hepatica in lagomorphs in general
(Arru et al. 1967) and especifically infecting the hare in its
original home range (Tropilo 1964; Kutzer and Frey 1976;
Nickel and Gottwald 1979; Shimalov 2001; Ziege et al.
2009; Walker et al. 2011), the latter has been rarely consid-
ered in the epidemiology of the disease, particularly with
regard to South American introduced populations. Addi-
tionally, phenotypic descriptions of adults and eggs of F. he-
patica infecting natural populations of L. europaeus are
lacking in the Neotropical region and even scarce world-
wide.

The aims of the present article are to study the morpho-
logical characteristics of parasite adults and eggs in a popula-
tion of L. europaeus in the northernmost part of Patagonia
region (Argentina), to assess liver fluke prevalence and to an-
alyze the potential reservoir role of this wild lagomorph in an
area where fascioliasis is known to occur in livestock (Sidoti
et al. 2009).

Materials and Methods

Host materials

Specimens of the European brown hare were obtained from
the outskirts of Malargüe city (Mendoza province, Argentina),
within the northernmost unit (Payunia district) of the Central
Patagonia biogeographic province (Morrone 2006). Animals
were captured by local hunters between August and Septem-
ber 2010, in an area of a mean altitude around 1500 m.a.s.l. A
total of 35 refrigerated intestinal tracts and 27 livers were re-
ceived for parasitological examination.

Parasitological techniques

Refrigerated intestinal tracts were immediately inspected for
helminths, while faeces and livers were preserved in formalde-
hyde 4% for later examination. The content from the gas-

Fig. 1. Standardised measurements in gravid adults of Fasci-
ola hepatica
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trointestinal tracts from each hare were thoroughly examined
following standard methods (Egerton et al. 1979).

Previously preserved faecal samples were analyzed by
means of two methods: Sheather’s sucrose flotation technique
(MacPherson and McQueen 1993) and Lumbreras’ rapid sed-
imentation technique (Lumbreras et al. 1962). Sediment ob-
tained from Lumbrera’s technique was subsequently passed
through a 140 µm sieve. Both techniques were performed with
three grams of material. Slides from Sheather’s technique and
filtered sediment from Lumbrera’s technique were micro-
scopically examined. Faecal counts (eggs per gram = epg;
oocysts per gram = opg) were determined in every sample.

Liver fluke adults were recovered from preserved livers,
while eggs were concentrated by means of sedimentation and
filtration from the remaining faecal material previously found
‘positive’. Adult worms were stained with Grenacher’s borax
carmine and mounted in Canada balsam between slide and
coverglass but without coverglass pressure (Valero et al. 2005,
2012).

Measurement techniques and data analysis

Egg characteristics studied were length (EL) and width (EW)
in µm. The product of these 2 dimensions was used as a meas-
ure of egg size (EL × EW = ES µm2), and the ratio as a meas-
ure of shape (EL/EW = ER) (Poulin 1997; Abrous et al. 1998;
Valero et al. 1998, 2001a, 2002). For egg classification, egg

size was considered according to recent updates on this char-
acteristic (Valero et al. 2009; Mas-Coma et al. 2014b), and by
taking into account the influence of the host species (Valero
et al. 1998, 2001a, 2002),

For adult fasciolids, the following standardized measure-
ments were taken (Valero et al. 2005; Periago et al. 2006) 
(Fig. 1): (i) lineal biometric characters (mm): body length
(BL), maximum body width (BW), body width at ovary level
(BWOv), body perimeter (BP), body roundness (BR), cone
length (CL), cone width (CW), maximum diameter of oral
sucker (OS max), minimum diameter of oral sucker (OS min),
maximum diameter of ventral sucker (VS max), minimum di-
ameter of ventral sucker (VS min), distance between the an-
terior end of the body and ventral sucker (A–VS), distance
between the oral sucker and ventral sucker (OS–VS), distance
between the oral sucker and the union of the vitelline glands
(VS–Vit), distance between the union of the vitelline glands
and the posterior end of the body (Vit–P), distance between
the ventral sucker and the posterior end of the body (VS–P),
pharynx length (PhL), pharynx width (PhW), testicular space
(taking both testes together) length (TL), testicular space
width (TW), testicular space perimeter (TP); (ii) areas (mm2):
body area (BA), oral sucker area (OSA), ventral sucker area
(VSA), pharynx area (PhA), testicular space area (taking both
testes together, TA); (iii) ratios: body length over body width
(BL/BW), body width at ovary level over cone width
(BWOv/CW), oral sucker area over ventral sucker area

Table II. Measurements taken from 280 eggs of Fasciola hepatica, recovered from faeces of European brown hare (Lepus europaeus). All
values are shown as range, with the mean and standard deviation (SD) in parentheses. EL, egg length (µm); EW, egg width (µm); EA, egg
area (µm2), ER, egg ratio; n.i., natural infection; e.i., experimental infection. Data from rodents and other domestic species by a) Valero et al.
(2002), and b) Valero et al. (2001a)

Host Geographical location EL EW EA ER

Brown Hare (Lepus europaeus), n.i. Northern Patagonia,
Argentina

90.5–143.7
(120.0 ± 8.9)

56.6–86.2
(68.9 ± 4.9)

6142.4–11408.7
(8275.1 ± 919.3)

1.3–2.3
(1.7 ± 0.2)

Mouse (Mus musculus), n.i.a Corsica island,
Mediterranean Sea

117–122
(119 ± 2)

60–83
(74 ± 7)

7158–9887
(8836 ± 809)

–

Black rat (Rattus rattus), n.i.a Corsica island,
Mediterranean Sea

122–148
(133 ± 8)

60–74
(67 ± 3)

7148–10344
(9011 ± 685)

–

Cattle (Bos Taurus), n.i.a Corsica island,
Mediterranean Sea

125–149
(136 ± 9)

68–83
(74 ± 6)

9128–11300
(10114 ± 801)

–

Cattle (Bos Taurus), n.i.b Northern Bolivian Altiplano 105.3–155.9
(132.0 ± 10.5)

61.7–82.5
(71.1 ± 4.4)

5286.5–9676.8
(7170.2 ± 802.5)

1.6–2.3
(1.9 ± 0.2)

Sheep (Ovis aries), n.i.b Northern Bolivian Altiplano 114.8–151.2
(130.8 ± 7.1)

65.5–81.4
(72.6 ± 3.9)

5998.2–8608.5
(7238.0 ± 532.8)

1.5–2.2
(1.8 ± 0.1)

Pig (Sus scrofa domestica), n.i.b Northern Bolivian Altiplano 73.8–148.6
(123.8 ± 11.3)

58.1–82.5
(71.8 ± 4.4)

3988.7–8626.9
(6836.0 ± 820.4)

1.1–2.1
(1.7 ± 0.2)

Donkey (Equus asinus), n.i.b Northern Bolivian Altiplano 96.4–140.8
(125.4 ± 8.3)

63.3–84.7
(75.0 ± 3.7)

5562.6–8686.2
(7177.4 ± 646.1)

1.3–2.0
(1.7 ± 0.1)

Wistar rat (Rattus norvegicus), e.i.a Corsica island,
Mediterranean Sea

122–148
(134 ± 6)

63–80
(70 ± 4)

7681–11841
9376 ± 866)

–

Wistar rat (Rattus norvegicus), e.i.b Northern Bolivian Altiplano 98.1–144.2
(124.6 ± 7.8)

56.9–80.8
(67.6 ± 3.4)

4836.2–7982.3
(6380.1 ± 510.8)

1.4–2.2
(1.9 ± 0.2)
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(OSA/VSA), and body length over the distance between the
ventral sucker and the posterior end of the body (BL/VS–P).

Morphometric measurements used for F. hepatica adults
follow a logistic growth model with respect to time (Valero
et al. 2001a,b, 2005). This implies that the morphometric de-
velopment of the fasciolid adult is not limited but ‘damped’
and does not exceed certain characteristic maximum (Valero
et al. 1998, 2006b). Since the morphometric maximum val-
ues are characteristic for each population, they are considered
the comparative base of this study (Table I).

Results

Five faecal samples were detected positive to Fasciola hepat-
ica (14.28%, 2.7–25.8% CI 0.95), while 33 showed Eimeria
sp. oocysts (94.28%, 86.61–100% CI 0.95). No nematode and
cestode eggs or adults were observed. Faecal counts showed
between 1 and 3 epg for liver fluke (mean 2.08 epg, ± 1.25),
and 91.73 mean opg (± 155.84) for Eimeria sp.

Twenty-two liver fluke adults were recovered from a sin-
gle liver, but only six of them could be measured (Table I),
while a total of 280 eggs were recovered from faeces and
measured (Table II).

Discussion

Each trematode species has its own adult and egg phenotype,
generally within a specific range (Valero et al. 2009). How-
ever, small host body mass offers limited microhabitat (e.g.
liver) and places a physical constraint upon the trematode
body size and number of flukes that can fit in (Poulin 1997;
Valero et al. 2001a, 2005); while it has been associated with
diminished egg size (Valero et al. 2002). Consequently, the
final host species decisively influences the size of adults and
eggs of F. hepatica (Valero et al. 2001a,b, 2005, 2009).

Measures of F. hepatica found in L. europaeus from
Malargüe department proved to be among the smaller de-
scribed in adults and eggs recovered from naturally and ex-
perimentally infected murid rodents, lagomorphs and domestic
species (see Tables I and II) (Abrous et al. 1998; Valero et al.
1998, 2001a, 2002). With regard to adult liver flukes, it shall
be considered that samples were preserved in formaldehyde
4% during, at least, two months, which might have slightly
decreased measures. Size of the fasciolids from the European
brown hare appears similar to fasciolids of 50 days of age ex-
perimentally obtained in the Black rat (Valero et al. 1998)
(Table I). However, the size of F. hepatica eggs found in fae-
cal samples of the hares fully overlap not only with those of
natural and experimental infections in murid rodents, but also
with those of natural infections in cattle and other domestic
animals (Valero et al. 2001a, 2002). All in all, the data ob-
tained indicates that the liver fluke is able to fully develop in
wild hares and to shed normal eggs through their faeces.

Additionally, the heavy parasite burden observed (22 liver
flukes in a single liver) and the small adult size described
strongly suggest an effect of crowding, a phenomenon re-
flected in a decreased adult development when the number of
flukes is high (Valero et al. 2006b). Meanwhile, due to expe-
rimental evidence of a direct relation between uterus size and
the numbers of eggs shed per gram of faeces (Valero et al.
2001b, 2011), the reduced uterus development as consequence
of smaller adults (Poulin 1997) may explain the low epg ob-
served.

Although F. hepatica infection in wild L. europaeus has
been detected before in its original European range, to the best
of our knowledge only one report deals with that aspect in
South America (Kleinman et al. 2004). Unfortunately, the in-
formation provided is only restricted to the local prevalence
found. The high prevalence found in our study (14.28%, 2.7–
25.8% CI 0.95) strongly contrasts with the very low one reg-
istered (<1‰) in the aforementioned study (Kleiman et al.
2004). Our results suggest an even more important role in the
transmission cycle than previously considered, at least in
given areas.

Considering a daily defaecation rate of 410 faecal pellets
per hare (Novaro et al. 1992), a pellet weight between 1 and
1.4 gr (Kleiman et al. 2004), and the epg here obtained, each
hare could shed to the environment a daily rate of 410–1,722
eggs of F. hepatica. This result is close to the lower limit ob-
tained for pigs (2,000–195,000 eggs/individual/day), a do-
mestic animal whose epidemiological importance in endemic
areas has already been highlighted (Mas-Coma et al. 1997,
2005).

Parasites tend to have threshold levels of host populations
size below which they are unable to persist (Tompkins and
Poulin 2006). The population dynamics of the European brown
hare, as a competent host for liver fluke (i.e. hosts in which the
parasites can develop normally), may allow parasite spillback
by amplifying the total number of infective stages and increas-
ing the infection burdens in populations of other susceptible
hosts (native or domestic) (Kelly et al. 2009; Poulin et al. 2011).
This situation set the stage for the European brown hare, a NIS,
to alter local parasite dynamics in ways that could lead to dis-
ease emergence and an outbreak (Rachowicz et al. 2005; Thielt-
ges et al. 2009; Poulin et al. 2011).

The results obtained do not only remark the extraordinary
plasticity and adaptability of this trematode species to differ-
ent host species, but also highlight the role of the European
brown hare, and other NIS, as reservoirs capable for parasite
spillback to domestic and native cycle, representing a poten-
tially important, but hitherto neglected, cause of disease emer-
gence. The present finding of F. hepatica in hares indicates
that the geography of the populations of this lagomorph will
be in need to be considered when analysing the distribution
and extent of fascioliasis infection risk areas (Fuentes et al.
1999, 2001; Afshan et al. 2014) in Argentina and also in other
South American endemic countries where the European hare
has been introduced.
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