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SYMBOLIC DYNAMICS IN A BINARY ASTEROID SYSTEM

SARA DI RUZZA, JÉRÔME DAQUIN, AND GABRIELLA PINZARI

Abstract. We highlight the existence of a topological horseshoe arising from a a–priori stable model

of the binary asteroid dynamics. The inspection is numerical and uses correctly aligned windows, as

described in a recent paper by A. Gierzkiewicz and P. Zgliczyński, combined with a recent analysis
of an associated secular problem.
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Highlights

‚ The secular motions of binary asteroid system interacting with a planet is analysed.
‚ The perihelia of the ellipses of the asteroids afford stable unperturbed motions.
‚ A planet orbiting outside and coming close to the asteroids has a perturbing effect.
‚ The flow is reduced to a discrete map. Its phase–space is depicted.
‚ A topological horseshoe is constructed providing the existence of symbolic dynamics.
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1. Purpose of the paper

This paper aims to highlight chaos in the secular motions of a binary asteroid system interacting with
a planet whose orbit is external to the orbits of the asteroids. These chaotic motions turn to bifurcate
from an a–priori stable configuration, in the sense of [1]. We shall not provide rigorous proofs, besides
the heuristic arguments that we are going to present in this introduction. In fact, our study will be
purely numerical. Moreover, we shall not implement any algorithm to control machine errors. We
are however convinced that our computations are correct thanks to a–posteriori checks that we shall

This research is funded by the ERC project 677793 StableChaoticPlanetM.
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2 SARA DI RUZZA, JÉRÔME DAQUIN, AND GABRIELLA PINZARI

describe in the course of the paper.
Let us describe the physical setting. Three point masses constrained on a plane undergo Newtonian
attraction. Two of them (the asteroids) have comparable (in fact, equal) mass and, approximately,
orbit their common barycentre. The orbit of a much more massive body (the planet) keeps external
to the couple, for a sufficiently long time. We do not assume1 any prescribed trajectory for any of the
bodies, but just Newton law as a mutual interaction. We fix a reference frame centred with one of the
asteroids and we look at the motions of the other one and the planet. As no Newtonian interaction
can be regarded as dominant – as, for example, in the cases investigated in [3–7] and [8, 9] – in order to
simplify the analysis, we look at a certain secular system, obtained, roughly, averaging out the proper
time of the reference asteroid. This means that we are assuming that the time scale of the movements
of the planet is much longer. Beware that our secular problem has nothing to do with the one usually
considered in the literature, where the average is performed with respect to two proper times (e.g.,
[10]). Let us look, for a moment, to the case where the planet is constrained on a circular trajectory.
In such case, the only observables are the eccentricity and the pericentre of the instantaneous ellipse
of the asteroid. Quantitatively, this system may be described by only two conjugate Hamiltonian
coordinates: the angular momentum G (related to the eccentricity) and the pericentre coordinate g of
the asteroidal ellipse. There is a limiting situation, which roughly corresponds to the planet being at
infinite distance, where, exploiting results from [11–13], the phase portrait of the system in the plane
pg,Gq reveals only librational periodic motions. Physically, such motions correspond to the perihelion
direction of the asteroidal ellipse affording small oscillations about one equilibrium position, with the
ellipse highly eccentric and periodically squeezing to a segment. The movements are accompanied by
a change of sense of motion every half–period. The purpose of this paper is to highlight the onset of
chaos in the full secular problem, when the planet is far and moves almost circularly.
The Hamiltonian governing the motions of three point masses undergoing Newtonian attraction is, as
well known,

H “
|y0|

2

2m0
`
|y1|

2

2µm0
`
|y2|

2

2κm0
´

µm2
0

|x0 ´ x1|
´

κm2
0

|x0 ´ x2|
´

µκm2
0

|x1 ´ x2|
.(1.1)

Here, x0, x1, x2 and y0, y1, y2 are, respectively, positions and impulses of the three particles relatively
to a prefixed orthonormal frame pi, j, kq Ă R3; m0, m1 “ µm0, m2 “ κm0, with yi “ mi 9xi, are
their respective gravitational masses; | ¨ | denotes the Euclidean distance and the gravity constant
has been taken equal to one, by a proper choice of the unit system. In the sequel, in accordance to
our problem, we shall take xi, yi P R2 ˆ t0u » R2 and µ “ 1 ! κ, so that x0, x1 correspond to the
position coordinates of the asteroids; x2 is the planet. The Hamiltonian H is translation invariant, so
we rapidly switch to a translation–free Hamiltonian by applying the well known Jacobi reduction. We
recall that this reduction consists of using, as position coordinates, the centre of mass r0 of the system
(which moves linearly in time); the relative distance x of two of the three particles; the distance x1 of
the third particle with respect to the centre of mass of the former two. Namely,

r0 “ px0 ` µx1 ` κx2qp1` µ` κq
´1 , x “ x1 ´ x0 , x

1 “ x2 ´ px0 ` µx1qp1` µq
´1 .(1.2)

Note that, under the choice of the masses specified above, we are choosing the asteroidal coordinate
x0 as the “starting point” of the reduction. This reverses a bit the usual practice, as x0 is most often
chosen as the coordinate of the most massive body; see Figure 1. At this point, the procedure is
classical: the new impulses pp0, y, y1) are uniquely defined by the constraint of symplecticity, with
p0 (“total linear momentum”) being proportional to the velocity of the barycentre. Choosing (as it
is possible to do) a reference frame centred at, and moving with, r0, so to have r0 ” 0 ” p0, after a
suitable rescaling, one obtains (see Appendix A)

H “
1

2m0
|y|

2
`

σ

2m0
|y1|

2
´
m2

0

|x|
´

m2
0σ

|x1 ` β̄x|
´
β̄

β

m2
0σ

|x1 ´ βx|
,(1.3)

1See, e.g., [2] for a study based on a restricted model.
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Figure 1. Schematic representation of the model we are dealing with. The model is
composed by three bodies P0, P1, P2, where the first two have equal masses m0 and
the third body has the largest mass κm0, κ ą 1. The point b1 is the barycentre of
P0 and P1, whilst b2 is the barycentre of all the three points (close but different from
P2).

with

β “
κ2p1` µq

µ2p1` µ` κq
, β̄ “

κ2p1` µq

µp1` µ` κq
, σ “

κ3p1` µq
2

µ2p1` µ` κq
.(1.4)

The choice κ " µ “ 1 gives β “ β̄ " 1 and simplifies H to

H “
|y|

2

2m0
´
m2

0

|x|
`
σ|y1|

2

2m0
´

m2
0σ

|x1 ` βx|
´

m2
0σ

|x1 ´ βx|
.(1.5)

From now on, we regard β as mass parameter, with β „ κ and σ „ β2. By choosing a region of the
phase–space where

|x1| ą |βx|,(1.6)

we ensure the denominators of the two last terms in (1.5) to be different from zero. The Hamiltonian
(1.5) with x, x1, y, y1 P R2, has 4–degrees–of–freedom (DoF, from now on), but is SO(2)–invariant. We
choose a system of canonical coordinates which reduces this symmetry and hence lowers the number
of DoF to 3. If k “ iˆ j is normal to the plane of the orbits, we denote as

C “ xˆ y ¨ k ` x1 ˆ y1 ¨ k

the total angular momentum, which is a constant of the motion. Then we take a 3–DoF system of
coordinates, which we name pΛ, G,R, `, g, rq P R3ˆT2ˆR, where pΛ, G, `, gq are “Delaunay coordinates
for the asteroid, relatively to x1”, while pR, rq are “radial coordinates for the planet”. More precisely,
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they are defined as
$

’

’

&

’

’

%

Λ “
a

m3
0a

G “ xˆ y ¨ k
` “ 2π S

Stot
g “ αx1,P

,

#

R “ y1 ¨ x
1

|x1|

r “ |x1|
(1.7)

where, considering the instantaneous ellipse generated by the first two terms in the Hamiltonian (1.5),
a is the semi–major axis (see again Figure 1), S and Stot are the area of the ellipse spanned from the
perihelion P and the total area and αx1,P is the angle between the direction of x1 and P relatively to
the positive direction established by xˆ y. With these notations, ` represents the mean anomaly, G
is the projection of the angular momentum of the asteroid on the direction of the unit vector k and
g is the anomaly of the perihelion P with respect to the direction of x1. Using the coordinates (1.7),
condition (1.6) becomes

ε ă
1

2
, ε :“

βa

r
(1.8)

as a body moving on an ellipse does not go further than twice the semi–axis from the focus of the
ellipse. The canonical character of the coordinates (1.7) has been discussed, in a more general setting,
in [11]. In terms of the coordinates (1.7), the Hamiltonian (1.5) reads

H “ ´
m5

0

2Λ2
`

σ

2m0

´

R2 `
pG´ Cq2

r2

¯

´
σm2

0
a

r2 ` 2βarp` β2a2%2

´
σm2

0
a

r2 ´ 2βarp` β2a2%2
,(1.9)

where, for short, we have let

% “ %pΛ, G, `q “ 1´ e cos ξpλ,G, `q , p “ ppΛ, G, `, gq “ pcos ξ ´ eq cos g ´
G

Λ
sin ξ sin g.

Here,

e “ epΛ, Gq “

c

1´
G2

Λ2

is the eccentricity, and ξ “ ξpΛ, G, `q denotes the eccentric anomaly, defined as the solution of Kepler’s
equation

ξ ´ epΛ, Gq sin ξ “ ` .

The next step is to switch to the 2–DoF `–averaged (hereafter, secular) Hamiltonian, which we write
as

H̄pG,R, g, rq “
1

2π

ż

T
H d`

“ ´
m5

0

2Λ2
` σKpR, r,Gq ` σUpG, g, rq ,(1.10)

with

KpR, r,Gq :“
R2

2m0
`
pG´ Cq2

2m0r2
´

2m2
0

r

UpG, g, rq :“ U`pG, g, rq ` U´pG, g, rq `
2m2

0

r
(1.11)

where

U˘pG, g, rq :“ ´
m2

0

2π

ż 2π

0

d`
a

r2 ˘ 2βarp` β2a2%2
.(1.12)
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In (1.10) we have omitted to write Λ and C among the arguments of H̄, as they now play the rôle of
parameters. Observe that the function U is π–periodic in g, as changing g with g ` π corresponds to
swap U` and U´, as one readily sees from (1.9)–(1.12).
We do not provide rigorous bounds ensuring that the secular problem may be regarded as a good
model for the full problem. Heuristically, we expect that this is true as soon as (1.8) is strengthened
requiring, also,

r " β3{2a.(1.13)

Indeed, extracting r from the denominators of the two latter functions in (1.9) and expanding the

resulting functions in powers of βa
r , one sees that the lowest order terms depending on ` have size

m2
0σβa
r2 „ m2

0
β3a
r2 (recall that σ „ β2). So, such terms are negligible compared to the size

m2
0

a of the
Keplerian term, provided that (1.13) is verified.

Neglecting the constant term ´
m5

0

2Λ2 and, after a further change of time, the common factor σ in the
remaining terms, the secular Hamiltonian (1.10) reduces to

ĤpG,R, g, rq “ KpR, r,Gq ` UpG, g, rq .(1.14)

We now specify the range of parameters C, Λ and β and the region of the phase space for the
coordinates pG,R, g, rq that we consider in this paper. In particular, we look for values of parameters
and coordinates where the Hamiltonian (1.14) is weakly coupled, and describe the motions we expect
to find in such region. As above, our discussion will be extremely informal.
First of all, we take Λ and C verifying

Λ ! C .(1.15)

This condition implies that also |G| ! C (as |G| ă Λ) and hence K affords the natural splitting
K “ K0 `K1, where

K0 “
R2

2m0
`

C2

2m0r2
´

2m2
0

r
, K1 “

GpG´ 2Cq

2m0r2
.

We consider a region of phase–space where r and R take values

r „ r0 “
C2

2m3
0

, R „ 0 .(1.16)

These are the values where K0 attains its minimum, and correspond to circular motions of the planet,
with r0 being the radius of the circle. In the region of phase space defined by (1.16), the relative sizes
of K1 and U to K0 are

}K1} ă c1
Λ

C
}K0} , }U} ă c2 ε

2}K0} ,(1.17)

where ci are independent of m0, β, Λ and C. Even though (by (1.15) and (1.13)) K1 and U are small
compared to K0, however, they cannot be neglected, as their sum governs the slow motions of the
coordinates G and g, which do not appear in K0. Remark that K1 and U are coupled with K0, since
they depend on r. It is however reasonable to expect that, as long as the minimum of K0 cages r to be
close to the value r0, the coupling is weak and the dynamics of G and g is, at a first approximation,
governed by the 1 DoF Hamiltonian

FpG, gq :“ pK1 ` Uq|r“r0 .(1.18)

To understand the global phase portrait of F in the plane pg,Gq, we need to recall some results
from [13]. We go back to the functions U˘ in (1.12), which enter in the definition of U . In [13, Section
3], it is proved that, under the assumption (1.8), the following identity holds

U˘pG, g, rq “ ´
m2

0

2πr

ż 2π

0

p1´ cos ξqdξ
a

1¯ εp1´ cos ξqt˘ ` ε2p1´ cos ξq2
(1.19)
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Figure 2. Left: the phase portrait of t`p¨, ¨, εq in the plane pg,G{Λq, for 0 ă ε ă 1
2 .

Right: the phase portrait of F in the plane pg,G{Λq, with m0, C, Λ and β as in
(1.20).

with ε as in (1.8) and

t˘pG, g, εq :“

c

1´
G2

Λ2
cos g ˘ ε

G2

Λ2
.

The equality (1.19) has two main consequences. The former is that, even though the transformation
(1.7) looses its meaning when G “ 0, however, U˘ keep their regularity, provided that (1.8) holds.
Indeed, the functions t˘ are regular at G “ 0 and, being bounded below by ´1 and above by 1,
the denominator of the function under the integral never vanishes, under (1.8), as it is immediate
to verify. Secondly, the phase portrait of the functions U`p¨, ¨, rq, U´p¨, ¨, rq coincides, a part for a
rescaling, with the one of t`p¨, ¨, εq, t´p¨, ¨, εq, respectively. In particular, U`p¨, ¨, rq and U´p¨, ¨, rq have
elliptic equilibria at pG, gq “ p0, 0q and pG, gq “ p0, πq, because this is true for t˘, as it is immediate
to check. The phase portrait of t`p¨, ¨, εq for ε ă 1

2 is shown in Figure 2 (left); the one of t´p¨, ¨, εq is
specular, interchanging the equilibria. We now merge these informations, in order to build the phase
portrait of the function F in (1.18). By the Implicit Function Theorem, one can argue that, for an
open set of values of the parameters, due to the linear term in G in K1, the equilibria of U` and U´
are shifted along the G–axis, but are not destroyed. Quantifying this shift is not easy, as U has an
involved dependence on t`, t´. Based on the ε–expansion of U , with

m0 “ 1 , C “ 75 , Λ “
?
a “ 3 , β “ 40(1.20)

(which comply with (1.8), (1.13), (1.15)) we obtain the phase portrait of F as in Figure 2 (right). We
observe that, at contrast with the figure at left–hand side, where the motions are purely of elliptic
kind, the phase portrait at right–hand side also includes rotational motions. The linear term of K1

is responsible of this fact, breaking the symmetry G Ñ ´G. We underline at this respect that the
present framework is in a sense complementary to the one studied in [13], where the phase portrait of
F has, in fact, only elliptic motions: in that case, the linear term of K1 does not exist, as C is fixed
to 0. Remark also that the vanishing of C in [13] affects condition (1.15) (which is not satisfied) and
the motions generated by K0 (which are collisional, rather than circular).
The purpose of this paper is to show that, if the parameters are chosen about (1.20) and the energy
is fixed to the level of a suitable initial datum pG‹, R‹, g‹, r‹q satisfying (1.16) (see Appendix B.1 for
the exact values), then, in the system (1.14) a topological horseshoe wakes up in the plane pg,G{Λq.
The analysis will be purely numerical, based on techniques developed in [14], [15]. More details on
the methodological strategy are given along the following sections.
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2. Poincaré mapping

From now on, we neglect to write the “hat” in (1.14). Moreover, for the purposes of the computation,
we replace the function U with a finite sum

Uk “
k
ÿ

ν“1

qνpG, g, rq
´

β
a

r

¯ν

(2.1)

where qνpG, g, rq are the Taylor coefficients in the expansion of U with ν “ 1, . . ., k. Using the parity
of U as a function of r, these coefficients have the form

qνpG, g, rq “

$

’

’

&

’

’

%

m2
0

r

ν{2
ÿ

p“0

q̃ppGq cosp2p gq if ν is even

0 otherwise .

In our numerical implementation, we use the truncation in (2.1) with k “ kmax “ 10, so as to balance
accuracy and number of produced terms. We still denote as H the resulting Hamiltonian:

HpG,R, g, rq “ KpG,R, rq ` UkpG, g, rq

“
1

2m0

´

R2 `
pG´ Cq2

r2

¯

´
2m2

0

r
`

k
ÿ

ν“1

qνpG, g, rq
´

β
a

r

¯ν

.
(2.2)

The study of the secular 2–DoF Hamiltonian in the continuous time t can be reduced to the study of a
discrete mapping through the introduction of ad–hoc Poincaré’s section [16]. The advantage consists
in reducing further the dimensionality of the phase–space, and, in the case of n “ 2, to sharpen the
visualisation of the dynamical system. In fact, for a 2–DoF system, the phase–space has dimension
4 and, due to the conservation of the energy (the Hamiltonian H itself), orbits evolve on a three–
dimensional manifold M . By choosing an appropriate surface Σ transverse to the flow, one can look
at the intersections of the orbits on the intersection of M X Σ, i.e., a two–dimensional surface. The
surface Σ chosen is a plan passing through a given point pG‹, g‹, r‹q and normal to the associated
orbit, i.e., to the velocity vector pv‹G, v

‹
g , v

‹
rq; it is defined by

Σ “
 

pG, g, rq : v‹GpG´G‹q ` v
‹
gpg ´ g‹q ` v

‹
rpr ´ r‹q “ 0

(

.

Let us now formally introduce the Poincaré map. We start by defining two operators l and π consisting
in “lifting” the initial two–dimensional seed z “ pG, gq to the four–dimensional space pG,R, g, rq and
“projecting” it back to plan after the action of the flow–map ΦtH during the first return time τ . The
lift operator reconstructs the four–dimensional state vector from a seed on DˆT{2, where the domain
D of the variable G is a compact subset of the form r´Λ,Λs. For a suitable pA, Aq Ă R2 ˆ R2, its
definition reads

l : D ˆ T{2 Ą A Ñ D ˆ T{2ˆA

z ÞÑ z̃ “ lpzq,

where z̃ “ pG, g,R, rq satisfies the two following conditions:

(1) Planarity condition. The triplet pG, g, rq belongs to the plane Σ, i.e., r solves the algebraic
condition v‹GpG´G‹q ` v

‹
gpg ´ g‹q ` v

‹
rpr ´ r‹q “ 0.

(2) Energetic condition. The component R solves the energetic condition HpG‹, g‹, R‹, r‹q “ h‹.
The Hamiltonian is separable in R, so this condition amounts to solve a quadratic equation.
If R2 ě 0, then we choose the root associated to the “positive” branch `

?
R2. If R2 ă 0,

then we are led to the notion of inadmissible seed. The set of admissible seeds, noted by A,
for the chosen section Σ is portrayed in Figure 3.

The projector π is the projection onto the first two components of the vector,

π : D ˆ T{2ˆA Ñ D ˆ T{2

z̃ “ pz1, z2, z3, z4q ÞÑ πpzq “ pz1, z2q .
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The Poincaré mapping is therefore defined and constructed as

P : D ˆ T{2 Ñ D ˆ T{2

z ÞÑ z1 “ P pzq “
`

π ˝ Φ
τpzq
H ˝ l

˘

pzq .

The mapping is nothing else than a “snapshots” of the whole flow at specific return time τ . It should
be noted that the successive (first) return time is in general function of the current seed (initial
condition or current state), i.e., τ “ τpz̃q, formally defined (if it exists) as

τpzq “ inf
!

t P R`,
`

Gptq, gptq, rptq
˘

P Σ
)

,

where
`

Gptq, gptq, rptq
˘

is obtained though ΦtHpG,R, g, rq. The Poincaré return map we described
has been constructed numerically based on the numerical integration of the Hamiltonian equation of
motions (the details regarding our numerical settings are presented in the Appendix B.) This mapping
being now explicit, we are able to unveil the phase–space structures through successive iterations of P .
Figure 4 presents the successive coordinates of tPnpzqu where the initial seeds z cover a discretisation
of D ˆ T{2 domain (mesh) and n „ 103. The phase–space structures can be roughly categorised in
three distinct zones. In the lower part, say for G ă ´2, we can distinguish one “pic” centred around
g “ π{2. One elliptic zone is immersed inside this structure, surrounded by “scattered dots”, indicative
of chaos. There is a large region of the phase–space foliated by circulational tori. The last upper region
is a large zone where almost all regular structures have disappeared. The panel provided by Figure 4
presents some magnifications of phase–space structures. The obtained phase–space structures have
been confirmed using a finite time dynamical chaos indicator, the Fast Lyapunov Indicator (FLI)
computed with the whole flow on an iso–energetic section (see Appendix C for more details). The
FLIs computation relies on monitoring the growth over time of the tangent vector under the action
of the tangent flow–map (variational dynamics). The final FLIs values are colour coded according to
their values and projected onto the section to provide a stability chart. Stable orbits correspond to
dark regions, orbits possessing the sensitivity to initial conditions appear in reddish/yellow color. As
shown in Figure 4, the FLIs confirm nicely the global structures depicted via the mapping. Moreover,
numeric suggests that the lift of P on the variables pG, g, rq (i.e., the map obtained from ΦτH by
projection on pG, g, rq) is generically twist.

2.1. Hyperbolic structures and heteroclinic intersections. Equilibrium points of the mapping
P (i.e., periodic orbits of the Hamiltonian system (2.2)), have been found using a Newton algorithm
with initial guesses distributed on a resolved grid of initial conditions in DˆT{2 (again, see Appendix B
for more details regarding the numerical setup). We found more than 20 fixed points x‹ whose
coordinates have been reported in Appendix B.4. The eigensystems associated to the fixed points
have been computed to determine the local stability properties. The point x‹ is hyperbolic when
one of its real eigenvalues has modulus greater than one, the other less than one (expanding and
contracting directions, respectively). In the case of complex eigenvalues, the point is elliptical. The
result of the analysis is displayed on Figure 5 along with the following convention: hyperbolic fixed
points appear as red crosses, elliptical points are marked with blue circles. As intuitively expected,
the hyperbolic points are embedded within the chaotic sea. On the contrary, the stable islands host
the elliptic points. Note that even the fixed–point in the small stability island has been recovered
with the Newton scheme. In the vicinity of the unstable fixed–points, the dynamics is dominated by
the stable and unstable manifolds who have the eigenvectors of DP px‹q asymptotically tangents near
x‹. The local stable manifold associated to an hyperbolic point x‹,

Ws
loc.px‹q “

!

x | ‖Pnpxq ´ x‹‖Ñ 0, n P N`, nÑ8

)

,

can be grown by computing the images of a fundamental domain I Ă Espx‹q, Espx‹q being the stable
eigenspace associated to the saddle point x‹. We considered the simplest parametrisation of I, namely
a normalised version of the eigenvector associated to the saddle point x‹. This allowed us to compute
a piece of Ws

loc.px‹q under the action of the flow–map [17, 18]. To compute the unstable manifold, the
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Figure 3. The admissible points of the pg,Gq section are displayed in cream colour.
They correspond to points satisfying the energetic condition H “ h‹ with R2 ě 0.
The complementary set (points leading to negative R2) appear in purple and define
the inadmissible seeds. See text for more details.

same computations are performed by reversing the time and changing Es by Eu. Finite pieces of those
manifolds are presented in Figure 6 for two saddle points. Following the well established conventions
of the cardiovascular system (as reported in [19]), the stable manifolds are displayed with blue tones,
unstable manifolds appear in red tones. As we can observe, those curves intersect transversally
forming the sets of heteroclinic points, trademark of the heteroclinic tangle and chaos [20]. We now
have at hands all the necessary ingredients and tools to prove the existence of symbolic dynamics
using covering relationships and their images under P .

3. Symbolic dynamics via covering relations

In this section we prove the existence of symbolic dynamics for the considered model. The tools rely
on ad–hoc covering relations that we present briefly following [14], in particular for the case n “ 2.

3.1. Covering relations and topological horseshoe. Let us introduce some notations. Let N be
a compact set contained in R2 and upNq “ spNq “ 1 being, respectively, the exit and entry dimension
(two real numbers such that their sum is equal to the dimension of the space containing N); let cN :
R2 Ñ R2 be an homeomorphism such that cN pNq “ r´1, 1s2; let Nc “ r´1, 1s2, N´c “ t´1, 1uˆr´1, 1s,
N`c “ r´1, 1sˆt´1, 1u; then, the two set N´ “ c´1

N pN
´
c q and N` “ c´1

N pN
`
c q are, respectively, the exit

set and the entry set. In the case of dimension 2, they are topologically a sum of two disjoint intervals.
The quadruple pN, upNq, spNq, cN q is called a h–set and N is called support of the h–set. Finally, let
SpNqlc “ p´8,´1q ˆ R, SpNqrc “ p1,8q ˆ R, and SpNql “ c´1

N pSpNq
l
cq, SpNq

r “ c´1
N pSpNq

r
cq be,

respectively, the left and the right side of N . The general definition of covering relation can be found
in [14]. Here we provide a simplified notion, suited to the case that N is two–dimensional, based on2

[15, Theorem 16].

2More precisely, Definition 3.1 is based on the proof of [15, Theorem 16]. Indeed, [15, Theorem 16] asserts that under

conditions (1), (3) and one of the inclusions in [15, (78) or (79)], one has M
f

ùñ N in the sense of [14]. However, during
the proof of [15, Theorem 16], inclusions [15, (78) or (79)] are only used to check the validity of (2).
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Figure 4. Phase–space structures of the mapping P at different scales. Upper left:
global phase–space; lower: microscales structures; upper right: the global phase–
space analysis obtained by iterating the mapping P is confirmed by computing finite
time chaos indicators based on the variational dynamics derived from the continuous
model H.

Definition 3.1. Let f : R2 Ñ R2 be a continuous map and N and M the supports of two h–sets. We

say that M f–covers N and we denote it by M
f
ùñ N if:

(1) D q0 P r´1, 1s such that fpcN pr´1, 1s ˆ tq0uqq Ă intpSpNql
Ť

N
Ť

SpNqrq,
(2) fpM´q

Ş

N “ H,
(3) fpMq

Ş

N` “ H.

Conditions (2) and (3) are called, respectively, exit and entry condition.

The case of self–covering is not excluded. The Figure 7 shows two schematic examples of covering
relation between two different sets N,M and a self–covering relation of N . The notions of covering
relationships are useful in defining topological horseshoe (confer [14, 15]).
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Figure 5. Phase–space of P together with its fixed–points. Hyperbolic points
appear with red crosses, elliptical points appear with blue circles.

Figure 6. Finite pieces of manifolds of two hyperbolic fixed points q1, q2. Their
stable and unstable manifolds intersect transversally in (more than one) heteroclinic
points. Stable manifolds are in blue while unstable manifolds are in red.
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Figure 7. Examples of covering relations. On the left M
f
ùñ N . On the right, a

case of self–covering N
f
ùñ N is illustrated. In red the entry sets and their image are

represented, while in blue the exit sets and their images are represented.

Figure 8. An example of topological horseshoe where both N1, N2 cover themselves
and each others. In red tones the entry sets and their images are represented, while
in blue tones the exit sets and their images are represented.

Definition 3.2. Let N1 and N2 be the supports of two disjoint h–sets in R2. A continuous map
f : R2 Ñ R2 is said to be a topological horseshoe for N1 and N2 if

N1
f
ùñ N1 , N1

f
ùñ N2 , N2

f
ùñ N1 , N2

f
ùñ N2 .

Topological horseshoes are associated to symbolic dynamics as presented in Theorem 2 in [14] and
Theorem 18 in [15], where the authors show that the existence of a horseshoe for a map f provides a
semi–conjugacy between f and a shift map t0, 1uZ, meaning that for any sequence of symbols 0 and
1 there exists an orbit generated by f passing through the sets N1 and N2 in the order given by the
sequence, guaranteeing the existence of “any kind of orbit” (periodic orbits, chaotic orbits, etc.).

From the Definition 3.1, the covering relation N1
P
ùñ N2 is verified if the three following conditions

are satisfied:

(1) the image P pN1q of N1 lies in the strip between the top and the bottom edges of N2,
(2) the image of the left part of N´1 lies on the left of N2,
(3) the image of the right part of N´1 lies on the right of N2;

the conditions can be easily checked in Figure 8 and, then, in Figure 9.

3.2. Existence of a topological horseshoe. In this section we describe how we construct explicitly
a topological horseshoe for the Poincaré map of the Hamiltonian (1.10).
We start by considering one hyperbolic fixed point q for the Poincaré map P and we denote by vs
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and vu, respectively, the stable and the unstable eigenvectors related to DP pqq. We construct a
parallelogram N containing q whose edges are parallel to vs and vu and thus we define N as

N “ q `Avs `Bvu,

where A and B are suitable chosen closed real intervals. If the intervals A and B are sufficiently
small, under the action of the map P , the parallelogram N will be contracted in the stable direction
and expanded in the unstable direction. We denote by P pNq the image of N through the map
P . In practice, we choose two hyperbolic fixed points q1 and q2 having the important property of
transversal intersection of their stable and unstable manifolds as shown in Figure 6. This property
is a good indication of the existence of a topological horseshoe. Based on this couple of fixed points
whose coordinates read

#

q1 “ pg1, G1q “ p0.203945459, 2.06302430q,

q2 “ pg2, G2q “ p0.278077917, 2.21418596q,

we define two sets N1, N2 Ă R2 which are supports of two h–sets as follows:
"

N1 “ q1 `A1v
s
1 `B1v

u
1 ,

N2 “ q2 `A2v
s
2 `B2v

u
2 ,

where
#

A1 “ r´0.02, 0.08s Ă R, B1 “ r´0.025, 0.01s Ă R,

A2 “ r´0.075, 0.025s Ă R, B2 “ r´0.02, 0.01s Ă R,

and vs1, v
u
1 , v

s
2, v

u
2 are the stable and the unstable eigenvectors related to q1, q2, respectively. Then the

following covering relations hold

N1
P
ùñ N1 , N1

P
ùñ N2 , N2

P
ùñ N1 , N2

P
ùñ N2 ,

proving the existence of a topological horseshoe for P , i.e., existence of symbolic dynamics for P .
The obtained horseshoe associated to q1 and q2 with the aforementioned parameters is illustrated in
Figure 9, providing the existence of symbolic dynamics.

4. Conclusions and open problems

This work originates from [11], where it has been pointed out that the average U` (1.12) of the
Newtonian potential with respect to one of the two mean anomalies is an integrable function which in
turn may be written as a function of another function t`, whose dynamics is completely known. The
functional dependence (1.19) between these two functions, holding in the case of the planar problem,
has been pointed out in [13, Section 3]. The identity (1.19) raises the very natural question whether
and at which extent such relation has a consequence on the dynamics of the three–body problem.
Giving an answer to such question is in fact demanding, as it requires to understand whether it is
possible to find a region of phase space where the three–body Hamiltonian is well represented by its
simple average (here “simple average” is used as opposite to “double average”, most often encountered
in the literature, e.g., [5]) and, simultaneously, the kinetic term K in (1.11) does not interfere with U
too much. In [13] it has been proved that if the total angular momentum C of the system vanishes,
by symmetry reasons, and using a well–suited perturbation theory, the librational motions of t`
reported in Figure 2 (left) have a continuation in the averaged three–body problem. In this paper we
investigated the case C ‰ 0. With purely pioneering spirit, in order to simplify the analysis, we focused
on the very peculiar situation where the two minor bodies have equal mass and we fixed an energy
level once forever. We believe that both such choices can be removed without affecting the results
too much, because, as informally discussed in the introduction, what really matters is the relative
weight of K and U . Figures 2 and 4 not only show that, in our simplified model, this continuation
is numerically evident, but also exhibit the onset of chaos in certain zones, clearly highlighted along
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Figure 9. Horseshoe connecting the points q1 and q2 proving symbolic dynamics
for the map P . Red represents the entry sets and their images and blue the exit sets
and their images.

the paper using techniques of [14]. Even though the results are encouraging, many questions are still
pending (some of them have been pointed out in [13]), and we aim to face them in the future:

pQ1q If C ‰ 0, is there a choice of parameters and phase space where the phase portrait of F
includes only librational motions?

pQ2q In the case that the orbit of the planet is inner to the one of the asteroids, the phase portrait
of U` includes a saddle and a separatrix through it (see [13, Figures 1, 2 and 3]). How does
this affect the three–body problem motions?

pQ3q By [11], relation (1.19) has a generalisation to the spatial problem. What are the consequences
on the spatial three–body problem?

pQ4q Is the onset of chaos in the averaged problem present also in the full (non–secular) system?
pQ5q What can we prove analytically?
pQ6q What can we prove with computer–assisted techniques?
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A. The Hamiltonian

The impulses p0, y, y1 conjugated to r0, x, x1 in (1.2) are

p0 “ y0 ` y1 ` y2 , y “ y1 `
µ

1` µ
y2 ´

µ

1` µ
p0 , y1 “ y2 ´

κ

1` µ` κ
p0 .(A.1)
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If r0 ” 0 ” p0, the transformation of coordinates defined by (1.2) and (A.1) reduces to the injection
$

’

&

’

%

x0 “ ´
µ

1`µx´
κ

1`µ`κx
1

x1 “
1

1`µx´
κ

1`µ`κx
1

x2 “
1`µ

1`µ`κx
1

,

$

&

%

y0 “ ´y ´
1

1`µy
1

y1 “ y ´ µ
1`µy

1

y2 “ y1

and the Hamiltonian (1.1) becomes

H “
1` µ

2µm0
|y|

2
`

1` µ` κ

2p1` µqκm0
|y1|

2
´
µm2

0

|x|
´

κm2
0

|x1 ` µ
µ`1x|

´
µκm2

0

|x1 ´ 1
µ`1x|

.

Rescaling the coordinates via

xÑ p1` µqx , y Ñ
µ

1` µ
y , x1 Ñ β´1x1 , y1 Ñ µβy1,

with β as in (1.4) and multiplying the Hamiltonian H by p1` µq{µ, we obtain H as in (1.3).

B. Numerical setups and results

B.1. Choice of the parameters. The analysis we have done is related to the choice of parameters
and initial data we started with. The Hamiltonian (1.10) is composed by three parts

H “ H0 ` σK ` σU “: H0 ` P,

where the first one is the unperturbed and constant part depending on Λ, the second one represents
the kinetic part and the third is the perturbing part. To ensure the non–resonant terms of P to be
small with respect to H0 we choose, as mentioned in the introduction,

$

’

’

’

&

’

’

’

%

m0 “ 1,

β “ 40,

C “ 75.597

Λ “ 3.099.

The initial datum is taken to be
$

’

’

’

&

’

’

’

%

G‹ “ ´2.4915,

R‹ “ ´0.0039,

g‹ “ 1.4524,

r‹ “ 3132.069.

Note that R‹ and r‹ verify (1.16) but are not exactly centred at 0 and r0 because the r–component of
the Hamiltonian vector–field vanishes for R “ 0, while it needs to be different from zero in order that
the Poincaré map is well defined. The values of G‹ and g‹ have been empirically chosen such that the
orbit from from pG‹, R‹, g‹, r‹q is approximately periodic and hence the Poincaré map is well defined.

B.2. Flow. The Hamiltonian equations of motion have been numerically propagated using a fixed
time–step RK4 method [21]. Even though the step has been kept fixed, no numerical issues have been
encountered and the integration times were reasonable for the whole numeric exploration.
Under the choice of our time–step δ, the flow–map preserves the Hamiltonian itself, a conserved
quantity (first integral), with a relative error of about 10´14 for stable orbits and 10´12 for chaotic
orbits on a arc length of about τ „ 102 orbital revolutions. Besides the first integral being numerically
well preserved, the quality of the integration has been assessed further using a forwards/backwards
strategy. The method consists in propagating forwards in time (say on r0, τ s) the Cauchy problem

#

9x “ vHpxq,

xp0q “ x0,
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and then to back–propagate (from τ to 0) the new Cauchy problem

#

9x “ vHpxq,

xpτq “ xτ

where the initial seed xτ is obtained from the forward numerical flow–map, xτ “ Φτ px0q. Then the
relative error

∆ “

∥∥x0 ´ Φ´τ
`

Φτ px0q
˘
∥∥

‖x0‖

is estimated. On a selection of orbits, we found ∆ to be of the order of 10´12 for regular orbits, 10´8

for chaotic orbits on timescale of about 102 orbital revolutions.

B.3. Poincaré mapping P . The construction of the Poincaré map P is based on the time evolution
of the whole flow and a bisection procedure. Given an initial point z, to find its next state z1 “ P pzq
we compute xptq “ Φtpx0q, x “ lpzq, until following conditions are met:

(1) Section condition: X “ px1ptq, x2ptq, x4ptqq P Σ up to a numerical tolerance εΣ “ 10´10. This
step relies on a bisection method halving the length of the numerical step δ until we drop
under the tolerance εΣ.

(2) Orientation condition: The scalar product 9Xp0q ¨ 9Xptq is positive, meaning that the orbit is
intersecting the plan Σ in the same direction as the starting point.

(3) First-return condition: for τ ă t, neither (1) and (2) are fulfilled.

B.4. Coordinates of the fixed–points of P . Below we provide the coordinates of the fixed–points
of P (periodic orbits of H).

# Coordinates of the elliptic fixed points

# G g (rad)

#-------------------------------------------

-2.49155 1.45245

-1.04685 1.73094

-2.91949 1.95066
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# Coordinates of the hyperbolic fixed points

# G g (rad)

#-------------------------------------------

2.06302 0.20395

2.21419 0.27808

0.03851 0.33259

2.47589 0.34655

2.81488 0.40502

3.04924 0.43647

3.09865 0.44249

-2.84323 0.55513

2.75151 0.57177

3.05336 0.58816

3.09883 0.59055

-2.61168 1.35169

2.76024 1.61321

2.68138 2.39082

2.52039 2.51911

2.31386 2.60074

2.49651 2.61696

1.85433 2.62309

1.75010 2.62341

2.43689 2.75722

2.33537 2.90395

2.22839 3.01548

C. The Fast Lyapunov Indicator & dynamical timescales

The Fast Lyapunov Indicator (FLI) is an easily implementable tool suited to detect phase–space struc-
tures and local divergence of nearby orbits. It has a long–lasting tradition with problems motivated
by Celestial Mechanics [22]. The indicator can be used in the context of deterministic ODEs, map-
pings, and is able to detect manifolds and global phase–space structures [23–25]. A large literature
exists with the FLI tested on idealised systems (e.g., low dimensional quasi–integrable Hamiltonian
system [23, 26], drift in volume–preserving mappings [27]) but also on many applied gravitational
problems across a variety of scales, ranging from the near–Earth space environment [28] to exoplan-
etary systems [29]. For simplicity, let us present the tool in the case of ODEs. Let us assume we
are dealing with a n–dimensional autonomous ODE system. If the system is non–autonomous, we
classically extend the dimension of the phase–space by 1 dimension. The FLI indicator is based on
the variational dynamics in R2n,

#

9x “ fpxq,

9w “ Dfpxq ¨ w,

w P TxM , and is defined at time t as

FLIpx0, w0, tq “ sup0ďτďt log ‖wpτq‖ .(C.1)

The FLI is able to distinguish quickly the nature of the orbit emanating from x0. Orbits containing the
germ of hyperbolicity will have their final FLI values larger than regular orbit (for the same horizon
time τ). More precisely, chaotic orbits will display a linear growth (with respect to time) of their
FLIs, whilst regular orbits have their FLIs growing logarithmically. In order to reduce the parametric
dependence of the FLIs upon the choice of the initial tangent vector, the FLIs are computed over an
orthonormal basis of the tangent space (i.e., we compute Eq. (C.1) 4 times with a different initial w0)
and averaged [26]. As a rule of thumb, the FLI is computed over a few Lyapunov times τL, but in
practice, the choice of the final τ requires a calibration procedure by testing few orbits. By computing
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Figure 10. On the left: calibration of the finite time chaos indicators (FLI) for
three distinct orbits. After a transient time of about t „ 5, 000 (i.e., „ 10 orbital
revolutions) the discrimination of the nature of the orbits is sharp enough. On the
right: time evolution of the maximal Lyapunov exponents χ. For chaotic orbits, they
define Lyapunov timescales of about 0.76 orbital revolutions.

FLIs on discretised domains of initial conditions, the color coding of the FLIs (using a divergent color
palette) reveals the global topology of the phase–space (e.g., web of resonances and preferred routes
of transport, see [26]) furnishing a so–called stability map. The Lyapunov time τL is obtained as the
inverse of the maximal Lyapunov characteristic exponent (we refer to [30] for computational aspects
related to characteristic exponents),

τL “ 1{χ,

where χ denotes the maximal Lyapunov characteristic exponent

χpx0, w0q “ lim
tÑ`8

1

t
log ‖wptq‖ .

Stable orbits do satisfy χ Ñ 0 and hence τL tends to be large. On the contrary, chaotic orbits are
characterised by χ Ñ r P R‹` and therefore τL converges to a finite value. The panel shown in
Figure 10 presents the calibration procedure based on three orbits. The stable orbit displayed in black
(logarithmic growth of the FLI) admits for initial condition pG, gq “ p´2, πq. The two others orbits
are chaotic but one (red) is less hyperbolic than the other (blue). The respective initial conditions
read pG, gq “ p´2, 1.6q and pG, gq “ p2, πq. As it is observed, after a transient time of about t „ 5, 000
(i.e., 10 orbital revolutions), safe conclusions can be formulated regarding the stability of the orbits
(left panel). The respective maximal Lyapunov characteristic exponents are presented in the right
panel of Figure 10. The inverse, the Lyapunov time, defines timescales of „ 380 for the most chaotic
one (which is about 0.76 revolutions) and „ 1, 100 for the second chaotic one (2.2 orbital revolutions).
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