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Abstract 19 

Mass spectrometry-based methods coupled with stable isotope dilution have become effective and 20 

widely used methods for the detection and quantification of food allergens. Current methods target 21 

signature peptides resulting from proteolytic digestion of proteins of the allergenic ingredient. The choice 22 

of appropriate stable isotope-labelled internal standard is crucial, given the diversity of encountered food 23 

matrices which can affect sample preparation and analysis. We propose the use of concatemer, an 24 

artificial and stable isotope-labelled protein composed of several concatenated signature peptides as 25 

internal standard. With a comparative analysis of three matrices contaminated with four allergens (egg, 26 

milk, peanut, and hazelnut), the concatemer approach was found  to offer advantages associated with 27 

the use of labelled proteins, ideal but unaffordable, and circumvent certain limitations of traditionally 28 

used synthetic peptides as internal standards. Although used in the proteomic field for more than a 29 

decade, concatemer strategy has not yet been applied for food analysis.  30 

 31 

Keywords 32 

Food allergen analysis, mass spectrometry, isotope dilution, isotope-labelled internal standard, isotope-33 

labelled concatemer 34 

35 
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1. Introduction 36 

Food allergy is defined as an adverse health effect arising from a specific reproducible immune 37 

response that occurs on exposure to a given food (Boyce et al., 2011). Several studies indicate an 38 

increase in the prevalence of food allergy with nearly 5% of adults and 8% of children being affected 39 

(Sicherer & Sampson, 2014). Given the absence of accepted treatment, the current solution for allergic 40 

patients relies on allergen avoidance to circumvent allergic reactions. However, this essentially requires 41 

correct food labelling and efficient risk management from food business operators to reduce the risk of 42 

contamination by allergens to acceptable levels. European legislation (Regulation [EU] No 1169/2011) 43 

requires the labelling of 14 allergenic ingredients when they are part of a foodstuff recipe. However, this 44 

legislation does not cover the presence of hidden allergens that are due to cross-contamination during 45 

food processing. Even if strongly requested by food producers and control laboratories, no harmonized 46 

regulatory framework for managing hidden allergens or action thresholds have been enacted in Europe. 47 

Some countries have set legal thresholds but with a high disparity among allergens and among countries 48 

(Planque et al., 2019). A quantitative risk assessment was also developed by VITAL® (Voluntary 49 

Incidental Trace Allergen Labelling) combining reference doses and exposure (Allen et al., 2014). The 50 

thresholds for allergenic proteins in food are based on clinical data and are indicators of the action levels, 51 

expressed as the total protein amount of the allergenic food (mg), below which only the most sensitive 52 

allergic subjects might react (1% of allergic patients or 5% of them for the less common foods). These 53 

values are often used by laboratories as a targeted limit of quantification (LOQ) in the absence of legal 54 

thresholds. 55 

The development of a quantitative allergen risk assessment requires quantitative allergen analysis. 56 

During the last decade, mass spectrometry became the method of choice for allergen analysis (Ahsan, 57 

Rao, Gruppuso, Ramratnam, & Salomon, 2016). Allergen analysis by mass spectrometry is 58 

predominantly performed by specific analysis of peptides obtained by an enzymatic digestion of the 59 

proteins of the sample, including the proteins of the allergenic ingredients. One of the advantages of 60 

mass spectrometry-based methods is the possibility to simultaneously detect multiple peptides from 61 

multiple allergens, thus enabling time- and money-saving multiplexed analysis. Such a targeted 62 

approach, named multiple reaction monitoring (MRM), offers high sensitivity and specificity. Targeted 63 

proteomics is often used for absolute peptide quantification in combination with isotope dilution, a 64 

technique based on the use of an internal standard corresponding to the stable isotope-labelled version 65 

of the analyte (Monaci, Losito, De Angelis, Pilolli, & Visconti, 2013; Nitride et al., 2019; Planque et al., 66 
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2019). The introduction of this isotope-labelled internal standard corrects for variability and various 67 

matrix effects during the actual analysis. Notably, ion suppression effects and, depending on the type 68 

of internal standard, matrix effects and analyte loss during sample preparation may be corrected by the 69 

use of isotope-labelled internal standards. 70 

Peptides specific for allergen proteins are the analytes in mass spectrometry analysis of food 71 

allergens; however, the initial analytes are proteins. Stable isotope-labelled internal standards can 72 

therefore adopt different forms. In theory, a stable isotope-labelled protein is the ideal internal standard 73 

as, when added to the food that needs to be analyzed, it can correct for sample losses during all the 74 

steps of the sample preparation procedure (including protein extraction and digestion), as well as for 75 

matrix effects during mass spectrometry analysis. Such an approach was proposed by Newsome and 76 

Scholl (Newsome & Scholl, 2013) for the quantification of bovine milk αS1-casein in baked goods. The 77 

main limitation of this approach, besides technical issues for protein production, is its cost. When one 78 

aims at multiplexed analysis, this necessitates the use of multiple isotope-labelled proteins, which is 79 

unrealistic for laboratories performing routine analyses (Planque, Arnould, & Gillard, 2017). Therefore, 80 

most laboratories rely on stable isotope-labelled synthetic peptides (Boo, Parker, & Jackson, 2018; 81 

Henrottin et al., 2019; Planque et al., 2019). However, in food allergen analysis, the initial analytes are 82 

proteins. Peptide internal standard and protein analytes can exhibit different behaviors during the 83 

extraction, leading to different extraction yield. Moreover, the peptides do not undergo the enzymatic 84 

digestion step which is known to be highly affected by the matrix effects (Korte, Oberleitner, & 85 

Brockmeyer, 2019). 86 

Here, we implemented an alternative method based on the synthesis of a concatemer used as a 87 

stable isotope-labelled internal standard for allergen quantification. This strategy has been well adopted 88 

by proteomics researchers, and the concatemers are known as QconCAT (Pratt et al., 2006), but, as far 89 

as we know, these molecules have not yet been explored for food analysis. Concatemers are artificial 90 

proteins composed of concatenated, proteotypic peptides originating from different proteins of interest. 91 

The peptides themselves are typically first identified following mass spectrometry or are predicted from 92 

theoretical peptide sequences. Concatemers are typically recombinantly produced in an environment 93 

that allows labelling with stable isotopes (e.g.,13C or 15N). In contrast to synthetic peptides, concatemers 94 

need to be proteolytically digested to release their peptides, and thus, this peptide release is also 95 

affected by the interference caused by the matrix during the digestion step, in a manner similar to the 96 

analyte of interest. Another advantage of concatemers is their potential for multiplexing. A single 97 
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concatemer can be composed of numerous proteotypic peptides and can therefore be used for 98 

multiplexed allergen analysis. The limitation of this approach is fixed by the protein size reachable with 99 

recombinant protein expression, which is more than 100 kDa (Chambers, Austen, Fulghum, & Kim, 100 

2004). This approach can be cost-effective when compared with using synthetic peptides for multiplexed 101 

analysis. For our study, we developed, produced, and purified a 15N isotopically labelled concatemer 102 

composed of 19 proteotypic peptides, allowing for the analysis of 4 allergenic ingredients (egg, milk, 103 

peanut, and hazelnut). We evaluated the performance of this concatemer by the analysis of three 104 

uncontaminated food matrices spiked with increasing and defined concentrations (2.5 ppm to 50 ppm, 105 

where ppm corresponded to mg of total allergen protein per kg of matrix) of the selected allergen 106 

extracts. In addition, we compared the use of the concatemer with that of five synthetic peptides 107 

corresponding to tryptic peptides from the four considered allergens and with β-lactoglobulin, a bovine 108 

milk protein that was 15N isotopically labelled. 109 

110 
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2. Material and methods 111 

2.1. Reagent and materials 112 

Gene synthesis and cloning were ordered from GeneCust (Boynes, France). Acetic acid, ammonium 113 

bicarbonate, ampicillin sodium salt, chloramphenicol, dimethyl sulfoxide (DMSO), DL-dithiothreitol 114 

(DTT), expression plasmid pET17b(+) Novagen, HiLoad® 26/600 Superdex® 200 pg, imidazole 115 

hydrochloride, iodoacetamide (IAA), kanamycin monosulfate, Lennox broth (LB), Ni Sepharose® 6 fast 116 

flow GE Healthcare, Origami™ B(DE3) pLysS competent cells Novagen, phenylmethanesulfonyl 117 

fluoride (PMSF), Q Sepharose® Fast Flow, select agar, sodium chloride, sodium phosphate dibasic, 118 

sodium phosphate monobasic, tetracycline hydrochloride, tetraethylammonium bicarbonate (TEAB), 119 

trypsin from bovine pancreas, tris(hydroxymethyl)aminomethane (Tris) and urea were obtained from 120 

Sigma-Aldrich (Bornem, Belgium). One Shot™ BL21(DE3) chemically competent Escherichia coli, 121 

isopropyl β-D-thiogalactopyranoside (IPTG), SnakeSkin™ dialysis tubing, 3.5K MWCO, 22 mm were 122 

purchased from Thermo Fisher Scientific (Waltham, MA, USA). Bioexpress cell growth media (U-15N, 123 

98%) (10x concentrate) was obtained from Buchem B.V. (Apeldoorn, the Netherlands), Trypsin Gold, 124 

Mass Spectrometry Grade from Promega (Madison, WI, USA), 4–20 Mini-PROTEAN® TGX™ precast 125 

protein gels from Bio-Rad (Hercules, CA, USA), Sep-Pak C18 6 cc Vac solid-phase extraction (SPE) 126 

cartridges from Waters (Milford, MA, USA), and 0.2 µm acrodisc syringe filters with supor membrane 127 

from Pall Corporation (Port Washington, NY, USA). Water, acetonitrile (ACN), and formic acid (FA) were 128 

obtained from Biosolve (Valkenswaard, the Netherlands). Labelled synthetic peptides 129 

ADIYTEQV[13C5
15N]GR, FFVAPFPEVFGK[13C6

15N2], GGLEPINF[Ring-D5]QTAADQAR, LSF[Ring-130 

D5]NPTQLEEQCHI, TANELNLLIL[13C6
15N]R were ordered from Eurogentec (Seraing, Belgium).  131 

Food samples were analyzed by ultra-high performance liquid chromatography–tandem mass-132 

spectrometry (UHPLC MS/MS) using an Acquity liquid chromatograph equipped with a C18 Acquity 133 

BEH130 column (2.1 x 150 mm; 1.7 µm) and coupled with a Xevo TQ-S micro triple quadrupole system 134 

(Waters, Milford, MA, USA). Characterization of 15N isotopically labelled concatemer and β-lactoglobulin 135 

was performed by ultra-high performance liquid chromatography–high resolution mass spectrometry 136 

(UHPLC-HRMS) using an Acquity liquid chromatograph equipped with a C18 Acquity BEH130 column 137 

(2.1 x 150 mm; 1.7 µm) and coupled to a Xevo G2-XS QTof quadrupole time-of-flight system (Waters, 138 

Milford, MA, USA). 139 

2.2. 15N isotopically labelled concatemer production and purification  140 
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Design and production of the concatemer were adapted from the method of Pratt (Pratt et al., 141 

2006).The first step focused on concatemer design and the selection of the concatenated peptides. 142 

Here, we considered 19 peptides (Table 1) originating from seven proteins of four allergenic ingredients 143 

(αS1-casein and β-lactoglobulin from cow milk; ovalbumin, ovotransferrin, and vitellogenin-1 from hen’s 144 

egg; Cor a 9 allergen from hazelnut; and Ara h 1 allergen from peanut). These 19 peptides were selected 145 

from a set of relevant peptide biomarkers identified by an empirical approach based on UHPLC-HRMS 146 

analysis of incurred and processed samples. The applied food processing steps, sample preparation, 147 

and selection criteria have already been detailed in our previous studies (Gavage et al., 2019, 2020; 148 

Van Vlierberghe et al., 2020). The peptides were then in silico concatenated, and the resulting 149 

polypeptide was flanked with an N-terminus initiator sequence including a methionine start and a 150 

C-terminus hexahistidine purification tag (His-tag). Hydrophobicity of each of the 19 peptides was 151 

evaluated based on their grand average of hydropathy (GRAVY) parameter. Hydrophobic and 152 

hydrophilic peptides were alternated in the concatemer sequence to avoid the formation of high 153 

hydrophobic clusters that can interfere with solvent accessibility of concatenated peptides and thus with 154 

their subsequent proteolysis during the sample preparation. Translation-associated aspects such as 155 

tRNA-mediated codon usage bias and mRNA secondary structure, known to impact the translation 156 

process (Gorochowski, Ignatova, Bovenberg, & Roubos, 2015), were also considered. Visual Gene 157 

Developer (University of California-Davis, Davis, CA, USA) was used to predict and optimize the mRNA 158 

secondary structure. The in silico designed DNA construct was finally chemically synthesized and cloned 159 

into the pET17b(+) expression vector using NdeI and XhoI restriction sites to give the pET17b(+)-160 

concat1. 161 

The E. coli BL21(DE3)/pET17b(+)-concat1 strain was inoculated in a 30 ml starter culture of 15N 162 

labelled media (Bioexpress cell growth media [U-15N, 98%] with 100 μg/mL ampicillin) and grown 163 

overnight at 37 °C under 300 rpm orbital shaking. Cells were harvested by centrifugation (4000 x g, 164 

5 min) and the pellet was resuspended in 1 mL of 15N labelled media. Next, a volume of 660 µl of this 165 

bacterial suspension was used to inoculate a 1L 15N labelled main culture. This culture was grown at 37 166 

°C under 300 rpm orbital shaking until the optical density at 600 nm reached 0.6–0.8. Concatemer 167 

expression was next induced with 1 mM IPTG and cells were cultured overnight at 25 °C under 300 rpm 168 

orbital shaking. Cells were harvested by centrifugation (5000 x g, 15 min) and stored at –80 °C until 169 

concatemer purification. 170 
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The cell pellet of the 1 L culture was resuspended in 40 mL of lysis buffer (50 mM Tris - 10 mM 171 

imidazole - pH 8) with 1 mM PMSF. Cells were disrupted using a Vibra-CellTM (Sonics, Newtown, CN, 172 

USA) ultrasonic probe. The cell lysate was centrifuged twice (40000 x g, 20 min) and filtered through 173 

0.2 µm syringe filters before to be submitted to metal affinity chromatography purification. The protein 174 

solution was loaded on a 8 ml Ni Sepharose 6 Fast Flow column equilibrated with lysis buffer. An 175 

intermediate washing step was performed in the presence of 20 mM imidazole and the His-tag labelled 176 

concatemer was finally eluted by using a linear imidazole gradient from 20 mM to 250 mM. The elution 177 

fractions were analyzed on SDS-PAGE (Supplementary data 1). The positive fractions were pooled and 178 

dialyzed against the storage buffer (50 mM Tris - pH 8) to eliminate imidazole. 179 

Total protein concentration was measured by absorbance at 280nm. A SDS-PAGE/densitometry 180 

method based on ImageJ software was used to estimate concatemer purity. A total of 84.5 mg of 15N 181 

isotopically labelled concatemer were produced and purified with an estimated purity higher than 90%. 182 

Protein sequences, concentration calculations, and purity estimation are detailed in Supplementary 183 

data 3. 184 

2.3. 15N isotopically labelled β-lactoglobulin production and purification  185 

The production of β-lactoglobulin, a cow milk protein, was adapted from the work of Loch and 186 

collaborators (Loch et al., 2016) who implemented a method leading to the cytoplasmic accumulation of 187 

correctly folded disulfide bond-dependent proteins. Briefly, two mutations (L2A/I3S) were introduced in 188 

the β-lactoglobulin to facilitate in vivo cleavage of the N-terminal methionine allowing for correct protein 189 

folding. ) Further, the E. coli Origami B (DE3) pLysS strain, a glutathione reductase (gor) and thioredoxin 190 

reductase (trxB) mutated strain, was used for conducting the cytoplasmic co-expression of the protein 191 

of interest with DsbC, an E.coli cytoplasmic disulfide bond isomerase. The co-expression was achieved 192 

with the same expression vector (pET17b(+)-DsbC-BLg) in which the two genes were transcribed from 193 

individual T7 IPTG-inducible promoters. 194 

To achieve the production of 15N labelled β-lactoglobulin, expression (starter culture, main culture, 195 

and IPTG induction) conditions were similar as used for concatemer production. The antibiotics that 196 

were used were tailored to 200 µg/mL ampicillin, 34 µg/mL chloramphenicol, 15 µg/mL kanamycin, and 197 

12.5 µg/mL tetracycline, and the IPTG concentration was 0.5 mM. Harvested cells were resuspended 198 

in 50 mM phosphate buffer, pH 6.5, with 1 mM PMSF and prepared for protein purification using the 199 

same procedure as for the concatemer. The purification of 15N labelled β-lactoglobulin was performed 200 
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according to the procedure described by Loch and collaborator (Loch et al., 2016). Briefly, this protocol 201 

combines anion-exchange chromatography (Q Sepharose® Fast Flow) with a NaCl linear elution 202 

gradient (up to 2 M) followed by size-exclusion chromatography (HiLoad® 26/600 Superdex® 200 pg) 203 

in initial conditions (50 mM phosphate buffer, pH 6.5). Eluates of these two purification steps were 204 

collected in 1 mL fractions and analyzed on SDS-PAGE (Supplementary data 2).  205 

Total protein concentration was measured by absorbance at 280nm. A SDS-PAGE/densitometry 206 

method based on ImageJ software was used to estimate protein purity. Using this approach, a total of 207 

2.4 mg of 15N isotopically labelled β-lactoglobulin were produced and purified with an estimated purity 208 

higher than 70%. Protein sequences, concentration calculations, and purity estimation are detailed in 209 

Supplementary data 3. 210 

2.4. Characterization of produced 15N isotopically labelled proteins  211 

Protein 15N stable isotope enrichment was evaluated by UHPLC-HRMS analysis of its constitutive 212 

tryptic peptides. In separated containers, concatemer and β-lactoglobulin were diluted to 0.1 mg/mL with 213 

50 mM TEAB, pH 9.2, to a final volume of 20 µl. Disulfide bridges of β-lactoglobulin were successively 214 

reduced and alkylated with DTT (10 mM final concentration, 45 min incubation at 37 °C under 300 rpm 215 

orbital agitation) and IAA (40 mM final concentration, 45 min incubation in the dark at 37 °C under 300 216 

rpm orbital agitation). Concatemer and β-lactoglobulin were then proteolytically digested by adding 0.1 217 

µg of trypsin gold (protein:trypsin ratio of 1:20). Digestion was conducted for 1 h at 37 °C under 300 rpm 218 

orbital agitation and stopped by the addition of 1% (final concentration) of FA followed by centrifugation 219 

(20000 x g, 5 min). Samples were ten-fold diluted with 5% ACN before UHPLC-HRMS analysis. 220 

Peptides (5 µl of sample was injected) were first separated by reverse-phase liquid chromatography 221 

using a 20 min water/ACN + 0.1% FA linear gradient from 5% to 40% of ACN. Data was acquired in 222 

MSE mode with 0.3 s scan time within the 50 to 2000 m/z mass range. The data were processed using 223 

UNIFI software (Waters, Milford, MA, USA) and peptide mapping analysis type with traditional tryptic 224 

cleavage rules and setting cysteine carbamidomethylation and 15N isotope labelling as a fixed 225 

modifications. 226 

For each identified tryptic peptide, the most intense charge state was considered to define the 15N 227 

stable isotopic enrichment. The isotopic enrichment or isotope incorporation rate was evaluated for each 228 

peptide by comparing the intensity (in counts) of the peak corresponding to the fully 15N labelled (U-15N) 229 

peptide with other peaks corresponding to partially 15N labelled peptides. For practicality, we considered 230 
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a 13C natural abundance of 1.1% and neglected hydrogen and oxygen isotopic distributions in our 231 

calculations. Furthermore, only peaks corresponding to peptide with 1 14N isotope were considered in 232 

our calculation. The proportion of U-15N peptide was then obtained after comparing the intensity of the 233 

peak corresponding to the (U-15N & U-12C) peptide with the peak corresponding to the [(U-1)-15N & U-234 

12C] peptide. Protein isotopic enrichment was evaluated with the exponential trend given by the 235 

proportion of the U-15N version of each peptide considering its nitrogen content. 236 

2.5. Food matrices preparation 237 

Three blank food matrices – thus, not contaminated with the considered allergenic ingredients – 238 

were prepared to assess the variability due to the food sample used in our study. These blank matrices 239 

were baked cookies, chocolate, and freeze-dried cookie dough.  240 

Cookie dough was produced in batches of 3 kg by mixing (Kenwood Major Titanium, Stainless Steel 241 

Dough Hook, 15 min, max speed) the following ingredients purchased from a local supermarket in the 242 

respective weight proportions as follows: wheat flour (Carrefour type 55)/water (Milli-Q)/olive oil (Bertoli 243 

Classico)/salt (sodium chloride ACS, ≥ 99%, Thermo Scientific™)/baking powder (Dr. Oetker 244 

Baking)/Sugar (Grand Pont Crystal Sugar): 57%/18%/10%/0.2%/0.8%/14%. The dough was 245 

subsequently rolled out to a thickness of 0.5 mm, and cookies with a diameter of 8 cm were pressed out 246 

of the dough (weight = 25 ± 2 g). Cookies were baked for 25 min with the following program: 1–10 min: 247 

180 °C heat from above and 180 °C heat from below; 11–25 min: 180 °C heat from above and 160 °C 248 

heat from below. This was done to ensure that the warming of the baking plate would not result in uneven 249 

cookie baking. Cookies were left at ambient temperatures to cool down, and subsequently milled and 250 

sieved (Retsch® ZM 200 ultra-centrifugal mill [Retsch GmbH, Haan, Germany] with a 0.75 mm pore 251 

size sieve, 14000 rpm). Cookie powder was stored at 4 °C in the dark until further use. 252 

Cookie dough was produced as described above, rolled out to a thickness of 1 cm, stored at –20 253 

°C, and subsequently freeze-dried. Freeze-dried cookie dough was then milled and sieved (Retch® ZM 254 

200 ultra-centrifugal mill with a 0.75 mm pore size sieve, 14000 rpm). The freeze-dried cookie dough 255 

powder was stored at 4 °C in the dark until further use.  256 

Chocolate was made by warming chocolate walsenpowder (90%; Callebaut, Belgium) and cacao 257 

butter (10%, Callebaut, Belgium) in a water bath at 40 °C (maximum temperature). The mixture was 258 

stirred for 15 min, after which 2% ammonium phosphatide (kindly provided by Palsgaard, Julesminde, 259 

Denmark) was added. This mixture was again stirred for 15 min and subsequently poured into chocolate 260 
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molds, resulting in chocolate chips of around 5 g each. The chocolate was left to cool down and solidify 261 

at 4 °C for 2 h, and the chocolate chips were packed under vacuum and stored at 4 °C in the dark until 262 

further use.  263 

2.6. Sample preparation for UHPLC-MS/MS analysis 264 

Two series of samples were prepared and analyzed to be able to cover the three internal standards. 265 

Concatemer and β-lactoglobulin were isotopically labelled with the same strategy (15N uniform labelling) 266 

and share common tryptic peptides, which cannot be distinguished after enzymatic digestion. Two series 267 

of samples were prepared. Labelled peptides and β-lactoglobulin were spiked in the first series (only 268 

one shared peptide LSFNPTQLEEQCHI) and labelled concatemer in the second one. For each series, 269 

the three blank matrices (baked cookie, chocolate, and lyophilized unbaked cookie dough) were spiked, 270 

before extraction, with the appropriate internal standard and with increasing amounts of a standard 271 

extract of the four allergens (milk, egg, peanut, and hazelnut). These allergen amounts corresponded to 272 

0, 2.5, 5, 10, 25 and 50 ppm level points expressed in total allergen protein per matrix kg. For each 273 

series, each blank matrix and each point of the allergen curve, three biological sample replicates were 274 

prepared and analyzed. Stock solutions containing the four allergen standards at 20 mg/mL were 275 

prepared using a similar extraction protocol as that used for the samples (extraction, sonication, and 276 

centrifugation; see below). These stock solutions were then combined and diluted in appropriate ratios 277 

to spike samples at different contamination levels with a 100 µl volume. Combination and dilution were 278 

calculated based on theoretical protein content of standards assuming 100% extraction yield. Each 279 

internal standard was spiked at the similar molar level (0.25 nmol) with a 100 µl volume. Then,1 mg/mL 280 

stock solutions of the five considered labelled peptides (ADIYTEQV[13C5
15N]GR, 281 

FFVAPFPEVFGK[13C6
15N2], GGLEPINF[Ring-D5]QTAADQAR, LSF[Ring-D5]NPTQLEEQCHI, and 282 

TANELNLLIL[13C6
15N]R) were combined and diluted at the appropriate concentration with 0.1% FA. 283 

Concatemer and β-lactoglobulin solutions were also diluted to be spiked at 0.25 nmol level with a 100 284 

µl volume. This level, converted in equivalent allergen ppm, ranged from 10 ppm for abundant proteins, 285 

such as αS1-casein, to more than 300 ppm for less abundant proteins, such as vitellogenin-1. This 286 

estimate was based on the natural abundance of each considered protein in the corresponding 287 

allergenic ingredient. Allergen standards and internal standard were added to blank matrices before 288 

extraction. 289 

Samples were prepared as previously described (Planque et al., 2016). Briefly, protein from 2 g 290 

samples was extracted in 50 mL conical tubes with 20 mL of 200 mM Tris, pH 9.2, 2 M urea by shaking 291 
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at 20 °C for 30 min (Agitelec, J. Toulemonde, Paris, France) prior to ultrasonic treatment at 4 °C for 15 292 

min. After centrifugation (4660 x g, 10 min), 10 mL of supernatant were diluted in digestion buffer (200 293 

mM ammonium bicarbonate, pH 8.2). Protein disulfide bridges were successively reduced and alkylated 294 

with 45 min incubation steps at room temperature with the addition of 1 mL of 200 mM DTT and 1 mL 295 

of 400 mM IAA (in the dark). Protein was then enzymatically digested with the addition of 1 mL of trypsin 296 

solution (trypsin from bovine pancreas, 1 mg/mL in 50 mM acetic acid, pH 2.8) and incubation for 1 h at 297 

37 °C. The digestion reaction was stopped by adding 300 µl of 20% FA to the samples, which were then 298 

centrifuged (4660 x g, 5 min). Obtained peptides were then purified and concentrated using C18 SPE 299 

cartridges, which were first conditioned with 18 mL of ACN followed by 18 mL of 0.1% FA before loading 300 

of 20 mL of the centrifuged sample. The cartridges were washed with 18 mL of 0.1% FA and eluted in 301 

15 mL conical tubes with 6 mL of 80% ACN and 0.1% FA. A volume of 30 µl of DMSO was added to the 302 

sample before evaporation (40 °C under nitrogen flow) to avoid dryness. The pellet was finally dissolved 303 

in 600 µl of 5% ACN with 0.1% FA and centrifuged twice (4660 x g, 5 min in conical tube and 20 000 x 304 

g, 5 min in 1.5 mL microtube, keeping the supernatant) before UHPLC-MS/MS analysis. 305 

2.7. UHPLC-MS/MS analysis and data analysis 306 

The peptides were separated by reverse-phase chromatography on-line connected to a triple 307 

quadrupole mass spectrometer. The following 26 min solvent gradient (solvent A, 0.1% FA and solvent 308 

B, ACN and 0.1% FA) was applied to the 20 µl injected sample volume: 0–3 min: 92% solvent A; 3–18 309 

min: linear gradient from 92% to 58% solvent A; 18–22.5 min: 15% solvent A; and 22.5–26 min: 92% 310 

solvent A, always at constant 0.2 mL/min flow rate. Eluted peptides were ionized using the positive 311 

electrospray source and analyzed in MRM mode. The source gas flow was set at 50 L/h and the source 312 

voltage at 2.5 kV for the capillary and 30 V for the cone. The source temperature was set at 150 °C and 313 

the desolvation temperature at 400 °C with a gas flow at 1200 L/h. Targeted transitions are summarized 314 

in Table 1. For each peptide, three transitions were analyzed, as well as the corresponding transitions 315 

for the related isotopically labelled internal standard(s) (peptides, concatemer, and β-lactoglobulin). The 316 

transitions were selected beforehand using criteria that included the MS signal intensity and the absence 317 

of interference for the three considered matrices. The MS/MS acquisition method was generated using 318 

the open source Skyline software (MacLean et al., 2010). The most intense transition was used for 319 

internal standard comparison calculation and the two others as confirmatory transitions. Internal 320 

standards were compared using the peak area ratio (for the most intense transition) between the peptide 321 
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from the allergenic ingredient and its corresponding isotopically labelled version from the internal 322 

standard.  323 
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3. Results and discussion  324 

3.1. Choice of the isotope labelling strategy 325 

Stable isotope internal standard labelling and associated isotopic enrichment are key elements in 326 

the design of quantitative mass spectrometry-based methods. The isotopic enrichment and mass shift 327 

combination has to be sufficient to avoid any potential risk of false positive introduction. The resolution 328 

of quadrupole analyzers is typically around 1 atomic mass unit (Georgiou & Danezis, 2015). Taking into 329 

account that most of the peptide ion precursors carry multiple charges and that peptides contain tens of 330 

carbons, which lead to widespread isotopic distribution (see Fig. 1), the mass shift introduced by the 331 

stable isotopes has to be sufficient to be able to totally distinguish the natural analyte from its internal 332 

standard. Considering these aspects, a mass shift of m/z ≥ 3 is necessary. Furthermore, attention has 333 

to be paid to the actual isotope enrichment. Depending on the labelling strategy, an insufficient isotope 334 

enrichment may lead to the introduction of the unlabeled form of the internal standard, thus 335 

corresponding to the natural analyte itself and contaminating the quantitative analysis.  336 

Several strategies have been developed to produce isotopically labelled proteins, including selective 337 

labelling using auxotrophic E. coli strains and growth medium supplemented with isotopically labelled 338 

amino acids (Mondal, Shet, Prasanna, & Atreya, 2013) or post-translational protein deuteration (Galan 339 

et al., 2018). In this study, we decided to use a rich bacterial cell growth medium specifically designed 340 

for 15N labeling protein using E. coli as a host cell for recombinant protein expression. This original 341 

medium is an algal hydrolysate that contains the same level of amino acids as LB medium. This strategy 342 

allowed for stable and protein sequence independent labelling (as each amino acid contains at least 343 

one nitrogen) with a high isotopic enrichment. As one of the peptide biomarkers selection criteria 344 

concerned the actual peptide length (peptides should have at least 8 amino acids), m/z ≥ 3 mass shift 345 

precaution is respected for triply charged precursor. Indeed, selected peptide biomarkers are tryptic 346 

peptides, with a lysine or an arginine in C-terminal position, holding two and four nitrogen atoms, 347 

respectively. 348 

3.2. Characterization of 15N isotopically labelled proteins  349 

The isotopic enrichment in the concatemer and β-lactoglobulin was evaluated following analysis of 350 

their constitutive tryptic peptides by UHPLC-HRMS. The proportion of the fully 15N labelled version of 351 

each tryptic peptide was estimated by comparing the intensities of the monoisotopic peak (U-15N & U-352 

12C) and those of its isotope containing one 14N isotope ([U-1]-15N & U-12C). As shown in Fig. 1, the 353 
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intensities of the peaks from peptides with more than one 14N isotope were found to be negligible 354 

(relative peak intensity <1% compared to the [U-15N & U-12C] peak). Given the resolution of the MS 355 

system (40000), carbon and nitrogen isotopes could not be distinguished. As a result, the monoisotopic 356 

peak (U-15N & U-12C) was combined with the peak corresponding to the peptide with one 14N and one 357 

13C isotope ([U-1]-15N & 13C1). The proportion of fully 15N labelled peptide was evaluated by comparing 358 

(U-15N & U-12C) and ([U-1]-15N & U-12C) peak intensities. The part of the peak intensity corresponding 359 

to the (U-15N & U-12C) isotope therefore had to first be discriminated from the combined (U-15N & U-12C) 360 

and ([U-1]-15N & 13C1) isotopes’ peak intensity. Since isotopes with more than one 14N were found to be 361 

negligible, we assumed that the ([U-1]-15N & U-12C) isotope peak would only correspond to this 362 

combination of isotopes. The peak intensity of the ([U-1]-15N & 13C1 isotope could therefore be predicted 363 

from the ([U-1]-15N & U-12C) isotope peak intensity assuming a 1.1% natural abundance of 13C isotopes 364 

and knowing the number of carbon atoms in the peptide. With this prediction, the (U-15N & U-12C) isotope 365 

peak intensity could be deduced from the combined isotopes’ peak intensity. 366 

The proportion of fully 15N labelled peptide was evaluated for all the 19 concatenated tryptic peptides 367 

of the concatemer and for all identified tryptic peptides from β-lactoglobulin. As shown in Fig. 2, the 368 

relation between the labelling proportion and the number of nitrogen atoms in the peptides follows an 369 

exponential decay. The associated exponential decay constant corresponds to the natural logarithm of 370 

the isotopic enrichment. Indeed, for a given isotopic enrichment (𝜑), the proportion of fully 15N labelled 371 

peptide with 𝑛 nitrogens is given by 𝜑𝑛, which can be transformed into 𝑒ln(𝜑)∗𝑛. Isotopic enrichment is 372 

deduced from this mathematical transformation by equating ln⁡(𝜑) to experimentally obtained 373 

exponential arguments (–0.00446 for the concatemer and –0.00411 for β-lactoglobulin). These results 374 

give an isotopic enrichment of 99.5% for the concatemer and 99.6% for β-lactoglobulin, and are in 375 

agreement with the >98% isotopic enrichment of the growth medium.  376 

By using a method for efficient isotopic labelling of recombinant protein, we demonstrated that the 377 

purified 15N isotopically labelled concatemer and β-lactoglobulin internal standards fulfilled the required 378 

criteria regarding isotopic enrichment and the introduced mass shift. With this 15N uniform labelling 379 

strategy, the introduced mass shift was sufficient to distinguish the internal standard from the natural 380 

analyte using the quadrupole analyzer. The lowest mass shift corresponded to the double charged 381 

FYTVISSLK peptide (from egg white ovotransferrin), one of the 19 concatenated peptides, which 382 

contained 10 nitrogen atoms and an associated mass shift of a m/z of 5. Such a mass shift and obtained 383 

isotopic enrichment combination prevented the risk of false positive introduction. 384 
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3.3. Comparison of isotopically labelled internal standards 385 

Performance of the three types of isotopically labelled internal standards (peptides, concatemer, 386 

and protein) were evaluated following analysis of three food matrices (baked cookie [cookie], chocolate, 387 

and lyophilized unbaked cookie dough [dough]). In theory, a perfect internal standard would have the 388 

same exact behavior as its corresponding analyte during sample preparation and analysis. Hence, any 389 

analyte loss or matrix effect (during sample preparation or UHPLC-MS/MS analysis) which affects the 390 

analyte should equally affect the internal standard. Consequently, for a given natural analyte 391 

concentration and internal standard spike level, the signal ratio between a natural analyte and the 392 

internal standard would remain constant, independent of analyte losses and matrix effects. The three 393 

internal standards considered in this study were compared based on this correlation. 394 

Similar matrix-matched calibration curves were prepared for the three matrices. These curves 395 

included a blank and five allergen concentrations ranging from 2.5 to 50 ppm (expressed in mg total 396 

allergen protein per kg of matrix), with each sample prepared in triplicate. For each combination of matrix 397 

and allergen contamination level, the appropriate internal standard(s) (isotopically labelled peptides and 398 

U-15N β-lactoglobulin for the first sample series, and U-15N concatemer for the second one) was spiked 399 

at the same concentration. Results are presented separately for each targeted peptide and its 400 

corresponding internal standard (five synthetic peptides, 19 allergenic tryptic peptides from U-15N 401 

concatemer digestion, and four tryptic peptides from U-15N β-lactoglobulin digestion). Representative 402 

peptides of each internal standard are shown in Fig. 3, and complete results are shown in 403 

Supplementary data 4. Performance of the different internal standards were evaluated by comparing 404 

the peak area ratio for the most intense transition (highlighted in Table 1) between the analyte and its 405 

corresponding internal standard for the three considered matrices. As shown, for a given analyte and 406 

internal standard concentration, the signal ratio remained constant when the internal standard was 407 

effective. The overlay of the generated linear regression lines was therefore used to evaluate internal 408 

standards performance. Overlapping regression lines indicated, for each allergen contamination level, 409 

a constant peak area ratio among matrices and thus, an effective internal standard, compensating for 410 

matrix effects. In addition to visual evaluation, overlapping regression lines were evaluated using the 411 

coefficient of variation (CV) between the slopes of the linear regression lines.  412 

Overall, the best results were obtained for the isotopically labelled protein, U-15N β-lactoglobulin. 413 

Assuming that recombinant protein folding was similar to the native protein and that the introduced N-414 

terminal mutations had no significant impact, as previously demonstrated (Loch et al., 2016), this 415 
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approach seemed to be the one best suited one for quantifying allergen proteins. Aside from their mass 416 

(given the mass shift introduced by isotope labelling), both the analyte protein and the internal standard 417 

protein must have had the same properties. This was confirmed by the analysis of four constitutive 418 

tryptic peptides from β-lactoglobulin. Regression lines overlapped with all CV values below 15%. This 419 

confirmed that the internal standard had efficiently balanced matrix effects during sample preparation 420 

and UHPLC-MS/MS analysis, further supported by the fact that the analyte absolute peak area varied 421 

by a factor of up to 10 among the three considered matrices, depending on the peptide (data not shown) 422 

while the analyte/internal standard peak area ratio remained constant. However, the labelled protein 423 

was spiked into the different samples after food processing, which is known to impact peptide 424 

detectability and quantification (Korte et al., 2019; Parker et al., 2015). Peptide biomarker selection is 425 

therefore a crucial preliminary step in the development of a quantitative method, and selected peptides 426 

have to be robust to the food process. 427 

The results obtained with isotopically labelled peptides and the concatemer were less 428 

straightforward to interpret. For some targeted peptides, such as LSFNPTQLEEQCHI with labelled 429 

peptides, or TNDNAQISPLAGR with the U-15N concatemer, the internal standard efficiently 430 

compensated for matrix effects with observed CV values below 15%. However, for some other targeted 431 

peptides, such as GGLEPINFQTAADQAR with both U-15N concatemer and labelled peptides, the 432 

analyte and internal standard signal ratio was highly matrix-dependent. In these cases, internal 433 

standards did not correctly balance matrix effects, potentially leading to biased allergen quantification. 434 

These results are consistent with those reported by Planque and co-workers (Planque et al., 2019). No 435 

significant difference was observed for the three peptides which were common to synthetic peptides and 436 

concatemer used as internal standards. 437 

Isotopically labelled peptides are not subject to one of the crucial steps during sample preparation, 438 

this being the proteolytic digestion with trypsin. The composition of the food matrix directly impairs the 439 

efficiency of enzymatic digestion at least in two different ways. First, different matrices have different 440 

protein concentrations, directly affecting the protein/enzyme ratio. Labelled peptides do not balance for 441 

this aspect. Second, some other sample components, such as polyphenols and tannins, may also affect 442 

the efficiency of trypsin digestion (Gonçalves, Mateus, Pianet, Laguerre, & De Freitas, 2011), which 443 

might help to explain why the chocolate matrix gave lower signals for most of targeted peptides. Contrary 444 

to the labelled peptides, the U-15N concatemer needed to be digested by trypsin to yield peptides that 445 

could be detected upon UHPLC-MS/MS analysis. Therefore, factors such as the sample protein content 446 
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or the presence of tannins should be balanced when using such an internal standard. However, our 447 

results indicated that the performance of the concatemer was peptide-dependent. For some peptides, 448 

such as TNDNAQISPLAGR from hazelnut Cor a 9 allergen and FFVAPFPEVFGK from milk αS1-casein, 449 

matrix effects were efficiently balanced with linear regression lines CV below 15% between the matrices. 450 

However, for other peptides, such as NVNFDGEILK from egg vitellogenin-1 and TPEVDDEALEK from 451 

milk β-lactoglobulin, the associated CVs were much higher (>30%).  452 

Matrix effects can also affect analytes by other means. Robustness to food processing was one of 453 

the criteria for peptide biomarkers selection (Gavage et al., 2019, 2020; Van Vlierberghe et al., 2020) 454 

and can therefore be excluded. Variation in protein extraction can also be excluded as, for all selected 455 

proteins, multiple peptides were included in the U-15N concatemer, and no general trend of the matrix 456 

effect was observed for all the peptides of a given protein. Indeed, if protein extraction of the analyte 457 

and/or the internal standard was affected by the matrix, all peptides from a given protein should be 458 

equally impacted, which was not observed.  459 

Proteolytic digestion of extracted proteins is a key step in sample preparation and could be a source 460 

of the observed variability. Even if the concatemer internal standard needs to be digested to release its 461 

constitutive peptides, multiple factors could influence the digestion kinetics. For instance, amino acids 462 

surrounding trypsin recognition sites are known to influence the efficiency of peptide bond hydrolysis 463 

(Siepen, Keevil, Knight, & Hubbard, 2007). Cleavage sites are described using the nomenclature 464 

formulated by Schechter and Berger (Schechter & Berger, 1967), as P4-P3-P2-P1-P1’-P2’-P3’, in which 465 

cleavage of the peptide bond occurs between P1 and P1’. Arginine, lysine, and proline in position P1’ 466 

have, for instance, a negative effect on the digestion efficiency. The acidic amino acids aspartate and 467 

glutamate also negatively influence digestion when they are present near the cleavage site. These 468 

aspects were taken into account during peptide biomarkers selection, and sequences known to 469 

negatively affect trypsin digestion were rejected. However, peptide biomarkers were synthetically 470 

stitched together in the concatemer. Considering a given peptide in the concatemer, its cleavage site is 471 

surrounded at the N-terminal side (P4 to P1) by amino acids from this peptide but also by amino acids 472 

from its neighboring peptide at the C-terminal side (P1’ to P3’). Consequently, at a local scale, enzymatic 473 

digestion of the concatemer only partially reflects digestion of the natural proteins. This difference 474 

between natural analytes and concatemers might lead to differences in enzymatic digestion kinetics and 475 

could have been a source of the observed variations. A relatively simple solution to overcome this would 476 

be the introduction of amino acids between each targeted peptide of the concatemer. Such introduced 477 
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amino acids could be the flanking amino acids in the corresponding natural protein sequence, a solution 478 

known as a peptide-concatenated standard (PCS) (Kito, Ota, Fujita, & Ito, 2007). However, amino acids 479 

surrounding the cleavage site in the three-dimensional structure of the protein might also affect trypsin 480 

digestion. Hence, cleavage sites surrounded by acidic amino acids, characterized by a greater average 481 

exposed area, are more subject to missed-cleavages. 482 

Besides flanking amino acids, structural parameters also interfere with enzymatic digestion of a 483 

protein. According to the work of Hamady and co-workers (Hamady, Cheung, Tufo, & Knight, 2005), 484 

secondary protein structures affect trypsin digestion efficiency. Cleavage sites within unstructured 485 

domains are more prone to be cleaved incorrectly, whereas cleavage sites in alpha-helices are more 486 

favorable. The structures of proteins targeted by the UHPLC-MS/MS method, when available, were 487 

analyzed to define whether observed variability among peptides could be linked to findings of Hamady 488 

and co-workers or not (Hamady et al., 2005). No general trend emerged from our data, limited to the 19 489 

concatenated peptides. However, three-dimensional and structural aspects could be included in a future 490 

peptide biomarker selection, in addition to all other criteria already considered in this study.  491 
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4. Conclusions 492 

Mass spectrometry-based detection and quantification of food allergens in processed food products 493 

remains challenging. Currently, no threshold values for allergen trace-level contamination have been 494 

established in European legislation, but these are highly expected by all stakeholders involved in the 495 

food chain, from producers to control laboratories, and will require quantitative analysis methods. 496 

Quantitative methods based on stable dilution techniques need isotopically labelled internal standards.  497 

Here, we presented and compared the performances of three different types of isotopically labelled 498 

internal standards for allergen analysis in processed food products: synthetic peptides, concatemer, and 499 

protein. These internal standards were compared through the analysis of three matrix-matched 500 

calibration curves (cookie, chocolate, and unbaked lyophilized cookie dough) for four targeted allergens 501 

(egg, milk, peanut, and hazelnut). An effective internal standard needs to behave similar to the natural 502 

analyte and is therefore identically impacted by matrix effects during sample preparation and UHPLC-503 

MS/MS analysis. As expected from a theoretical point of view, the isotopically labelled protein that was 504 

used as an internal standard gave the best results. A constant signal ratio between the analyte and the 505 

internal standard peak areas was observed in all matrices tested for the four tryptic peptides generated 506 

from the studied protein. However, we need to emphasize that these results only come from one 507 

investigated protein, β-lactoglobulin from milk.  508 

Results from our studies using peptides and the concatemer were more equivocal and seemed to 509 

be peptide-dependent. For some synthetic peptides or some tryptic peptides from the concatemer, 510 

matrix effects during sample preparation and UHPLC-MS/MS analysis could be efficiently countered by 511 

the applied internal standards, whereas for other peptides, significant matrix effects were observed. 512 

However, the non-inferiority of the results obtained for the tryptic peptides from the concatemer was 513 

established, when compared to synthetic peptides. Moreover, the addition of any synthetic peptide in a 514 

method represent an additional cost, limiting therefore the number of targeted peptides for routine 515 

laboratories. The concatemer production costs are relatively independent of the number of concatenated 516 

tryptic peptides. From a rough estimate of ten peptides, the use of a concatemer as internal standard is 517 

financially advantageous and supersedes synthetic peptides. 518 

Even though isotopically labelled synthetic peptides are currently the most commonly used internal 519 

standard for allergen analysis, they do not exactly reflect the natural situation as they do not need to be 520 

subjected to proteolytic digestion, while part of the variability observed in our study could have come 521 

from proteolytic digestion. Concatemers clearly need to be digested to release their constituting 522 
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peptides. However, our data seem to indicate that the digestion of the concatemer could be improved 523 

to more efficiently represent analyte protein digestion. In this respect, introducing flanking amino acids 524 

between each individual peptide (i.e. the PCS strategy) could be a future asset. Moreover, for our 525 

concatemer construct, peptide biomarker selection was mainly focused on robustness to food 526 

processing and local sequences, but additional criteria, such as protein structure and the local digestion 527 

site environment, could be included in the peptide selection process. Such possible future improvements 528 

strongly suggest that isotopically labelled concatemers could represent relevant internal standards, as 529 

they overcome limitations of the use of synthetic peptides, while combining advantages of the use of 530 

labelled proteins and, further, allowing for multiple allergen quantification by mass spectrometry.  531 
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